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The Coulomb integrals, i.e. the matrix elements of the Coulomb potential between one-electron
orbitals, are basic objects of electronic structure calculations. In this paper Coulomb integrals are
analyzed in terms of the symmetry of the crystal or molecule. We consider the case where the
one-electron orbitals form the basis of a real, complex or pseudo-complex irreducible representation.
We take into account both the symmetry group of the site and the permutation symmetries of
Coulomb integrals. We provide explicit formulas to calculate all Coulomb integrals in terms of the
minimum number of independent invariant integrals, that we enumerate. We give explicit formulas
relating the Coulomb integrals of a symmetry group to the ones of a subgroup, taking the example
of spherically symmetric orbitals. The group-theory techniques that we use include Clebsch-Gordan
coefficients, co-representations of magnetic groups, recoupling formulas and the Racah factorization
theorem.

PACS numbers:

I. INTRODUCTION

The problem of the number of independent components of Coulomb matrix elements is important from several
points of view. In the analysis of spectroscopic data, this number is the number of parameters to fit, in electronic
structure calculation it is the minimal number of time-consuming double integrals to calculate. This problem was
famously investigated by Tanabe, Sugano and Kamimura1 for d-shell electrons in octahedral Oh symmetry and more
recently extended by Bünemann and Gebhard for d- and f -shell in Oh, O, Td, Th, D6h and D4h symmetries2.

We extend their work in several directions. We deal with any orbital and any group, we consider all types of
irreducible representations whereas previous works dealt only with real representations (i.e. wavefunctions) and we
give explicit expressions for the independent components and for the relation between arbitrary Coulomb integrals
and the independent ones. Moreover, we describe Coulomb integrals of a subgroup in terms of those of a larger group.

This is the first of a series of papers investigating the behavior of Coulomb matrix elements as a function of
symmetry, covalence and electronic relaxation. This more theoretical paper will be followed by the discussion of cubic
materials (e.g. NiO) and then to materials with lower symmetries.

We now give the outline of this paper. It starts with a discussion of the various symmetries of Coulomb integrals
for complex and real one-electron orbitals. In particular, we consider the case when the one-electron orbitals are
bases of irreducible representations of a group G. Then, we use the Clebsch-Gordan coefficients of G to define linear
combinations of Coulomb integrals (called G-invariants) that are invariant under the action of the operations of G
and we show that all Coulomb integrals can be written in terms of these G-invariants. The next section describes the
way to take permutation symmetries into account. This further reduces the number of independent integrals, which
are now (permutation)-symmetrized G-invariants. We give an explicit formula for the calculation of any Coulomb
integral in terms of these symmetrized G-invariants and we show, conversely, that symmetrized G-invariants can be
calculated from the same number of well-chosen Coulomb integrals. For the example of d orbitals in cubic symmetries,
625 Coulomb integrals can be obtained from the computation of only ten of them. Finally we deal with the problem
of symmetry breaking by considering G as a subgroup of the infinite group O(3) of rotations and inversion of three-
dimensional space. We express G-invariants in terms of O(3)-invariants (i.e. Slater integrals), which can be used to
quantify the deviation of the system from spherical symmetry. We close the paper with some concluding remarks and
possible extensions of our work.

II. INVARIANCE OF COULOMB INTEGRALS

In this section, we first show that Coulomb integrals are invariant under the action of isometries and we discuss
what happens when the one-electron orbitals are bases of irreducible representations. Then, we study the invariance
of Coulomb integrals under permutations of one-electron orbitals.
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A. Change of variable

Let us define a Coulomb integral by

Uabcd = 〈ϕaϕb|V |ϕcϕd〉 =

∫
dxdy

ϕ∗a(x)ϕ∗b(y)ϕc(x)ϕd(y)

|x− y|
, (1)

where ϕa, ϕb, ϕc and ϕd are one-electron orbitals. We carry out the change of variable x = ρx′, y = ρy′, where ρ is
an isometry. We recall that any isometry can be written ρx = Rx + t, where R is a rotation or a rotation multiplied
by an inversion, and t is a translation. Since an isometry conserves volumes we have dx = dx′, dy = dy′. Moreover
|x− y| = |x′ − y′| because the distance between two points is invariant under isometry. We obtain

Uabcd =

∫
dx′dy′

ϕ∗a(ρx′)ϕ∗b(ρy
′)ϕc(ρx

′)ϕd(ρy
′)

|x′ − y′|
. (2)

B. Invariance under point symmetry operations

We assume now that the system is invariant under the operations R of a point symmetry group G. This means
that, if ϕa is an orbital of the system, then the transformation of ϕa by a symmetry operation R of G is again an
orbital of the system with the same energy.

In a more abstract way, the action of a group G on a set X is an operation that associates to each pair (g, x) with g in
G and x in X, an element of X denoted by g.x. Moreover, this operation satisfies 1.x = x and g(.(g′.x)) = (g ·g′).x.

For example if X = R3 and G is a point symmetry group defined by matrices R, then R . x = Rx. In molecular or
solid-state physics we deal with a set X of orbitals ϕa. Then (R . ϕa)(x) = ϕa(R−1x) (the variable x is replaced by
R−1x in ϕa). Indeed(

R . (S . ϕa)
)
(x) = (R . ϕa)(S−1x) = ϕa(S−1R−1x) = ϕa((RS)−1x) =

(
(RS) . ϕa

)
(x).

In that sense, Eq. (2) can be written

ρ−1 . Uabcd = Uabcd. (3)

In fact, Eq. (2) says that Coulomb integrals 〈ϕaϕb|V |ϕcϕd〉 are invariant under the action of any isometry, but we
restrict it here to the case of elements of G. This is because we can then describe the action of R on φa by a matrix
representation. In other words, we consider that there exist matrices Γ(R) such that Γ(R)Γ(S) = Γ(RS) for any R
and S in G and

R . ϕa =
∑
b

Γba(R)ϕb, (4)

where the order of the indices of Γ is required3 (p. 65) to get

R . (S . ϕa) =
∑
b

Γba(S)(R . ϕb) =
∑
bc

Γba(S)Γcb(R)ϕc =
∑
c

(Γ(R)Γ(S))caϕc =
∑
c

(Γ(RS))caϕc

= (RS) . ϕa.

