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TOWARD A MULTILEVEL METHOD FOR THE HELMHOLTZ1

EQUATION ∗2

CLÉMENT RICHEFORT †3

In collaboration with: Matthieu Lecouvez, Rob Falgout, Pierre Ramet4

Abstract. It is well known that multigrid methods are very competitive in solving a wide5
range of SPD problems. However achieving such performance for non-SPD matrices remains an6
open problem. In particular, two main issues may arise when solving a Helmholtz problem. Some7
eigenvalues become negative or even complex, requiring the choice of an adapted smoothing method8
for capturing them. Moreover, since the near-kernel space is oscillatory, the geometric smoothness9
assumption cannot be used to build efficient interpolation rules. We present some investigations10
about designing a method that converges in a constant number of iterations with respect to the11
wavenumber. The method builds on an ideal reduction-based framework and related theory for SPD12
matrices to correct an initial least squares minimization coarse selection operator formed from a set13
of smoothed random vectors. We also present numerical results at the end of the paper.14

Key words. Multigrid, Helmholtz, Linear Algebra, Polynomial Smoother15

1. Introduction. The numerical simulation of various physical phenomena gives16

rise to potentially very large linear systems of equations written Au = b in matrix17

form. These systems can be solved directly by a convenient factorization of A, or18

iteratively by computing and refining an approximation of the solution u starting19

from an initial guess u0. Multigrid methods [15, 8] work iteratively and are known20

to be scalable and quasi-optimal for solving sparse linear systems of equations for21

many classes of problems. To simplify the discussion in what follows, we use the term22

”small/large eigenvector” to mean an eigenvector with small/large eigenvalue. We23

similarly say ”positive/negative eigenvector” when referring to the eigenvalue sign.24

1.1. General aspects on multigrid methods. The core idea in multigrid25

methods is to accelerate the computation of u by way of a hierarchy of coarse problems26

Alul = bl, l being the level in the grid hierarchy. A restriction operator Rl transfers27

the information from a level l to a coarser one l + 1, while an interpolation operator28

Pl transfers the information from level l + 1 to l. In most symmetric applications,29

Rl = PT
l and coarse matrices are constructed following the Galerkin formula Al+1 =30

PT
l AlPl. Two-grid methods actually need both types of solvers: a direct method for31

the coarse correction, and an iterative method called a smoother on the fine level.32

The error propagation matrix for the coarse correction is33

(1.1) E = I − P (PTAP )−1PTA.34

The error propagation matrix for the smoother is35

(1.2) EM = I −M−1A36

where M−1 is an approximation of A−1, for instance the diagonal inverse or a poly-37

nomial of A. The smoother is applied before each restriction and after each inter-38

polation. Finding a smoother and a coarse correction that are complementary is a39
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2 CLÉMENT RICHEFORT

major concern in the design of the method. The interpolator must propagate the40

coarsest information back to the finest, and transferred errors should be eliminated41

by the smoother. The smoother targets the large eigenvectors and the coarse correc-42

tion targets the small eigenvectors. The near-kernel space of smallest eigenvectors is43

especially important in the design of interpolation. A multi-level method can be cre-44

ated by recursively applying the two-level method to solve the coarse system, where a45

direct solver is used on the coarsest level. The context in which a multigrid method is46

applied determines what kind of operators should be used in the method. In elliptic47

problems, where the convergence of multigrid methods is well known, the matrix A48

is symmetric positive definite, so smoothers like weighted-Jacobi or Gauss-Seidel are49

known to be good smoothers since they damp the high frequencies without modifying50

the low frequency eigenvectors. Likewise, interpolators are designed to target slowly51

varying components as in classic algebraic multigrid methods (AMG) [16].52

1.2. Why Helmholtz problems are difficult for multigrid. The Helmholtz53

problem involves indefinite matrices with potentially wide and oscillatory near-kernel54

