Student Paper Competition, Copper Mountain Conference 2023 - Toward a multilevel method for the Helmholtz equation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Student Paper Competition, Copper Mountain Conference 2023 - Toward a multilevel method for the Helmholtz equation

Résumé

It is well known that multigrid methods are very competitive in solving a wide range of SPD problems. However achieving such performance for non-SPD matrices remains an open problem. In particular, two main issues may arise when solving a Helmholtz problem. Some eigenvalues become negative or even complex, requiring the choice of an adapted smoothing method for capturing them. Moreover, since the near-kernel space is oscillatory, the geometric smoothness assumption cannot be used to build efficient interpolation rules. We present some investigations about designing a method that converges in a constant number of iterations with respect to the wavenumber. The method builds on an ideal reduction-based framework and related theory for SPD matrices to correct an initial least squares minimization coarse selection operator formed from a set of smoothed random vectors. We also present numerical results at the end of the paper.
Fichier principal
Vignette du fichier
CM2023_paper_RICHEFORT_CLEMENT.pdf (309.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04046622 , version 1 (27-03-2023)

Identifiants

  • HAL Id : hal-04046622 , version 1

Citer

Clément Richefort, Matthieu Lecouvez, Robert Falgout, Pierre Ramet. Student Paper Competition, Copper Mountain Conference 2023 - Toward a multilevel method for the Helmholtz equation. 21st SIAM Copper Mountain Conference on Multigrid Method, Apr 2023, Copper Mountain, CO, United States. ⟨hal-04046622⟩
136 Consultations
114 Téléchargements

Partager

More