We are particulary interested in irreducible representations. There are three types of irreducible representations (in
the sense of Frobenius-Schur4): (a) real irreps, for which we can find real representation matrices Γ(R); (b) complex,
for which Γ(R)∗ does not represent the same irrep as Γ(R) (e.g. eik·r for the translation group); and (c) pseudo-real
(quaternionic) for which Γ(R)∗ represents the same irrep as Γ(R) but the representation matrices cannot all be real.
If the wavefunctions are real, then the matrix representation is real. Indeed

(R . ϕa)(x) = ϕa(R−1x) =
∑
b

Γba(R)ϕb(x).

Therefore

Γba(R) =

∫
dxϕ∗b(x)ϕa(R−1x) =

∫
dxϕ∗b(Rx)ϕa(x), (5)
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is real if ϕa and ϕb are real. However, even when the representation is real in the sense of Frobenius-Schur, its matrix
representation can contain non-real complex numbers. For example, Eg is a real irreducible representation of Oh,
but its matrix representation contains non-real numbers in Altmann and Herzig’s tables5. For the groups Oh, O, Td,
D6h and D4h investigated by Bünemann and Gebhard2, all irreducible representations are real. For the last group
Th studied in that article, there are four complex one-dimensional representations (1Eg,

2Eg,
1Eu,

2Eu). They can be
grouped into pairs to become real two-dimensional (but no longer irreducible).

Let α, β, γ and δ be irreducible representations of G. For each of these representations, for instance α, let φ
(α)
a

with a = 1, . . . ,dimα be a basis of this representation. Define

U
(αβγδ)
abcd = 〈ϕ(α)

a ϕ
(β)
b |V |ϕ

(γ)
c ϕ

(δ)
d 〉.

Then, Eq. (4) yields

R . U
(αβγδ)
abcd =

∑
a′b′c′d′

Γ
(α)
a′a(R)∗Γ

(β)
b′b (R)∗Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)U

(αβγδ)
a′b′c′d′ .

Thus, the invariance relation Eq. (2) implies

R . U
(αβγδ)
abcd =

∑
a′b′c′d′

Γ
(α)
a′a(R)∗Γ

(β)
b′b (R)∗Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)U

(αβγδ)
a′b′c′d′ = U

(αβγδ)
abcd , (6)

for every R ∈ G.

C. Invariance under some permutations

We describe now additional symmetries of the Coulomb integrals, which are different when the orbitals are complex
and real. Let us start by complex orbitals.

1. Complex orbitals

If we interchange x′ and y′ in the definition (1) of Uabcd we obtain Uabcd = Ubadc, and if we take the complex
conjugate we obtain U∗abcd = Ucdab. As a consequence,

Uabcd = Ubadc = U∗cdab = U∗dcba. (7)

This means that the Coulomb integrals are invariant under the action of a group Gσ of 4 permutations Gσ =
{σ1, σ2, σ3, σ4} defined

σ1(abcd) = (abcd), σ2(abcd) = (badc), σ3(abcd) = (cdab), σ4(abcd) = (dcba),

with actions

σ1 . Uabcd = Uabcd, σ2 . Uabcd = Ubadc, σ3 . Uabcd = U∗cdab, σ4 . Uabcd = U∗dcba.

Because of the presence of a complex conjugation in the action of Gσ, we do not have a representation but a
corepresentation, as defined by Wigner6 and Gσ is a magnetic group, and more precisely the Shubnikov group of
the IIIrd kind m′m2′.

2. Real orbitals

For real orbitals ϕi, we have also U1234 = U3214 = U1432 and the symmetries are2

Uabcd = Ubadc = Ucdab = Udcba = Ucbad = Udabc = Uadcb = Ubcda. (8)

These symmetries form a group Gσ of order 8, which is a subgroup of the group S4 of permutation of 4 elements. It
can be seen that Gσ is equivalent to the symmetry group D4 of the square. Indeed, if we denote by a, b, c, d the four
consecutive corners of a square, the group operations of D4 give us then C4 7→ (dabc), C2

4 7→ (cdab), C3
4 7→ (bcda),

C ′21 7→ (dcba), C ′22 7→ (badc), C ′′21 7→ (adcb), C ′′22 7→ (cbad).
When orbitals are real, we can use the more advanced framework of the theory of group representations (instead

of corepresentations).
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III. GROUP INVARIANTS

In this section we deal only with the invariance of the Coulomb integrals under the action of the point symmetry
group G. For notational convenience, we make hypothesis (H): the product of two irreducible representations of G is
a sum of irreducible representations of G where no representation appears twice. By definition, all simply-reducible
groups7,8 satisfy (H) but simple reducibility additionaly requires additional properties. Group O(3) is simply-reducible
as well as all point groups except for9: C3, C4, C6, C3h, C4h, C6h, S4, S6, T and Th. We see in point group tables5

that they all satisfy (H), except for T and Th. In group T , the only breaking of (H) comes in the square of irrep T ,
which contains irrep T twice. Similarly, in group Th, irrep Tg is contained twice in the square of irrep Tg. However,
these two copies of T (resp. Tg) are uniquely defined because one belongs to the symmetric product and the other
to the antisymmetric product of T (resp. Tg). In that sense, all point groups satisfy (H). In any case, the present
treatment can be extended to groups which do not satisfy condition (H) by following methods wich are now standard
in the literature10–16, but the resulting cluttering of indices becomes confusing.

In this section we define so-called G-invariants, which are objects enjoying an invariance under basis change and
under the action of any element of G. Then, we show that all Coulomb matrix elements can be written in terms of
these G-invariants.

A. Clebsch-Gordan coefficients

For any finite (or compact) group G, the tensor (or direct or Kronecker3) product of two irreducible representations
can be written as a sum of representations. The Clebsch-Gordan coefficients describe the coefficients of this sum.
More precisely, we define Clebsch-Gordan coefficients (αaβb|φf) as any set of complex numbers solving the equation3

(p. 85)

Γ
(α)
a′a(R)Γ

(β)
b′b (R) =

∑
φff ′

(αa′βb′|φf ′)Γ(φ)
f ′f (R)(αaβb|φf)∗. (9)

A possible solution of this equation is given by Dirl’s formula17

(αaβb|ηe) =

√
dim η

|G|

∑
R Γ

(α)
aa0(R)Γ

(β)
bb0

(R)
(
Γ
(η)
ee0(R)

)∗√∑
R Γ

(α)
a0a0(R)Γ

(β)
b0b0

(R)
(
Γ
(η)
e0e0(R)

)∗ . (10)

where, |G| is the number of elements of G and, for each triple (α, β, η), three components (a0, b0, e0) are chosen so

that
∑
R Γ

(α)
a0a0(R)Γ

(β)
b0b0

(R)Γ
(η)
e0e0(R) 6= 0. Such components exist if η is in the tensor product of α and β (see also18

(p. 105)).
This definition of Clebsch-Gordan coefficients as any solution of Eq. (9) is inspired by Derome and Sharp37. Note

that this definition does not fully specify Clebsch-Gordan coefficients, since multiplying them by a phase depending
on α, β and γ transforms a solution into another one. Other approaches use careful choices of these phases to
maximize the symmetry of Clebsch-Gordan coefficients12,14–16,19–21. However, these phases depend on each group
and the Clebsch-Gordan coefficients given by Dirl’s formula (10) generally do not satisfy these symmetries. Another
advantage of the work by Derome and Sharp is that they give the recoupling formula that we need in this paper,
whereas it is not present in14 or20. A third advantage is more technical but turns out to be crucial38.

