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A MINIMAL MASS BLOW-UP SOLUTION ON
A NONLINEAR QUANTUM STAR GRAPH

FRANÇOIS GENOUD, STEFAN LE COZ, AND JULIEN ROYER

Abstract. We construct a finite-time blow-up solution to the mass-critical focusing nonlinear
Schrödinger equation on a metric star graph with an arbitrary number of edges. We show that all
solutions are global if their mass is smaller than an explicit constant, called “minimal mass”. We
then construct a solution with minimal mass and arbitrary energy, which blows up in finite time at
the vertex of the star graph. The blow-up profile and blow-up speed are explicitly characterized.
The main novelty of the paper is the construction of the blow-up profile in time-dependent domains
of singularly perturbed Laplacians.
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1. Introduction

1.1. Setting and main result. We consider a metric star graph G with N edges of infinite length,
as illustrated in Figure 1.

•
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∞

∞

∞

∞

Figure 1. A star graph with 5 edges.

Let γ ∈ R. We consider on G the focusing nonlinear Schrödinger equation

iut + uxx − γδu+ |u|4u = 0, (1.1)

where uxx denotes the Laplacian of u on each edge, δ is the Dirac mass at the vertex and γ ∈ R.
The main conserved quantities associated with this nonlinear evolution equation are the energy

E(u) :=
1

2
∥ux∥2L2(G) +

γ

2
|u(0)|2 − 1

6
∥u∥6L6(G), (1.2)

where u(0) is the common value of each component of u at 0, and the mass

M(u) :=
1

2
∥u∥2L2(G). (1.3)

The exact description of G, the precise interpretation of (1.1), and the definition of the usual
function spaces on G will be given in Section 2.1.
Our main objective in this paper is to construct a finite-time blow-up solution of (1.1). Let

Q : R → R be defined by

Q(x) = 3
1
4 sech

1
2 (2x). (1.4)

The function Q is the positive even ground state of the focusing mass-critical nonlinear Schrödinger
equation on the line. It is well known that the mass of Q, given by

MQ :=
1

2

∫
R
Q2 dx =

π
√
3

4
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gives the threshold between global existence and finite time blow-up for the associated Cauchy
problem. It turns out that MQ also determines the mass threshold for global existence of solutions
of (1.1) on the graph. Indeed, we shall prove in Section 3.2 that, if the initial condition u0 satisfies

M(u0) < min
{

N
2
, 1
}
MQ,

then the corresponding solution of (1.1) is global.
A function on G is called radial if all its components on the edges of the graph are equal (see

Section 2.1). Let Q be the radial function on G consisting of a half-copy of Q on each edge. If we
restrict ourselves to radial solutions, then the threshold for global existence of solutions of (1.1)
becomes

M(Q) = N
2
MQ. (1.5)

In the attractive case γ < 0, we construct a radial minimal mass blow-up solution, that is, a
solution of (1.1) with mass (1.5) which blows up in finite time at the vertex. More precisely, our
main result is the following theorem.

Theorem 1.1. Suppose γ < 0. Let E⋆ ∈ R. There exist t0 < 0 and a radial solution u ∈
C([t0, 0), H

1(G)) of (1.1) such that

M(u) =M(Q), E(u) = E⋆,

and which blows up at t = 0 as

∥ux(t)∥L2(G) ∼
t→0−

Cγ

|t|2/3
, (1.6)

for an explicit constant Cγ > 0.

To the best of our knowledge, the present work is the first construction of a finite time blow-up
solution for a nonlinear Schrödinger equation on a quantum graph.

1.2. Mass-critical NLS on the line. We recall some well-known facts for the classical mass-
critical nonlinear Schrödinger equation on the line

iut + uxx + |u|4u = 0, (1.7)

where u : Rt × Rx → C. The Cauchy problem for (1.7) is well-posed in the energy space H1(R),
we have conservation of energy, mass (and momentum) and the blow-up alternative holds. Of
particular interest is the standing wave solution eitQ(x), where the profile Q : R → R (already
defined in (1.4)) is the unique even positive solution in H1(R) of the differential equation

−Q′′ + Q− Q5 = 0. (1.8)

We already mentioned that the mass of Q gives the threshold between global existence and blow-
up. Precisely, any solution of (1.7) with mass smaller that MQ is global, whereas there exists a
minimal mass blow-up solution, i.e. a solution of (1.7) with mass MQ which blows up in finite
time. It turns out that such a solution can be found as an explicit pseudo-conformal transform of
the standing wave. Indeed, let

S(t, x) =
1√
|t|

Q
( x
|t|

)
e−i

|x|2
4|t| e

i
t . (1.9)

Then S is a solution of (1.7) and we have

∥S(t)∥L2(R) = ∥Q∥L2(R), ∥∂xS(t)∥L2(R) ∼
t→0−

C

|t|
. (1.10)
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In particular, S blows up at t = 0 with the so-called pseudo-conformal speed |t|−1. Furthermore,
up to the symmetries of the equation, S is the unique minimal mass blow-up solution (see [48]).

On the graph G with γ = 0, the function constructed by considering a half-copy of S(t) on
each edge is a solution of (1.1), which blows up at time T = 0 at the central vertex with pseudo-
conformal speed (1.10). When γ < 0, one cannot construct a simple solution based on S(t), but
the proof of Theorem 1.1 (see, in particular, Proposition 2.3) suggests that radial minimal mass
blow-up solutions should also be governed by the profile Q in this case. In the repulsive case γ > 0,
there are no radial minimal mass solutions blowing up in finite time at the vertex; see Section 3.2.

1.3. Minimal mass blow-up solutions. There exists an important literature about the con-
struction of minimal mass blow-up solutions in various settings. For the classical pure power
mass-critical nonlinear Schrödinger equation on Rd, a minimal mass blow-up solution is explicitly
obtained as a pseudo-conformal transform of a standing wave, in any dimension, similarly to (1.9)
for d = 1. In the seminal paper [48], Merle showed that it is the unique minimal mass blow-
up solution up to the symmetries of the equation. Existence and uniqueness of a minimal mass
blow-up solution for NLS equations which do not possess the pseudo-conformal symmetry is more
involved. The study was initiated by Merle himself in [49], where he established a sufficient con-
dition for the existence of a minimal mass blow-up solution in the case of a Schrödinger equation
with inhomogeneous mass-critical nonlinearity k(x)|u| 4du. Further contributions (see e.g. Banica,
Carles, Duyckaerts [16], Bourgain and Wang [21], Krieger and Schlag [35]) treated the problem
perturbatively from the homogeneous case, and required a flatness assumption on k. A nonper-
turbative approach was called for in order to remove the flatness assumption. The breakthrough
came from the work of Raphaël and Szeftel [51], in which existence and uniqueness of a minimal
mass blow-up solution for the inhomogeneous mass-critical nonlinearity was established. The ap-
proach of [51] is very robust and was applied for instance by Krieger, Lenzmann and Raphaël [34]
to the critical half-wave equation, or by Martel and Pilod [39] to the Benjamin-Ono equation.
The construction of the profile of the minimal mass blow-up solution was later refined by Le Coz,
Martel, Raphaël [37] in the context of the nonlinear Schrödinger equation with a double power
nonlinearity, where a minimal mass solution exhibiting a new blow-up speed was constructed. The
approach of [37,51] was successfully implemented by Matsui [40–47] for various Schrödinger equa-
tions (e.g. with singular potentials or with a Hartree nonlinearity). Several improvements to the
work [37] have been made by Matsui, in particular the observation that the blow-up profile is more
naturally constructed in the virial space instead of H1. Recently, the paper [37] was transposed
by Tang and Xu [53] to the nonlinear Schrödinger equation on the line with a Dirac mass at the
origin.

1.4. Star graphs. On the other hand, there is also a wide literature on nonlinear quantum graphs
which cannot be shortly summarized. For an introduction to nonlinear Schrödinger equations on
quantum graphs and their physical motivations, one may refer to the survey of Noja [50]. For
star graphs in particular, one may refer to the recent monograph of Angulo Pava and Cavalcante
de Melo [11]. In this introduction, we will only present the results close to our work, along
with a very partial sample of the rest of the literature. Many of the works devoted to nonlinear
quantum graphs focus on existence and variational characterizations of standing waves. Among
the earliest studies, one finds the works by Fukuizumi in collaboration with (separately) Jeanjean,
Le Coz, Ohta and Ozawa [23,24,36], which are devoted to the case of a line with a Dirac mass
at the origin (equivalent to a 2-star graph). The first author of the present paper, together with
Malomed and Weisshäupl [25], studied orbital stability of standing waves for the 2-star graph with



BLOW-UP SOLUTIONS ON NONLINEAR QUANTUM STAR GRAPHS 5

a cubic-quintic nonlinearity. The variational characterization of standing waves on star graphs
was considered by Adami, Cacciapuoti, Finco and Noja [2–6]. Further developments for the study
of standing waves on generic quantum graphs started with Adami, Serra and Tilli [7–9], where
a topological obstruction for the existence of ground states on quantum graphs was discovered.
Elements such as well-posedness of the Cauchy problem, Strichartz estimates and conservation
laws on star graphs can be found in the work of Adami, Cacciapuoti, Finco and Noja [1] (along
with the analysis of the collision of a fast solitary wave with the vertex, which is the main object of
the paper). The 2-star graph with non-zero boundary conditions has been investigated by Ianni, Le
Coz and Royer [30]. The case of a loop (which is equivalent to a segment with periodic boundary
conditions) was studied by Gustafson, Le Coz and Tsai [29]. Absence of scattering of global
solutions towards standing waves was established by Aoki, Inui, Mizutani [14], while scattering on
the 2-star graph was obtained by Banica and Visciglia [17]. Exponential stability in the presence
of damping on one branch was obtained by Ammari, Bchatnia and Mehenaoui [10]. Existence of
ground states on star graphs with finite and infinite egdes was studied by Li, Li and Shi [38]. On
balanced star graphs (i.e. star graphs with adjusted coefficients on the edges, see [52]), Kairzhan,
Pelinovsky and Goodman [32] proved the nonlinear instability (by drift) of spectrally stable shifted
states. Standing waves of the nonlinear Schrödinger equation with logarithmic nonlinearity was
considered by Goloshchapova [26] (see also the earlier work of Ardila [15] for well-posedness and
existence results). Instability of non-ground state standing waves on star graphs was obtained
by Kairzhan [31] in the repulsive and attractive cases. Instability by blow-up of standing waves
on star graphs for mass-supercritical nonlinearities was proved by Goloshchapova and Ohta [28].
Stability and instability results were obtained by Angulo Pava and Goloshchapova [12,13] using the
extension theory of symmetric operators for star graphs with δ or δ′ interaction at the vertex. Star
graphs with δ′s conditions were considered by Goloshchapova in [27]. Recently, Besse, Duboscq
and Le Coz [19,20] developed a Python Library [18] for the numerical simulation of Schrödinger
equations on quantum graphs. A numerical approach for the calculation of ground states is studied
in [19], while the implementation of the library and further experiments are presented in [20].

1.5. Main novelty of our construction. Our proof of Theorem 1.1 follows the strategy laid
down in [37,51] with some improvements obtained by Matsui [40–47]. In particular, we shall work
directly in the virial space, which provides a natural setting and allows us to avoid the localization
procedure of the virial-energy functional used in [37]. We have also reformulated the blow-up profile
expansion borrowed from [37], thereby making it more tractable for the proof. In the particular
case of the 2-star graph, we recover the result stated in [53] for the mass-critical NLS on the line
with an attractive Dirac mass. In fact, as explained in more details below, some of the arguments
exposed in [53] are not completely rigorous, thus the present work also provides the first exact
treatment of the problem on the line.

One of the main features of this article is a rigorous treatment of the Dirac distribution δ (also
called “Dirac mass” here). The formal differential operator ∂xx − γδ appearing in (1.1) will be
given a precise definition in Section 2.1 as a Laplace operator perturbed by a boundary condition
at the vertex of the graph. As will be seen in Section 2, we will thus need to adapt the method
from [37,51] in order to construct an approximate blow-up solution which remains inside the domain
of this operator at all times. In rescaled variables suitable to our construction, the domain itself
depends on time, thus all coefficients appearing in the construction of the approximate blow-up
profile (see (2.13)) also depend on time. Aside from the technical difficulties arising from this, it
is a noteworthy realization of our work that the method from [37,51] is robust enough to tackle
equations for which the domain of the linear operator plays a crucial role in the analysis.
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Regarding equations like (1.1), the distribution δ is often referred to as “delta potential” in the
literature. We find this terminology unfortunate. Indeed, it is too often the case that δ is treated as
if it were a classical point-wise defined potential, with the misleading notation δ(x) which doesn’t
really make any sense, since δ acts on functions and does not have point values. Of course, it is
well known that no function can represent the distribution δ.
In fact, while the statement of the main result of [53] certainly holds true (and we recover the

same result in the case of the 2-star graph), it becomes apparent upon careful examination that
the proof provided in [53] lacks the necessary precision to fully substantiate this result. This is
mainly due to formal manipulations handling δ as a function, not a distribution.

