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Context

In order to evaluate the electromagnetic behavior of 3D objects, we need to solve the
Maxwell equations.

Numerical simulation of Maxwell Equations with Finite Volumic Elements
↓

Need to solve a large and sparse linear system of equations Ax = b
↓

Requires an efficient and scalable solver

A domain decomposition method is used in this context, but limitations appear as the
computing resources are growing :

• Increase in the number of sub-domains ⇒ Convergence is slower
• Increase in the size of the sub-domains ⇒ Increase in computational complexity

We need to investigate an alternative method to domain decomposition :
multigrid methods.
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Basic principle of multigrid methods

Figure 1: V-cycle of a multigrid method

In this method, the computation of the
solution x is accelerated thanks to a hier-
archy of coarse problems.

We introduce :
• Al : Matrix of the level l

• Sν
0 : ν smoother iterations on the

level l

• Pl : Interpolation operator of size
nl−1 × nl

• Rl : Restriction operator of size
nl × nl−1

In most application

R = PH . (1)

French Alternative Energies and Atomic Energy Commission SIAM CSE 2023 - 02/26 - 03/03 3 / 12



Table of contents

• 1 - Multigrid applied to Laplace vs Helmholtz

• 2 - Smoother for Helmholtz

• 3 - Interpolation rules for Helmholtz

• 4 - Numerical results

• 5 - Conclusion and perspectives

French Alternative Energies and Atomic Energy Commission SIAM CSE 2023 - 02/26 - 03/03 4 / 12



1 - Multigrid applied to Laplace vs Helmholtz

(Laplace Problem) ⇔
{

−∆u = f on Ω = [0, 1]
u|∂Ω = 0 (2)
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(Helmholtz Problem) ⇔
{

−∆u −k2u = f on Ω = [0, 1]
u|∂Ω = 0 (3)
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2 - Smoother for Helmholtz

Target : Find a smoother able to damp V+, without touching V0.

Problem : V+ eigenvectors are either associated with negative or positive eigenvalues.

Alternative to usual multigrid smoothers :
• Krylov methods are good smoothers in the indefinite case but :

• They minimize ||r ||2 regardless of the eigenvalues
• They are non-linear because of their right-hand side dependence

• Chebyshev Polynomial Smoother built on normal equations will be considered
• Normal equations are helpful to damp both negative and positive eigenvalues
• The Chebyshev framework is practical to find a minimum polynomial within an interval
• This smoother has the following error propagation formula

q(A2) := I − p(A2)A2, (4)

giving for Av0 = λ0v0 ≈ 0

q(A2)v0 = (1 − p(λ2
0)λ

2
0)v0 ≈ v0 (5)

→ We seek a polynomial smoother p such that q is minimum in a given interval.
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2 - Smoother for Helmholtz

1 Choose an appropriate interval I = [xmin, xmax] where q must be minimum
2 Compute First Kind Chebyshev roots as best interpolation points within I

xi :=
xmax + xmin

2 +
xmax − xmin

2 cos

(
(2i − 1)π

2d

)
(6)

3 Construct the polynomial using the Lagrangian formula

q(xi) = 0 ⇔ p(xi) =
1
xi

, p(x) =
d∑

j=0

1
xj

d∏
i=0,i 6=j

x − xi

xj − xi
(7)
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Figure 2: Spectrum of the polynomial smoother error propagation matrix
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3 - Interpolation rules for Helmholtz

From the theory [Falgout et al. 2004] , we can define, under SPD assumption of A, an
ideal interpolator P∗ from coarse (C) and fine (F) variable selection operators

R
(nC×n)

: Ω 7→ C and SH

(nF×n)
: Ω 7→ F , (8)

such that RH ⊕ S = Rn and RS = 0. This operator is defined by

P∗ = (I − S(SHAS)−1SHA)RH (9)

Exemple : Let the coarse and fine selection operators be defined by

R = [ 0 InC ] and ST = [ InF 0 ]. (10)

After reorganizing A by coarse/fine blocks, such that

A =

[
SHAS SHARH

RAS RARH

]
=

[
Aff Afc
Acf Acc

]
,

the ideal interpolator can be written

P∗ =

[
−A−1

ff Afc
Icc

]
, AC = PH

∗ AP∗ = Acc − Acf A−1
ff Afc (11)
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3 - Interpolation rules for Helmholtz

Remark : The ideal framework requires A to be SPD.
↪→ However the reduction viewpoint is still valid : Removing orthogonal information
that the smoother captures will correct the coarse selection operator

1 First, we generate a set K of κ smoothed random vectors approximating the NKS
2 Then we construct a better coarse selection operator R̂H by a least squares strategy

minimizing the squared difference between fine variable i values in K and their
interpolation from coarse neighboring variables Ci

∀i ∈ F , ri = argmin
r

κ∑
l=1

wl (Ki,l − r · KCi ,l)
2 (ri row of RF ) (12)

3 We plug the new coarse and fine selection operators defined by

R̂H = [ RF IC ]T , Ŝ = [ IF − RH
F ]T , (13)

4 And we finally approximate the ideal interpolator from the previous definition

P̂ ≈ (I − ŜX−1
K ŜHA)R̂H (14)

where X−1
K is the best polynomial approximating (SHAS)−1 within the

sparsity-pattern constrained Krylov subspace K.
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4 - Numerical results

2D Helmholtz problem :

(PC) ⇔
{

−∆u − k2u = f on Ω
∂nu − iku = 0 on ∂Ω

• 5 pts Stencil, 10 pts per wavelength
(h = λ/10 ⇔ kh = 2π/10 ≈ 0.625)

• Multigrid parameters :
• Normal equations polynomial smoother of degree

d = 3
• Krylov sub-size m = 3 in the construction of P̂

Figure 3: Solution of a Helmholtz problem
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Figure 4: Number of iterations following the wavenumber k
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4 - Numerical results

k 70 100 130 160 190 220 250 280 310
n (×105) 1.28 2.59 4.37 6.60 9.30 12.46 16.08 20.16 24.7
nc (×105) 0.16 0.32 0.55 0.83 1.16 1.56 2.01 2.52 3.09
nnz(A0) 5 5 5 5 5 5 5 5 5
nnz(A1) 77 78 79 79 79 80 80 80 80
nnz(A2) 299 315 316 322 332 335 337 339 341
nnz(A3) 322 342 345 359 376 380 385 386 386
nnz(P̂1) 20 20 20 20 20 20 20 20 20
nnz(P̂2) 63 64 65 66 66 66 67 67 67
nnz(P̂3) 168 178 178 183 188 190 191 192 193

Table 1: Sparsity measurement of level matrices and interpolators following k
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5 - Conclusion and perspectives

Helmholtz is difficult because :
• Negative components appear and require an adapted smoother
• The near-kernel space is oscillatory and requires adapted interpolation rules

⇒ We proposed an algebraic multigrid method that reaches those requirements up to a
certain limit.

Further researches will focus on :
1 Increasing the depth of the multigrid cycle
2 Sparsity has to be improved
3 Construct a better coarse selection operator
4 Work on an adapted framework for Helmholtz
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