These Clebsch-Gordan coefficients are a generalization of the ones used in angular momentum theory. They satisfy
similar orthogonality relations3 (p. 84): ∑

ab

(αaβb|ηe)∗(αaβb|φf) = δηφδef , (11)∑
ηe

(αaβb|ηe)∗(αa′βb′|ηe) = δaa′δbb′ . (12)

This means that the Clebsch-Gordan coefficients of the groups considered in this paper can be considered as matrix
elements of a unitary matrix.
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B. Coulomb G-invariants

As a first step of the symmetry analysis of Coulomb matrix elements U
(αβγδ)
abcd for given irreps α, β, γ and δ, we

define the corresponding G-invariants as

I(αβγδ,η) =
1

dim η

∑
abcde

U
(αβγδ)
abcd (αaβb|ηe)∗(γcδd|ηe), (13)

where η belongs to the irrep expansion of both α ⊗ β and γ ⊗ δ. Note that, because of the basis transformation

rules for U
(αβγδ)
abcd and Clebsch-Gordan coefficients, I(αβγδ,η) is basis-independent. This means that G-invariants can

be compared even if the representation matrices of irreps are different. However, if (γ, δ) 6= (α, β) they can differ from
one another by a phase due to the phase ambiguity of Clebsch-Gordan coefficients.

We can interpret Eq. (13) in terms of matrix elements. Indeed

U
(αβγδ)
abcd = 〈ϕ(α)

a ϕ
(β)
b |V |ϕ

(γ)
c ϕ

(δ)
d 〉.

Therefore,

I(αβγδ,η) =
1

dim η

∑
e

〈(ϕ(α) ⊗ ϕ(β))(η)e |V |(ϕ(γ) ⊗ ϕ(δ))(η)e 〉,

where Clebsch-Gordan coefficients are used to couple irreps:

(ϕ(α) ⊗ ϕ(β))(η)e =
∑
ab

(αaβb|ηe)ϕ(α)
a ⊗ ϕ(β)

b , (ϕ(γ) ⊗ ϕ(δ))(η)e =
∑
cd

(γcδd|ηe)ϕ(γ)
c ⊗ ϕ

(δ)
d .

We now state two important results. The first is the fact that, for any value of the complex numbers U
(αβγδ)
abcd (where

a = 1, . . . ,dimα, b = 1, . . . ,dimβ, c = 1, . . . ,dim γ, d = 1, . . . ,dim δ), which transform under the operation of G as
the product of irreps α⊗ β ⊗ γ ⊗ δ,

R . I(αβγδ,η) =
1

dim η

∑
abcda′b′c′d′e

Γ∗a′a(R)Γ∗b′b(R)Γc′c(R)Γd′d(R)U
(αβγδ)
a′b′c′d′(αaβb|ηe)

∗(γcδd|ηe) = I(αβγδ,η).

In other words, I(αβγδ,η) is invariant under the action of G even if the coefficients U
(αβγδ)
abcd are not (we just assumed

that they transform as products of irreps).

The second result is a consequence of Schur’s lemma: if U
(αβγδ)
abcd is invariant under the action of G (i.e. satisfies

Eq. (6)), then the matrix U
(αβγδ)
abcd is diagonalized by the Clebsch-Gordan coefficients and its eigenvalues are I(αβγδ,η):∑

abcd

(αaβb|φf)∗U
(αβγδ)
abcd (γcδd|ηe) = δφηδefI

(αβγδ,η). (14)

As a consequence, any U
(αβγδ)
abcd can be written explicitly in terms of G-invariants:

U
(αβγδ)
abcd =

∑
ηe

(αaβb|ηe)(γcδd|ηe)∗I(αβγδ,η). (15)

This shows that, if η runs over the irreps common to α⊗β and γ⊗δ, then the set of I(αβγδ,η) forms a complete family

of G-invariants generating U
(αβγδ)
abcd . As a consequence, their number can be obtained by the character formula

n(αβγδ) =
1

|G|
∑
R

χα(R)∗χβ(R)∗χγ(R)χδ(R), (16)

where, for each irrep η, χη(R) = Tr
(
Γ(η)(R)

)
.

However, this number does not take into account the permutation symmetries described in section II C. These
symmetries considerably decrease the number of invariants and are discussed in the next section.

IV. PERMUTATION INVARIANTS

In this section, we consider the effect of permutation symmetries described in Eq. (8) for real representations and
in Eq. (7) for non-real representations.
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A. Real representations

In this section we assume that all irreps are real and that they are represented by real matrices. Up to now, the

coefficients U
(αβγδ)
abcd were not supposed to have any permutation symmetry. To impose the D4 permutation symmetry

of real Coulomb integrals, we project each coefficient on the fully symmetric irrep of D4. This is done by replacing

each U
(αβγδ)
abcd by its symmetrization

〈U (αβγδ)
abcd 〉 =

1

|D4|
∑
σ∈D4

U
σ(αβγδ)
σ(abcd)

=
1

8
(U

(αβγδ)
abcd + U

(βαδγ)
badc + U

(γδαβ)
cdab + U

(δγβα)
dcba + U

(γβαδ)
cbad + U

(δαβγ)
dabc + U

(αδγβ)
adcb + U

(βγδα)
bcda ). (17)

We obtain the symmetrized G-invariant

〈I(αβγδ,η)〉 =
1

8 dim η

( ∑
abcde

U
(αβγδ)
abcd (αaβb|ηe)(γcδd|ηe) +

∑
abcde

U
(βαδγ)
badc (αaβb|ηe)(γcδd|ηe)