space [7]. This complication breaks the near-kernel space geometric smoothness as-55

sumption, a keystone of many multigrid methods. To satisfy the complementarity56

principle in this context, interpolation rules must reproduce the near-kernel oscilla-57

tion, and smoothers have to deal with both positive and negative eigenvalues. More58

importantly, finding a recurring process to build a scalable multilevel method is still59

an open question. The Helmholtz equation (1.3) is our target in this paper.60

(1.3) (Continuous Helmholtz problem) ⇔
{

−∆u− k2u = f on Ω
+ b. c. on ∂Ω

61

Since the Helmholtz equation can be seen as a shifted Poisson equation, the geo-62

metrically smooth components (ie. low Fourier modes) become negative. Because63

of the shift, the smallest eigenvectors are higher in frequency. Multigrid interpola-64

tors must now focus on this more oscillatory spectrum interval. Multiple correction65

[12] and wave-ray [4, 11] approaches have already been investigated to address this66

issue. In this paper, we present an approach built on ideal reduction-based ideas,67

and demonstrate its potential for solving the Helmholtz problem in constant iteration68

count independent of the wavenumber k. In Section 2, we present a normal equation69

polynomial smoother specifically designed to damp the desired proportion of highest70

amplitude eigenvalues, while interpolation rules for propagating oscillatory near-kernel71

information are established in Section 3. Finally, Section 4 contains benchmarks of72

this new multigrid cycle for different Helmholtz problems, with a varying wavenumber73

k.74

2. Polynomial Smoothers for Indefinite Problem. Working with a smooth-75

ing method whose behavior on each portion of the spectrum is a priori known is76

interesting to guarantee the effectiveness of the cycle. Here, the smoother must drop77

large positive and negative eigenvalues, which is problematic for most standard meth-78

ods. Generally, a polynomial method with degree greater than one can work. Krylov79

iterations are good polynomial smoother in the indefinite case but they minimize the80

global residual norm regardless of the eigenvalues and are non-linear because of their81

right-hand side dependence. A linear polynomial is more convenient for generating82

the set of smoothed candidates vectors needed to construct the interpolation operator83

described in Section 3.84

2.1. General considerations on polynomial smoothers. One way to ensure85

that both positive and negative eigenvectors are damped is to consider a normal86
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TOWARD A MULTILEVEL METHOD FOR THE HELMHOLTZ EQUATION 3

equation polynomial smoother. In general, the degree d of the polynomial must87

be greater than 1 to damp positive and negative eigenvectors, as the polynomial88

illustrated in Figure 2.1 does. This condition is guaranteed here since the normal89

equations lead to an even polynomial degree. In the future, it might be interesting90

to investigate more general polynomials to avoid normal equations and consider odd91

degrees. In this first approach, we use the convenient symmetric property enabled by92

normal equations in the Chebyshev framework. For any positive x and given some93

positive spectrum interval I := [xmin, xmax], we look for a polynomial p(x) of degree d94

maximizing the damping of all components lying in I. In that direction, and according95

to Equation (1.2), let96

(2.1) q(AHA) := I − p(AHA)AHA97

be the associated error propagation operator. Then, for any right singular vector v of98

A and σ the associated singular value,99

(2.2) q(AHA)v = q(σ2)v = (1− p(σ2)σ2)v100

According to Equation (2.2), the lower the amplitude of a component, the less the101

polynomial smoother will damp it. This intact portion of low components enables102

the construction of a set of smoothed vectors approximating the near-kernel space, as103

detailed in Section 3. Let L be a set of points lying in this interval such that104

(2.3) ∀ xi ∈ L = (x1, . . . , xd) , xi ̸= 0 , q(xi) = 0 ⇔ p(xi) =
1

xi
.105

Then the polynomial smoother p is constructed following the Lagrangian formula106

