CREEP BEHAVIOR AT ELEVATED TEMPERATURES OF SEVERAL POLYCRISTALLINE NI-BASED SUPERALLOYS STRENGTHENED BY MC-CARBIDES

Patrice Berthod, Safa Tlili, Dame Assane Kane Institut Jean Lamour / Université de Lorraine

About the Presenter

2

Patrice Berthod – Institut Jean Lamour, Univ. Lorraine, Nancy, FRANCE

Associate Professor in Materials Chemistry

CV highlights and research interests:

- Mech. Eng. Ecole Centrale de Lille, PhD Mater. Sci., HDR Chemistry
- Foundry, metallurgy, corrosion, microstructures and properties of superalloys at high temperature

"Surface & Interfaces: Chemical Reactivity of Materials" research group

Work achieved without funding sources

No conflict of interest

Email: patrice.berthod@univ-lorraine.fr

Outlines

- Introduction
- Choosing Zr and Hf+Ta as MC former elements for Ni(Cr) alloys
- Elaboration of the alloys (some details)
- Obtained microstructures and chemical compositions for the alloys
- Creep tests (technical details)
- Creep tests (results)
 - Ni(Cr)–ZrC alloys
 - Ni(Cr)–(Hf,Ta)C alloys
- Conclusions
- Outlooks

Introduction

- Coarse–grained polycristalline superalloy's family: still a solution for components with complex shapes and destined to high temperature work under significant stresses
- Chromia–forming behavior compulsory for good resistance against hot corrosion by melts
- Eutectic carbides useful for the reinforcement of grain boundaries (GB) and interdendritic spaces (IS)
- Monocarbides from Ta, Hf, Zr... often particularly efficient at T > 1000°C:
 - If eutectic origin: script morphologies allowing good interdendrites cohesion
 - Some of them: stable at H.T. in term of volume fraction and of morphology

The example of TaC–reinforced Co superalloys

Pre-industrial and industrial alloys for turbine blades, glass-shaping tools...

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 · #TMSAnnualMeeting

Examples of MC–containing Ni model alloys

Journal of Metallic Material Research (2019) 2(01) pp.10–18.

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 · #TMSAnnualMeeting

Strengthening by MC carbides: Co-based or Ni-based superalloys?

- Strength at elevated temperature of chromia–forming alloys:
 a priori Co–based matrix intrinsically better than Ni–based matrix
- Exclusive presence of MC carbides: Co matrix in case of M = Ta, Ti and Nb
- Crystalline stability during thermal cycling: Ni matrix (stays FCC ∀T)
- Chromia–forming behavior: Ni matrix (easier Cr volume diffusion)

For applications inducing serious H.T. oxidation and corrosion problems for bulk alloys \rightarrow Ni–based superalloys What MC carbide to choose?

Choose MC—former elements for chromia—forming Ni—based alloys:

- To maintain MC high volume fractions and script shape at H.T.: Hf or Zr
- Ni(Cr)–HfC alloys recently investigated:
 - Good oxidation and creep resistances at 1100°C (Materials and Design (2016) 104 pp.27–36.)
 - Good oxidation resistance at 1200°C (Oxidation of Metals (2014) 81 pp.393–405.)
 - But Hf is a too critical element to introduce by targeting > 5 wt.% Hf in bulk alloys
- In this work too ways were explored:
 - Ni(Cr)–ZrC alloys
 - Ni(Cr)–(Hf,Ta)C alloys

Elaboration of the alloys for the study

- Chemical compositions (wt.%):
 - "ZrC" way: Ni-25Cr-0.25C-1.9Zr and Ni-25Cr-0.25C-3.8Zr
 - "(Hf, Ta)C" way: Ni-25Cr-0.4C-4Hf-2Ta and Ni-25Cr-0.4C-2Hf-4Ta
- 40g of mix of pure elements (>99.9%)
- High frequency induction furnace
- 300 millibars pure Argon
- 10 minutes of homogenization in the liquid state (≈1700°C)

q

Obtained chemical compositions (wt.%) and as-cast microstructures ("ZrC")

Obtained chemical compositions (wt.%) and as-cast microstructures ("(Hf,Ta)C")

Three points – flexural creep tests at 1100°C under a load inducing 20 MPa / technical details

Three points – flexural creep tests at 1100°C under a load inducing 20 MPa max / "ZrC"

Ni(Cr)–ZrC alloys both more creep–resistant than Ni(Cr)– Cr_7C_3 Still secondary creep steady state not finished after 200 hours

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 • #TMSAnnualMeeting

Three points – flexural creep tests at 1100°C under a load inducing 20 MPa max / "(Hf,Ta)C"

Ni(Cr)–(Hf,Ta)C more or less equivalent to Ni(Cr)–HfC Still primary creep not finished after 100 hours

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 • #TMSAnnualMeeting

Comparison with other MC-reinforced alloys

Resistance similar to MC–strengthened HEAs

Poster presented here (TMS2023) "Strengthening Against Creep at Elevated Temperature of HEA Alloys of the CoNiFeMnCr Type Using MC-Carbides" & Supplemental proceeding: pp.1103–1111.

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 • #TMSAnnualMeeting

Conclusions

- The presence of MC as single carbide in Ni(Cr) alloys allows obtaining high creep resistance (close to some MC-reinforced HEA alloys)
- Their beneficial effects seem concerning the {II \rightarrow III}–creep state transition (delayed) as well as the steady state deformation rate
- For a same base, creep resistance increases if: no carbides $\rightarrow Cr_7C_3 \rightarrow MC$
- Ni(Cr)-based alloys containing MC as single carbides are not as creep resistant as similar alloys based on Co, but their behaviors are of interest.

16

Outlooks

- Longer creep tests (e.g. 1000 hours) to observe more {II \rightarrow III}–creep state transition for the present alloys and the present {T, σ } conditions
- Creep tests at various {T, σ }: currently in progress
- Specifying the parameters involved in the {steady state deformation rate = f(T)} and {steady state deformation rate = f(σ)} dependence laws

17

IMPAC CITESCORE FACTOR 3.2 2.670

Feature Paper in Crystalline Metals and Alloys in 2022 - 2023

Guest Editors Prof. Dr. Marek Sroka, Prof. Dr. Grzegorz Golański, Dr. Patrice Berthod

Deadline 31 December 2023

mdpi.com/si/124034

Specialsue Invitation to submit

The corresponding supplemental proceeding TMS is available; see pp.1093–1102.

THANK YOU FOR YOUR ATTENTION!

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 · #TMSAnnualMeeting

