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Coulomb integrals, i.e. matrix elements of bare or screened Coulomb interaction between one-
electron orbitals, are fundamental objects in many approaches developed to tackle the challenging
problem of calculating the electronic structure of strongly correlated materials. In this paper,
Coulomb integrals are analyzed by considering both the point group symmetry of the site occupied
by the atom in the crystal or molecule and the permutation symmetries of the orbitals in the
integrals. In particular, the case where one-electron orbitals form the basis of a general (i.e. a real,
complex or pseudo-real) irreducible representation is considered. Explicit formulas are provided to
calculate all integrals of the interaction tensor in terms of a minimum set of independent ones. The
effect of a symmetry breaking is also investigated by describing Coulomb integrals of a group in terms
of those of one of its subgroups. We develope the specific example of O(3) as the larger group which
can therefore be used to quantify the deviation of a specific system from the spherical symmetry.
Possible applications of the presented framework include the calculation of solid-state and molecular
spectroscopies via multiplet techniques, dynamical mean-field theory or the GW approximation.

I. INTRODUCTION

Electronic correlations play a fundamental role in de-
termining the properties of compounds with partially
filled d- or f -shells. Strong Coulomb interactions occur-
ing between electrons occupying these localized orbitals
are indeed among the most important parameters favour-
ing, for instance, a particular ground-state symmetry of
the ions. Thus, they determine their magnetic proper-
ties [1, 2], induce metal-insulator transitions [3, 4], su-
perconductivity or trigger long-range ordering phenom-
ena involving either charge, orbital or spin degrees of
freedom [5].
From a theoretical point of view, the explicit inclu-

sion of local Coulomb interactions between correlated
electrons beyond single-particle approaches often relies
on the density-density approximation, where only dom-
inant direct Coulomb and exchange terms are retained
from the full tensor. These terms are then frequently
averaged over the manifold of correlated orbitals, result-
ing in effective Hubbard U and Hund’s exchange JH pa-
rameters [6]. The averaged parameters are commonly
employed in standard implementations of the so-called
LDA+U method, where an effective single-particle ap-
proach based on the local density approximation is cor-
rected in the manifold of correlated orbitals by on-site
Hubbard and exchange terms [7, 8]. The orbitally aver-
aged density-density approximation is also frequently em-
ployed in Green’s function based many-body techniques,
such as dynamical mean-field theory (DMFT) [9–12].
While this approach might be accurate enough to ap-

proximate the ground-state properties of materials in
many cases, it is clearly not sufficient to provide a good
description of the full multiplet structure accessible by
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many solid-state or molecular spectroscopies, ranging
from infrared or visible light optical absorption [13], X-
ray absorption or (non) resonant inelastic X-ray scatter-
ing to electron energy loss spectroscopy [14]. In this case
indeed, a full account of the Coulomb tensor within and
between the correlated electronic shells involved in the
excitation process is mandatory but theoretically and nu-
merically very challenging. For decades, this problem has
been tackled by assuming that transition metal or rare-
earth ions retained a dominant atomic-like character in
the molecular or solid state and, therefore, that Coulomb
interaction could be handled within the spherical symme-
try [15]. A great advantage of this approximation lies in
the fact that only a very limited number of numerical
parameters, known as Slater integrals or Slater-Condon
parameters [16, 17], need to be introduced to parametrize
the full tensor. For example, if one considers the case of d
electrons, the 54 = 625 elements of the spin-independent
Coulomb tensor can be expressed in terms of only three
Slater integrals, F 0, F 2 and F 4 and simple expressions
such as U = F 0 and JH = (F 2 + F 4)/14 are obtained.
Also when considering d electrons within a perfectly cu-
bic symmetry represented by real wavefunctions, effec-
tive descriptions like the Kanamori form [18], which goes
beyond density-density interactions, can be expressed in
terms of these three Slater integrals [19].

The validity of this approximation is, however, ques-
tionable for ions in solids or molecules where the local
symmetry of the atomic site is reduced and a covalent
interaction with the surrounding ligand atoms always
occurs to a certain degree. In this case, the inclusion
of the resulting anisotropy of the interaction can lead
to important corrections, for instance for the Fermi sur-
face [20, 21]. Recent progresses in the first-principle cal-
culation of screened Coulomb interactions within the con-
strained random phase approximation in solids [22] in-
deed show numerically that, whereas Slater parametriza-
tion is fairly accurate for ions with very localized states
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and in highly symmetric environments, larger deviations
are expected when increasing the spatial extension of the
orbitals, the covalent character of the interaction with
the ligands or reducing the local site symmetry [23–25].
In such cases, a proper analysis of the effective interac-
tion tensor should be carried out by accounting explicitly
for the local point group symmetry of the atomic site. In
particular, the central question of the number of indepen-
dent parameters required to describe exactly the entire
tensor immediately arises. This is indeed of primary im-
portance in the analysis of spectroscopic data, since this
number is the maximum number of independent param-
eters to fit, but also when investigating numerically the
properties of realistic model Hamiltonians accounting for
the exact spatial symmetry of the system.
This problem was pioneered by Tanabe, Sugano and

Kamimura [26] in the early 1970’s for the specific case of
d-shell electrons in octahedral Oh symmetry. It was re-
cently extended by Bünemann and Gebhard to the case
of d- and f -shell electrons in Oh, O, Td, Th, D6h and D4h

symmetries [27]. Iimura, Hirayama and Hoshino followed
a different route and expressed the anisotropic Coulomb
tensor in terms of multipole operators [28]. A general
theory dealing with any orbital in any group is, however,
still missing and is therefore the main focus of the present
paper. In particular, we consider here all types of irre-
ducible representations (irreps) whereas previous works
only focussed on real wavefunctions. Moreover, we pro-
vide general expressions for the independent Coulomb
parameters as well as for any Coulomb integral on the
interaction tensor in terms of these parameters. Finally,
we study the effect of a symmetry breaking by compar-
ing Coulomb integrals of a group with those of one of its
subgroups.
We would like to underline the broad applicability of

our approach. Indeed, we make only two assumptions:
(i) the (possibly screened) electron-electron interaction
U(r, r′) is symmetric (i.e. U(r, r′) = U(r′, r)) and in-
variant under the operations of a crystal point group

G; (ii) the basis functions φ
(α)
a (r) transform as the ba-

sis elements of an irrep α of G [29]. In particular, we

do not assume that the wave functions ϕ
(α)
a (r) entering

the Coulomb integrals are built from spherical harmon-
ics of a specific ℓ, nor do they need to have the same
radial part. In addition, U(r, r′) can also be frequency-
dependent (corresponding to a dynamical interaction)
since the frequency ω does not enter in the following
derivations. This renders the framework applicable to
dynamical interactions, which are for instance used in
the context of the GW approximation [30, 31], extended
DMFT [32] or techniques combining both [33, 34].
The paper is organized as follows. Section II starts

with a discussion of the various symmetries of Coulomb
integrals for complex and real one-electron orbitals. More
specifically, we consider the case of one-electron orbitals
forming bases for irreducible representations of a crys-
tal point group G. In section III, we use the Clebsch-
Gordan coefficients of G to define linear combinations

of Coulomb integrals (called G-invariants) that are in-
variant under the action of the operations of G and we
show that all Coulomb integrals can be written in terms
of these G-invariants. Section IV describes how permu-
tation symmetries can be taken into account to further
reduce the number of independent integrals, which are
now called (permutation)-symmetrized G-invariants. In
this section, we give an explicit formula for calculating
any Coulomb integral in terms of these symmetrized G-
invariants and we show, conversely, that symmetrized G-
invariants can be calculated from the same number of
well-chosen Coulomb integrals. Section V explores the
important case of symmetry breaking by considering that
G is the subgroup of a larger group G and presents the ex-
pression of the G-invariants in terms of G invariants. The
example where G is the infinite group O(3) is detailed to
illustrate the calculations. In this case, the relation be-
tween O(3)-invariants (related to Slater integrals) and
G-invariants can be used to quantify the deviation of the
system from spherical symmetry. In section VI finally,
we present our conclusions as well as possible extensions
of our work.