(2.4) xi ̸= xj , p(x) =

d∑
j=0

1

xj

d∏
i=0,i̸=j

x− xi

xj − xi
.107

However, such interpolation points should not be selected randomly within the inter-108

val, but in order to minimize the polynomial amplitude and avoid Runge’s phenom-109

enon. Those best interpolating points are defined by the scaled first kind Chebyshev110

polynomial roots111

(2.5) xi :=
xmax + xmin

2
+

xmax − xmin

2
cos

(
(2i− 1)π

2d

)
.112

Large intervals I require a higher polynomial degree to flatten its oscillations.113

2.2. Constructing an appropriate target interval I. One way to determine114

a good interval without preliminary information [2, 1] is to compute a few power iter-115

ations to determine xmax, overestimate the result by 10%, and choose the lower bound116

xmin according to xmax, for example xmin = 0.5xmax. To respect the complementarity117

principle, the percentage of damped eigenvalues by the smoother must approximate118

the proportion of non-coarse variables. For instance, if a coarse level space is defined119

by a selection of a quarter of the finer level’s degrees of freedom, then three-quarters120

of the largest amplitude components should be damped by smoothing steps, while121

the coarse correction deals with the other part. Consequently, since eigenvalues are122

not necessarily uniformly separated, xmin should be determined so that such a pro-123

portion of eigenvalues belongs to the interval I. In this paper and following [10], we124
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4 CLÉMENT RICHEFORT

first compute a rough approximation of the matrix spectral density defined by the125

distribution function ϕ(t), which represents the probability of finding an eigenvalue126

at each point t of a given interval. We set the lower bound xmin of the Chebyshev127

nodes interval in a second step so that the probability within the interval is equal to128

the target proportion, for instance half of the total area in a scenario of exact balance129

between C and F points. The squared singular values should be scaled by setting130

B := 2
xmax

AHA − I, so the distribution function ϕ can be approximated by a linear131

combination of orthogonal Chebyshev polynomial functions132

(2.6) ϕ(t) =

∞∑
k=0

µkTk(t) ≈
M∑
k=0

µkTk(t) , µk =
2− δk0
nπ

× Trace(Tk(B))133

where Tk(t) = cos(k arccos(t)) and the coefficients µk are determined by a moments134

matching procedure. Here, n corresponds to the matrix size and δk0 the Kronecker135

symbol. The trace can be estimated using a set U of nvec random and orthogonal136

vectors u, where each element of these vectors is chosen following a normal distribution137

with zero mean and a unit standard deviation. Any vector u can be written as a138

linear combination of B eigenvectors v, giving the expression u =
∑n

j=1 βjvj . As a139

consequence, E[u] = 0 and E[βiβj ] = δij , giving the following convenient property140

(2.7) E[uTTk(B)u] = E[
n∑

j=1

β2
jTk(λj(B))] =

n∑
j=1

Tk(λj(B)) = Trace(Tk(B)).141

According to (2.7), each trace can be estimated by a sample mean of nvec products142

uTTk(B)u, and the M vectors Tk(B)u can be computed from the three-term recur-143

rence relation Tk+1(B)u = 2BTk(B)u − Tk−1(B)u, with initial terms T0(B)u = u,144

T1(B)u = Bu. Once the distribution function ϕ is approximated following the ex-145

pression given in (2.6), a rough area approximation by trapezoid rule yields a correct146

lower bound x satisfying a proportion around card(F)/n. Computing xmin by remap-147

ping x to the initial squared singular values scaling leads to a satisfying and purely148

algebraic interval in which our polynomial smoother will be the most efficient. The149

bounds xmin and xmax are represented in Figure 2.1, where x50% represents the the-150

oretical lower bound targeted.151

−3 −2 −1 0 1 2 3 4 5 6

0

0.5

1

x50%

xmin xmax

x

q(
x
)
=

1
−
p
(x̄
x
)x̄
x

q
xi

Fig. 2.1. Spectrum of the polynomial smoother error propagation matrix
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TOWARD A MULTILEVEL METHOD FOR THE HELMHOLTZ EQUATION 5