+
∑
abcde

U
(γδαβ)
cdab (αaβb|ηe)(γcδd|ηe) +

∑
abcde

U
(δγβα)
dcba (αaβb|ηe)(γcδd|ηe)

+
∑
abcde

U
(γβαδ)
cbad (αaβb|ηe)(γcδd|ηe) +

∑
abcde

U
(δαβγ)
dabc (αaβb|ηe)(γcδd|ηe)

+
∑
abcde

U
(αδγβ)
adcb (αaβb|ηe)(γcδd|ηe) +

∑
abcde

U
(βγδα)
bcda (αaβb|ηe)(γcδd|ηe)

)
, (18)

where we used the fact that, when irreps are real, the corresponding Clebsch-Gordan coefficients can be chosen real.
The purpose of the next two sections is to write the symmetrizedG-invariants 〈I(αβγδ,η)〉 in terms of the unsymmetrized
ones. More precisely, we project the G-invariants onto the symmetrized ones.

B. The first four terms

The purpose of this section is to write the symmetrized G-invariants 〈I(αβγδ,η)〉 in terms of the unsymmetrized
ones. Two terms in the right hand side of Eq. (18) are obvious:∑

abcde

U
(αβγδ)
abcd (αaβb|ηe)(γcδd|ηe) = I(αβγδ,η) dim η,∑

abcde

U
(γδαβ)
cdab (αaβb|ηe)(γcδd|ηe) =

∑
abcde

U
(γδαβ)
cdab (γcδd|ηe)(αaβb|ηe) = I(γδαβ,η) dim η.

To deal with two other terms, we notice that, as a consequence of Schur’s lemma, the Clebsch-Gordan coefficients
(αaβb|ηe) and (βbαa|ηe) differ by at most a phase depending on α, β and η (but not on a, b and e). We denote this
phase by {αβ, η}20 (p. 231),14 (p. 57) and, for real Clebsch-Gordan coefficients {αβ, η} = ±1 In other words,

(αaβb|ηe) = {αβ, η}(βbαa|ηe).

This enables us to write∑
abcde

U
(βαδγ)
badc (αaβb|ηe)(γcδd|ηe) = {αβ, η}{γδ, η}

∑
abcde

U
(βαδγ)
badc (βbαa|ηe)(δdγc|ηe) = {αβ, η}{γδ, η}I(βαδγ,η) dim η,∑

abcde

U
(δγβα)
dcba (βbαa|ηe)(δdγc|ηe) = {αβ, η}{γδ, η}

∑
abcde

U
(δγβα)
dcba (δdγc|ηe)(βbαa|ηe) = {αβ, η}{γδ, η}I(δγβα,η) dim η.

C. The last four terms

The last four terms are more tricky. Indeed, the Clebsch-Gordan coefficients do not couple the first and the second
irreps, and then the third and fourth irreps, they couple for instance the first and the fourth irreps, as well as the
second and the third. As a consequence, we need to use the recoupling formula proposed by Derome and Sharp, which
is valid for general Clebsch-Gordan coefficients.
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1. Recoupling of irreps

Derome and Sharp give a recoupling formula for general Clebsch-Gordan coefficients (Theorem 3 of 10 which, for
real representation matrices (and multiplicity-free point groups), takes the form∑

e

(αaβb|ηe)(γcδd|ηe) = dim η
∑
φf

(−1)φ+η
{
α β η
γ δ φ

}
(γcβb|φf)(αaδd|φf), (19)

where the 6j-symbols are defined by39{
α β η
γ δ φ

}
=

(−1)α+β+η+γ+δ+φ

dim η dimφ

∑
abcdef

(γcδd|ηe)(γcβb|φf)(αaδd|φf)(αaβb|ηe). (20)

In Eqs. (19) and (20), the symbols (−1)α, (−1)β , etc... are defined as follows. Following Derome and Sharp we first
define 1j-symbols by (α)aa′ = (αa00|αa′), where 0 is the fully-symmetric irrep. By Schur’s lemma, it can be shown that
(α)aa′ = ±δaa′ and we denote the sign ± by (−1)α. In particular, if Clebsch-Gordan coefficients are calculated from
Dirl’s formula Eq. (10), then (−1)α = 1 for every irrep α. We also use the obvious notation (−1)φ+η = (−1)φ(−1)η.

In the literature, other 6j symbols were defined which enjoy nice symmetry properties14,20. However, these symme-
tries require to adjust the phases of the Clebsch-Gordan coefficients. We follow again Derome’s approach and work
with general Clebsch-Gordan coefficients10,11,22.

2. Recoupling the last four terms

We are now ready to apply the remaining permutations of D4 to I(αβγδ,η). For example

(13) . I(αβγδ,η) =
1

dim η

∑
abcde

U
(γβαδ)
cbad (αaβb|ηe)(γcδd|ηe)

=
∑
φ

(−1)φ+η
{
α β η
γ δ φ

} ∑
abcdf

U
(γβαδ)
cbad (γcβb|φf)(αaδd|φf) =

∑
φ

(−1)φ+η dimφ

{
α β η
γ δ φ

}
I(γβαδ,φ).

By treating the last three times in the same way, we obtain the D4 symmetrization of I(αβγδ,η) to be

〈I(αβγδ,η)〉 =
1

8

(
I(αβγδ,η) + I(γδαβ,η) + {αβ, η}{γδ, η}

(
I(βαδγ,η) + I(δγβα,η)

))
+

1

8

∑
φ

(−1)η+φ dimφ

{
α δ φ
γ β η

}(
I(αδγβ,φ) + I(γβαδ,φ) + {αδ, φ}{βγ, φ}

(
I(δαβγ,φ) + I(βγδα,φ)

))
. (21)

3. Enumeration of symmetrized G-invariants

As noticed in 2, the number of symmetrized G-invariants can be obtained from the character of the action of G×D4

on U (βββα,φ) with elements (R, p), which is

χS(R, p) =
∑

(αβγδ)∈S

δ(αβγδ),p(αβγδ)
∑
abcd

Γ
(α)
a′a(R)Γ

(β)
b′b (R)Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)

∣∣∣
(a′b′c′d′)=p−1(abcd)

.

where S is a set of quadruples (α, β, γ, δ) of irreps linked by D4, and (αβγδ) an element in this set. The number of
symmetrized G-invariants (i.e. invariant under G×D4) is

nS =
1

8|G|
∑
R,p

χS(R, p). (22)