II. INVARIANCE OF COULOMB INTEGRALS

In solid-state and molecular physics the electron-
electron interaction between orbitals ϕa, ϕb, ϕc, ϕd is
described by Coulomb integrals defined as

Uabcd = 〈ϕaϕb|U |ϕcϕd〉

=

∫

drdr′ϕa(r)
∗ϕb(r

′)∗U(r, r′)ϕd(r
′)ϕc(r), (1)

where U(r, r′) is proportional to 1/|r − r
′| for the bare

electron-electron interaction but can be much more com-
plicated if we consider screened Coulomb interactions as
we do here. We assume U(r, r′) to be real (otherwise con-
sider its real and imaginary parts separately) and permu-
tation symmetric in the sense U(r′, r) = U(r, r′). Note
that the spin degree of freedom is not considered in the
present work.
In this paper we focus on two kinds of symmetries of

Uabcd: (i) the on-site symmetry represented by a crystal
point group G (section II A) and (ii) the permutation of
the orbitals (section II B).

A. Invariance under point symmetry operations

a. Action of a group. In an abstract way, the action
of a group G on a vector space X is a linear operation
that associates to each pair (R, x) ∈ G ×X an element
of X denoted by R ⊲ x. This operation satisfies

(i) 1 ⊲ x = x ∀x ∈ X , where 1 is the identity element
of the group;

(ii) ∀R,S ∈ G and ∀x ∈ X , R ⊲ (S ⊲ x) = (RS) ⊲ x.
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For example, if X = R
3 and G is a point symmetry group

defined by matrices R, then R ⊲ r = Rr.
b. Action of a group on functions. In molecu-

lar or solid-state physics, we deal with orbitals or
(wave)functions ϕ, which are functions of r. The action
of the symmetry operation S on ϕ is a new function ϕS

of r defined by

(S ⊲ ϕ)(r) = ϕS(r) = ϕ(S−1
r),

where the argument of ϕ (originally denoted by r) is re-
placed by S−1

r in ϕ. The presence of S−1
r instead of Sr

is required by the axioms of an action. Indeed
(

R ⊲ (S ⊲ ϕ)
)

(r) = (R ⊲ ϕS)(r) = ϕS(R
−1

r)

= ϕ
(

S−1(R−1
r)
)

= ϕ((RS)−1
r)

=
(

(RS) ⊲ ϕ
)

(r) = ϕRS(r).

We can now describe the action of a symmetry opera-
tion on a Coulomb integral by its action on the orbitals
(Schrödinger representation)

R ⊲ Uabcd =

∫

drdr′ϕa(R
−1

r)∗ϕb(R
−1

r
′)∗U(r, r′)

×ϕd(R
−1

r
′)ϕc(R

−1
r),

which can be transformed into an action on U(r, r′)
(Heisenberg representation) by a change of variable

R ⊲ Uabcd =

∫

drdr′ϕa(r)
∗ϕb(r

′)∗U(Rr, Rr
′)ϕd(r

′)ϕc(r),

where we used the fact that symmetry operations pre-
serve volumes (i.e. d(Rr) = dr). Thus, Coulomb inte-
grals are invariant under the operations of the group G if
U is invariant under the operations of G: U(Rr, Rr

′) =
U(r, r′) for all R of G. We assume this to hold in the
present paper. As a consequence, the symmetry of the
system is expressed by the property of the Coulomb in-
tegrals

R ⊲ Uabcd = Uabcd, (2)

for all R of G.
c. Group representation. A group representation is

a set of unitary matrices Γ(R), one for each element R of
the group, which satisfies Γ(R)Γ(S) = Γ(RS) for any two
elements R and S in G. If d is the dimension of the ma-
trices, a basis of the carrier space of this representation
is a set of d orbitals ϕa, ϕb, . . . such that

R ⊲ ϕa =
∑

b

Γba(R)ϕb. (3)

The order of the indices of Γ might appear surprising at
first glance, but is actually required [35] to satisfy the
second property of the action

R ⊲ (S ⊲ ϕa) = R ⊲
(

∑

b

Γba(S)ϕb

)

=
∑

b

Γba(S)(R ⊲ ϕb)

=
∑

bc

Γba(S)Γcb(R)ϕc =
∑

c

(Γ(R)Γ(S))caϕc

=
∑

c

(Γ(RS))caϕc = (RS) ⊲ ϕa,

where we used the linearity of the action in the first line,
then that Γ(R)Γ(S) = Γ(RS) between the second and
third lines.

d. Irreducible representations. We are particulary
interested in irreducible representations (irreps) which
are representations that cannot be decomposed into
smaller representations. In this paper, we assume that
the orbitals transform as irreps (denoted by α, β, γ and
δ) of G. For each of these representations, for instance

α, let {ϕ(α)
a }, a = 1, . . . , dimα, be a basis of this repre-

sentation and {Γ(α)(R), ∀R ∈ G} be its representation
matrices. We denote the Coulomb integral on the basis
of the irreps as

U
(αβγδ)
abcd = 〈ϕ(α)

a ϕ
(β)
b |U |ϕ(γ)

c ϕ
(δ)
d 〉.

The action of R on U
(αβγδ)
abcd can now be described by

representation matrices

R ⊲ U
(αβγδ)
abcd =

∑

a′b′c′d′

Γ
(α)
a′a(R)∗Γ

(β)
b′b (R)∗Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)

×U
(αβγδ)
a′b′c′d′ . (4)

There are three types of irreps, in the sense of the
Frobenius-Schur criterion [36]:

(a) real irreps, for which we can find real representation
matrices;

(b) pseudo-real (or quaternionic) irreps, for which Γ(R)
and Γ(R)∗ are equivalent in the sense that they are
related by a similarity transformation, but they are
not all equivalent to real representation matrices;

(c) complex irreps, for which Γ(R) and Γ(R)∗ are not
equivalent, meaning that they are associated to dif-
ferent irreps; an example of which is given by e±ik·r

for the translation group.

The distinction between real and non-real (i.e. pseudo-
real or complex) irreps is crucial. Indeed, in the case of
real representations, we can choose real representation

matrices and also real-valued basis functions {ϕ(α)
a } of

the carrier space of the irrep. Please note that even real
representations can be represented by complex-valued
matrices, as it is the case for instance of the real repre-
sentation Eg for the group Oh in Altmann and Herzig’s
tables [37]. However, in the case of non-real representa-
tions, the representation matrices and the basis functions
cannot be chosen real-valued.

For the groups Oh, O, Td, D6h and D4h investi-
gated by Bünemann and Gebhard [27], all irreps are
real. For the last group Th studied in that article,
there are four complex one-dimensional representations
(1Eg,

2Eg,
1Eu,

2Eu). They can be grouped into pairs to
become two-dimensional real representations, which are
however no longer irreducible.



4

B. Invariance under some permutations

We now describe additional symmetries of the
Coulomb integrals, related to the permutation of r and r

′

and the complex conjugation in Eq. (1). The permuta-
tion symmetries differ between real- and complex-valued
orbitals.
a. Non-real representations. In the (more general)

case of non-real representations, we assume complex-
valued orbitals ϕa. Interchanging r and r

′ in the inte-
gral definition of Uabcd (Eq. (1)) gives Uabcd = Ubadc,
and taking its complex conjugate yields U∗

abcd = Ucdab.
As a consequence, we obtain an equality between four
Coulomb integrals

Uabcd = Ubadc = U∗
cdab = U∗

dcba. (5)

This can be seen as the invariance of the Coulomb inte-
grals under the action of an additional group GP of four
elements {p1, p2, p3, p4}. Its action on Uabcd is defined by

p1 ⊲ Uabcd = Uabcd, p2 ⊲ Uabcd = Ubadc,

p3 ⊲ Uabcd = U∗
cdab, p4 ⊲ Uabcd = U∗

dcba.

and is represented graphically on Fig. (1a).
Due to the complex conjugation in its action, GP is a

magnetic group, of which the Coulomb integrals form a
corepresentation, as defined by Wigner [38].
More precisely, the permutation group GP is isomor-

phic to the Shubnikov group of the third kind m′m2′.
It has two unitary operations E and σy , and two anti-
unitary operations C2z and σx [56].
b. Real representations. In the case of real repre-

sentations, we assume real-valued orbitals. The previ-
ous equality (Eq. (5)) still holds with Uabcd = Ucdba =
Ubadc = Udcba. In addition, the two orbitals ϕa(r) and
ϕc(r), as well as ϕb(r

′) and ϕd(r
′), now play an equiva-

lent role and can be interchanged, yielding equalities like
Uabcd = Ucbad. We therefore get equalities between eight
Coulomb integrals [27]

Uabcd = Ucdba = Ubadc = Udcba

= Uadcb = Ucbad = Ubcda = Udabc. (6)

Again, these equalities can be interpreted as the invari-
ance of the Coulomb integral under the action of a group
GP = D4 of eight permutations (see Fig. (1b)).