3. Constructing good interpolation rules. Interpolators are used both to152

construct the coarse level matrices and to transfer information across levels. SPD153

and geometric smoothness assumptions cannot be used to determine appropriate in-154

terpolators in our case. Some methods such as smoothed aggregation [6, 13] and155

bootstrap-AMG [3] use candidate vectors that are close to the near-kernel space to156

design the interpolation rules. These test vectors are either deduced from geometric157

information [4] or algebraically as in adaptive multigrid methods [5]. Here, we prefer158

to stick to a fully algebraic and recurring process to create our interpolators. Can-159

didate vectors will be generated from random vectors smoothed by the polynomial160

presented in Section 2, and used by the least squares minimization framework to de-161

termine good fine variable interpolation rules. This initial least squares interpolator162

is used as a coarse selection operator in the ideal reduction-based framework [9].163

3.1. Ideal framework. Even though the ideal framework in [9] requires an SPD164

assumption and has not been generalized to indefinite problems, removing orthogonal165

information from the interpolation range still improves its accuracy. Furthermore,166

assuming the smoother captures this orthogonal information, we can still expect good167

convergence as exposed by Equation (3.3) below. Following [9], let C and F be168

complementary coarse and fine variables subsets of Ω. Let RT : RnC → Rn and169

S : RnF → Rn be coarse and fine selection operators respectively, such that RS = 0,170

for instance, the orthogonal matrices171

(3.1) RT = [ 0 IC ]T , S = [ IF 0 ]T .172

The space defined by the coarse selection operator RT must be handled by the coarse173

correction, whereas the fine variables selection operator S defines a space where174

smoothing must operate in order to respect the complementarity principle. The Ideal175

Interpolator is a theoretical operator that is the best interpolator satisfying RP = IC176

in the sense that it minimizes the difference between variables and interpolated coarse177

variables, within a space that is the most complementary to the range of the smoother.178

For this reason, P∗ is called ideal and is defined by179

(3.2) P∗ = (I − S(STAS)−1STA)RT .180

The left operator in (3.2) removes all complementary F-related information from181

RT . Such information is irrelevant at a coarse level and should be handled by the182

smoother. Under the assumption that the smoother captures F-related information,183

the best coarse matrix, according to the complementarity principle, is a matrix where184

fine variable information is removed. Furthermore, a simple development of a two-grid185

cycle combining the ideal coarse error propagation operator E∗, as initially defined in186

(1.1), with an F-relaxation matrix EF as a pre-smoother shows that187

(3.3) E∗EF = (I − P∗(P
T
∗ AP∗)

−1PT
∗ A)(I − S(STAS)−1STA) = 0.188

In (3.3), the final error propagation matrix is null, meaning that in this idealistic189

scenario, one iteration of F-relaxation and one coarse correction is equivalent to a190

direct method. As shown in [9], we can extend this principle by separating coarse191

and fine spaces respectively in directions of low and high frequencies. Let V0 =192

(v1, . . . , vCard(C)) and V+ = (vCard(C)+1, . . . , vn) respectively be low frequency and193

high frequency eigenvectors sets, assuming here that λi ≤ λi+1. Then we define194

RT = V0 and its counterpart S = V+. Naturally, since eigenvectors are orthonormal,195

the necessary condition RS = 0 is still satisfied. It finally gives196

(3.4) P∗ = RT and AC = Diag(λ0, . . . , λCard(C)).197
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6 CLÉMENT RICHEFORT