For instance, the common confusion between the distribution δ and a point-wise defined potential
is reinforced by the notation g(u) = µδu, introduced by the authors at the bottom of page 1732.
There is indeed a crucial difference between f(u) = |u|4u, which takes a function u and returns a
power of this function, therefore also a function (precisely, f : H1(R) → H1(R)) and g(u) = µδu,
which takes a function but returns a distribution (precisely, g : H1(R) → D′(R)). Therefore,
f(u)(x) makes sense while g(u)(x) is meaningless. The two terms are, however, treated most of
the time on the same level in [53].

An example of the confusion generated by this inexact notation appears in the definition of β
in equation (2.16) of [53]. Indeed, the authors have defined G(u) = 1

2
µδ|u|2 on page 1732 (hence

G(u) ∈ H−1(R)) but write G(Q) = 1
2
Q(0)2 in (2.16) (as though G(Q) ∈ R). Another example is

the estimate of the remainder ΨK defined in [53, (2.7)] and its supposed point-wise derivative ∂yΨK .
Indeed, ΨK contains δ terms (appearing in the F±

j,k). As such, ΨK does not have point-values, let
alone a point-wise derivative. Yet another example occurs in [53, (2.26)]. As already mentioned,
ΨK contains δ terms. In addition, Ẽ contains the term

∫
RG(Pb) dy, which can be interpreted as

µ|Pb(0)|2. Hence Ẽ ′ contains a δ corresponding to this term. The term ⟨iẼ ′(λ, Pb),ΨKe
−ib|y|2/4⟩

in [53, (2.26)] will therefore contain a term of the type ⟨δ, δ⟩, which is not a meaningful expression.

1.6. Organization of the paper and notation. The rest of the paper is organized as follows.
Section 2 provides a detailed outline of the construction of our blow-up solution. The proof of
Theorem 1.1 is given there, assuming a number of propositions. Section 3 presents the Cauchy
theory for (1.1) in the spaces relevant for our analysis. We give in Section 4 some detailed properties
of linearized operators. In Sections 5 to 7, the propositions used in the proof of Theorem 1.1 are
proved. Appendix A, devoted to the model dynamical system, closes the paper.

We shall write f ≲ g or g ≳ f to mean that there is a universal constant C > 0 (i.e. which does
not depend on the dynamical variables) such that f ⩽ Cg. We will write f ∼ g as t → 0− (or
s → +∞) if f/g → 1 as t → 0− (or s → +∞). When no confusion is possible, we may simply
write L2, H1, etc. instead of L2(G), H1(G), etc. The inner product on L2(G) will be denoted by
(·, ·)L2 or simply (·, ·). The duality product between H1(G) and H1(G)⋆ will be denoted by ⟨·, ·⟩.

2. Outline of the proof

In this section we introduce the required functional setting and we prove Theorem 1.1 using a
number of auxiliary results, which are proved in the following sections.

2.1. Functional setting on the star graph. Let G be a metric star graph with N edges, i.e. a
vertex 0 to which are connected N edges e1, . . . , eN of infinite length. We thus identify each edge e
with the interval Ie = R+ := [0,∞), the left endpoint 0 corresponding to the vertex. A schematic
representation of a star graph is given in Figure 1.
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A function u : G → C is a collection of functions uj : Iej → C, j = 1, . . . , N . It will be called
radial if all its components uj : R+ → C are identical. In this case, we will identify u with any one
of its components. Hence, x ∈ G will be identified with x ∈ R+, and we will simply interpret u as
a complex-valued function of x ∈ R+.

Lebesgue and Sobolev spaces on G are defined by

Lp(G) =
N⊕
j=1

Lp(Iej), Hs(G) =
N⊕
j=1

Hs(Iej),

with norms

∥u∥pLp(G) =
N∑
j=1

∥uj∥pLp(R+), ∥u∥2Hs(G) =
N∑
j=1

∥uj∥2Hs(R+).

We equip G with the Laplace operator with Dirac condition at the vertex, i.e. the selfadjoint
operator Hβ defined by

Hβ : D(Hβ) ⊂ L2(G) → L2(G),
(u1, . . . , uN) 7→ (−∂xxu1, . . . ,−∂xxuN),

where the domain D(Hβ) is denoted and defined by

Dβ ≡ D(Hβ) :=

{
u ∈ H2(G) : ∀j, k = 1, . . . , N, u(0) := uj(0) = uk(0),

N∑
j=1

u′j(0) = βu(0)

}
.

(2.1)
We use here a general parameter β in order to cover the case β = γ in the original equation (1.1),
as well as β = γλ in the rescaled variables (see (7.5)).
We observe that the domain contains a continuity condition at 0 and a jump condition for the

derivatives. For β = 0 we recover the classical Kirchhoff-Neumann conditions. For β ̸= 0 and
N = 2, we recover the case of the line with a Dirac mass at 0.

The quadratic form associated with Hβ is

qβ(u) := ⟨Hβu, u⟩ =
N∑
j=1

∥u′j∥2L2(R+) + β|u(0)|2,

defined on the domain

H1
D(G) ≡ D(qβ) :=

{
u ∈ H1(G) : ∀j, k = 1, . . . , N, u(0) := uj(0) = uk(0)

}
.

Observe that the domain of the quadratic form retains the continuity at the vertex, but the jump
condition on the derivatives is now transposed to the expression of the quadratic form instead of
the domain.

In this paper, we will mostly work in the subspace H1
rad(G) ⊂ H1

D(G) of radial functions, defined
by

H1
rad(G) =

{
u ∈ H1(G) : ∀j, k = 1, . . . , N, uj = uk

}
.

We also define

L2
rad(G) =

{
u ∈ L2(G) : ∀j, k = 1, . . . , N, uj = uk

}
.

With the convention of identifying the function u on G with any of its components, we have

∥u∥2L2(G) = N∥u∥2L2(0,∞), ∀u ∈ L2
rad(G).
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Note that the operator Hβ can also be extended to an operator Hβ from H1
D(G) to its dual

H1
D(G)⋆. More precisely, we may write

Hβ = −∂xx + βδ

where, for every u ∈ H1
D(G),

⟨−uxx, v⟩ := Re

∫
G
uxvx dx ≡ Re

N∑
j=1

∫ ∞

0

∂xuj∂xvj dx, ∀v ∈ H1
D(G),

⟨δu, v⟩ := Re
(
u(0)v(0)

)
, ∀v ∈ H1

D(G).
This allows us to split the operator Hβ into two parts, −∂xx and βδ, whenever needed. We

emphasize that whenever −∂xx and βδ are treated separately, they are always taken in the H1 −
(H1)⋆ sense (the operator Hβ as an L2 − L2 operator with domain cannot be split).

Using the operator Hγ defined above, equation (1.1) can now be precisely interpreted as

iut −Hγu+ |u|4u = 0, (2.2)

for an unknown function u : R× G → C.

2.2. Cauchy problem. We start by stating here the main results concerning the Cauchy problem
for (2.2). The well-posedness in the space H1

D(G) can be obtained by a classical line of arguments.
For our purposes, we will need the solution to live in the domain of Hγ as well as in weighted
spaces. For k ∈ N we set

Σk(G) = {u ∈ Hk(G) : ∥u∥Σk <∞}, ∥u∥2Σk =
∑

0⩽α,β⩽k

(
∥xαu∥2L2 + ∥∂βxu∥2L2

)
. (2.3)

The well-posedness results are summarized in the following proposition.

Proposition 2.1. Let u0 ∈ H1
D(G) be an initial data for the problem (2.2). Let t0 ∈ R. Then

there exists a unique maximal solution

u ∈ C
(
(Tmin, Tmax), H

1
D(G)

)
∩ C1

(
(Tmin, Tmax), H

1
D(G)⋆

)
(with Tmin < t0 < Tmax) such that u(t0) = u0. The blow-up alternative holds and there is continuous
dependence with respect to the initial data. The energy E and the mass M , defined in (1.2)
and (1.3), are conserved along the time evolution. Moreover, the following properties hold.

(i) If u0 is radial, then so is u(t) for any t ∈ (−Tmin, Tmax).
(ii) If u0 ∈ Dγ, then u verifies

u ∈ C ((Tmin, Tmax), Dγ) ∩ C1
(
(Tmin, Tmax), L

2(G)
)
.

(iii) If u0 ∈ H1
D(G) ∩ Σ1(G), then u verifies

u ∈ C
(
(Tmin, Tmax), H

1
D(G) ∩ Σ1(G)

)
∩ C1

(
(Tmin, Tmax), H

1
D(G)⋆

)
.

(iv) If u0 ∈ Dγ ∩ Σ2(G), then u verifies

u ∈ C
(
(Tmin, Tmax), Dγ ∩ Σ2(G)

)
∩ C1

(
(Tmin, Tmax), L

2(G)
)
.

We will also need a dependency property with respect to the initial data slightly different from
the usual one.
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Lemma 2.2. Let (un,0)n∈N∗ and u0 in H1
D(G) such that un,0 → u0 in L2(G). Let (un) and u be

the solutions of (2.2) such that un(t0) = un,0 and u(t0) = u0. Let J be a compact interval of R
such that (un) and u are defined on J . We assume that supn∈N∗ ∥un∥L∞(J,H1(G)) < ∞. Then, as
n→ ∞, we have

∥un − u∥L∞(J,L2(G)) → 0.

2.3. Change of variables. The approach we adopt is based on a change of variables transforming
a finite time blow-up solution into a solution that is global in positive time. We seek a radial
solution u of (2.2) in the form

u(t, x) =
1√
λ(s)

w(s, y)ei(θ(s)−b(s)y2/4), t < 0, x ∈ G, (2.4)

where the new variables s and y satisfy

ds

dt
=

1

λ(s)2
, y =

x

λ(s)
. (2.5)

We will construct w global and bounded in H1
D(G), together with modulation parameters λ(s), b(s)

and θ(s) such that λ(s) > 0,

λ(s) → 0+, b(s) → 0+, θ(s) → ∞, s→ +∞.

This type of ansatz is common in blow-up analysis (see the references given in introduction for
similar constructions). The exact definition of the rescaled time s will appear in Section 7. By
straightforward calculations, u solves (2.2) if and only if w solves

iws − Hγλw − w + |w|4w + (1 − θs)w +
(
bs − b2 − 2b

λs
λ

)y2
4
w − i

(
b +

λs
λ

)
Λw = 0, (2.6)

where the scaling operator Λ is defined for each component wj of w by

Λwj(yj) =
1

2
wj(yj) + yjw

′
j(yj) =

d

dλ

(√
λwj(λyj)

)∣∣
λ=1

, j = 1, . . . , N. (2.7)

2.4. Blow-up profile. To prove Theorem 1.1, we seek w in the form

w(s, y) = P (s, y) + h(s, y),

for a suitable approximate solution profile P . The result will then follow from (2.4) and (2.5) by
proving that λ(s) ∼ s−2 and h(s) → 0 in a well-chosen norm, as s→ +∞.
The blow-up profile P is constructed as an approximate solution of the auxiliary equation

iPs −HλγP − P + f(P ) + α
y2

4
P = 0,

with

f(z) = |z|4z, z ∈ C.
For κ ∈ N∗, we define

Θκ =
{
(j, k) ∈ N× N∗ :

j

2
+ k < κ

}
. (2.8)

For ν ∈ N we denote by Cν
exp the set of radial functions u on G which are of class Cν on each

edge and such that ∥u∥Cν
exp,ρ

<∞ for some ρ > 0, where

∥u∥Cν
exp,ρ

= sup
0⩽m⩽ν

sup
y∈G

eρ|y||u(m)(y)|.
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Figure 2. The function Qβ on a 3-star graph for β = −5/2

We denote by C∞
exp the intersection of the Cν

exp for ν ∈ N. Note that C∞
exp is stable under multipli-

cation by a polynomial.
Let β ∈ (−N,N). The equation

HβQβ +Qβ − |Qβ|4Qβ = 0, (2.9)

has a unique radial non-trivial solution in D(Hβ). Note that uniqueness holds only for radial
solutions and there exist non-radial solutions to (2.9), see e.g. [3]. It is given on each edge by

Qβ(y) = Q(y − τβ) =
3

1
4√

cosh(2(y − τβ))
, τβ =

1

2
tanh−1

(
β

N

)
. (2.10)

We provide a representation of the function Qβ in Figure 2 (picture made with the Grafidi library,
see [18–20]). Notice for future reference that

∂βQβ(y) = − N

2(N2 − β2)
Q′(y − τβ) = − N

2(N2 − β2)
Q′

β(y). (2.11)

We define the constant

α⋆ = −2γ
Q(0)2

∥yQ∥2L2(G)
(2.12)

which will play a central role in the analysis. Note that α⋆ > 0 for γ < 0.
The following proposition will be proved in Section 5.