III. GROUP INVARIANTS

We now introduce the central objects of the present pa-
per. Since they are built to be invariant under the action
of the considered group, we call them group invariants
and denote them I. As we shall see, they correspond to
the eigenvalues of the interaction matrix, on the basis of
the irreps of the group.
As a starting point, we consider the point group only,

leaving the permutation groups to the next section.

a b

cd

(a)

a b

cd

(b)

FIG. 1. Geometric representation of the permutation sym-
metries of Uabcd. The vertices are labelled clockwise with the
orbital indices a, b, c and d. (a) The complex conjugation of
non-real orbitals is graphically represented as a transforma-
tion of black vertices into white ones (and vice versa). The
permutations form the group m′m2′ which describes the sym-
metries of a rectangle with 2 white and 2 black vertices. (b)
The permutations of real orbitals form the group D4 which
describes the symmetries of a square.

A. Clebsch-Gordan coefficients

For any finite (or compact) group G, the tensor prod-
uct (also known as the direct product, or the Kronecker
product [35]) of two irreps can be written as a direct sum
of irreps, called a Clebsch-Gordan series [50]

α⊗ β = η1 ⊕ · · · ⊕ ηk, (7)

where we assume that no irrep ηi appears more than
once. In other words, we assume tensor products of irreps
to be multiplicity-free. This assumption can be relaxed
without conceptual complication by using methods which
are now standard in the literature [42–48], but this leads
to a cluttering of indices in formulas, that we prefer to
avoid. Additionally, this assumption is actually justified
for crystal point groups. Indeed, their product tables [37]
indicate that all crystal point groups except T and Th are
multiplicity-free. Even the exceptions T and Th satisfy
the assumption in the broader sense that their doubly
occuring irreps can be distinguished by their symmetric
and anti-symmetric nature.
At the level of the matrix representations of the irreps,

a unitary transformation brings their tensor product into
a sum of the irrep matrices. The coefficients of this
unitary transformation are called Clebsch-Gordan coef-
ficients. More precisely, we define the Clebsch-Gordan
coefficients to be any set of complex numbers (αaβb|ηe)
solving the equation [35]

Γ
(α)
a′a(R)Γ

(β)
b′b (R) =

∑

ηee′

(αa′βb′|ηe′)Γ(η)
e′e(R)(αaβb|ηe)∗.

(8)
A possible solution of this equation is given by Dirl’s

formula [49]

(αaβb|ηe) =
∑

R Γ
(α)
aa0

(R)Γ
(β)
bb0

(R)
(

Γ
(η)
ee0(R)

)∗

√

N(a0, b0, e0)
, (9)
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with

N(a0, b0, e0) =
|G|

dim η

∑

R

Γ(α)
a0a0

(R)Γ
(β)
b0b0

(R)
(

Γ(η)
e0e0

(R)
)∗
,

where |G| is the order of G (ie. the number of its ele-
ments) and, for each triple (α, β, η), three components
(a0, b0, e0) are chosen so that N(a0, b0, e0) 6= 0. Such
components exist if η belongs to the tensor product of
α ⊗ β (see also [50]). These Clebsch-Gordan coefficients
are a generalization of the ones used in angular momen-
tum theory. They satisfy orthogonality relations

∑

ab

(αaβb|ηe)∗(αaβb|φf) = δηφδef , (10)

∑

ηe

(αaβb|ηe)∗(αa′βb′|ηe) = δaa′δbb′ , (11)

due to the fact that they are elements of a unitary ma-
trix [35].
The definition of Clebsch-Gordan coefficients as any

solution of Eq. (9) is inspired by Derome and Sharp (see
note [70]). Note that this definition does not fully specify
the Clebsch-Gordan coefficients, since multiplying them
by a phase depending on α, β and γ transforms a solution
into another one. Other approaches choose these phases
carefully in order to maximize the symmetry of Clebsch-
Gordan coefficients [44, 46–48, 51–53]. However, these
phases depend on each group and the Clebsch-Gordan
coefficients given by Dirl’s formula (Eq. (9)) generally do
not satisfy these symmetries. We also chose to use the
Clebsch-Gordan coefficients as defined by Derome and
Sharp for another, crucial but technical reason; the in-
terested reader is invited to read the note [71].

B. Definition and properties of the point-group

invariants

As a first step of the symmetry analysis of Coulomb
integrals, we consider the submatrix U (αβγδ) of elements

U
(αβγδ)
abcd for a given quadruple of irreps σ = (αβγδ). We

define the associated G-invariant as

I(αβγδ,η) =
∑

abcde

(αaβb|ηe)∗U (αβγδ)
abcd (γcδd|ηe)

dim η
, (12)

where η belongs to the Clebsch-Gordan series of both
α⊗ β and γ ⊗ δ.
Note that I(αβγδ,η) is basis-independent. Indeed, let

P (α) =
∑

a |ϕ
(α)
a 〉〈ϕ(α)

a | be the projector onto a represen-
tation α. There is a way to map tensor products of states
into sums of states so that

(γcδd|ηe) = (〈ϕ(γ)
c | ⊗ 〈ϕ(δ)

d |) |ϕ(η)
e 〉,

(αaβb|ηe)∗ = 〈ϕ(η)
e | (|ϕ(α)

a 〉 ⊗ |ϕ(β)
b 〉).

Recalling that U
(αβγδ)
abcd = 〈ϕ(α)

a ϕ
(β)
b |U |ϕ(γ)

c ϕ
(δ)
d 〉, we ob-

tain

I(αβγδ,η) =
1

dim η
Tr

(

P (η)(P (α) ⊗ P (β))U(P (γ) ⊗ P (δ))
)

,

which is basis independent. This means that G-invariants
can be compared even if the matrices of the irreps are
different. However, if (γ, δ) 6= (α, β) they can differ from
one another by a phase due to the phase ambiguity of
Clebsch-Gordan coefficients.
The second result is a consequence of Schur’s lemma:

if U
(αβγδ)
abcd is invariant under the action of G (i.e. satis-

fies Eq. (2)), then the matrix U
(αβγδ)
abcd is diagonalized by

the Clebsch-Gordan coefficients and its eigenvalues are
I(αβγδ,η)

∑

abcd

(αaβb|φf)∗U (αβγδ)
abcd (γcδd|ηe) = δφηδefI

(αβγδ,η).

(13)

As a consequence, any U
(αβγδ)
abcd can be written explicitly

in terms of G-invariants

U
(αβγδ)
abcd =

∑

ηe

(αaβb|ηe)I(αβγδ,η)(γcδd|ηe)∗. (14)

This shows that, if η runs over the n(αβγδ) irreps shared
by α ⊗ β and γ ⊗ δ, then the set of I(αβγδ,η) forms a
complete family of G-invariants generating U (αβγδ).
Moreover, the number n(αβγδ) of G-invariants for the

set (αβγδ) can be obtained by the character formula

n(αβγδ) =
1

|G|
∑

R∈G

χα(R)∗χβ(R)∗χγ(R)χδ(R), (15)

where the character of a representation η is defined as
χη(R) = Tr

(

Γ(η)(R)
)

.

IV. PERMUTATION-SYMMETRIZED

INVARIANTS

The G-invariants of Eq. (12) do not take into account
the permutation symmetry as described in section II B.
These additional constraints considerably decrease the
number of invariants and are discussed now.

A. Real representations

In this section, we assume that all the irreps are real
and that they are represented by real matrices. Conse-
quently, the Clebsch-Gordan coefficients can be chosen
real, too. The suitable permutation invariance of the in-
tegrals were given in Eq. (6).

1. Symmetrization

As for any group, we obtain D4-symmetrized G-

invariants by projecting U
(αβγδ)
abcd onto the fully-symmetric
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irrep A1 of the permutation group D4

〈U (αβγδ)
abcd 〉 = 1

|D4|
∑

p∈D4

U
p(αβγδ)
p(abcd)

=
1

8

(

U
(αβγδ)
abcd + U

(γδαβ)
cdab + U

(βαδγ)
badc + U

(δγβα)
dcba

+U
(αδγβ)
adcb + U

(γβαδ)
cbad + U

(βγδα)
bcda + U

(δαβγ)
dabc

)

.