This example proposes another idealistic dichotomy enabled by P∗, maximizing the198

complementarity principle. The near-kernel space is solved directly at the coarsest199

level while the high frequencies remain in the smoothing space. Even if (STAS)−1200

is most of the time impossible to use in practice, it gives insight on an idealistic201

convergence scenario.202

3.2. Least Squares Minimization Interpolator. As mentioned at the begin-203

ning of Section 3.1, demonstrating that interpolator (3.2) is ideal in the theoretical204

framework of [9] requires A to be symmetric positive-definite. However, the reduction205

viewpoint of Equation (3.3) is still valid, hence removing the orthogonal fine informa-206

tion from the coarse selection operator is a viable approach. Numerical experiments207

show that the coarse selection operator in (3.1) is not a good option for Helmholtz.208

Using the lowest components V0 from Section 3.1 to guarantee the representation of209

the near-kernel space within the interpolation range is not practical. Instead, we con-210

struct a set of vectors approximating an oscillatory and potentially large near-kernel211

space by using the normal equations polynomial smoother developed in Section 2.212

In this section, we present a coarse selection operator RH constructed by a least213

squares minimization strategy [3]. Let K be a set of κ vectors that approximate the214

near-kernel space, and assume some C/F splitting with nC and nF their respective215

size. Coarse variables are interpolated to the finer level with a simple injection rule,216

meaning the coarse interpolation block in R̂H corresponds to a nC × nC identity217

matrix, while fine interpolation rules are determined by the least squares minimization218

method presented in this section. Let i be a fine variable and ri the ith row of219

R̂H . The idea consists of constructing each fine interpolation rule by minimizing the220

squared difference between fine values of the near-kernel candidate vectors and the221

interpolation from their connected coarse variables Ci. Denote by K:,l the lth test222

vector, Ki,: a row vector containing the ith values of each test vector, and KCi,l a223

vector containing the values in K:,l of the coarse variables that are connected to the224

ith fine variable. Then225

(3.5) ∀i ∈ F , ri = argmin
r

κ∑
l=1

wl (Ki,l − r ·KCi,l)
2 := argmin

r
Li(r)226

where wl are scaling weights (for instance wl = 1/λl if K contains near-kernel eigen-227

vectors). Finding the minimum of the convex loss function Li is equivalent to solving228

(3.6) ∇Li(ri) = 0.229

Equation (3.6) can be rewritten element-wise230

(3.7)
∂Li(ri)

∂rij
=

κ∑
l=1

2wl(Ki,l − ri ·KCi,l)KCij ,l = 0 , ∀j ∈ [1, card(Ci)].231

Finally, (3.7) leads to a system of linear equations to solve for each fine variable i232

(3.8) riKCi
WKH

Ci
= KiWKH

Ci
233

The matrix is full rank and the solution of Equation (3.8) is unique if we have at234

least κ = max i {Card(Ci)} locally linearly independent test vectors. Even if it235

is statistically always the case when starting from random candidate vectors, the236

matrix singularity can be detected during the factorization. In that special case, a237

pseudo-inverse can be computed to find an optimal solution in the least squares sense.238
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3.3. Ideal approximation from least squares coarse selection. In Section239

3.2, we presented a better coarse selection operator for Helmholtz designed by a least240

squares minimization strategy. Using the framework presented in 3.1, let us define241

new coarse and fine selection rules242

(3.9) R̂H = [ RF IC ]T , Ŝ = [ IF −RH
F ]T ,243

where R̂H is the least squares operator presented in Section 3.2 and RF is its fine244

variable interpolation block. Note that R̂Ŝ = 0 as required. To simplify the discussion,245

let AF := ŜHAŜ. Beyond the necessity to find appropriate coarse and fine selection246

operators, another important concern is related to the inverse of AF required in (3.2).247