We give a formula for χS(R, p) in terms of the characters of G for every possible set S.
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• S1 = {(α, α, α, α)}. Then∑
p

χS1(R, p) = χα(R)4 + 3χα(R2)2 + 2χα(R2)χα(R)2 + 2χα(R4). (23)

• S2 = {(α, β, α, β), (β, α, β, α)} with β 6= α.∑
p

χS2(R, p) = 2
(
χα(R)2 + χα(R2)

)(
χβ(R)2 + χβ(R2)

)
. (24)

• S3 = {(α, α, β, β), (α, β, β, α), (β, β, α, α), (β, α, α, β)} with β 6= α.∑
p

χS3(R, p) = 4χα(R)2χβ(R)2 + 4χα(R2)χβ(R2). (25)

• S4 = {(α, β, α, γ), (α, γ, α, β), (β, α, γ, α), (γ, α, β, α)} where β 6= α and β 6= γ (but γ = α is allowed).∑
p

χS5(R, p) = 4
(
χα(R)2 + χα(R2)

)
χβ(R)χγ(R). (26)

• All the other cases ∑
p

χS5(R, p) = 8χα(R)χβ(R)χγ(R)χδ(R). (27)

4. Projection

Notice that the symmetrization described by Eq. (17) is a projection onto the fully symmetric irrep of D4. The
matrix M transforming unsymmetrized G-invariants into symmetrized ones, which is defined by Eq. (21), is sumarized
by the equation

〈I(Q,η)〉 =
∑

Q′∈S,φ

MQη,Q′φI
(Q′,φ), (28)

where S is one of the sets described in section IV C 3, Q and Q′ run over the sets (α1α2α3α4) of S. Since the
symmetrization is defined as a projection, the matrix M is a projection matrix (i.e. M2 = M), which is generally
not orthogonal (i.e. MT 6= M). The symmetrized G-invariants can also be called G×D4-invariants because they are
invariant under both G and D4.

5. Minimizing Coulomb integral calculations

The previous sections enabled us to show that all Coulomb integrals can be expressed in terms of a small number
of symmetrized G-invariants. This is very handy because a large number of Coulomb integrals can be summarized
by a small number of these invariants. However, this does not seem to be very useful from the computational point
of view because the symmetrized G-invariants themselves are defined in terms of Coulomb integrals. In this section

we show that it is enough to calculate as many (well chosen) Coulomb integrals Uαβγδabcd as symmetrized G-invariants
to determine all Coulomb integrals.

To be more precise, we first showed that all Coulomb integrals Uαβγδabcd can be expressed in terms of a smaller number
of G-invariants. This is Eq. (15) that we rewrite

Uαβγδabcd =
∑
η

Aαβγδabcd,ηI
(αβγδ,η), (29)

where Aαβγδabcd,η is an n×m matrix, with n = dimα dimβ dim γ dim δ and m = n(αβγδ) is given by Eq. (16).

Moreover, for real matrix representations, D4-permutation symmetry enables us to replace G-invariants I(αβγδ,η)

by symmetrized G-invariants 〈I(αβγδ,η)〉. However, symmetrization mixes different quadruples (αβγδ) belonging to



9

the same set S defined in section IV D 2. Therefore, we group all Aαβγδabcd,η for Q = (αβγδ) in the same S into a larger

matrix AQabcd,η such that

UQabcd =
∑
η

AQabcd,ηI
(Q,η), (30)

where UQabcd spans all U
(αβγδ)
abcd for (αβγδ) in S and the same holds for I(Q,η). The dimension of AQabcd,η is |S|n ×m,

where |S| is the number of elements of S.
We are now ready to use the D4-permutation symmetry of real integrals and replace in Eq. (30) I(Q,η) by 〈I(Q,η)〉,

where

〈I(Q,η)〉 =
∑
φ

MQQ′

ηφ I(Q
′,φ).

We showed that M is a projection matrix (i.e. M2 = M). However, since we want to conserve the distance between

Coulomb integrals (as explained shortly in Eq (32)), we need to use another matrix NQQ′

ηφ =
√

dim ηMQQ′

ηφ (1/
√

dimφ),
which is also a projection matrix. Any projection matrix is diagonalizable, and we denote the eigenvalues of N by
λq = 0 or 1 and its eigenvectors by vq, where q = (Q,φ). Since NT 6= N , it is generally not possible to orthonormalize
all its eigenvectors. However, we can define a set of orthonormal eigenvectors vq for eigenvalue λq = 1 and a set of
orthonormal eigenvectors vq for eigenvalue λq = 0 (but eigenvectors of the first set are generally not orthogonal to
eigenvectors of the second set). We assume that we have chosen such sets of eigenvectors.

Let B be the matrix with matrix elements Bpq = vqp, the pth component of vq. We have Npr =
∑
q Bpqλq(B

−1)qr.

If we define uQ,φ =
∑
Q′ρ(B

−1)Qφ,Q′ρ
√

dim ρI(Q
′,ρ), we obtain

〈I(Q,η)〉 = (1/
√

dim η)
∑
Q′,ρ

NQQ′

ηρ

√
dim ρI(Q

′,ρ) = (1/
√

dim η)
∑

Q′,φ,λQ′,φ=1

BQη,Q′φu
Q′,φ. (31)

Indeed, the eigenvalues of a projection matrix are 1 and 0. If λQ′,φ = 0 the corresponding uQ
′,φ does not contribute

and we sum only over Q′, φ such that λQ′,φ = 1. Therefore, B can now be considered as an |S|m× nS matrix, where
nS , which is the number of eigenvectors of N corresponding to the eigenvalue 1, is given by Eq. (22).

Note that using the eigenvectors of N instead of the eigenvectors of M enables us to conserve the distance between
Coulomb integrals. More precisely, if S is a set of quadruples Q = α1α2α3α4 of irreps as in section IV C 3 and if

I
(Q)
a1a2a3a4 and I(Q)

a1a2a3a4 are two sets of Coulomb integrals, then the following distances are equal∑
Q∈S

∑
a1a2a3a4

∣∣I(Q)
a1a2a3a4 − I

(Q)
a1a2a3a4

∣∣2 =
∑
Q∈S,η

dim η
∣∣J (Q,η) − J (Q,η)

∣∣2 =
∑
Q∈S,φ

∣∣uQ,φ − uQ,φ∣∣2. (32)

This identity will be useful to determine the global variation of Coulomb integrals as a function of pressure or when
an atomic species is replaced by another one in the structure: the global variation of the Coulomb integrals is equal
to the variation of the symmetrized G-invariants.