(16)

By definition, 〈U (αβγδ)
abcd 〉 is invariant under the action of

D4. In fact, we know from Eq. (6) that Coulomb in-

tegrals satisfy 〈U (αβγδ)
abcd 〉 = U

(αβγδ)
abcd , but as for the cal-

culation of G-invariants, we investigate the properties of
D4-symmetrized Coulomb integrals by assuming that we
start from non-symmetrized ones. As a consequence, the
permutation-symmetrized G-invariants are given by

〈I(αβγδ,η)〉 =
∑

abcde

〈U (αβγδ)
abcd 〉(αaβb|ηe)(γcδd|ηe)

dim η
,(17)

which is a sum of 8 terms as in Eq. (16). This is the
expression of the G × D4 invariants in terms of the
Coulomb integrals. We will write them in terms of the G-
invariants, as detailed in the next two subsections. The
goal is to transform the Clebsch-Gordan coefficients of
each sum so that they match the indices of the permuted

integral U
p(αβγδ)
p(abcd) , in order to identify a G-invariant. Two

cases must be distinguished: either the representations
coupled by the Clebsch-Gordan coefficients are also cou-
pled in the permuted integral (pair-conserving permuta-
tions), or they are reshuffled (pair-mixing permutations).
a. The first four terms: pair-conserving permuta-

tions. The terms of 〈I(αβγδ,η)〉 corresponding to the first
two terms on the right hand side of Eq. (16) are trivial

∑

abcde

U
(αβγδ)
abcd (αaβb|ηe)(γcδd|ηe) = I(αβγδ,η) dim η,

∑

abcde

U
(γδαβ)
cdab (αaβb|ηe)(γcδd|ηe) = I(γδαβ,η) dim η.

To deal with the next two terms, we notice that, as
a consequence of Schur’s lemma, the Clebsch-Gordan
coefficients (αaβb|ηe) and (βbαa|ηe) differ by at most
a phase depending on α, β and η (but not on a, b
and e). We denote this phase by {αβ, η} [46, 52]:
(αaβb|ηe) = {αβ, η}(βbαa|ηe). Moreover {αβ, η} = ±1
for real Clebsch-Gordan coefficients.
This enables us to write
∑

abcde

U
(βαδγ)
badc (αaβb|ηe)(γcδd|ηe)

= {αβ, η}{γδ, η}
∑

abcde

U
(βαδγ)
badc (βbαa|ηe)(δdγc|ηe)

= {αβ, η}{γδ, η}I(βαδγ,η) dim η,

and similarly
∑

abcde

U
(δγβα)
dcba (βbαa|ηe)(δdγc|ηe) = {αβ, η}{γδ, η}

×I(δγβα,η) dim η.

b. The last four terms: pair-mixing permutations.
The last four terms are more cumbersome, because their
Clebsch-Gordan coefficients couple the first and third,
and the second and fourth representations of the inte-
grals, thus breaking the “bra” and “ket” pairs.
In order to reshuffle these Clebsch-Gordan coefficients

into new pairs, we need to use a recoupling formula. Pre-
cisely, we use the one proposed by Derome and Sharp
(theorem 3 of [42], and see notes [71, 72]) for their gen-
eral Clebsch-Gordan coefficients. For real representation
matrices (and multiplicity-free point groups), the recou-
pling formula takes the form

∑

e

(αaβb|ηe)(γcδd|ηe) = dim η
∑

φf

(−1)φ+η

{

α β η
γ δ φ

}

× (γcβb|φf)(αaδd|φf), (18)

where the 6j-symbols are defined by
{

α β η
γ δ φ

}

=
(−1)α+β+η+γ+δ+φ

dim η dimφ

×
∑

abcdef

(γcδd|ηe)(γcβb|φf)(αaδd|φf)(αaβb|ηe). (19)

In Eqs. (18) and (19), the symbols (−1)α, (−1)β, . . . are
defined as follows. According to Derome and Sharp, we
first define 1j-symbols by (α)aa′ = (αa00|αa′), where 0
is the fully-symmetric irrep. By Schur’s lemma, it can be
shown that (α)aa′ = ±δaa′ and we denote the sign ± by
(−1)α. In particular, if Clebsch-Gordan coefficients are
calculated from Dirl’s formula in Eq. (9), then (−1)α =
1 for every irrep α. We also use the obvious notation
(−1)φ+η = (−1)φ(−1)η.
In the literature, other 6j-symbols were defined which

display interesting symmetry properties [46, 52]. How-
ever, these symmetries require to adjust the phases of the
Clebsch-Gordan coefficients. Instead, we follow Derome’s
approach again and work with general Clebsch-Gordan
coefficients [42, 43, 55]. We are now ready to apply the
remaining permutations of D4 to I(αβγδ,η). For example

∑

abcde

U
(γβαδ)
cbad (αaβb|ηe)(γcδd|ηe)

= dim η
∑

φ

(−1)φ+η

{

α β η
γ δ φ

}

×
∑

abcdf

U
(γβαδ)
cbad (γcβb|φf)(αaδd|φf)

= dim η
∑

φ

(−1)φ+η dimφ

{

α β η
γ δ φ

}

I(γβαδ,φ).

c. D4-symmetrized invariant. By treating the three
remaining terms in the same manner, the D4-
symmetrization of I(αβγδ,η) yields

〈I(αβγδ,η)〉 = 1

8

(

Ipc +
∑

φ

(−1)η+φ dimφ

{

α β η
γ δ φ

}

Inpc

)

,

(20)
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where the pair-conserving terms Ipc and the pair-non-
conserving terms Inpc are

Ipc = I(αβγδ,η) + I(γδαβ,η)

+{αβ, η}{γδ, η}
(

I(βαδγ,η) + I(δγβα,η)
)

,

Inpc = I(αδγβ,φ) + I(γβαδ,φ)

+{αδ, φ}{βγ, φ}
(

I(βγδα,φ) + I(δαβγ,φ)
)

.

2. Enumeration of G ×D4-invariants

A permutation p ofD4 transforms a quadruple of irreps
σ = (α, β, γ, δ) into another quadruple p(σ). Let S be the
set of quadruples obtained from σ by the action of D4

(this is called the orbit of σ). The number of elements
of S depends on the irreps in σ. For instance, if σ =
(α, α, α, α), then S has only one element S = {σ}. If all
irreps are different, then S has 8 elements. We shall see
that there are five different types of S.
As noticed in Ref. [27], the number of independent

permutation-symmetrized G ×D4-invariants for a given
set S can again be obtained from the character formula

nS =
1

|G×D4|
∑

(R,p)∈G×D4

χS(R, p), (21)

where the character χS(R, p) of the element (R, p) in G×
D4 in the orbit S is defined by

χS(R, p) =
∑

(αβγδ)∈S

δ(αβγδ),p(αβγδ)

×
∑

abcd

Γ
(α)
a′a(R)Γ

(β)
b′b (R)Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)

∣

∣

∣

(a′b′c′d′)=p−1(abcd)
.

We give the formula for
∑

p χ
S(R, p) in terms of the

characters χα(R) of G for every possible set S.

• S1 = {(α, α, α, α)}
∑

p

χS1(R, p) = χα(R)4 + 3χα(R2)2

+2χα(R2)χα(R)2 + 2χα(R4);

• S2 = {(α, β, α, β), (β, α, β, α)} with β 6= α

∑

p

χS2(R, p) = 2
(

χα(R)2 + χα(R2)
)

×
(

χβ(R)2 + χβ(R2)
)

;

• S3 = {(α, α, β, β), (α, β, β, α), (β, β, α, α), (β, α, α, β)}
with β 6= α

∑

p

χS3(R, p) = 4χα(R)2χβ(R)2 + 4χα(R2)χβ(R2);

• S4 = {(α, β, α, γ), (α, γ, α, β), (β, α, γ, α), (γ, α, β, α)}
where β 6= α and β 6= γ, but γ = α is allowed

∑

p

χS4(R, p) = 4
(

χα(R)2 + χα(R2)
)

χβ(R)χγ(R);

• For all the other cases

∑

p

χS5(R, p) = 8χα(R)χβ(R)χγ(R)χδ(R).