Reorganizing the definition of the ideal interpolator,248

(3.10) P̂ := (I − ŜA−1
F ŜHA)R̂H ≈ R̂H − ŜX−1

K ŜHAR̂H ,249

where X−1
K is the best polynomial approximating A−1

F within the Krylov subspace250

K. Since we need to ensure our interpolator keeps good sparsity, the subspace must251

be constrained according to a given pattern P as detailed in [14]. In our case, the252

matrix inversion approximation will be computed column-wise, giving more flexibility253

than by computing the global constrained matrix approximation at once with a single254

polynomial. Consequently, let Pi be some vector sparsity pattern, and define the255

associated operator Zi : Cn → CCard(Pi) filled with ones and zeros that restricts any256

full vector to the non-zero pattern Pi. Also, define257

(3.11) bi := ŜHAR̂H
:,i.258

In practice, we choose Pi := P(bi) such that ZTZibi = bi. Then, we construct for259

each right hand side bi the corresponding constrained Krylov subspace260

(3.12) Km
Pi

=
{
Zibi , ZiAFZ

T
i Zibi , . . . , (ZiAFZ

T
i )

m−1Zibi
}
,261

within which we approximate the multiplication of A−1
F with bi. Since each subspace262

is constructed under a sparsity constraint, the solution is approximated locally with263

a window of AF . Consequently, it is not guaranteed that the accuracy will increase264

with respect to m, however a few iterations are enough to reach a good approxima-265

tion in practice. It is still possible to converge toward the best solution in a least266

squares sense, but this requires reformulating the problem with normal equations267

which increases the cost of construction.268

4. Numerical Experiments. In this section, we present some numerical results269

performed with this new multigrid cycle. One pre-smoothing and one post-smoothing270

iteration of the normal equations Chebyshev polynomial presented in Section 2 are271

computed before each restriction and after each interpolation respectively. The inter-272

polator P̂ is constructed following Section 3. In practice, the degree d of the normal273

equation polynomial smoother p of Equation 2.2 is equal to 3, the xmax is computed274

by several power iterations (5 to 10 iterations are enough in practice) and xmin by the275

spectral density approximation described in Section 2.2, with the parameters M = 5276

and nvec = 15. The number κl of input random vectors per level l to construct a277

correct approximation of near-kernel space follows the arbitrary recursive equation278

(4.1) κl = 5×max
i∈F

{Card(Ci)}+ κl−1 + 10l , κ−1 = 0279
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8 CLÉMENT RICHEFORT

where Ci is the set of coarse variables strongly connected to the fine variable i. The280

strongly connected variables are selected according to a θ-rule [16] comparing matrix281

entries in absolute value. Before being smoothed by the normal equation polynomial,282

test vectors are created either by the restriction of finer level test vectors or randomly.283

In practice, Card(Ci) never exceeds 10. The size m of the Krylov subspaces needed284

to approximate A−1
F in the ideal framework is set to 3.285

4.1. Benchmarks. We apply this multigrid method on a 5-points stencil Carte-286

sian discretization of the Helmholtz equation (1.3) with absorbing boundary condi-287

tions (∂nu − iku = 0 on ∂Ω), where 10 points per wavelength are used (h = λ/10 ⇔288

kh = 2π/10 ≈ 0.625). Multigrid cycles are iterated until the residual norm falls be-289

low 10−6. This method will be benchmarked on more difficult geometries in the290

future, however this simple discretization already allows us to tackle the oscillating291

near-kernel space problem.

50 100 150 200 250 300

5

10

15

k

it
er
a
ti
on

s

2 levels 3 levels 4 levels

Fig. 4.1. Number of iterations following the wavenumber k

292

The three V-cycle schemes benchmarked in Figure 4.1 converge in a roughly con-293

stant number of iterations independent of the wavenumber k. We also present these294

results together with the overall complexity of our multigrid method. Let nnz(·) be295

the average number of non-zeros per row of a given matrix. We measure the sparsity296

of each interpolator P̂l and level matrix Al in Table 4.1. As expected, matrices on297

deeper levels are denser. Even if A−1
F is approximated under pattern constraints and298

already allows to find an interesting trade-off between sparsity and good interpolation299

properties, it will be necessary to improve the sparsity of P̂ to reach a more competi-300

