SIAM CSE 2023 - 02/26 - 03/03

Rob FALGOUT (LLNL) Matthieu LECOUVEZ (CEA/CESTA) Pierre RAMET (INRIA) <u>Clément RICHEFORT</u> (CEA/CESTA)

DE LA RECHERCHE À L'INDUSTRIE

Toward a multigrid method for the Helmholtz equation

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

In order to evaluate the electromagnetic behavior of 3D objects, we need to solve the **Maxwell equations**.

Numerical simulation of **Maxwell Equations** with Finite Volumic Elements \downarrow Need to solve a large and sparse linear system of equations Ax = b \downarrow Requires an **efficient** and **scalable** solver

A domain decomposition method is used in this context, but limitations appear as the computing resources are growing :

- Increase in the number of sub-domains \Rightarrow Convergence is slower
- Increase in the size of the sub-domains \Rightarrow Increase in computational complexity

We need to investigate an alternative method to domain decomposition : multigrid methods.

Basic principle of multigrid methods

Figure 1: V-cycle of a multigrid method

In this method, the computation of the solution *x* is accelerated thanks to a hierarchy of coarse problems.

We introduce :

- A₁ : Matrix of the level I
- S_0^{ν} : ν smoother iterations on the level *I*
- P_l : Interpolation operator of size $n_{l-1} \times n_l$
- R_l : Restriction operator of size $n_l \times n_{l-1}$

In most application

$$R = P^{H}.$$
 (1)

- 1 Multigrid applied to Laplace vs Helmholtz
- 2 Smoother for Helmholtz
- 3 Interpolation rules for Helmholtz
- 4 Numerical results
- 5 Conclusion and perspectives

1 - Multigrid applied to Laplace vs Helmholtz

2 - Smoother for Helmholtz

Target : Find a smoother able to damp V_+ , without touching V_0 .

<u>Problem</u> : V_+ eigenvectors are either associated with **negative** or **positive** eigenvalues.

Alternative to usual multigrid smoothers :

- Krylov methods are good smoothers in the indefinite case but :
 - They minimize $||r||_2$ regardless of the eigenvalues
 - They are non-linear because of their right-hand side dependence

• Chebyshev Polynomial Smoother built on normal equations will be considered

- Normal equations are helpful to damp both negative and positive eigenvalues
- The Chebyshev framework is practical to find a minimum polynomial within an interval
- This smoother has the following error propagation formula

$$q(A^2) := I - p(A^2)A^2, \qquad (4)$$

giving for $Av_0 = \lambda_0 v_0 \approx 0$

$$q(A^2)v_0 = (1 - p(\lambda_0^2)\lambda_0^2)v_0 \approx v_0$$
(5)

 \rightarrow We seek a polynomial smoother p such that q is minimum in a given interval.

2 - Smoother for Helmholtz

1 Choose an appropriate interval $\mathcal{I} = [x_{\min}, x_{\max}]$ where *q* must be minimum **2** Compute First Kind Chebyshev roots as best interpolation points within \mathcal{I}

$$x_{i} := \frac{x_{\max} + x_{\min}}{2} + \frac{x_{\max} - x_{\min}}{2} \cos\left(\frac{(2i-1)\pi}{2d}\right)$$
(6)

8 Construct the polynomial using the Lagrangian formula

$$q(x_i) = 0 \iff p(x_i) = \frac{1}{x_i}, \ p(x) = \sum_{j=0}^d \frac{1}{x_j} \prod_{i=0, i \neq j}^d \frac{x - x_i}{x_j - x_i}$$
 (7)

Figure 2: Spectrum of the polynomial smoother error propagation matrix

3 - Interpolation rules for Helmholtz

From the theory [Falgout et al. 2004], we can define, under SPD assumption of A, an ideal interpolator P_* from coarse (C) and fine (\mathcal{F}) variable selection operators

$$\underset{n_{\mathcal{C}} \times n_{j}}{R} : \Omega \mapsto \mathcal{C} \text{ and } \underset{(n_{\mathcal{F}} \times n)}{S^{H}} : \Omega \mapsto \mathcal{F},$$
(8)

such that $R^H \oplus S = \mathbb{R}^n$ and RS = 0. This operator is defined by

$$P_* = (I - S(S^H A S)^{-1} S^H A) R^H$$
(9)

Exemple : Let the coarse and fine selection operators be defined by

$$R = \begin{bmatrix} 0 & I_{n_{\mathcal{C}}} \end{bmatrix} \text{ and } S^{\mathsf{T}} = \begin{bmatrix} I_{n_{\mathcal{F}}} & 0 \end{bmatrix}.$$
(10)