3. Independent components of Coulomb integrals

For convenience, we write Eq. (20) in matrix form:
〈Ip〉 = MpqI

q, where p and q are compound indexes
(σ, η) and were M2 = M is a projection matrix. As
such, it is diagonalizable, but since M is not an orthog-
onal projection, its eigenspaces are not orthogonal. To
solve this problem, we define the matrix Q(σ,η)(τ,φ) =

δστ δηφ
√
dim η and the modified projection matrix N =

QMQ−1, which is symmetric (i.e. NT = N) because of
the symmetries of 6j symbols [42]. The eigenvalues of N
are 0 and 1 and its orthonormal eigenvectors are denoted
by v

p.
In general, when a matrix N is diagonalizable with

eigenvalues λp and eigenvectors v
p, we can define the

matrix Bqp = vpq , where vpq is the qth component of vp

and N is recovered by Npr =
∑

q Bpqλq(B
−1)qr. The

eigenvalue λq = 0 does obviously not contribute and we
are left with Npr =

∑

q,λq=1 Bpq(B
−1)qr. We can now

define the independent components uq of symmetrized
G-invariants to be

uq =
∑

r

(B−1Q)qrI
r, (22)

where q is such as λq = 1. These independent compo-
nents are the minimal information required to compute
all Coulomb integrals. Indeed

∑

q,λq=1

(Q−1B)pqu
q =

∑

r

MprI
r = 〈Ip〉. (23)

4. The norm of Coulomb integrals

In order to analyze the screening of electron-electron
interaction in the solid-state, evaluate the effect of an
external parameter such as pressure on Coulomb inte-
grals, or simply fit Coulomb integrals in a crystal with
a spherical model, we need to evaluate the distance be-
tween Coulomb integrals. Since Coulomb integrals are
matrix elements of an operator, the natural distance is
given by the Hilbert-Schmidt (or Frobenius) norm de-
fined by

||U (αβγδ)||2 =
∑

abcd

|U (αβγδ)
abcd |2.
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This norm is natural because it is invariant under unitary
transformations and it is perfectly suited to least square
minimization. The mixing of irreps due to permutations
leads us to consider also the distance between Coulomb
integrals for a given set S of quadruples σ = (αβγδ)

||US ||2 =
∑

σ∈S

||Uσ||2.

Since we express Coulomb integrals in terms of G-
invariants, we need to define a distance between G-
invariants which is compatible with the distance between
Coulomb integrals. By using Eq. (14) and the orthogo-
nality of Clebsch-Gordan coefficients we obtain

||US ||2 =
∑

σ∈S

∑

η

dim η|I(σ,η)|2. (24)

We are now ready to compute the norm of Coulomb in-
tegrals in terms of the independent components. Since
matrix Q−1 in Eq. (23) removes the coefficient dim η in
Eq. (24) and the columns of B are orthonormal, we find

||US ||2 =
∑

q,λq=1

|uq|2, (25)

where, in Eq. (24), we used Ip = 〈Ip〉, which is a conse-
quence of definition (17) of 〈Ip〉 when Coulomb integrals

satisfy the D4-permutation symmetry (i.e. U
(αβγδ)
abcd =

〈U (αβγδ)
abcd 〉).
In summary, it is possible to evaluate the total distance

between two sets of Coulomb integrals from the distance
between the independent components uq. An example of
this calculation is given in section VA2.

5. Minimizing Coulomb integral calculations

In this section, we determine the minimal number of

Coulomb integrals U
(αβγδ)
abcd that we have to calculate to

be able to determine all Coulomb integrals. This is ob-
viously useful to mimize the computational cost of elec-
tronic structure calculations. We recall Eq. (14)

U
(αβγδ)
abcd =

∑

ηe

(αaβb|ηe)(γcδd|ηe)I(αβγδ,η),

which can be used to calculate n =
dimα dim β dim γ dim δ Coulomb integrals in terms
of n(αβγδ) G-invariants (see Eq. (15)). If S denotes the
type of set described in section IVB2 to which (αβγδ)
belongs, symmetrization mixes now |S|n Coulomb inte-
grals, where |S| is the number of elements of S, and these
|S|n Coulomb integrals can be determined in terms of
nS permutation-symmetrized G-invariants, as explained
in section IVB2. More precisely, we have shown in
the previous section that there are nS quantities uq

such that 〈Ip〉 = ∑

q(Q
−1B)pqu

q. Combining these two

relations, we see that there is an (|S|n) × nS matrix

Aαβγδ,q
abcd , where (αβγδ) is in S, such that

U
(αβγδ)
abcd =

∑

q

Aαβγδ,q
abcd uq.

The rank r of A is the length of the longest list of
independent columns of A [57]. The case r < nS is pos-
sible, but it means that the Coulomb integrals are linear
combinations of a number of parameters smaller than nS .
This can happen when the true symmetry group is larger
than the one considered in the calculation. However the
most common case is r = nS and we only consider this
case. By definition of the rank of A, we can choose nS

independent columns of A. Each column corresponds to

a specific Coulomb integral U
(αpβpγpδp)
apbpcpdp

. We take such a

set of independent columns to build an nS × nS matrix

P relating the U
(αpβpγpδp)
apbpcpdp

to uq. The matrix P is invert-

ible since the columns are independent. Therefore, P−1

allows us to express the nS independent components uq

in terms of the nS selected Coulomb integrals. Since the
independent components generate all Coulomb integrals,
we can compute all Coulomb integrals from nS of them.
An example of this selection of a minimum of Coulomb

integrals is given in section VA2.

B. Non-real representations

In this section, the representation matrices, the orbital
wavefunctions and the Clebsch-Gordan coefficients are
assumed to be complex. The suitable permutation in-
variance of the integrals were given in Eq. (5).

1. Symmetrization

It is clear that

〈U (αβγδ)
abcd 〉 = 1

4

(

U
(αβγδ)
abcd + U

(βαδγ)
badc

+(U
(γδαβ)
cdab )∗ + (U

(δγβα)
dcba )∗

)

,

is invariant under the operations of m′m2′. Therefore,
the relation between symmetrized and non-symmetrized
components for non-real representations is

4〈I(αβγδ,η)〉 =
∑

abcde

U
(αβγδ)
abcd (αaβb|ηe)∗(γcδd|ηe)

+
∑

abcde

U
(βαδγ)
badc (αaβb|ηe)∗(γcδd|ηe)

+
∑

abcde

(U
(γδαβ)
cdab )∗(αaβb|ηe)∗(γcδd|ηe)

+
∑

abcde

(U
(δγβα)
dcba )∗(αaβb|ηe)∗(γcδd|ηe)

= I(αβγδ,η) + {αβη}{γδη}I(βαδγ,η)

+(I(γδαβ,η))∗ + {αβη}{γδη}(I(δγβα,η))∗.
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By similarly calculating 〈I(βαδγ,η)〉, 〈I(γδαβ,η)〉 and
〈I(δγβα,η)〉, we obtain the following relations between
symmetrized components

〈I(βαδγ,η)〉 = {αβη}∗{γδη}〈I(αβγδ,η)〉,
〈I(γδαβ,η)〉 = 〈I(αβγδ,η)〉∗,
〈I(δγβα,η)〉 = {αβη}∗{γδη}〈I(αβγδ,η)〉∗.

2. Enumeration of symmetrized G-components

Irreducible corepresentations are not as familiar as ir-
reps but there is also a character formula for counting the
number of times a given irreducible corepresentation ap-
pears in a general corepresentation [58]. In Newmarch’s
language, we consider the fully symmetric irreducible
corepresentation, which is of type (a), corresponding to
an intertwining number I = 1.
A particularity of the character theory of corepresenta-

tions is that it takes into account only unitary operations
(in our case the unit permutation (αβγδ) and the per-
mutation (βαδγ)). The character of the representation
corresponding to permutation p is

χS(R, p) =
∑

(αβγδ)∈S

δ(αβγδ),p(αβγδ)

×
∑

abcd

Γ
(α)
a′a(R)∗Γ

(β)
b′b (R)∗Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)

∣

∣

∣

(a′b′c′d′)=p−1(abcd)
,

and the number of symmetrized G-components is

nS =
1

2|G|
∑

p

′ ∑

R

χS(R, p),

where
∑′

runs only over the two permutations corre-
sponding to unitary operations. We have only two cases
to consider

• S = {(α, α, β, β)}, where α and β can be equal

nS =
1

2|G|
∑

R

(

(

χα(R)∗
)2
χβ(R)2 + χα(R2)∗χβ(R2)

)

;

(26)

• For all other cases

nS =
1

|G|
∑

R

χα(R)∗χβ(R)∗χγ(R)χδ(R). (27)

3. Minimizing Coulomb integral calculations

Exactly as in the case of real representation matrices
treated in section IVA5, Coulomb integrals can be cal-
culated from a minimum number nS of them.

V. SUBDUCTION

In this section, we consider the point group G, which
is a subgroup of a larger group G (symmetry breaking)
in order to compare the invariants of both groups. To do
so, we will give the expression of the G-invariants on the
basis of the G-invariants.
A typical application consists in taking the continuous

rotation group SO(3) as the larger group. Therefore, we
first show that the SO(3) invariants are related to the
well-known Slater integrals, which parametrize Coulomb
interaction in spherical symmetry.