Proposition 2.3 (Approximate blow-up profile). Let κ ∈ N∗. There exist families (Pj,k,β) and
(αj,k,β) which depend on (j, k, β) ∈ Θκ × (−N,N) and satisfy the following properties.

(i) For (j, k) ∈ Θκ, β ∈ (−N,N) and ℓ ∈ N, we have Pj,k,β ∈ Dβ and ∂ℓβPj,k,β ∈ C∞
exp.

(ii) For (j, k) ∈ Θκ and β ∈ (−N,N), we have αj,k,β ∈ R. Moreover, αj,k,β = 0 if j is odd.
(iii) In particular, α0,1,0 = α⋆.
(iv) Given an interval J of R, b ∈ C1(J,R) and λ ∈ C1(J,R∗

+) such that γλ(s) ∈ (−N,N) for
all s ∈ J , if we set

P = Pb,λ = Qγλ +
∑

(j,k)∈Θκ

(ib)jλkPj,k,γλ, (2.13)
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α = α(b, λ) =
∑

(j,k)∈Θκ

(ib)jλkαj,k,γλ (2.14)

and

Ψκ = Ψκ(b, λ) = iPs −HγλP − P + f(P ) + α
y2

4
P, (2.15)

then for any ν ∈ N there exist ρ > 0 and C > 0 such that, for any s ∈ J , there holds
Ψκ(s) ∈ Cν

exp and

∥Ψκ∥Cν
exp,ρ

⩽ Cλ

(∣∣∣∣λsλ + b

∣∣∣∣+ ∣∣bs + b2 − α(b, λ)
∣∣)+ C(b2 + λ)κ. (2.16)

(v) Defining

P̃ (b, λ, θ) = λ−1/2Pb,λe
i(θ−b y2

4
), (2.17)

we have, for any s ∈ J ,∣∣∣ d
ds
E(P̃ )

∣∣∣ ≲ 1

λ2

(∣∣∣λs
λ

+ b
∣∣∣+ |bs + b2 − α(b, λ)|+ (b2 + λ)κ

)
. (2.18)

(vi) There exist (εj,k)(j,k)∈Θκ ⊂ R such that, for any s ∈ J ,∣∣∣E(P̃ (b, λ, θ))− CQE(b, λ)
∣∣∣ ≲ (b2 + λ)κ

λ2
, (2.19)

where

CQ =
1

8
∥yQ∥2L2(G), E(b, λ) = Emo(b, λ) +

∑
(j,k)∈Θκ

j even, j/2+k⩾2

εj,kb
jλk−2 (2.20)

and Emo is the Hamiltonian of the model dynamical system, defined in (2.23).

2.5. Modulation parameters. A choice of modulation parameters θ(s), b(s), λ(s) can be made
so that the remainder h satisfies orthogonality conditions which are useful to construct our solution.
This is ensured by the following proposition, which will be proved in Section 6. Notice that the
function ρ ∈ L2(G) which appears in the last condition will be defined in Lemma 4.1 below.

Proposition 2.4 (Modulation parameters). Let I be an interval of R and consider a solution
u ∈ C1(I, L2(G)) of (2.2). There exists 0 < ε < N/|γ| with the following property. If, for all t ∈ I,
there exist θ ∈ R and λ ∈ (0, ε) such that∥∥∥∥u(t, x)− 1√

λ
eiθQ

(x
λ

)∥∥∥∥
L2(G)

⩽ ε, (2.21)

then there exist θ ∈ C1(I,R), b ∈ C1(I,R) and λ ∈ C1(I, (0, N/|γ|)) such that the function
h ∈ C1(I, L2(G)) defined by

u(t, x) =
1√
λ(t)

e
iθ(t)−i

b(t)x2

4λ(t)2

(
Pb(t),λ(t)

(
x

λ(t)

)
+ h

(
t,

x

λ(t)

))
satisfies for all t ∈ I the orthogonality conditions(

h(t), iΛPb(t),λ(t)

)
L2(G) =

(
h(t), y2Pb(t),λ(t)

)
L2(G) =

(
h(t), iρ

)
L2(G) = 0.

Remark 2.5. To keep a light notation in this section, we use the same letters b, λ, θ, h to denote
the modulation parameters and rest as functions of t or s. We will later be more specific, see (7.4).
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As we shall see in Section 7.2, the modulation parameters b(s) and λ(s) are governed, at first
order as s→ ∞, by the model dynamical system

bs + b2 − α⋆λ = 0,
λs
λ

+ b = 0, (2.22)

where α⋆ is defined in (2.12). The system (2.22) is Hamiltonian, with conserved energy

Emo(b, λ) =
b2

λ2
− 2α⋆

λ
. (2.23)

An exact solution with energy Emo = 0 is given by

bmo(s) =
2

s
, λmo(s) =

2

α⋆s2
. (2.24)

Proposition 2.3 shows that, at leading order, the energy of the rescaled profile P̃ is governed by
the Hamiltonian energy (2.23). However, the correction appearing as a power expansion in (2.20)
does not vanish as s → ∞. One has E(b, λ) = Emo(b, λ) + e0 + o(1), where e0 is a constant (see
Remark 2.8). Nevertheless, the relation between E(P̃ ) and Emo suggests that, up to a shift of e0 and
a rescaling by CQ, the energy of our solution of (2.2) should be controlled by the model Hamiltonian
energy Emo. More precisely, a natural approach to proving Theorem 1.1 would be: given E⋆ ∈ R,
define E⋆

mo by E⋆ = CQ(E⋆
mo + e0) and choose final data for the modulation parameters (b, λ) at

a large time s = s1 as (b(s1), λ(s1)), where (b, λ) is a solution of (2.22) with energy Emo = E⋆
mo.

Unfortunately, as can be seen by backward integration from s = s1 using the modulation estimates
(7.15), the difference Emo(b, λ)−Emo(b, λ) grows like log(s) as s→ ∞. As a consequence, the energy
of our solution of (2.2) cannot be controlled by Emo alone. Instead, the full expansion E(b, λ) must
be used and the choice of final data for (b, λ) is more involved. The following proposition will be
proved in Appendix A.

For a fixed parameter λ0 > 0 such that E⋆λ0 + 2α⋆ > 0, let

F(λ) =

∫ λ0

λ

dµ

µ3/2
√
E⋆µ+ 2α⋆

, λ ∈ (0, λ0]. (2.25)

Proposition 2.6. Let E⋆ ∈ R. There exist s0 ⩾ 1 and c1 > 0 such that, for any s1 ⩾ s0 we can
find b1, λ1 > 0 satisfying

F(λ1) = s1, E(b1, λ1) = E⋆,
∣∣∣ λ

1/2
1

λmo(s1)1/2
− 1

∣∣∣ ⩽ c1
s1
,

∣∣∣ b1
bmo(s1)

− 1
∣∣∣ ⩽ c1

s1
.

2.6. Proof of the main theorem. We now define the final data which will give rise to an
approximate solution of our problem by backward in time integration of (2.2). Let E⋆ ∈ R. Define

E⋆ = C−1
Q E⋆. (2.26)

Consider t1 < 0 and sufficiently close to 0. Define the associated rescaled final time s1 (see (7.2))
by

s1 =
( 4

3α2
⋆

)1/3

|t1|−1/3. (2.27)

Let (b1, λ1) be given by Proposition 2.6 and u1 be the radial solution of (2.2) such that

u1(t1, x) =
1√
λ1
Pb1,λ1

( x
λ1

)
e
−i

b1x
2

4λ21 . (2.28)
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Let I ⊂ R be the maximal interval such that t1 ∈ I, u1 exists on I and satisfies (2.21). Observe
that, for t1 close enough to 0, the parameters b1, λ1 given by Proposition 2.6 are small, so that
Pb1,λ1 is close to Q. By Proposition 2.1, we have u1 ∈ C0(I,Dγ ∩Σ2(G))∩C1(I, L2(G)). Let θ, b, λ
and h be given by Proposition 2.4. Note that h also belongs to C0(I,Dγ ∩Σ2(G)) ∩C1(I, L2(G)).
The asymptotics as t→ 0− of the functions θ, b, λ and h follow from the next proposition, which
will be proved in Section 7.

Proposition 2.7 (Uniform estimates in the t variable). Let κ ∈ N∗ (see (2.8)). There exists
t0 ∈ (−∞, 0) such that, for any t1 ∈ (t0, 0), the solution u1 of (2.2) with final data (2.28) is
defined and satisfies the hypotheses of Proposition 2.4 on [t0, t1]. Furthermore, its decomposition
given by Proposition 2.4 satisfies, for all t ∈ [t0, t1],∣∣b(t)− Cb|t|

1
3

∣∣ ≲ |t|,
∣∣λ(t)− Cλ|t|

2
3

∣∣ ≲ |t|5/3, (2.29)

∥h(t)∥L2(G) ≲ |t|
κ−1
3 , ∥hy(t)∥L2(G) ≲ |t|

κ−1
3 , ∥yh(t)∥L2(G) ≲ |t|

κ−2
3 , (2.30)

|E(P̃ (b, λ, θ)(t))− E⋆| ≲ |t|
κ−5
3 , (2.31)

where Cb = 2
(3α2

⋆

4

)1/3
, Cλ = 2

α⋆

(3α2
⋆

4

)2/3
. All these estimates are independent of t1.

The phase modulation parameter θ can be shown to satisfy θ(t) ∼ Cθ|t|−
1
3 for some Cθ > 0, but

it plays no specific role in the proof of Theorem 1.1.

Remark 2.8. In Section 7, Proposition 2.7 will be deduced from its counterpart in the s variable,
Proposition 7.1, which says in particular that b(s) ∼ bmo(s) and λ(s) ∼ λmo(s) as s → ∞.
Therefore, the terms corresponding to (j, k) = (0, 2) and (j, k) = (2, 1) in the expansion (2.20)
behave asymptotically as

ε0,2 + ε2,1
b2

λ
∼ ε0,2 + ε2,1

b2mo

λmo

∼ ε0,2 + 2α⋆ε2,1, s→ ∞.

Hence,
E(b, λ) ∼ Emo(b, λ) + ε0,2 + 2α⋆ε2,1, s→ ∞.

Thanks to Remark 7.2, the first two estimates in Proposition 2.7 can be improved to∣∣b(t)− Cb|t|
1
3

∣∣ ≲ |t|5/3,
∣∣λ(t)− Cλ|t|

2
3

∣∣ ≲ |t|7/3

by replacing the energy E⋆ in (2.25) with E⋆ = E⋆ − (ε0,2 + 2α⋆ε2,1).

We are now in position to prove our main result.

Proof of Theorem 1.1, assuming Propositions 2.3, 2.4, 2.6 and 2.7. For a given E⋆ ∈ R, let E⋆ be
defined by (2.26). Choose an increasing sequence of times (tn) ⊂ (t0, 0) such that tn → 0 as
n → ∞ and corresponding rescaled times sn → ∞ defined through (2.27). For each n ∈ N∗, let
bn and λn as given by Proposition 2.6 and un(tn) defined by (2.28), with the change of notation
t1 → tn, s1 → sn, b1 → bn, λ1 → λn. For each n ∈ N∗, the corresponding solution un of (2.2)
satisfies Proposition 2.7 on [t0, tn], with all the estimates independent of n. We will show that (un)
converges to a solution u of (2.2) with the desired properties.
Let χ ∈ C∞([0,∞), [0, 1]) be equal to 0 on [0, 1] and equal to 1 on [2,∞). For R > 0 we define

the radial function χR on G by χ(x/R) on each edge. Let ϵ > 0. From the formula (2.28) defining
un(tn) we deduce that there exists R > 0 such that∫

G
|un(tn)|2χR dx ⩽ ϵ.
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Since u verifies (2.2), we have

d

dt

∫
G
|un|2χR dx = 2 Im

∫
G
∂xunūn∂xχR dx.

Using the decomposition of the solution given by Proposition 2.4, the estimates of Proposition 2.7
for the corresponding variables bn, λn, hn and the exponential decay of Pbn,λn , direct calculations
show that∣∣∣∣ ddt

∫
G
|un|2χR dx

∣∣∣∣ ≲ 1

Rλn(t)

(
e−

R
2λn(t) + ∥yhn(t)∥2L2(|y|⩾R/λn(t))

+ ∥hn(t)∥2H1(|y|⩾R/λn(t))

)
≲

|t| 23 (κ−3)

R
.