By using Eqs. (30) and (31), we can now write the Coulomb integrals as

UQabcd =
∑
ηQ′φ

AQabcd,ηBQη,Q′φu
Q′,φ, (33)

where matrix AB has dimension |S|n× nS . Let r be the rank of AB. In general r ≤ nS but let us consider the most
common case where r = nS . By a classical theorem of linear algebra, there is a set of r indices a1b1c1d1, . . . , arbrcrdr
such that the r × r matrix P with matrix elements

Psq =
∑
p

ASasbscsds,pBpq, (34)

has a non-zero determinant (i.e. it is a non-zero minor of AB). As a consequence, P is invertible and we can compute

u1, . . . , ur from UQ1

a1b1c1d1
,. . . , UQrarbrcrdr by uq =

∑
s(P

−1)qsU
Qs
isjsksls

. In other words, the nS quantities uq can be

calculated from nS Coulomb integral. And since all Coulomb integrals can be computed from uq by Eq. (33), we can
calculate |S|n Coulomb integrals from the computation of only nS of them. Moreover, since AB depends only on
Clebsch-Gordan coefficients, the choice of the r indices a1b1c1d1, . . . , arbrcrdr can be done once and for all for any
choice of group and irreps.
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D. Non-real representations

The permutation group acting by Uabcd, Ubadc, U
∗
cdab and U∗dcba is isomorphic to the symmetry group of a rectangle

(with vertices denoted anticlockwise by a, b, c, d). It is magnetic point group m′m2′ with unitary operations E and
σy and anti-unitary operations C2z and σx (among the 58 type III Shubnikov crystallographic point groups)23. This
is the symmetry group of a rectangle the upper half of it is black and the lower half white, where complex conjugation
is represented by reversing black and white.

1. Symmetrization

Although the theory of projection onto irreducible corepresentations is not fully developed, it is clear that

〈U (αβγδ)
abcd 〉 =

1

4

(
U

(αβγδ)
abcd + U

(βαδγ)
badc + (U

(γδαβ)
cdab )∗ + (U

(δγβα)
dcba )∗

)
,

is invariant under the operations of m′m2′. Therefore, the symmetrized components for non-real representations are

〈I(αβγδ,η)〉 =
1

4

( ∑
abcde

U
(αβγδ)
abcd (αaβb|ηe)∗(γcδd|ηe) +

∑
abcde

U
(βαδγ)
badc (αaβb|ηe)∗(γcδd|ηe)

+
∑
abcde

(U
(γδαβ)
cdab )∗(αaβb|ηe)∗(γcδd|ηe) +

∑
abcde

(U
(δγβα)
dcba )∗(αaβb|ηe)∗(γcδd|ηe)

)
,

= I(αβγδ,η) + {αβη}{γδη}I(βαδγ,η) + (I(γδαβ,η))∗ + {αβη}{γδη}(I(δγβα,η))∗.

By similarly calculating 〈I(βαδγ,η)〉, 〈I(γδαβ,η)〉, and 〈I(δγβα,η)〉, we obtain the following relations between symmetrized
components:

〈I(βαδγ,η)〉 = {αβη}{γδη}〈I(αβγδ,η)〉,
〈I(γδαβ,η)〉 = 〈I(αβγδ,η)〉∗,
〈I(δγβα,η)〉 = {αβη}{γδη}〈I(αβγδ,η)〉∗.

2. Enumeration of symmetrized G-components

The character formula for counting the number of times a given irreducible corepresentations appears is given
by Newmarch24. In our case, we consider the fully symmetric irreducible corepresentation, which is of type (a),
corresponding to an intertwining number I = 1.

A particularity of the character theory of corepresentations is that it takes into account only unitary operations (in
our case the unit permutation (αβγδ) and the permutation (βαδγ)). The character of the representation corresponding
to permutation p is

χS(R, p) =
∑

(αβγδ)∈S

δ(αβγδ),p(αβγδ)
∑
abcd

Γ
(α)
a′a(R)∗Γ

(β)
b′b (R)∗Γ

(γ)
c′c (R)Γ

(δ)
d′d(R)

∣∣∣
(a′b′c′d′)=p−1(abcd)

,

and the number of symmetrized G-components is

nS =
1

2|G|
∑
p

′∑
R

χS(R, p),

where
∑′

runs only over the two permutations corresponding to unitary operations. We have only two cases:

• S = {(α, α, β, β)}, where α and β can be equal

nS =
1

2|G|
∑
R

((
χα(R)∗

)2
χβ(R)2 + χα(R2)∗χβ(R2)

)
. (35)

• All the other cases

nS =
1

|G|
∑
R

χα(R)∗χβ(R)∗χγ(R)χδ(R). (36)



11

3. Minimizing Coulomb integral calculations

Exactly as in the case of real representation matrices treated in section IV C 5, the Coulomb integrals can be
calculated from a minimum number nS of them.

V. SUBDUCTION

In this section, we consider the point group G as a subgroup of the infinite group O(3). In particular, we want to
express the G-invariants and the symmetrized G-invariants in terms of parameters such as Slater integrals or Racah
parameters.

A. O(3)-invariants for Coulomb potential

The theory presented in the previous section does not apply directly to O(3) because, although irreps ` are real (in
the sense of Frobenius-Schur), they are usually representated by Wigner matrices D`(R) which can be complex. The
usual basis of spherical harmonics basis Y m` is also generally not real. This, however, has only a benign effect and we
only indicate the results. We follow the notation used in Cowan’s book25 (p. 162): The Coulomb integrals are

U (`1`2`3`4)
m1m2m3m4

= 〈`1m1`2m2|
2

rij
|`3m3`4m4〉

=
∑
k

Rk(`1`2, `3`4)δm3−m1,m2−m4
(−1)m2+m3

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1)(

`1 k `3
0 0 0

)(
`2 k `4
0 0 0

)(
`1 k `3
−m1 m1−m3 m3

)(
`2 k `4
−m2 m2−m4 m4

)
,

where25 (p. 162)

Rk(`1`2, `3`4) =

∫ ∞
0

dr1

∫ ∞
0

dr2
2rk<
rk+1
>

P`1(r1)P`2(r2)P`3(r1)P`4(r2), (37)

are radial integrals and we assumed real radial wavefunctions. The 3j symbols involving 0, 0, 0 can only be non zero
if `1 + `3 + k and `2 + `4 + k are even. Therefore, we can change the signs of m and permute the column in each 3j
symbol without changing its value. As a consequence, `1 + `3 + `2 + `4 is even and (−1)`1+`3+`2+`4 = 1.