All point symmetry groups are subgroups of O(3)
rather than SO(3), but since O(3) is the direct product
of SO(3) and Ci{1, I}, where I is the inversion, the ir-
reps of O(3) are direct products of irreps of SO(3) and of
Ci. To simplify notations, we first concentrate on SO(3)
and use the results to describe subduction from O(3).

A. SO(3)-invariants

1. SO(3)-invariants for spherically-symmetric potentials

The theory presented in the previous section does not
directly apply to SO(3) because, although irreps ℓ are
real (in the sense of Frobenius-Schur), they are usu-
ally represented by Wigner matrices Dℓ(R) which can
be complex. The usual basis of spherical harmonics Y m

ℓ

is also generally not real. This, however, has only a be-
nign effect and we only indicate the results. We follow
the notation used in Cowan’s book [59], where Coulomb
integrals are given (for a Coulomb potential) by

U (ℓ1ℓ2ℓ3ℓ4)
m1m2m3m4

= 〈ℓ1m1ℓ2m2|
2

rij
|ℓ3m3ℓ4m4〉

=
∑

k

Rk(ℓ1ℓ2, ℓ3ℓ4)δm3−m1,m2−m4
(−1)m2+m3

×
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)

×
(

ℓ1 k ℓ3
0 0 0

)(

ℓ2 k ℓ4
0 0 0

)

×
(

ℓ1 k ℓ3
−m1 m1−m3 m3

)(

ℓ2 k ℓ4
−m2 m2−m4 m4

)

,

where [59]

Rk(ℓ1ℓ2, ℓ3ℓ4) =

∫ ∞

0

r21dr1

∫ ∞

0

r22dr2
2rk<
rk+1
>

×Rℓ1(r1)Rℓ2(r2)Rℓ3(r1)Rℓ4(r2),

are radial integrals and we assumed real radial wave-
functions Rℓ. The 3j-symbols involving a row of zeros
can only be non zero if ℓ1 + ℓ3 + k and ℓ2 + ℓ4 + k are
even. As a consequence, ℓ1 + ℓ3 + ℓ2 + ℓ4 is even and
(−1)ℓ1+ℓ3+ℓ2+ℓ4 = 1.



10

Our SO(3)-invariants I(ℓ1ℓ2ℓ3ℓ4,ℓ) were calculated by
Cowan (Eq. (10.17) and (10.20), [59])

I(ℓ1ℓ2ℓ3ℓ4,ℓ) = 〈(ℓ1 ⊗ ℓ2)
ℓ
m| 2

rij
|(ℓ3 ⊗ ℓ4)

ℓ
m〉

= (−1)ℓ1−ℓ3+ℓ

×
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)(2ℓ4 + 1)

×
∑

k

(

ℓ1 k ℓ3
0 0 0

)(

ℓ2 k ℓ4
0 0 0

){

ℓ1 ℓ2 ℓ
ℓ4 ℓ3 k

}

×Rk(ℓ1ℓ2, ℓ3ℓ4),

where the right hand side is known to be independent of
m. Cowan’s result relates to the present work through

|(ℓ1 ⊗ ℓ2)
ℓ
m〉 =

∑

m1m2

(ℓ1m1ℓ2m2|ℓm)ϕℓ1
m1

(ri)ϕ
ℓ2
m2

(rj).

Moreover, since the right hand side of the equation for
I(ℓ1ℓ2ℓ3ℓ4,ℓ) is independent of m, it can be replaced by its
average over m. Thus, we obtain

I(ℓ1ℓ2ℓ3ℓ4,ℓ) =
1

2ℓ+ 1

∑

m1m2m3m4m

(ℓ1m1ℓ2m2|ℓm)

×(ℓ3m3ℓ4m4|ℓm)U (ℓ1ℓ2ℓ3ℓ4)
m1m2m3m4

,

which is indeed a SO(3)-invariant in the sense of Eq. (12).
In the case of d electrons for which ℓ1 = ℓ2 = ℓ3 =

ℓ4 = 2, we write F k = Rk(22, 22) for the standard d-
shell Slater integrals and we obtain

I(2
4,0) = F 0 +

2

7
F 2 +

2

7
F 4,

I(2
4,1) = F 0 +

1

7
F 2 − 4

21
F 4,

I(2
4,2) = F 0 − 3

49
F 2 +

4

49
F 4,

I(2
4,3) = F 0 − 8

49
F 2 − 1

49
F 4,

I(2
4,4) = F 0 +

4

49
F 2 +

1

441
F 4.

The expressions of this section were obtained by ex-
plicitly assuming that the interaction potential is the
Coulomb potential. In the following, we only assume
that the potential is spherically symmetric (so that the
invariants remain SO(3)-invariants) and symmetric un-
der the exchange of particles (so that the D4 permutation
symmetry is still valid.) This enables us to consider more
general effective potentials.

2. Permutation-symmetrized SO(3)-invariants

As in the case of the general group G, we can
build permutation-symmetrized SO(3)-invariants. The
D4 permutation symmetry can only be applied if the
complex spherical harmonics are transformed into real
(or cubic or tesseral) harmonics, but the corresponding

Clebsch-Gordan coefficients are not the usual ones. We
prefer to work with spherical harmonics, but the action
of D4 permutations is now different

U (ℓ1ℓ2ℓ3ℓ4)
m1m2m3m4

= U (ℓ2ℓ1ℓ4ℓ3)
m2m1m4m3

= (−1)m1+m3U
(ℓ2ℓ3ℓ4ℓ1)
m2−m3m4−m1

= (−1)m1+m2+m3+m4U
(ℓ3ℓ4ℓ1ℓ2)
−m3−m4−m1−m2

= (−1)m1+m2+m3+m4U
(ℓ4ℓ3ℓ2ℓ1)
−m4−m3−m2−m1

= (−1)m1+m3U
(ℓ3ℓ2ℓ1ℓ4)
−m3m2−m1m4

= (−1)m2+m4U
(ℓ4ℓ1ℓ2ℓ3)
−m4m1−m2m3

= (−1)m2+m4U
(ℓ1ℓ4ℓ3ℓ2)
m1−m4m3−m2

.

Still, the result 〈I(ℓ1ℓ2ℓ3ℓ4,ℓ)〉 of permutation symmetriza-
tion has the same form as the one for real representa-
tion matrices given by Eq. (20), if we substitute α = ℓ1,
β = ℓ2, γ = ℓ3, δ = ℓ4, η = ℓ, φ = ℓ′, all permutation
factors {ℓiℓj , ℓk} = (−1)ℓi+ℓj−ℓk and (−1)η+φ is replaced
by (−1)ℓ1+ℓ3 . Note that, because of the last substitution,
the formula for SO(3) is not a special case of the general
formula given in Eq. (20) because, for all irreps α(= ℓ) of
SO(3), (−1)α = 1 in the sense of the definition given in
section IVA1b. The additional factor (−1)ℓ1+ℓ3 comes
from the fact that the action of D4 involves signs due to
the complex nature of the representation matrices.

In particular, if ℓ1 = ℓ2 = ℓ3 = ℓ4, then

〈I(ℓ41,ℓ)〉 = 1

2
I(ℓ

4

1
,ℓ) +

1

2

∑

ℓ′

(2ℓ′ + 1)

{

ℓ1 ℓ1 ℓ′

ℓ1 ℓ1 ℓ

}

I(ℓ
4

1
,ℓ′).

For ℓ1 = ℓ2 = ℓ3 = ℓ4 = 2, this formula gives us

〈I(24,ℓ)〉 =
4

∑

ℓ′=0

Mℓℓ′I
(24,ℓ′),

where

M =
1

140











84 −42 70 −98 126
−14 105 −35 0 84
14 −21 55 56 36
−14 0 40 105 9
14 28 20 7 71











. (28)

As expected M is a (non-orthogonal) projector (i.e.
M2 = M) with eigenvalues (1, 1, 1, 0, 0). Therefore, there
are three independent components that can be related to
the three Slater integrals. The reader can check that

〈I(24,ℓ)〉 = I(2
4,ℓ) when I(2

4,ℓ) is expressed in terms of
Slater integrals F k as in the end of the previous section.