Thus, integrating over [t0, tn], we find a constant C > 0 such that (choosing R larger if necessary)∫
G
|un(t0)|2χR dx ⩽ C

|t0|
2
3
(κ−3)+1

R
+

∫
G
|un(tn)|2χR dx ⩽ 2ϵ.

After extracting a subsequence if necessary, we obtain that the sequence (un(t0)) has a limit u0 in
L2(G) (since the sequence is bounded H1(G)). We denote by u the maximal solution of (2.2) with
initial condition u(t0) = u0.

Let τ ∈ (t0, 0) and assume by contradiction that u is not defined on [t0, τ ]. Let n ∈ N∗ such that
tn > τ . Let C > 0 be such that ∥un(t)∥H1(G) ⩽ C for all n ∈ N∗ and t ∈ [t0, τ ]. By the blow-up
alternative, there exists τ1 in [t0, τ ] such that u is defined on [t0, τ1] and ∥u(τ1)∥H1(G) ⩾ 2C. For
all t ∈ [t0, τ1] the sequence (un(t)) goes to u(t) in L2(G) (see Lemma 2.2) and has a weak limit
in H1(G). Thus, (un(t)) goes weakly to u(t) in H1(G). In particular, ∥u(t)∥H1(G) ⩽ C for all
t ∈ [t0, τ1]. This gives a contradiction and proves that u is defined on [t0, τ ]. Since τ is arbitrary,
this implies that u is well defined on [t0, 0).

Since un(t) → u(t) in L2(G) for all t ∈ [t0, 0), Proposition 2.4 can be applied to u, yielding mod-
ulation parameters and remainder b∞(t), λ∞(t), θ∞(t), h∞, defined on [t0, 0). Then, by standard
arguments, for all t ∈ [t0, 0), there holds

θn(t) → θ∞(t), bn(t) → b∞(t), λn(t) → λ∞(t),

and, weakly in Σ1(G),
hn(t)⇀ h∞(t), n→ ∞.

By Proposition 2.7, we deduce that, as t→ 0−,

b∞(t) ∼ Cb|t|
1
3 , λ∞(t) ∼ Cλ|t|

2
3 ,

∥h∞(t)∥L2(G) ≲ |t|
κ−1
3 , ∥∂yh∞(t)∥L2(G) ≲ |t|

κ−1
3 , ∥yh∞(t)∥L2(G) ≲ |t|

κ−2
3 .

Using y = x/λ∞, the decomposition of u given by Proposition 2.4 and the formula for Pb∞,λ∞ in
Proposition 2.3, it follows by direct calculations that

∥u(t)∥2L2(G) =

∫
G
|Pb∞,λ∞(y) + h∞(t, y)|2 dy −→ ∥Q∥2L2(G), t→ 0−,

∥ux(t)∥2L2(G) = λ∞(t)−2

∫
G

∣∣∣−iby
2

(
Pb∞,λ∞(y) + h∞(t, y)

)
+ ∂y

(
Pb∞,λ∞(y) + h∞(t, y)

)∣∣∣2 dy.
As t→ 0−, this implies

∥ux(t)∥2L2(G) ∼ λ∞(t)−2∥Qy∥2L2(G) ∼ C−2
λ ∥Qy∥2L2(G)|t|−

4
3 . (2.32)

This proves (1.6) and, since ∥u∥2L2(G) is constant, that M(u) =M(Q).
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To complete the proof, we now show that E(u) = E⋆. By (2.19) and (2.31), there exists a
function ε : [t0, 0) → R∗

+ with limt→0− ε(t) = 0 and such that, for all n ∈ N∗,∣∣E(bn(t), λn(t))− C−1
Q E⋆

∣∣ ⩽ ε(t), t ∈ [t0, 0).

Letting n→ ∞ yields ∣∣E(b∞(t), λ∞(t)
)
− C−1

Q E⋆
∣∣ ⩽ ε(t), t ∈ [t0, 0).

Hence, using again (2.19), we conclude that

E
(
Pb∞(t),λ∞(t)

)
−→ E⋆, t→ 0−.

It then follows from the above information about b∞, λ∞ and h∞ that

E(u(t)) −→ E⋆, t→ 0−.

By conservation of the energy, we deduce that E(u(t)) = E⋆ for all t ∈ [t0, 0). □

3. Cauchy problem

3.1. Local well-posedness. Since the operator Hγ is selfadjoint, it generates a strongly con-
tinuous group e−itHγ . As we are working in a one-dimensional setting, the nonlinearity |u|4u is
Lipschitz continuous from bounded sets of H1

D(G) to Lq(G), 2 ⩽ q ⩽ ∞, and well-posedness of the
Cauchy problem for (1.1) in the energy space H1

D(G) may be obtained following a classical line of
arguments (see e.g. [11]). For any t0 ∈ R and any initial data u0 ∈ H1

D(G), there exists a unique
maximal solution

u ∈ C
(
(Tmin, Tmax), H

1
D(G)

)
∩ C1

(
(Tmin, Tmax), H

1
D(G)⋆

)
such that u(t0) = u0. The energy E and the mass M , defined in (1.2) and (1.3), are preserved
along the time evolution, i.e. for any t ∈ (Tmin, Tmax), we have

E(u(t)) = E(u0), M(u(t)) =M(u0).

The blow-up alternative holds, i.e. either Tmax = +∞ (resp. Tmin = −∞) or

lim
t→Tmax (resp. Tmin)

∥u(t)∥H1(G) = ∞.

There is continuous dependence with respect to the initial data, i.e. for any (u0,n) ⊂ H1(G) such
that u0,n → u0 in H1(G) the associated solutions (un) of (1.1) are defined on [T∗, T

∗] and verify
un → u in C((T∗, T

∗), H1(G)) for any T∗, T ∗ such that Tmin < T∗ < T ∗ < Tmax.
If in addition u0 ∈ D(Hγ), then u verifies

u ∈ C ((Tmin, Tmax), D(Hγ)) ∩ C1
(
(Tmin, Tmax), L

2(G)
)
.

Finally, if the initial data u0 belongs to the virial space Σ1(G), then the solution u verifies (see [28])

u ∈ C
(
(Tmin, Tmax),Σ

1(G)
)

and the virial identity is satisfied:

d2

dt2
∥xu(t)∥2L2(G) = 8E(u(t)) + 4γ|u(t, 0)|2.



16 F. GENOUD, S. LE COZ, AND J. ROYER

3.2. Global existence. We now prove some global existence results for the nonlinear Schrödinger
equation (1.1). As in the classical Rd case, they are obtained using Gagliardo-Nirenberg type
inequalities.

Lemma 3.1 (Gagliardo-Nirenberg inequalities on star graphs). The following inequalities hold:

∥u∥6L6(G) ⩽
3max

{
1, 4

N2

}
∥Q∥4L2(R)

∥ux∥2L2(G)∥u∥4L2(G), u ∈ H1
D(G), (3.1)

∥u∥6L6(G) ⩽
12

N2∥Q∥4L2(R)
∥ux∥2L2(G)∥u∥4L2(G), u ∈ H1

rad(G). (3.2)

Proof. The inequality (3.1) is well-known to hold on the line R, i.e. in caseN = 2, and the extension
to a general star graph is carried out as follows. The case N = 1 can be deduced from the case
N = 2 by extending a function defined on R+ evenly to R. This yields, on the half-line R+,

∥u∥6L6(R+) ⩽
12

∥Q∥4L2(R)
∥ux∥2L2(R+)∥u∥4L2(R+), u ∈ H1(R+).

Let u ∈ H1
rad(G) and denote by u : R+ → R the function representing u on any branch of the

graph. We have

∥u∥6L6(G) = N∥u∥6L6(R+) ⩽ N
12

∥Q∥4L2(R)
∥ux∥2L2(R+)∥u∥4L2(R+) =

12

N2∥Q∥4L2(R)
∥ux∥2L2(G)∥u∥4L2(G),

which establishes (3.2). Consider now the H1
D(G) setting and assume N ⩾ 2. Since functions in

H1
D(G) are continuous at the vertex, and the star graph with N ⩾ 2 contains at least two half-

lines (which can be thought of as a full line), the constant in the Gagliardo-Nirenberg inequality
in H1

D(G) can be at best the same as the one on H1(R) (this can be seen rigorously from a
symmetric rearrangement on the graph, see [8, Theorem 3.2]). Consider the sequence of functions
(un) ⊂ H1

D(G) defined by

un1 (x1) = Q(x1 − n), unj (xj) = Q(xj + n), j ̸= 1.

The sequence is built with a bump on one half-line and tails on the others, the bump going away
from the vertex. As n→ ∞, the sequence optimizes the Gagliardo-Nirenberg inequality in H1

D(G)
with a constant which is the same as the one on H1(R) (it also illustrates the fact that an optimizer
does not exist). Hence (3.1). □

Proposition 3.2 (Global well-posedness). Let γ ∈ R, u0 be an initial data, t0 an initial time and
u be the corresponding solution of (1.1) such that u(t0, ·) = u0.
If u0 ∈ H1

D(G) satisfies ∥u0∥2L2(G) < min
{
1, N

2

}
∥Q∥2L2(R), then u is global in H1(G). Furthermore,

if γ > 0, then for any solution with ∥u0∥2L2(G) = min
{
1, N

2

}
∥Q∥2L2(R), |u(t, 0)| remains bounded.

If u0 ∈ H1
rad(G) satisfies ∥u0∥2L2(G) <

N
2
∥Q∥2L2(R), then u is global in H1

rad(G). Furthermore, if

γ > 0, then for any solution with ∥u0∥2L2(G) =
N
2
∥Q∥2L2(R), |u(t, 0)| remains bounded.

Proof. The proof follows by combining (3.1) with the conservation laws of (1.1). We have

E(u0) = E(u(t)) =
1

2
∥ux(t)∥2L2(G) −

1

6
∥u(t)∥6L6(G) +

γ

2
|u(t, 0)|2

⩾
1

2

[
1−max

{
1,

4

N2

}(
∥u0∥L2(G)

∥Q∥L2(R)

)4
]
∥ux(t)∥2L2(G) +

γ

2
|u(t, 0)|2.
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If γ > 0, it follows that ∥ux(t)∥L2(G) remains bounded provided ∥u0∥2L2(G) < min
{
1, N

2

}
∥Q∥2L2(R),

and global existence in H1(G) follows by the blow-up alternative. Moreover in this case, if
∥u0∥2L2(G) = min

{
1, N

2

}
∥Q∥2L2(R), we see that |u(t, 0)|2 must remain bounded.

If γ < 0, the inequality |u(t, 0)|2 ⩽ 2∥ux(t)∥L2(G)∥u(t)∥L2(G) yields

|u(t, 0)|2 ⩽ ϵ∥ux(t)∥2L2(G) +
4

ϵ
∥u(t)∥2L2(G)

for any ϵ > 0, and it follows that

E(u0) ⩾
1

2

[
1−max

{
1,

4

N2

}(
∥u0∥L2(G)

∥Q∥L2(R)

)4

− |γ|ϵ

]
∥ux(t)∥2L2(G) +

2γ

ϵ
∥u0∥2L2(G).

If ∥u0∥2L2(G) < min
{
1, N

2

}
∥Q∥2L2(R), we can choose ϵ > 0 so that

1−max

{
1,

4

N2

}(
∥u0∥L2(G)

∥Q∥L2(R)

)4

− |γ|ϵ > 0,

showing that ∥ux(t)∥L2(G) remains bounded. The second part of the Proposition follows from
similar arguments, using (3.2) instead of (3.1). This concludes the proof. □

3.3. Well-posedness in weighted spaces. We establish in this section the well-posedness of the
Cauchy problem in weighted spaces. Recall that the weighted spaces Σk are defined in (2.3). The
following lemma will be useful in the sequel.

Lemma 3.3. Let k ∈ N and α, β ∈ N such that α + β ⩽ k. Then for any u ∈ Σk, the following
holds:

∥xα∂βxu∥L2(G) ≲ ∥u∥Σk .