After reorganizing A by coarse/fine blocks, such that

(

$$A = \begin{bmatrix} S^{H}AS & S^{H}AR^{H} \\ RAS & RAR^{H} \end{bmatrix} = \begin{bmatrix} A_{ff} & A_{fc} \\ A_{cf} & A_{cc} \end{bmatrix},$$

the ideal interpolator can be written

$$P_{*} = \begin{bmatrix} -A_{ff}^{-1}A_{fc} \\ I_{cc} \end{bmatrix} , \ A_{\mathcal{C}} = P_{*}^{H}AP_{*} = A_{cc} - A_{cf}A_{ff}^{-1}A_{fc}$$
(11)

French Alternative Energies and Atomic Energy Commission

Remark : The ideal framework requires A to be SPD.

 \hookrightarrow However the reduction viewpoint is still valid : Removing orthogonal information that the smoother captures will correct the coarse selection operator

- **()** First, we generate a set K of κ smoothed random vectors approximating the NKS
- **2** Then we construct a better coarse selection operator \hat{R}^H by a least squares strategy minimizing the squared difference between **fine variable** *i* **values** in *K* and their **interpolation from coarse neighboring variables** C_i

$$\forall i \in \mathcal{F}, r_i = \arg\min_r \sum_{l=1}^{\kappa} w_l \left(K_{i,l} - r \cdot K_{\mathcal{C}_i,l} \right)^2 (r_i \text{ row of } R_{\mathcal{F}})$$
(12)

8 We plug the new coarse and fine selection operators defined by

$$\hat{R}^{H} = \begin{bmatrix} R_{\mathcal{F}} & I_{\mathcal{C}} \end{bmatrix}^{T}, \ \hat{S} = \begin{bmatrix} I_{\mathcal{F}} & -R_{\mathcal{F}}^{H} \end{bmatrix}^{T},$$
(13)

O And we finally approximate the ideal interpolator from the previous definition

$$\hat{P} \approx (I - \hat{S} X_{\mathcal{K}}^{-1} \hat{S}^{H} A) \hat{R}^{H}$$
(14)

where $X_{\mathcal{K}}^{-1}$ is the best polynomial approximating $(S^{H}AS)^{-1}$ within the sparsity-pattern constrained Krylov subspace \mathcal{K} .

4 - Numerical results

2D Helmholtz problem :

$$(PC) \Leftrightarrow \begin{cases} -\Delta u - k^2 u = f \text{ on } \Omega \\ \partial_n u - iku = 0 \text{ on } \partial \Omega \end{cases}$$

- 5 pts Stencil, 10 pts per wavelength ($h = \lambda/10 \Leftrightarrow kh = 2\pi/10 \approx 0.625$)
- Multigrid parameters :
 - Normal equations polynomial smoother of degree d = 3
 - Krylov sub-size m = 3 in the construction of P

 P

Figure 4: Number of iterations following the wavenumber k

602

k	70	100	130	160	190	220	250	280	310
$n (\times 10^5)$	1.28	2.59	4.37	6.60	9.30	12.46	16.08	20.16	24.7
$n_{c}~(\times 10^{5})$	0.16	0.32	0.55	0.83	1.16	1.56	2.01	2.52	3.09
$\overline{nnz}(A_0)$	5	5	5	5	5	5	5	5	5
$\overline{nnz}(A_1)$	77	78	79	79	79	80	80	80	80
$\overline{nnz}(A_2)$	299	315	316	322	332	335	337	339	341
$\overline{nnz}(A_3)$	322	342	345	359	376	380	385	386	386
$\overline{nnz}(\hat{P}_1)$	20	20	20	20	20	20	20	20	20
$\overline{nnz}(\hat{P}_2)$	63	64	65	66	66	66	67	67	67
$\overline{nnz}(\hat{P}_3)$	168	178	178	183	188	190	191	192	193

Table 1: Sparsity measurement of level matrices and interpolators following k

Helmholtz is difficult because :

- Negative components appear and require an adapted smoother
- The near-kernel space is oscillatory and requires adapted interpolation rules
- \Rightarrow We proposed an algebraic multigrid method that reaches those requirements up to a certain limit.

Further researches will focus on :

- 1 Increasing the depth of the multigrid cycle
- Ø Sparsity has to be improved
- **8** Construct a better coarse selection operator
- **4** Work on an adapted framework for Helmholtz