To illustrate the construction described in sec-
tion IVA4, we consider the matrix Qℓℓ′ = δℓℓ′

√
2ℓ+ 1

and we choose three orthonormal eigenvectors v
1,p of

N = QMQ−1 for eigenvalue 1 and two eigenvectors v0,p

for eigenvalue 0 (that we did not orthonormalize to sim-
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plify its form) to build the matrix

B =



















1
5

1√
5

3
5 − 1

2
5

2
√
7√

3
5

√
3

5

2 − 2
√
3

5 − 5
4
√
3

−
√

3

7

4
1√
5

− 3
14

6
7
√
5

−
√
5
4 −

√
35
4√

7
5 − 4√

35
− 3

10
√
7

0 1
3
5

6
7
√
5

1
70 1 0



















,

giving us the three independent components

u1 = 5F 0, u2 =
2
√
5

7
F 2, u3 =

10

21
F 4. (29)

Eigenvectors v1,p were chosen to get this simple relation
between independent components and Slater integrals.
By using Eq. (25), we can now easily calculate the norm
of the set of 625 Coulomb integrals for S = {2, 2, 2, 2} in
terms of Slater integrals

||US ||2 =
∑

m1m2m3m4

|U (24)
m1m2m3m4

|2

= 25(F 0)2 +
20

49
(F 2)2 +

100

441
(F 4)2.

Incidentally, we recover the fact, often used in prac-
tice [23–25] that spherically symmetric potentials can be
described by the usual three Slater integrals F 0, F 2 and
F 4 for d orbitals. Indeed, Slater integrals were origi-
nally derived under the assumption that the interaction
potential is of Coulomb type but the conclusion that
there are only 3 symmetrized SO(3) invariants are ob-
tained here for more general potentials. We just as-
sumed that the potential is real, spherically symmetric
and invariant under the exchange of x and y, so that
the D4 symmetry holds. Any real potential of the form
V (|x|, |y|,x ·y) = V (|y|, |x|,x ·y) satisfies these assump-
tions.
We can also take advantage of this example to show

how the method described in section IVA5 minimizes the
calculation of Coulomb integrals. Cowan’s formula gives

625 Coulomb integrals U
(24)
m1m2m3m4

as a linear combina-
tion of three Slater integrals, which are simply related to
our independent components in Eq. (29). Therefore, the
matrix A relating Coulomb integrals to independent com-
ponents has 3 lines and 625 columns. From this matrix

we extract three columns corresponding to U
(24)
0000, U

(24)
001−1

and U
(24)
002−2 to build the 3× 3 matrix

P =







1
5

2
7
√
5

6
35

0 − 1
14

√
5

− 1
7

0 2
7
√
5

1
14






.

Since detP 6= 0, P is invertible and we can compute the
independent components u1, u2 and u3 from the Coulomb

integrals U
(24)
0000, U

(24)
001−1 and U

(24)
002−2. Once we know the in-

dependent components, we can calculate all 625 Coulomb
integrals.

3. Enumeration of symmetrized SO(3)-invariants

The number of symmetrized SO(3)-invariants is ex-
pressed by formulas similar to the one given for G. For
example, if ℓ1 = ℓ2 = ℓ3 = ℓ4 = ℓ, and if the rotations
are defined by an axis n and an angle ω, then the charac-
ter of the rotation is χℓ(ω) = sin

(

(2ℓ+1)ω/2
)

/ sin(ω/2)
and [60]

nS1 =
1

8π

∫ 2π

0

dω sin2(ω/2)
(

χℓ(ω)
4 + 3χℓ(2ω)

2

+2χℓ(2ω)χℓ(ω)
2 + 2χℓ(4ω)

)

= ℓ+ 1.

Similarly

nS2 = min(ℓα + 1, ℓβ + 1),

nS3 = min(2ℓα + 1, 2ℓβ + 1),

nS4 =
1

2
aℓβℓγ (0)− 1

2
aℓβℓγ (2ℓα + 1) +

1

2
bℓβℓγ (2ℓα),

nS5 = aℓαℓβ (|ℓγ − ℓδ|)− aℓαℓβ (ℓγ + ℓδ + 1),

where

aℓℓ
′

(m) =











2min(ℓ, ℓ′) + 1 if |m| ≤ |ℓ− ℓ′|,
ℓ+ ℓ′ − |m|+ 1 if |ℓ− ℓ′| ≤ |m| ≤ ℓ+ ℓ′,

0 if |m| > ℓ+ ℓ′,

and

bℓℓ
′

(m) =











1 if ℓ+ ℓ′ is even and |m| ≥ |ℓ− ℓ′|,
−1 if ℓ+ ℓ′ is odd and |m| > ℓ+ ℓ′,

0 otherwise.

B. Subduction from G to G

We now come back to a general point group G, but
for notational convenience we keep labeling the irreps of
the larger group G by ℓ1, ℓ2, . . ., as for SO(3). However,
we insist that the following formulas do not require G =
SO(3).
When lowering the symmetry, each irrep of the larger

group branches into several irreps of the subgroup. For
instance, the ℓ = 2 representation of G = SO(3) splits
into the representations Eg and T2g of G = Oh. Let us
denote ℓ1α the irrep α of G that comes from ℓ1 of G, and
idem for ℓ2β, ℓ3γ, ℓ4δ and ℓη. The basis of the irreps of
G, {|ℓm〉} with 1 ≤ m ≤ dim ℓ, spans the same space as
{|ℓαa〉}, where α runs over all the irreps subduced from
ℓ and 1 ≤ a ≤ dimα. As a consequence, the interaction

elements can be labelled by U
(ℓ1ℓ2ℓ3ℓ4)
αaβbγcδd or U

(ℓ1αℓ2βℓ3γℓ4δ)
abcd

indiscriminately.

1. Isoscalar factors

We showed in Sec. III B that the group invariants
are basis-independent, but they depend on the point
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group. In a G-symmetric point group, the interaction
elements can be expressed either in terms of G-invariants
I(ℓ1ℓ2ℓ3ℓ4,l)

U
(ℓ1ℓ2ℓ3ℓ4)
αaβbγcδd

=
∑

ℓηe

(ℓ1αaℓ2βb|ℓηe)(ℓ3γcℓ4δd|ℓηe)∗I(ℓ1ℓ2ℓ3ℓ4,ℓ),

(30)

or in terms of the subduced G invariants I(ℓ1αℓ2βℓ3γℓ4δ,η)

U
(ℓ1αℓ2βℓ3γℓ4δ)
abcd

=
∑

ηe

(αaβb|ηe)(γcδd|ηe)∗I(ℓ1αℓ2βℓ3γℓ4δ,η).

(31)

Now, the Racah factorization lemma [46] states that
the Clebsch-Gordan coefficients of G, (ℓ1αaℓ2βb|ℓηe), and
those of G, (αaβb|ηe), are related via complex numbers
(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)

called isoscalar factors

(ℓ1αaℓ2βb|ℓηe) =
(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)

(αaβb|ηe). (32)

Isoscalar factors are fundamental ingredients of group-
subgroup symmetry calculations [44, 46, 52, 61–63].
They satisfy orthogonality relations [46]

∑

ℓ

(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)(

ℓ1 ℓ2
α′ β′

∣

∣

∣

∣

ℓ
η

)∗
= δαα′δββ′ ,

∑

αβ

(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ′

η

)∗
= δℓℓ′ .

We implicitly assumed that α, β, η, . . . appear in the sub-
duction of ℓ1, ℓ2, ℓ, . . ., respectively, and that η belongs
to the Clebsch-Gordan expansion of α ⊗ β and α′ ⊗ β′.
Isoscalar factors are usually calculated from Clebsch-
Gordan coefficients, but their squares can be calculated
from characters [62, 64].
By comparing the right-hand side of Eqs. (30) and (31)

and using the usual orthogonality relations of Clebsch-
Gordan coefficients, we get

I(ℓ1αℓ2βℓ3γℓ4δ,η) =
∑

ℓ

(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)(

ℓ3 ℓ4
γ δ

∣

∣

∣

∣

ℓ
η

)∗

×I(ℓ1ℓ2ℓ3ℓ4,ℓ), (33)

I(ℓ1ℓ2ℓ3ℓ4,ℓ) =
∑

αβγδη

dim η

dim ℓ

(

ℓ1 ℓ2
α β

∣

∣

∣

∣

ℓ
η

)∗ (
ℓ3 ℓ4
γ δ

∣

∣

∣

∣

ℓ
η

)

×I(ℓ1αℓ2βℓ3γℓ4δ,η). (34)

To summarize the result of this section, I(ℓ1αℓ2βℓ3γℓ4δ,η)

are G-invariants obtained for a system with a symme-
try group G ⊃ G. They can be directly compared to
the G-invariants of a system with the actual G symme-
try group. Equation (34) can also be used to calculate

a set of (approximate) G-invariants I(ℓ1ℓ2ℓ3ℓ4,ℓ) from the
G-invariants I(αβγδ,η); the mean squared error of the fit
would measure the deviation of the lower-symmetry sys-
tem from the one with the higher symmetry.
For notational convenience, we assumed that each ir-

rep α of G appears only once in the subduction of the
irrep ℓ of G. However, if the order of G is small or if
the dimension of ℓ is large, it usually happens that some
irrep α appears more than once in the subduction from
ℓ. For example, the irrep ℓ = 5 of SO(3) generates two
independent irreps T1g of the octahedral group O. To
take this multiplicity into account, we add a new index
k and a general subduction is now described by ℓkα. For
example

ℓ = 5 → 1T1g ⊕ 2T1g ⊕ 1Eg ⊕ 1T2g.