Proof. We prove the result by induction on k. The case k = 0 is trivial, since ∥u∥2Σ0 = 2∥u∥2L2 .
Now fix k ∈ N and suppose the result is true for all j ⩽ k:

∀α′, β′ ∈ N, α′ + β′ ⩽ j, ∥xα′
∂β

′

x u∥L2(G) ≲ ∥u∥Σj . (3.3)

Let α, β ∈ N such that α + β ⩽ k + 1. To complete the proof, we will show that

∥xα∂βxu∥L2(G) ≲ ∥u∥Σk+1 . (3.4)

Firstly, if α+ β ⩽ k, then (3.4) follows from (3.3) with j = k. So we suppose that α+ β = k + 1.
Next, we observe that the cases (α, β) = (0, k+1) and (α, β) = (k+1, 0) are trivial. So we suppose
1 ⩽ α, β ⩽ k, α+ β = k + 1 for the remainder of the proof.
Naturally, we start by estimating ∥x∂kxu∥L2(G). We shall use the short hand notation ∂βxu ≡ u(β),

for β = 1, . . . , k + 1. Integrating by parts, we obtain

∥xu(k)∥2L2(G) =

∫
G
x2u(k)ū(k) dx

= −2

∫
G
xu(k)ū(k−1) dx−

∫
G
x2u(k+1)ūk−1 dx.

By the induction hypothesis, we have∣∣∣ ∫
G
xu(k)ū(k−1) dx

∣∣∣ ⩽ ∥xu(k−1)∥L2(G)∥u(k)∥L2(G) ⩽ ∥u∥2Σk ⩽ ∥u∥2Σk+1 .
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On the other hand, for any ε1 > 0,∣∣∣ ∫
G
u(k+1)x2ū(k−1) dx

∣∣∣ ⩽ ε21∥u(k+1)∥2L2(G) + ε−2
1 ∥x2u(k−1)∥2L2(G).

It follows that

∥xu(k)∥2L2(G) ⩽ 2∥u∥2Σk+1 + ε21∥u(k+1)∥2L2(G) + ε−2
1 ∥x2u(k−1)∥2L2(G),

for any ε1 > 0. With the same arguments, we obtain

∥x2u(k−1)∥2L2(G) ⩽ 4∥u∥2Σk+1 + ε22∥xu(k)∥2L2(G) + ε−2
2 ∥x3u(k−2)∥2L2(G),

for any ε2 > 0. Continuing this process, and using

∥u(k+1)∥2L2(G) ⩽ ∥u∥2Σk+1 , ∥xk+1u∥2L2(G) ⩽ ∥u∥2Σk+1 ,

we find that, for any sequence of positive numbers ε1, ε2, . . . , εk,

∥xu(k)∥2L2(G) ⩽ (2 + ε21)∥u∥2Σk+1 + ε−2
1 ∥x2u(k−1)∥2L2(G)

∥x2u(k−1)∥2L2(G) ⩽ 4∥u∥2Σk+1 + ε22∥xu(k)∥2L2(G) + ε−2
2 ∥x3u(k−2)∥2L2(G)

∥x3u(k−2)∥2L2(G) ⩽ 6∥u∥2Σk+1 + ε23∥x2u(k−1)∥2L2(G) + ε−2
3 ∥x4u(k−3)∥2L2(G)

...

∥xk−1u(2)∥2L2(G) ⩽ 2(k − 1)∥u∥2Σk+1 + ε2k−1∥xk−2u(3)∥2L2(G) + ε−2
k−1∥x

ku(1)∥2L2(G)

∥xku(1)∥2L2(G) ⩽ (2k + ε−2
k )∥u∥2Σk+1 + ε2k∥xk−1u(2)∥2L2(G).

We will now deduce (3.4), for all 1 ⩽ α, β ⩽ k, α+ β = k + 1, from this system of inequalities.
The main difficulty is that, for l = 2, . . . , k − 1, line number l involves terms appearing in lines
l − 1 and l + 1. This can be remedied by injecting inequality l − 1 into line l. For instance, for
l = 2, we obtain

∥x2u(k−1)∥2L2(G) ⩽ 4∥u∥2Σk+1 + ε22
(
(2 + ε21)∥u∥2Σk+1 + ε−2

1 ∥x2u(k−1)∥2L2(G)
)
+ ε−2

2 ∥x3u(k−2)∥2L2(G),

so that

(1− ε22ε
−2
1 )∥x2u(k−1)∥2L2(G) ⩽ 4∥u∥2Σk+1 + ε22(2 + ε21)∥u∥2Σk+1 + ε−2

2 ∥x3u(k−2)∥2L2(G).

Hence,

∥x2u(k−1)∥2L2 ⩽ (1− ε22ε
−2
1 )−1

((
4 + ε22(2 + ε21)

)
∥u∥2Σk+1 + ε−2

2 ∥x3u(k−2)∥2L2(G)

)
,

provided 1 − ε22ε
−2
1 > 0. Next, combining this inequality with line 3 and isolating the term

∥x3u(k−2)∥2L2(G), we obtain

∥x3u(k−2)∥2L2(G) ⩽
(
1− ε23ε

−2
2 (1− ε22ε

−2
1 )−1

)−1
(
6∥u∥2Σk+1 + ε23(1− ε22ε

−2
1 )−1

(
4 + ε22(2 + ε21)

)
∥u∥2Σk+1

+ ε−2
3 ∥x4u(k−3)∥2L2(G)

)
,

provided 1− ε23ε
−2
2 (1− ε22ε

−2
1 )−1 > 0.
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Iterating this process, we find that, for each l = 2, . . . , k − 1, there exists a positive constant
Cl(ε) = Cl(ε1, ε2, . . . , εl) such that

∥xlu(k+1−l)∥2L2(G) ⩽ Cl(ε)∥u∥2Σk+1

+
(
1− ε2l ε

−2
l−1

(
1− ε2l−1ε

−2
l−2(1− . . . (1− ε22ε

−2
1 )−1)−1 . . .

)−1
ε−2
l ∥xl+1u(k−l)∥2L2(G),

provided ε1, ε2, . . . , εk can be chosen so that

1− ε2l ε
−2
l−1

(
1− ε2l−1ε

−2
l−2(1− . . . (1− ε22ε

−2
1 )−1)−1 > 0 ∀l = 2, . . . , k. (3.5)

It is easy to verify that the following choice works:

ε1 = 1, εl = 2−(l−1) ∀l = 2, . . . , k.

The argument stops at the last step, when l = k, where one merely obtains

∥xku(1)∥2L2(G) ⩽ Ck(ε)∥u∥2Σk+1 ,

for a positive constant Ck(ε) = C(ε1, ε2, . . . , εk). This final estimate allows one to return iteratively
to all previous estimates and close them to obtain (3.4). □

We now show that weighted spaces are preserved by the flow of (1.1).

Lemma 3.4. Let k ∈ N. Let u0 ∈ Σ2 ∩D(Hγ), t0 ∈ R and let u be the maximal solution of (1.1)
with u(t0) = u0. If xk/2u0 ∈ L2(G) then xk/2u(t) ∈ L2(G) for all t ∈ (Tmin, Tmax). Moreover

∥x k
2u∥L2(G) is locally bounded in (Tmin, Tmax).

Proof. We prove the result by induction. Let k ⩾ 1 and assume that the result is proved for k− 1.
Let I ⊂ (Tmin, Tmax) be a compact interval.

Let χ ∈ C∞([0,∞), [0, 1]) be a cut-off function such that χ(x) = 1 for x ∈ [0, 1] and χ(x) = 0
for x ⩾ 2. For n ∈ N∗ and x ∈ G we set

ϕn(x) =
(
χ
(xj
n

)
xkj

)
1⩽j⩽N

.

We have

∂t

∫
G
ϕn|u(t)|2 dx = 2

∫
G
ϕnRe

(
ū(t)ut(t)

)
dx

= 2

∫
G
ϕn Im

(
ū(t)

(
Hγu(t)− |u(t)|4u(t)

))
dx

= −2

∫
G
ϕn Im

(
ū(t)∂xxu(t)

)
dx

= 2

∫
G
ϕ′
n Im

(
ū(t)∂xu(t)

)
dx.

By the Cauchy-Schwarz inequality we have on I∣∣∣∣∂t ∫
G
ϕn|u(t)|2 dx

∣∣∣∣ ⩽ 2∥ϕ′
nu∥L2(G)∥∂xu∥L2(G).

By the support properties of χ, we have

|ϕ′
n(x)| ⩽

1

n

∣∣∣χ′
(x
n

)∣∣∣xk + χ
(x
n

)
xk−1 ⩽ 2∥χ′∥L∞ + xk−1.
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Therefore, by induction assumption, there exists C > 0 such that∣∣∣∣∂t ∫
G
ϕn|u(t)|2 dx

∣∣∣∣ ⩽ C.

Then for t ∈ I we have ∫
G
ϕn|u(t)|2 dx ⩽ ∥xku0∥L2(G) + C|I|.

By the monotone convergence theorem we finally get∫
G
xk|u(t)|2 dx ⩽ ∥xku0∥L2(G) + C|I|,

which proves the desired result. □

Applying Lemma 3.4 we get with Lemma 3.3 the following result in Σ2.

Proposition 3.5. Let u0 ∈ D(Hγ), t0 ∈ R and let u be the maximal solution of (1.1) with
u(t0) = u0. If u0 ∈ Σ2 then u ∈ C ((Tmin, Tmax),Σ

2).

Proof. Applying Lemma 3.4 we get with Lemma 3.3 that u(t) ∈ Σ2(G) for all t ∈ (Tmin, Tmax). To
obtain continuity in Σ2(G), it suffices to repeat the proof of Lemma 3.4 with u(t)− u(t0) instead
of u(t). □

3.4. Dependency on the initial data. We now give the proof of the modified continuous de-
pendency property presented in Lemma 2.2.

Proof of Lemma 2.2. Since un is solution of (1.1), it verifies the Duhamel formula. For any t ∈ J ,
we have

un(t) = U(t)un,0 + i

∫ t

t0

U(t− s)|un(s)|4un(s)ds,

where by U(t) we denote the Schrödinger propagator on the graph, i.e. U(t) = eitHγ . A similar
formula holds for u. Therefore,

un(t)− u(t) = U(t)(un,0 − u0) + i

∫ t

t0

U(t− s)(|un(s)|4un(s)− |u(s)|4u(s))ds.

Since U is an isometry on L2(G), we have

∥U(t)(un,0 − u0)∥L2(G) = ∥un,0 − u0∥L2(G).

In addition, for the nonlinear part, we have∥∥∥∥∫ t

t0

U(t− s)(|un(s)|4un(s)− |u(s)|4u(s))ds
∥∥∥∥
L2(G)

⩽
∫ t

t0

∥∥|un(s)|4un(s)− |u(s)|4u(s)
∥∥
L2(G)

⩽ CM

∫ t

t0

∥un(s)− u(s)∥L2(G)ds,

where
M := ∥u∥4L∞(J,H1(G)) + sup

n∈N∗
∥un∥4L∞(J,H1(G)) <∞.

Therefore,

∥un(s)− u(s)∥L2(G) ⩽ ∥un,0 − u0∥L2(G) + CM

∫ t

t0

∥un(s)− u(s)∥L2(G)ds.

The desired conclusion follows for Gronwall’s argument. □
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4. Linearized operators

In this section we record some useful properties of the linearized operators which will appear
in our analysis (see e.g. (7.20)). We shall work here with real-valued radial functions, hence
L2
rad(G) ≡ L2

rad(G,R) and H1
rad(G) ≡ H1

rad(G,R) for the rest of this section.
For β ∈ (−N,N), let us define on L2

rad(G) the following operators, with domain Dβ ∩ L2
rad(G)

(see (2.1)):
L+,β = Hβ + 1− 5Q4

β, L−,β = Hβ + 1−Q4
β.

We denote by L±,β the corresponding bounded operators from H1
rad(G) to H1

rad(G)⋆, such that

⟨L±,βϕ, ψ⟩ = (L±,βϕ, ψ)L2 , ϕ ∈ Dβ, ψ ∈ H1
rad(G).

For instance for L+,β we have, for ϕ, ψ ∈ H1
rad(G),

⟨L+,βϕ, ψ⟩ = (ϕ′, ψ′)L2 + βϕ(0)ψ(0) +
(
ϕ− 5Q4

βϕ, ψ
)
L2 .

4.1. Unperturbed linearized operators. In this subsection, we establish some results about
the unperturbed linearized operators L± = L±,0.
We denote by σ(A) and σess(A) the spectrum and essential spectrum, respectively, of a linear

operator A on L2
rad(G). The following spectral properties of the operators L± are well-known

in the context of radial functions on the line (see e.g. [22,54] and references therein) and it is
straightforward to transpose them to L2

rad(G). We recall that Λ is the generator of dilations on G
(see the definition in (2.7)).

Lemma 4.1. The operators L± have the following properties.