tive multigrid method. A thresholding strategy or other heuristics on its pattern will301

be one of the main concerns for the future developments of the method.302

k 70 100 130 160 190 220 250 280 310
n (×105) 1.28 2.59 4.37 6.60 9.30 12.46 16.08 20.16 24.7
nc (×105) 0.16 0.32 0.55 0.83 1.16 1.56 2.01 2.52 3.09

nnz(A0) 5 5 5 5 5 5 5 5 5
nnz(A1) 77 78 79 79 79 80 80 80 80
nnz(A2) 299 315 316 322 332 335 337 339 341
nnz(A3) 322 342 345 359 376 380 385 386 386

nnz(P̂1) 20 20 20 20 20 20 20 20 20

nnz(P̂2) 63 64 65 66 66 66 67 67 67

nnz(P̂3) 168 178 178 183 188 190 191 192 193
Table 4.1

Sparsity measurement of level matrices and interpolators following k

This manuscript is for review purposes only.



TOWARD A MULTILEVEL METHOD FOR THE HELMHOLTZ EQUATION 9

4.2. Large shift experiment. Even if the approach presented in this paper can303

be improved in many ways, it provides a direction for constructing interpolation for304

problems with oscillatory near-kernel spaces like the Helmholtz equation. However,305

since the problem is indefinite, the matrix A does not provide a norm. As a conse-306

quence, there is no guidance on the convergence. Moreover, even under the convenient307

assumption where P̂ P̂T v ≈ v where v is an eigenvector associated with a very small308

eigenvalue, for some large shift problems, the method can be divergent. To illustrate309

this issue, let Ls be a scaled laplacian matrix shifted by a large coefficient α (yielding310

λ(Ls) ∈ [−α, 8− α]), such that its near-kernel space is very oscillatory.

0 10 20 30 40 50 60 70 80 90

−0.2

0

0.2

α = 2.68

v PPT v P (PTAP )−1PTAv

0 10 20 30 40 50 60 70 80 90

−0.1

0

0.1

Fig. 4.2. Layering of lowest eigenvector (green), interpolation of restricted lowest eigenvector
(blue) and coarse correction applied to lowest eigenvector (red) for α = 2.68 (top) vs. α = 2.98
(bottom)

311
Figure 4.2 shows the layering of the lowest eigenvector of Ls (v - green), the inter-312

polation of the restricted lowest eigenvector (P̂ P̂T v - blue), and the vector returned by313

the coarse correction (P̂ (P̂TAP̂ )−1P̂TAv - red). As we can see, v and P̂ P̂T are very314

close in both large shift experiments, the very oscillatory near-kernel vector v is well315

approximated by the interpolation range. However, in the second experiment, this is316

not true for the coarse correction where the red vector seems to be oriented oppositely317

to v. This experiment shows that capturing the oscillatory near-kernel space with an318

appropriate set of interpolators, such as P̂ , will not necessarily be enough to reach319

a perfectly recurring method for solving indefinite problems like Helmholtz. For this320

reason, adding more levels has been challenging. One of our priorities is about finding321

a framework guaranteeing the convergence of the method in an indefinite context such322

as this large shift experiment.323

This manuscript is for review purposes only.
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5. Conclusions. Indefinite and oscillatory problems are difficult for multigrid324

methods. The negative eigenvalues require an adapted smoother, and the interpolator325

should be able to propagate the oscillatory near-kernel space. We presented a method326

that reaches those requirements up to a certain limit. The normal equation poly-327

nomial smoother is designed to target a desired proportion of components according328

to their amplitude, and the range of our interpolator offers a good approximation329

of the near-kernel space despite its oscillations. Finding more accurate interpolation330

rules, improving the sparsity of our operators, and constructing a polynomial without331

resorting to normal equations will be important points in our future investigations.332

However, the ultimate objective is to find a proper framework for indefinite problems333

guaranteeing the convergence of our multigrid method.334
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