Our O(3)-invariants I(`1`2`3`4,`) were calculated by Cowan (Eq. (10.17) p. 282 of25)

I(`1`2`3`4,`) = 〈(`1 ⊗ `2)`m|
2

rij
|(`3 ⊗ `4)`m〉

= (−1)`1−`3+`
√

(2`1 + 1)(2`2 + 1)(2`3 + 1)(2`4 + 1)
∑
k

(
`1 k `3
0 0 0

)(
`2 k `4
0 0 0

){
`1 `2 `
`4 `3 k

}
Rk(`1`2, `3`4),

where the first quantity on the right hand side is independent of m, so that it can be written in the familiar form

I(`1`2`3`4,`) =
1

2`+ 1

∑
m1m2m3m4m

(`1m1`2m2|`m)(`3m3`4m4|`m)U (`1`2`3`4)
m1m2m3m4

.

In the case where `1 = `2 = `3 = `4 = 2 we write F k = Rk(22, 22) and we obtain

I(2
4,0) = F 0 +

2

7
F 2 +

2

7
F 4, I(2

4,1) = F 0 +
1

7
F 2 − 4

21
F 4,

I(2
4,2) = F 0 − 3

49
F 2 +

4

49
F 4, I(2

4,3) = F 0 − 8

49
F 2 − 1

49
F 4,

I(2
4,4) = F 0 +

4

49
F 2 +

1

441
F 4.
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B. O(3)-invariants for spherically symmetric potential

The expressions of the previous paragraph were obtained by explictly assuming that the interaction potential is the
Coulomb potential. In the following, we only assume that the potential is spherically symmetric (so that the invariants
remain O(3)-invariants) and symmetric under the exchange of particles (so that the D4 permutation symmetry is still
valid.) This enables us to consider more general effective potentials.

As in the case of the general group G, we can build O(3)-invariants. The D4 permutation symmetry can only
be applied if the complex spherical harmonics are transformed into real tesseral harmonics. We can also work with
spherical harmonics, but some additional signs appear. The result of permutation symmetrization (for spherical
harmonics) is:

〈I(`1`2`3`4,`)〉 =
1

8

(
I(`1`2`3`4,`) + I(`2`1`4`3,`) + I(`3`4`1`2,`) + I(`4`3`2`1,`)

+ (−1)`1+`3
∑
`′

(2`′ + 1)

{
`4 `1 `

′

`2 `3 `

}(
I(`3`2`1`4,`

′) + I(`4`1`2`3,`
′) + I(`1`4`3`2,`

′) + I(`2`3`4`1,`
′)
))
.

In particular, if `1 = `2 = `3 = `4, then

〈I(`
4
1,`)〉 =

1

2
I(`

4
1,`) +

1

2

∑
`′

(2`′ + 1)

{
`1 `1 `

′

`1 `1 `

}
I(`

4
1,`
′).

The number of symmetrized O(3)-invariants is expressed by formulas similar to the one given for G. For example, if
`1 = `2 = `3 = `4 = `, and if the rotations are defined by an axis and an angle ω, then the character of the rotation
is χ`(ω) = sin

(
(2`+ 1)ω/2

)
/ sin(ω/2) and26 (p. 103)

nS1 =
1

8π

∫ 2π

0

sin2(ω/2)dω
(
χ`(ω)4 + 3χ`(2ω)2 + 2χ`(2ω)χ`(ω)2 + 2χ`(4ω)

)
= `+ 1.

Similarly

nS2 = min(`α + 1, `β + 1),

nS3 = min(2`α + 1, 2`β + 1),

nS4 =
1

2
a`β`γ (0)− 1

2
a`β`γ (2`α + 1) +

1

2
b`β`γ (2`α)

nS5 = a`α`β (|`γ − `δ|)− a`α`β (`γ + `δ + 1),

where

a``
′
(m) = 2 min(`, `′) + 1 for |m| ≤ |`− `′|,

= `+ `′ − |m|+ 1 for |`− `′| ≤ |m| ≤ `+ `′,

= 0 for |m| > `+ `′,

and

b``
′
(m) = 1 if `+ `′ is even and |m| ≥ |`− `′|,

= −1 if `+ `′ is odd and |m| > `+ `′,

= 0 otherwise.

For `1 = `2 = `3 = `4 = 2 we obtain nS1 = 3 independent symmetrized O(3)-invariants. Indeed

〈I(2
4,0)〉 =

3

5
I(2

4,0) − 3

10
I(2

4,1) +
1

2
I(2

4,2) − 7

10
I(2

4,3) +
9

10
I(2

4,4),

〈I(2
4,1)

s 〉 = − 1

10
I(2

4,0) +
3

4
I(2

4,1) − 1

4
I(2

4,2) +
3

5
I(2

4,4),

〈I(2
4,2)〉 =

1

10
I(2

4,0) − 3

20
I(2

4,1) +
11

28
I(2

4,2) +
2

5
I(2

4,3) +
9

35
I(2

4,4),

〈I(2
4,3)〉 = − 1

10
I(2

4,0) +
2

7
I(2

4,2) +
3

4
I(2

4,3) +
9

140
I(2

4,4),

〈I(2
4,4)〉 =

1

10
I(2

4,0) +
1

5
I(2

4,1) +
1

7
I(2

4,2) +
1

20
I(2

4,3) +
71

140
I(2

4,4).
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As previously, we can write this as

〈I(2
4,i)〉 =

4∑
j=0

MijI
(24,j),

where M is a (non-orthogonal) projector (i.e. M2 = M) with eigenvalues (1, 1, 1, 0, 0).
Note that this result has an important physical consequence. Indeed, Slater integrals were derived under the

assumption that the interaction potential is of Coulomb type. However, the conclusion that there are only 3 sym-
metrized O(3) invariants are derived here for more general potentials. Indeed, we just assumed that the potential
is real, spherically symmetric and invariant under the exchange of x and y, so that the D4 symmetry holds. Any
potential of the form V (|x|, |y|, |x−y|) = V (|y|, |x|, |x−y|) satisfies these assumptions. As a consequence, we showed
that the electronic interaction described by a large family of relaxed effective potentials can be described by the usual
three Slater integrals F 0, F 2 and F 4 for d orbitals.