(i) L± are selfadjoint and bounded from below.
(ii) σess(L±) = [1,∞).
(iii) −8 is the only eigenvalue of L+, with ker(L+ + 8I) = span(Q3).
(iv) 0 is the only eigenvalue of L−, with ker(L−) = span(Q).
(v) Setting ρ = L−1

+ (y2Q), we have the relations

L−Q = 0, L+ΛQ = −2Q, L−y
2Q = −4ΛQ, L+ρ = y2Q.

From these results on L±, we deduce the following properties of L±.

Proposition 4.2. The operators L± have the following properties.

(i) L+ : H1
rad(G) → H1

rad(G)⋆ is bijective.
(ii) ker(L−) = span(Q) and ran(L−) = {φ ∈ H1

rad(G)⋆ : φ(Q) = 0}.

Proof. We have span(Q) = ker(L−) ⊂ ker(L−), and if φ ∈ ker(L−) we have φ ∈ D(L−) and
L−φ = 0. This proves that ker(L−) = span(Q).

Since L− = (IdH1
rad(G)⋆ − K)(−∂2y + 1) where K = Q4(−∂2y + 1)−1 is a compact operator on

H1
rad(G)⋆, its range is closed. Then ran(L−) = ker(L−)

⊥ (with ⊥ denoting here H1(G)⋆ – H1(G)
orthogonality) and the second statement of the proposition follows.

The first statement about L+ is proved similarly. □

Next, we give some useful integral identities.

Lemma 4.3. Let Q, ΛQ and ρ be as in Lemma 4.2. Then:

(i)
∫
G y

2QΛQ dy = −
∫
G y

2Q2 dy;

(ii)
∫
G QΛQ dy = 0;
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(iii)
∫
G Qρ dy = 1

2

∫
G y

2Q2 dy.

Proof. (i) For real parameters µ > −1 and r ⩾ 1, we will show that∫
G
yµQrΛQ dy =

(
1

2
− µ+ 1

r + 1

)∫
G
yµQr+1 dy, (4.1)

from which (i) follows. Now, to prove (4.1), we only need to show that∫
G
yµQry Qy dy = −µ+ 1

r + 1

∫
G
yµQr+1 dy. (4.2)

Integrating by parts (no vertex terms arise since µ+ 1 > 0), we have∫
G
yµ+1QrQy dy = −

∫
G
[(µ+ 1)Qryµ + ryµ+1Qr−1Qy]Q dy

= −(µ+ 1)

∫
G
yµQr+1 dy − r

∫
G
QrQyy

µ+1 dy,

which is equivalent to (4.2). This completes the proof of (4.1).
(ii) The second statement follows directly from (4.1) with µ = 0 and r = 1, but the following

argument is more instructive. Since the L2 scaling Qλ(y) = λ
1
2Q(λy) leaves the L2 norm invariant,

we have that

0 =
d

dλ
∥Qλ∥2L2(G) = 2

∫
G
Qλ

∂Qλ

∂λ
dy, ∀λ > 0.

The result follows by letting λ = 1.
(iii) Using Lemma 4.1 and (i), we have the identities∫

G
Qρ dy = −1

2

∫
G
L+ΛQρ dy = −1

2

∫
G
ΛQL+ρ dy = −1

2

∫
G
ΛQy2Q dy =

1

2

∫
G
y2Q2 dy.

The proof is complete. □

We now state well-known coercivity properties of the operators L±, which we prove for the
reader’s convenience. We start with positivity properties.

Lemma 4.4. Denoting by ⊥ the orthogonality with respect to (·, ·)L2, the operators L± satisfy the
following positivity relations in H1

rad(G):

⟨L−v, v⟩H1(G)⋆×H1(G) ≳ ∥v∥2H1(G) on ρ⊥, (4.3)

⟨L+v, v⟩H1(G)⋆×H1(G) ≳ ∥v∥2H1(G) on {Q, y2Q}⊥. (4.4)

Proof. To prove (4.3), we first observe that Lemma 4.1 implies

⟨L−w,w⟩ ⩾ ∥w∥2L2 , ∀w ∈ Q⊥. (4.5)

Let v ∈ ρ⊥. Let w ∈ Q⊥ and t ∈ R such that v = w + tQ. Since (Q, ρ)L2 ̸= 0 (see Lemma 4.3),
we necessarily have

t = − (w, ρ)L2

(Q, ρ)L2

,

and hence

∥v∥2L2 = ∥w∥2L2 + 2t(w,Q)L2 + t2∥Q∥2L2 = ∥w∥2L2 +
(w, ρ)2L2

(Q, ρ)2L2

∥Q∥2L2 ⩽ ∥w∥2L2

(
1 +

∥ρ∥2L2∥Q∥2L2

(Q, ρ)2L2

)
.
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Setting

C1 =

(
1 +

∥ρ∥2L2∥Q∥2L2

(Q, ρ)2L2

)−1

> 0,

it then follows by (4.5) that

⟨L−v, v⟩ = ⟨L−w,w⟩ ⩾ ∥w∥2L2 ⩾ C1∥v∥2L2 . (4.6)

To deduce (4.3), we argue by contradiction. Suppose there exists a sequence {vn} in H1
rad(G)∩ ρ⊥

such that ∥vn∥H1 = 1 for all n and ⟨L−vn, vn⟩ → 0 as n → ∞. Then (4.6) implies ∥vn∥L2 → 0, so
∥∂yvn∥L2 → 1. Then

⟨L−vn, vn⟩ = ∥∂yvn∥2L2 + ∥vn∥2L2 −
∫
G
Qp−1v2n dy

⩾ ∥∂yvn∥2L2 + ∥vn∥2L2

(
1− ∥Q∥p−1

L∞

)
→ 1.

This contradiction concludes the proof of (4.3).
The proof of (4.4) follows in the same way from

⟨L+v, v⟩ ≳ ∥v∥2L2 on {Q, y2Q}⊥.

However, the proof of this inequality is much more involved than that of (4.6), see [54]. □

Lemma 4.5. There exist µ−, µ+ > 0 such that, for all v ∈ H1
rad(G),

⟨L−v, v⟩H1(G)⋆×H1(G) ⩾ µ−∥v∥2H1(G) − µ−1
− (v, ρ)2L2(G) (4.7)

and

⟨L+v, v⟩H1(G)⋆×H1(G) ⩾ µ+∥v∥2H1(G) − µ−1
+

[
(v,Q)2L2(G) + (v, y2Q)2L2(G)

]
. (4.8)

There exists µ > 0 such that

⟨L+v, v⟩H1(G)⋆×H1(G) + ⟨L−v, v⟩H1(G)⋆×H1(G)

⩾ µ∥v∥2H1(G) − µ−1
[
(v,Q)2L2(G) + (v, y2Q)2L2(G) + (v, ρ)2L2(G)

]
. (4.9)

Proof. We will prove (4.8). The proof of (4.7) is similar and will therefore be omitted. Esti-
mate (4.9) is a direct consequence of (4.7) and (4.8). We will use the same shorthand notation for
inner / duality products and norms as in the proof of Lemma 4.4.

Any v ∈ H1
rad(G) can be written as

v = w + sQ+ ty2Q, w ∈ {Q, y2Q}⊥,

with

s =
(v,Q)L2∥y2Q∥2L2 − (v, y2Q)L2(Q, y2Q)L2

∥Q∥2L2∥y2Q∥2L2 − (Q, y2Q)2L2

, t =
(v, y2Q)L2∥Q∥2L2 − (v,Q)L2(Q, y2Q)L2

∥Q∥2L2∥y2Q∥2L2 − (Q, y2Q)2L2

.
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Then

∥v∥2H1 = ∥w∥2H1 + s2∥Q∥2H1 + t2∥y2Q∥2H1 + 2st(Q, y2Q)H1 + 2s(w,Q)H1 + 2t(w, y2Q)H1

⩽ ∥w∥2H1 + s2∥Q∥2H1 + t2∥y2Q∥2H1 + (s2 + t2)|(Q, y2Q)H1|
+ 2s∥w∥H1∥Q∥H1 + 2t∥w∥H1∥y2Q∥H1

⩽ ∥w∥2H1 + s2∥Q∥2H1 + t2∥y2Q∥2H1 + (s2 + t2)|(Q, y2Q)H1|
+ s2 + ∥w∥2H1∥Q∥2H1 + t2 + ∥w∥2H1∥y2Q∥2H1

⩽
(
1 + ∥Q∥2H1 + ∥y2Q∥2H1

)
∥w∥2H1 +

(
1 + ∥Q∥2H1 + |(Q, y2Q)H1|

)
s2

+
(
1 + ∥y2Q∥2H1 + |(Q, y2Q)H1 |

)
t2.

Hence, there exist constants A,B,C > 0 such that

∥w∥2H1 ⩾ A∥v∥2H1 −B(v,Q)2 − C(v, y2Q)2. (4.10)

Using similar calculations, (4.4) yields a constant K > 0 such that, for any ε > 0,

⟨L+v, v⟩
= ⟨L+w,w⟩+ s2⟨L+Q,Q⟩+ t2⟨L+y2Q, y2Q⟩+ 2st⟨L+Q, y2Q⟩+ 2s⟨w, L+Q⟩+ 2t⟨w, L+y2Q⟩
⩾ K∥w∥2H1 −

(
|⟨L+Q,Q⟩|+ |⟨L+Q, y2Q⟩|

)
s2 −

(
|⟨L+y2Q, y2Q⟩|+ |⟨L+Q, y2Q⟩|

)
t2

− 2ε−1|s|ε∥w∥L2∥L+Q∥L2 − 2ε−1|t|ε∥w∥L2∥L+y2Q∥L2

⩾ K∥w∥2H1 −
(
|⟨L+Q,Q⟩|+ |⟨L+Q, y2Q⟩|

)
s2 −

(
|⟨L+y2Q, y2Q⟩|+ |⟨L+Q, y2Q⟩|

)
t2

−
(
ε−2s2 + ε2∥L+Q∥2L2∥w∥2H1

)
−
(
ε−2t2 + ε2∥L+y2Q∥2L2∥w∥2H1

)
⩾

[
K − ε2

(
∥L+Q∥2L2 + ∥L+y2Q∥2L2

)]
∥w∥2H1

−
(
ε−2 + |⟨L+Q,Q⟩|+ |⟨L+Q, y2Q⟩|

)
s2 −

(
ε−2 + |⟨L+y2Q, y2Q⟩|+ |⟨L+Q, y2Q⟩|

)
t2.

Therefore, choosing ε > 0 small enough, there exist constants K1, K2, K3 > 0 such that

⟨L+v, v⟩ ⩾ K1∥w∥2H1 −K2(v,Q)
2 −K3(v, y

2Q)2.

Combining this with (4.10) concludes the proof of (4.8). □

4.2. Linearized operators with vertex condition. We collect in the following proposition the
properties of L±,β which will be useful for our analysis.

Proposition 4.6. Let β ∈ (−N,N).

(i) L±,β is selfadjoint and bounded from below.
(ii) σess(L±,β) = [1,∞).
(iii) L+,β has a unique negative eigenvalue λ+,β and the rest of the spectrum is (strictly) positive.
(iv) 0 ∈ σ(L−,β), ker(L−,β) = span(Qβ) and the rest of the spectrum is (strictly) positive.

Proof. The operators L±,β are symmetric and bounded perturbations of Hβ, so they are selfadjoint
and bounded from below.

The operator H0 + 1, with domain D0, is selfadjoint and we have σ(H0 + 1) = σess(H0 + 1) =
[1,+∞). On the other hand we have on L2

rad(G)
(L+,β − i)−1 − (H0 + 1− i)−1 = (L+,β − i)−1 − (H0 + 1− i)−1

= −(L+,β − i)−1(βδ − 5Q4
β)(H0 + 1− i)−1.
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Since (H0 + 1− i)−1 is bounded from L2
rad(G) to D0, (βδ − 5Q4

β) is compact from D0 to H1
rad(G)⋆

and (L+,β − i)−1 is bounded from H1
rad(G)⋆ to L2

rad(G), we obtain that (L+,β − i)−1− (H0+1− i)−1

is a compact operator on L2
rad(G). Then, by Weyl’s Theorem, σess(L+,β) = σess(L+,0) = [1,+∞).

We similarly have σess(L−,β) = [1,+∞).
We check that 0 is never an eigenvalue of L+,β. Differentiating (2.9), there holds −(Q′

β)
′′+Q′

β −
5Q4

βQ
′
β = 0 on each edge. Now let u ∈ ker(L+,β). We have (u′Q′

β − Q′′
βu)

′ = 0, so there exists
η ∈ R such that ( u

Q′
β

)′
=

η

(Q′
β)

2
.