The Clebsch-Gordan coefficients use this additional index
and the Racah factorization lemma becomes

(ℓ1kααaℓ2kββb|ℓkηe) =
(

ℓ1 ℓ2
kαα kββ

∣

∣

∣

∣

ℓ
kη

)

(αaβb|ηe),

where the additional indices are restricted to the isoscalar
factor. The Coulomb integrals can be written in terms
of the subduced G invariants as

U
(ℓ1kααℓ2kββℓ3kγγℓ4kδδ)
abcd

=
∑

ηe

(αaβb|ηe)(γcδd|ηe)∗I(ℓ1kααℓ2kββℓ3kγγℓ4kδδ,η),

where

I(ℓ1kααℓ2kββℓ3kγγℓ4kδδ,η)

=
∑

ℓk

(

ℓ1 ℓ2
kαα kββ

∣

∣

∣

∣

ℓ
kη

)(

ℓ3 ℓ4
kγγ kδδ

∣

∣

∣

∣

ℓ
kη

)∗
I(ℓ1ℓ2ℓ3ℓ4,ℓ).

This is the generalization of Eq. (33), whereas Eq. (34)
becomes

I(ℓ1ℓ2ℓ3ℓ4,ℓ) =
∑

kααkββ
kγγkδδkη

dim η

dim ℓ
I(ℓ1kααℓ2kββℓ3kγγℓ4kδδ,η)

×
(

ℓ1 ℓ2
kαα kββ

∣

∣

∣

∣

ℓ
kη

)∗ (
ℓ3 ℓ4
kγγ kδδ

∣

∣

∣

∣

ℓ
kη

)

.

C. Subduction from O(3)

As explained in the introduction of this section, the
irreps of O(3) are the direct product L = (ℓ, ǫL) of an
irrep ℓ of SO(3) and an irrep ǫL = ±1 of Ci [35]. The
commutative group Ci is of order 2 with two irreps de-
noted by ǫL = ±1 that are one-dimensional and satisfy
I ⊲ ϕL = ǫLϕL. Moreover, I commutes with SO(3). In
general, the action of I on a tensor product of irreps of
O(3) is

I ⊲ (ϕL1
⊗ ϕL2

) = ǫL1
ǫL2

(ϕL1
⊗ ϕL2

).
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The Clebsch-Gordan coefficients for O(3) are

(L1m1L2m2|L3m3) = δǫL1
ǫL2

,ǫL3
(ℓ1m1ℓ2m2|ℓ3m3).

The O(3) invariants are

I(L1L2L3L4,L) = δǫL1
ǫL2

,ǫLδǫL3
ǫL4

,ǫLI
(ℓ1ℓ2ℓ3ℓ4,ℓ).

The condition ǫL1
ǫL2

= ǫL = ǫL3
ǫL4

implies
ǫL1

ǫL2
ǫL3

ǫL4
= 1, which is symmetric under permuta-

tion of L1, L2, L3, L4 and also implies ǫLi
ǫLj

= ǫLk
ǫLl

,
where (i, j, k, l) is any permutation of (1, 2, 3, 4). There-
fore, 〈IL1L2L3L4,L〉 is obtained from the same formula
as 〈I(ℓ1ℓ2ℓ3ℓ4,ℓ)〉 up to the fact that the pair-conserving
term gets the factor δǫL1

ǫL2
,ǫLδǫL3

ǫL4
,ǫL while the pair-

non-conserving term gets the factor δǫL1
ǫL4

,ǫL′
δǫL2

ǫL3
,ǫL′

.
In the calculations of the previous sections, we used

spherical harmonics, for which L = (ℓ, ǫL) with ǫL =
(−1)ℓ. Thus, in the following we denote by ℓ the O(3)
irrep (ℓ, (−1)ℓ). Then

I ⊲ U (ℓ1ℓ2ℓ3ℓ4)
m1m2m3m4

= U (ℓ1ℓ2ℓ3ℓ4)
m1m2m3m4

,

because the selection rules for 3j-symbols imply
(−1)ℓ1+ℓ3 = (−1)ℓ2+ℓ4 . Similarly I(L1L2L3L4,L) becomes
I(ℓ1ℓ2ℓ3ℓ4,L) where ǫL = (−1)ℓ1+ℓ2 = (−1)ℓ3+ℓ4 because
the L in I(ℓ1ℓ2ℓ3ℓ4,L) does not correspond to a spherical
harmonics, for the same reason as the cross product of
two vectors is a pseudovector (i.e. a “vector” which is
even under inversion). Hence

I ⊲ I(ℓ1ℓ2ℓ3ℓ4,L) = I(ℓ1ℓ2ℓ3ℓ4,L).

Finally, since the condition (−1)ℓ1+ℓ3+ℓ2+ℓ4 = 1 is invari-
ant under permutation of L1, L2, L3, L4, we also obtain

I ⊲ 〈I(ℓ1ℓ2ℓ3ℓ4,L)〉 = 〈I(ℓ1ℓ2ℓ3ℓ4,L)〉,

and 〈I(ℓ1ℓ2ℓ3ℓ4,L)〉 is obtained from the same formula as
〈I(ℓ1ℓ2ℓ3ℓ4,ℓ)〉, except for the fact that the sum over ℓ′ be-
comes a sum over L′ = (ℓ′, ǫL′), with ǫL′ = (−1)ℓ1+ℓ4 =
(−1)ℓ2+ℓ3 , the 6j-symbols involving only ℓ and ℓ′.
The subduction formulas are the same, provided we

notice that, if G contains I, then gerade irreps of G can
only arise from even ℓi and ungerade irreps from odd ℓi.

VI. CONCLUSION

Starting from the simple and familiar problem of cal-
culating Coulomb integrals in the most efficient way,
we came to use surprisingly sophisticated tools of group
theory, such as Clebsch-Gordan coefficients, 6j-symbols,
corepresentation theory or Racah factorization theorem,

and had to recall the remarkable work by Derome and
Sharp, which was unjustly forgotten. These tools enabled
us to provide explicit expressions for the Coulomb inte-
grals in the most general case, i.e. for any orbital in any
crystal point group symmetry. Moreover, instead of pro-
viding tables which would depend on the exact basis used
for each irrep and on the phase choice of Clebsch-Gordan
coefficients, we give here general and self-contained for-
mulas.
Although the spin degree of freedom was neglected in

the present work, it is possible to take it into account as
was done by Sugano and coauthors [26], who considered
Coulomb integrals between spin-1 and spin-0 states. This
implies adding the action of permutations (12) and (34),
for which the Coulomb integrals are odd for spin-1 and
even for spin-0. In other words, the full symmetric group
S4 should be considered instead ofD4. The methods used
in this paper can handle such a case, but the formula for
the permutation-symmetrizedG-invariants would involve
24 terms instead of 8.
It would also be tempting to refine the present treat-

ment of complex irreps, for example by considering their
real and imaginary parts and reducing the problem to
the case of real representations. However, this would be
a non-trivial extension of the present work, because the
resulting real representations would not be irreducible
and many of our proofs made a crucial use of Schur’s
lemma, which holds only for irreps. Pseudo-real irreps
could possibly be dealt with by using the fact that a rep-
resentation and its complex conjugate are related by a
similarity transformation, generalizing what we did for
SO(3).
Finally, another fruitful extension would be to deal

with magnetic groups and their corepresentations, which
are used to describe the transport and response proper-
ties of magnetic and multiferroic materials [65–69]. Al-
though we dealt with corepresentations in the present
work, the theory of corepresentations is not as developed
as the theory of representations, and this extension would
also be non-trivial.
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