C. Subduction from O(3) to G

In this section, we consider the following problem. Let α be an irrep of G written in terms of spherical harmonics
of an irrep of O(3). For instance, if G is the cubic group Oh, then α = Eg and β = T2g can be written in terms of Y m`
with ` = 2 (with the same radial parts). Let α come from `1, β from `2, γ from `3 and δ from `4, we would like to
know how to write the G-invariants I(αβγδ,η) in terms of Slater integrals. In the following, we make the dependence
on spherical harmonics explicit by using the notation I(`1α`2β`3γ`4δ,η).

1. Basis invariance

We first show that, for any group G (including O(3)), the G-invariants are basis independent. For that purpose,
we define the projections onto an irrep α by

P (α) =
∑
a

|αa〉〈αa|.

According to3 (p. 84), there are basis states |αa〉, |βb〉 and |ηe〉 such that

(αaβb|ηe) = (〈αa| ⊗ 〈βb|)|ηe〉, (αaβb|ηe)∗ = 〈ηe|(|αa〉 ⊗ |βb〉).

We then obtain

I(αβγδ,η) =
1

dim η
Tr
(
P η(P (α) ⊗ P (β))V (P (γ) ⊗ P (δ))

)
,

which is basis independent.

2. Isoscalar factors

As a consequence of basis independence, we can replace the basis |`m〉 of O(3) by the basis |`αa〉, where α runs
over all the irreps of G that can be built from irrep ` of O(3) and a = 1, . . . ,dimα. Obviously, O(3) is here just an
example, and the same construction (called subduction) can be carried out for any group G′ of which G is a subgroup.
Subduction is useful to describe symmetry breaking.

We use the diagonalization formula in terms of subduction:

U
(`1α`2β`3γ`4δ)
abcd =

∑
`ηe

(`1αa`2βb|`ηe)∗(`3γc`4δd|`ηe)I(`1`2`3`4,`).

Now the Racah factorization lemma14 (p. 27) states that there are complex numbers

(
`1 `2 | `
α β | η

)
, called isoscalar

factors, such that
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(`1αa`2βb|`ηe) =

(
`1 `2 | `
α β | η

)
(αaβb|ηe),

where (αaβb|ηe) are Clebsch-Gordan coefficients of G. Isoscalar factors are fundamental ingredients of group-subgroup
symmetry caculations12,14,20,27–29. They satisfy important relations14 (p. 28)∑

`

(
`1 `2 | `
α β | η

)(
`1 `2 | `
α′ β′ | η

)∗
= δαα′δββ′ ,

∑
αβ

(
`1 `2 | `
α β | η

)(
`1 `2 | `′
α β | η

)∗
= δ``′ .

Note that, in the first line, we assume that η belongs to the tensor product of α and β and, in the second line, that η
can be obtained from ` by subduction. Isoscalar factors are usually calculated from Clebsch-Gordan coefficients, but
their squares can be calculated from characters28,30.

We can now write the Coulomb integrals in terms of isoscalar factors:

U
(`1α`2β`3γ`4δ)
abcd =

∑
`ηe

(
`1 `2 | `
α β | η

)(
`3 `4 | `
γ δ | η

)∗
(αaβb|ηe)(γcδd|ηe)∗I(`1`2`3`4,`).

Therefore, the G-invariants can be expressed explicitly in terms of the O(3)-invariants by a single sum

I(`1α`2β`3γ`4δ,η) =
1

dim η

∑
abcde

U
(`1α`2β`3γ`4δ)
abcd (αaβb|ηe)∗(γcδd|ηe)

=
∑
`

(
`1 `2 | `
α β | η

)(
`3 `4 | `
γ δ | η

)∗
I(`1`2`3`4,`), (38)

where the sum runs over all ` such that |`1− `2| ≤ ` ≤ `1 + `2 and irrep η of G can be built from spherical harmonics
Y m` . More precisely, since ` is a representation of O(3) and G is a subgroup of O(3), we can define a representation of
G by the matrice (−1)gD`

m′m(Rg) where Rg is the rotation corresponding to g ∈ G and (−1)g is the sign corresponding
to the transformation under inversion, if some element of G are not pure rotations. This representation is called the
subduced representation of G from `. This subduced representation is generally not an irreducible representation of
G but it can be written as a sum of irreps of G, and η has to be one of these irreps.

To summarize the result of this section, I(`1α`2β`3γ`4δ,η) is the G-invariant obtained by assuming that the system has
a symmetry group O(3) larger than G. It can be used to determine how far the local symmetry G is from a spherical
symmetry O(3). Indeed, the number of independent parameters corresponding to spherical symmetry, nS(O(3)), is
smaller than the number of independent parameters nS(G) corresponding to G. The O(3)-invariants I(`1`2`3`4,`) (and
their symmetrized version) can be used as parameters to fit the G-invariants I(αβγδ,η) (and their symmetrized version).
A fit with a small mean square error would mean that the Coulomb integrals are not far from spherically symmetric.
A large error would mean that the G-irrep orbitals are strongly distorted from the spherical ones.

VI. CONCLUSION

Starting from the simple and familiar problem of calculating Coulomb integrals in the most economic way, we
were led to use surprisingly sophisticated tools of group theory, such as Clebsch-Gordan coefficients, 6j-symbols,
corepresentation theory and the Racah factorization theorem, and we had to recall the remarkable work by Derome
and Sharp, which was unjustly forgotten. However, it was worth the effort because these tools enabled us to provide
a completely general and explicit answer to the problem. We gave general formula instead of tables because tables
would depend on the exact basis used for each irrep and on the phase choice of Clebsch-Gordan coefficients.

It would be tempting to extend the present treatment of real representation matrices to complex ones, for example by
using their real and imaginary parts. We could even deal with pseudo-real irreps by using the fact that a representation
and its complex conjugate of the representation are related by a similarity transformation. However, this would be
a non-trivial extension of the present work, because the resulting real representations would not be irreducible and
many of our proofs made a crucial use of Schur’s lemma, which holds only for irreducible representations.

Another fruitful extension would be to deal with magnetic groups and their corepresentations, which are used
to describe the transport and response properties of magnetic and multiferroic materials31–35. Although we dealt
with corepresentations in the present work, the theory of corepresentations is not as developed as the theory of
representations, and this extension would also be non-trivial.
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