Since an antiderivative of (Q′
β)

−2 grows faster than (Q′
β)

−1, this implies that η = 0, so u is
proportional toQ′

β. However, we can show thatQ′
β is not inDβ. By (2.9), we haveQ′′

β(0) = Qβ(0)−
Qβ(0)

5. Then, computing Q′
β gives Q′

β(x)
2 = Qβ(x)

2 − 1/3Qβ(x)
6 for all x ∈ G. In particular,

combined with the jump condition NQ′
β(0) = βQβ(0) at 0, this gives Q(0)4 = 3 (1− β2/N2).

Hence, the jump ratio at 0 for Q′
β is given by

Q′′
β(0)

Q′
β(0)

=
Qβ(0)

Q′
β(0)

(
1−Qβ(0)

4
)
=
N

β

(
1− 3

(
1− β2

N2

))
=

3β

N
− 2N

β
̸= N

β
.

Therefore, Q′
β ̸∈ Dβ. Thus, u = 0 and ker(L+,β) = {0} for all β ∈ (−N,N). Since 0 is not in the

essential spectrum, it is in the resolvent set of L+,β.
It is known and can easily be verified that L+,0 has a unique eigenvalue, equal to −8, with the

explicit eigenfunction Q3 . Since L+,β depends analytically on β (family of type B in the sense of
Kato [33]), we get by regularity of the spectrum and semi-boundedness from below that L+,β has
a unique negative eigenvalue for all β ∈ (−N,N).

For the last statement, we see from (2.9) that Qβ ∈ ker(L−,β) for all β ∈ (−N,N). As Qβ > 0,
0 is a simple eigenvalue, so ker(L−,β) = span(Qβ). Moreover, it is the first eigenvalue of L−,β, so
the rest of the spectrum is positive. □

For y ∈ G we set

ΛβQβ(y) = ΛQ(y − τβ) +

(
τβ +

βN

2(N2 − β2)

)
Q′(y − τβ).

Lemma 4.7. We have ΛβQβ ∈ Dβ and

L+,βΛβQβ = −2Qβ.

Proof. We adapt to our setting the proof of the case β = 0. For |ω| < N
|β| and y ∈ G we set

Qω
β(y) =

√
ωQ(ωy − τωβ ), τωβ =

1

2
tanh−1

(
β

Nω

)
.

Then Qω
β ∈ Dβ and the function ΛβQβ has been defined so that

ΛβQβ = ∂ωQ
ω
β

∣∣
ω=1

.

The fact that ΛβQβ belongs to the domain Dβ can be obtained either by direct calculations, or
by observing that Qω

β is smooth in (β, ω) away from ω = 0, which allows one to differentiate with
respect to ω the condition verified by Qω

β at the vertex, N∂yQ
ω
β(0

+) = βQω
β(0

+).
Finally, we have

HβQ
ω
β + ω2Qω

β − |Qω
β |4Qω

β = 0, (4.11)

which gives the result after differentiation at ω = 1. □
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Lemma 4.8. Let β ∈ (−N,N). Let η ∈ R, k ∈ N and g ∈ Ck
exp. Let u ∈ H1

rad(G) be a solution of

L±,βu = g + ηδ. (4.12)

Then u ∈ Ck+2
exp . Moreover, if η = 0 then u also belongs to Dβ.

Proof. Assume that u is solution of (4.12). Since the quadratic form

u 7→ ∥u′∥2L2(G) + β|u(0)|2 + ∥u∥2L2(G)

is coercive on H1
rad(G), u is the unique function in H1

rad(G) which satisfies on each edge

−u′′ + u = g̃, g̃ = g − µQ4
βu,

with µ = −1 or µ = −5, together with the vertex condition

−Nu′(0) + βu(0) = η.

Then u is explicitely given by

u(y) =
η

N + β
e−y +

1

2

∫ ∞

0

e−|y−z|g̃(z) dz +
1

2

N − β

N + β
e−y

∫ ∞

0

e−zg̃(z) dz.

From this expression and the fact that Qβ is smooth and exponentially decaying on each edge, we
deduce all the conclusions of the lemma. □

Similarly to Section 4.1, it follows from Proposition 4.6 that L+,β is invertible and L−,β is
invertible on Q⊥

β . We will denote by R−,β the unique bounded operator on L2(G) which maps Qβ

to 0 and any φ ∈ Q⊥
β = ran(L−,β) to the unique ψ ∈ Q⊥

β = ker(L−,β)
⊥ such that L−,βψ = φ. In

particular, ran(R−,β) ⊂ Dβ.

Lemma 4.9. Let ν ∈ N. Let β 7→ uβ be a smooth map from (−N,N) to L2
rad(G) such that

∂ℓβuβ ∈ Cν
exp for all ℓ ∈ N and β ∈ (−N,N). Then the maps β 7→ L−1

+,βuβ and β 7→ R−,βuβ
are smooth from (−N,N) to L2

rad(G). Moreover, we have ∂ℓβ(L
−1
+,βuβ), ∂

ℓ
β(R−,βuβ) ∈ Cν

exp for all
β ∈ (−N,N) and ℓ ∈ N.

We introduce some notation for the proof. For β ∈ (−N,N), we set H1
β,⊥ = H1

rad ∩ Q⊥
β (the

orthogonal complement is still understood in the sense of L2(G)). We denote by Iβ : H1
β,⊥ → H1

rad

the natural embedding, and we set L⊥−,β = I∗
βL−,βIβ : H1

β,⊥ → (H1
β,⊥)

⋆. The corresponding operator

given by the representation theorem is the restriction L⊥
−,β of L−,β to Q⊥

β , with domain Dβ ∩Q⊥
β .

We set

R−,β = Iβ(L
⊥
−,β)

−1I⋆
β : (H1

rad)
⋆ → H1

rad.

For u ∈ L2(G) we have R−,βu = R−,βu.
Finally, let Πβ be the orthogonal projection of L2(G) onto span(Qβ), and Π⊥

β = 1− Πβ.

Proof. We begin with R−,β. Let β ∈ (−N,N). There exist η0 > 0 and C > 0 such that for all
η ∈ [−η0, η0]

∥R−,β+η∥L(L2) ⩽ C, ∥R−,β+η∥L((H1
rad)

⋆,H1
rad)

⩽ C. (4.13)

In (4.13), the first inequality follows from the strict positivity of the spectrum of L⊥
−,β. The second

inequality is a direct consequence of the first one (see the argument after (4.6) in the proof of



BLOW-UP SOLUTIONS ON NONLINEAR QUANTUM STAR GRAPHS 27

Lemma 4.4). Let u ∈ L2(G) and η ∈ [−η0, η0]. We have

(R−,β+η −R−,β)u = (R−,β+η −R−,β)Πβu

+Πβ+η(R−,β+η −R−,β)Π
⊥
β u

+Π⊥
β+η(R−,β+η −R−,β)Π

⊥
β u.

(4.14)

For the first two terms, we observe that

(R−,β+η −R−,β)Πβu+Πβ+η(R−,β+η −R−,β)Π
⊥
β u (4.15)

= R−,β+ηΠβu− Πβ+ηR−,βΠ
⊥
β u

= R−,β+η(Πβ − Πβ+η)u− (Πβ+η − Πβ)R−,βu.

For the third term in the right-hand side of (4.14), we have

Π⊥
β+η(R−,β+η −R−,β)Π

⊥
β u = Π⊥

β+η(R−,β+η − R−,β)Π
⊥
β u

= R−,β+ηL−,β+η(R−,β+η − R−,β)L−,βR−,βu

= −R−,β+η(L−,β+η − L−,β)R−,βu

= −ηR−,β+ηδR−,βu.

(4.16)

Since the map β 7→ Πβ is smooth, we first deduce with (4.13)-(4.16) that the map β 7→ R−,β is
continuous. Then, after dividing these equalities by η, we deduce that it is also differentiable with

∂βR−,β = −R−β∂βΠβ − ∂βΠβR−β − R−,βδR−,β. (4.17)

By iteration, we prove that the map β 7→ R−,βuβ is smooth on (−N,N).
Since ran(Πβ) = span(Qβ), then Πβ and all its derivatives with respect to β leave Cν

exp invariant.
Moreover, by Lemma 4.8, the operators R−,β and R−,βδR−,β map Cν

exp into itself. By iterating
(4.17), we deduce that all the derivatives of R−,β with respect to β leave Cν

exp invariant.

This concludes the proof for R−,β. For the usual resolvent L−1
+,β, we replace Πβ by 0 and we

recover basic properties for a resolvent. In this case, the derivatives are simply given by

∂ℓβ(L
−1
+,β) = L−1

+,β

(
δL−1

+,β

)ℓ
,

and we get as before that they leave Cν
exp invariant. □

5. Construction of the profile

In this section, we prove Proposition 2.3. The terms Pj,k,β and αj,k,β will be constructed by
induction on (j, k) ∈ Θκ according to the following order. For (j1, k1), (j2, k2) ∈ Z2 we say that
(j1, k1) < (j2, k2) if either k1 < k2 or k1 = k2 and j1 < j2.
Let λ0 = N

|γ| . Given an interval J of R, b ∈ C1(J,R), λ ∈ C1(J, (0, λ0)) and α ∈ C1(J,R), we
denote by Oκ(b, λ, α) any family (uβ(s))β∈(−N,N) ⊂ L2(G) satisfying the following property: for
any ν ∈ N there exist ρ > 0 and C > 0 such that, for all s ∈ J there holds uγλ(s)(s) ∈ Cν

exp and

∥uγλ(s)∥Cν
exp,ρ

⩽ Cλ

(∣∣∣∣b+ λs
λ

∣∣∣∣+ ∣∣bs + b2 − α
∣∣)+ C(b2 + λ)κ. (5.1)

With this notation, the main estimate (2.16) of Proposition 2.3 reads

Ψκ = Oκ(b, λ, α). (5.2)
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Lemma 5.1. Let (Pj,k,β) and (αj,k,β) be as in Proposition 2.3 (i) and (ii). Let P and α be defined
by (2.13) and (2.14). Let b ∈ C1(J,R), λ ∈ C1(J, (0, λ0)) and α ∈ C1(J,R), and let Ψκ be defined
by (2.15). Then we can write

Ψκ =
∑

(j,k)∈Θκ

(ib)jλkΨj,k,γλ +Oκ(b, λ, α), (5.3)

for Ψj,k,β, (j, k, β) ∈ Θκ × (−N,N) as follows. Given (m, k) ∈ N×N∗ with m+ k < κ, there exist

Ψ̃2m,k,β and Ψ̃2m+1,k,β in L2(G)
(i) with all derivatives with respect to β in C∞

exp,
(ii) which depend explicitly on the Pj′,k′,β and αj′,k′,β for (j′, k′) < (2m, k)

such that

Ψ2m,k,β = −L+,βP2m,k,β + α2m,k,β
y2

4
Qβ + Ψ̃2m,k,β, (5.4)

Ψ2m+1,k,β = −L−,βP2m+1,k,β − (2m+ k)P2m,k,β + Ψ̃2m+1,k,β. (5.5)

In particular we have

Ψ̃0,1,β = 0, Ψ̃1,1,β = −γ∂βQβ =
Nγ

2(N2 − β2)
Q′

β. (5.6)

Proof. Up to a rest of size Oκ(b, λ, α), we can always replace the derivatives λs and bs by (−λb)
and (ib)2 + α, respectively. For (j, k) ∈ Θκ, we have

i∂s
(
(ib)jλkPj,k,γλ

)
= −j(ib)j−1bsλ

kPj,k,γλ + i(ib)jkλk−1λsPj,k,γλ + iγ(ib)jλkλs∂βPj,k,γλ

= −j(ib)j+1λkPj,k,γλ − j(ib)j−1αλkPj,k,γλ − (ib)j+1kλkPj,k,γλ − γ(ib)j+1λk+1∂βPj,k,γλ

+Oκ(b, λ, α)

= −(j + k)(ib)j+1λkPj,k,γλ −
∑

(p,q)∈Θκ
p even

jαp,q,γλ(ib)
j−1+pλk+qPj,k,γλ − γ(ib)j+1λk+1∂βPj,k,γλ

+Oκ(b, λ, α).

Notice that some terms in the sum satisfy (5.1) and could be put in the rest. On the other hand,
there exists a family (Φj,k,β) with Φj,k,β ∈ L2(G) which depends only on Qβ and the Pj,k,β, such
that

|P |4P = Q5
γλ +

∑
(j,k)∈Θκ

(ib)jλkΦj,k,γλ +Oκ(b, λ, α). (5.7)

In particular, Φ0,1,β = 5Q4
βP0,1,β. More generally, we have

Φj,k,β =
(
3 + 2(−1)j

)
Q4

βPj,k,β + Φ̃j,k,β,

for some Φ̃j,k,β ∈ L2(G) whose derivatives with respect to β are in C∞
exp and which only depends

on the Pj′,k′,β with (j′, k′) < (j, k). In particular, Φ̃0,1,β = Φ̃1,1,β = 0.
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We set Θ0
κ = Θκ ∪ {(0, 0)} and P0,0,γλ = Qγλ. We also set Pj,0,γλ = 0 for j ∈ N∗. Then we

have (5.3) where, for (j, k, β) ∈ Θκ × (−N,N),

Ψj,k,β = −(j − 1 + k)Pj−1,k,β +
∑

(p,q)∈Θκ
p even

(j + 1− p)αp,qPj+1−p,k−q,β − γ∂βPj−1,k−1,β

+HβPj,k,β − Pj,k +
(
3 + 2(−1)j

)
Q4

βPj,k,β + Φ̃j,k,β +
∑

(p1,q1)∈Θκ,(p2,q2)∈Θ0
κ

p1+p2=j,q1+q2=k
p1 even

αp1,q1,β
y2

4
Pp2,q2,β.

It can be checked that this is indeed of the form (5.4)-(5.5), and that (5.6) holds when m = 0. □

We now show that (Pj,k,β) and (αj,k,β) can be defined so that (2.16) holds. We construct Pj,k,β

and αj,k,β by induction, so that the whole sum in (5.3) vanishes, which implies (5.2). To this aim,
we shall use the expressions (5.4)-(5.5) and the properties of the operators L±,β. In particular, we
will obtain the explicit formula for α0,1,0, as stated in part (iii).

Proof of (iii) and (2.16). Let (m, k) ∈ N × N∗ with m + k < κ. Assume that we have defined
αj′,k′,β (if j′ is even) and Pj′,k′,β for all (j′, k′) ∈ Θκ with (j′, k′) < (2m, k).

By (5.4) and Proposition 4.6, for any choice of α2m,k,β ∈ R there exists P2m,k,β ∈ Dβ such that
Ψ2m,k,β = 0. Moreover ∂ℓβP2m,k,β ∈ C∞

exp for all ℓ ∈ N by Lemma 4.9.
We choose α2m,k,β so that (see (5.5) and Proposition 4.6 again)

(2m+ k)P2m,k,β − Ψ̃2m+1,k,β ∈ Ran(L−,β) = span(Qβ)
⊥. (5.8)

By Lemma 4.7 and the selfadjointness of L+,β, this condition reads

2m+ k

2
(L+,βP2m,k,β,ΛβQβ) +

(
Ψ̃2m+1,k,β, Qβ

)
= 0,

which gives

α2m,k,β = − 4

(y2Qβ,ΛβQβ)

(
2

2m+ k

(
Ψ̃2m+1,k,β, Qβ

)
+
(
Ψ̃2m,k,β,ΛβQβ

))
.

We can then choose P2m+1,k,β ∈ Dβ ∩ span(Qβ)
⊥ such that Ψ2m+1,k,β = 0. And ∂ℓβP2m+1,k,β ∈ C∞

exp

for all ℓ ∈ N by Lemma 4.9. We have thus constructed (Pj,k,β) and (αj,k,β) so that (2.16) holds.
We finally check (iii). For m = 0 and k = 1, (5.6) yields

α0,1,β = −
4Nγ

(
Q′

β, Qβ

)
(N2 − β2) (y2Qβ,ΛβQβ)

.

Hence, by Lemma 4.3,

α0,1,0 = − 4γ (Q′, Q)

N (y2Q,ΛQ)
= −2γ

Q(0)2

∥yQ∥2L2(G)
= α⋆,

as expected. □

Proof of (2.18) and (2.19)-(2.20). We start by proving (2.18). Recall that the energy E is defined
as

E(u) =
1

2

∫
G
|ux|2 dx+

γ

2
|u(0)|2 − 1

6

∫
G
|u|6 dx, u ∈ H1

D(G).
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Letting

u(x) = λ−1/2v(λ−1x), λ > 0,

we have that u ∈ D(Hγ) ⇔ v ∈ D(Hγλ) and the change of variables y = λ−1x yields

E(u) =
1

λ2

[
1

2

∫
G
|vy(y)|2 dy +

γλ

2
|v(0)|2 − 1

6

∫
G
|v(y)|6 dy

]
=:

1

λ2
Ẽ(λ, v). (5.9)

Note that Ẽ is Fréchet differentiable with respect to its second variable at any v ∈ Dγλ, with
derivative

DpẼ(λ, v) = −Hγλv − f(v). (5.10)

We now consider

p := e−ib y2

4 P ∈ D(Hγλ). (5.11)

Then

P̃ = λ−1/2ei(θ−b y2

4
)P = λ−1/2eiθp

and we deduce from (5.9) (with v = eiθp) that

E(P̃ ) =
1

λ2
Ẽ(λ, p). (5.12)

Hence,

d

ds
E(P̃ (s)) =

(
− 2

λs
λ3

)
Ẽ(λ, p) +

1

λ2

[
DλẼ(λ, p)λs + (DpẼ(λ, p), ps)

]
=

1

λ2

[
− 2

λs
λ
Ẽ(λ, p) +

γλ

2

λs
λ
|p(0)|2 + (DpẼ(λ, p), ps)

]
.

To compute the last term, we shall use the equation satisfied by p, which we derive from (2.15),
using (5.10):

ips = −Hγλp+ p− f(p) + i
λs
λ
Λp− i

(λs
λ

+ b
)
Λp+ (bs + b2 − α)

y2

4
p+ e−ib y2

4 Ψκ

= DpẼ(λ, p) + p+ i
λs
λ
Λp− i

(λs
λ

+ b
)
Λp+ (bs + b2 − α)

y2

4
p+ e−ib y2

4 Ψκ.

Since (DpẼ(λ, p), iDpẼ(λ, p)) = (DpẼ(λ, p), ip) = 0, it follows that

(DpẼ(λ, p), ps) =
λs
λ
(DpẼ(λ, p),Λp)

−
(λs
λ

+ b
)
(DpẼ(λ, p),Λp)−

(
DpẼ(λ, p), i(bs + b2 − α)

y2

4
p
)

−
(
DpẼ(λ, p), ie

−ib y2

4 Ψκ

)
.

Hence,

d

ds
E(P̃ (s)) =

1

λ2

[
λs
λ

(
− 2Ẽ(λ, p) +

γλ

2
|p(0)|2 + (DpẼ(λ, p),Λp)

)
−

(λs
λ

+ b
)
(DpẼ(λ, p),Λp)−

(
DpẼ(λ, p), i(bs + b2 − α)

y2

4
p
)

−
(
DpẼ(λ, p), ie

−ib y2

4 Ψκ

)]
. (5.13)
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To conclude the proof of (2.18), we will show that

−2Ẽ(λ, p) +
γλ

2
|p(0)|2 + (DpẼ(λ, p),Λp) = 0. (5.14)

Estimate (2.18) is then a direct consequence of (2.16). Using again (5.10), the left-hand side
of (5.14) reads

−
∫
G
|py|2 dy − γλ|p(0)|2 + 1

3

∫
G
|p|6 dy + γλ

2
|p(0)|2 − (Hγλp,Λp)− Re

∫
G
|p|4pΛp dy. (5.15)

An integration by parts shows that

Re

∫
G
pyyypy dy = −1

2

∫
G
|py|2 dy,

so that

(Hγλp,Λp) =
(
Hγλp,

1

2
p+ ypy

)
=

1

2

∫
G
|py|2 dy +

γλ

2
|p(0)|2 − Re

∫
G
pyyypy dy

=

∫
G
|py|2 dy +

γλ

2
|p(0)|2. (5.16)

Another integration by parts yields

Re

∫
G
|p|4pypy dy = −1

6

∫
G
|p|6 dy

and it follows that

Re

∫
G
|p|4pΛp dy =

1

2

∫
G
|p|6 dy +Re

∫
G
|p|4pypy dy =

1

3

∫
G
|p|6 dy. (5.17)

(5.16) and (5.17) show that all terms in (5.15) cancel out, which completes the proof of (2.18).
We next prove (2.19)-(2.20). First, by (5.11) and (5.12),

λ2E(P̃ ) = Ẽ
(
λ, e−ib y2

4 P
)

=
1

2

∫
G

(
b2
y2

4
|P |2 + |Py|2 +Re(ibyPyP̄ )

)
dy +

γλ

2
|P (0)|2 − 1

6

∫
G
|P |6 dy

=
1

2

∫
G
|Py|2 dy +

b2

8

∫
G
y2|P |2 dy − b

2
Im

∫
G
yPyP̄ dy +

γλ

2
|P (0)|2 − 1

6

∫
G
|P |6 dy.

We shall now plug in

P = Qγλ + λZ,

where, according to (2.13),

Z =
∑

(j,k)∈Θκ

(ib)jλk−1Pj,k,γλ.
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We find that

Ẽ
(
λ, e−ib y2

4 P
)
=

1

2

∫
G
|∂yQγλ|2 dy + λ

∫
G
∂yQγλRe

(
Z̄y

)
dy +

λ2

2

∫
G
|Zy|2 dy

+
b2

8

∫
G
y2Q2

γλ dy +
b2

4
λ

∫
G
y2Qγλ Re

(
Z̄
)
+
b2

8
λ2

∫
G
y2|Z|2 dy

− b

2
λ Im

∫
G
y
(
ZyQγλ + ∂yQγλZ̄

)
dy − b

2
λ2 Im

∫
G
yZyZ̄ dy

+
γλ

2
Qγλ(0)

2 + γλ2Qγλ(0)Re
(
Z̄(0)

)
+
γλ3

2
|Z(0)|2 − 1

6

∫
G
|Qγλ + λZ|6 dy.

Since Qγλ satisfies

HγλQγλ +Qγλ −Q5
γλ = 0, (5.18)

it is a critical point of the functional

A(v) :=
1

2

∫
G
|vy(y)|2 dy +

γλ

2
|v(0)|2 + 1

2

∫
G
|v(y)|2 dy − 1

6

∫
G
|v(y)|6 dy, v ∈ H1

D(G).

Letting Qµ
γλ(y) = µ1/2Qγλ(µy), µ > 0, we deduce that

d

dµ

∣∣∣
µ=1

A(Qµ
γλ) = A′(Qγλ)

dQµ
γλ

dµ

∣∣∣
µ=1

= 0.

An explicit computation of the left-hand side of this identity yields

1

2

∫
G
|∂yQγλ|2 dy +

γλ

4
Qγλ(0)

2 − 1

6

∫
G
Q6

γλ dy = 0. (5.19)

On the other hand, by (5.18),∫
G
∂yQγλ Re

(
Z̄y

)
dy + γλQγλ(0)Re

(
Z̄(0)

)
= (HγλQγλ, Z)

= (−Qγλ +Q5
γλ, Z)

= −(Qγλ, Z) +

∫
G
Q5

γλ Re
(
Z̄
)
dy. (5.20)

Using (5.19) and (5.20), the energy becomes

Ẽ
(
λ, e−ib y2

4 P
)
=
γλ

4
Qγλ(0)

2 +
b2

8

∫
G
y2Q2

γλ dy − λ(Qγλ, Z)

− 1

6

∫
G

(
|Qγλ + λZ|6 −Q6

γλ − 6Q5
γλ Re

(
λZ̄

))
dy

− b

2
λ Im

∫
G
y
(
ZyQγλ + ∂yQγλZ̄

)
dy − b

2
λ2 Im

∫
G
yZyZ̄ dy

+
λ2

2

∫
G
|Zy|2 dy +

b2

4
λ

∫
G
y2QγλRe

(
Z̄
)
dy +

b2

8
λ2

∫
G
y2|Z|2 dy + γλ3

2
|Z(0)|2.

(5.21)
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The first line of the above right-hand side is of order λ ∼ b2, while the next lines are of higher
orders. In the rest of this proof we write Polκ(b, λ) for any function of b and λ of the form∑

(j,k)∈Θκ

j even, j/2+k⩾2

ηj,kb
jλk, (ηj,k) ⊂ R.

In particular (2.19) reads

E(P̃ (b, λ, θ)) = CQEmo(b, λ) +
1

λ2
(
Polκ(b, λ) +O((b2 + λ)κ)

)
. (5.22)

Using (2.10) and the definition of α⋆ (see (2.12)), Taylor expansions about γλ = 0 yield

γλ

4
Qγλ(0)

2 =
γλ

4
Q(0)2 + Polκ(b, λ) +O((b2 + λ)κ)

= −α⋆CQλ+ Polκ(b, λ) +O((b2 + λ)κ).
(5.23)

and
b2

8

∫
G
y2Q2

γλ(y) dy =
b2

8

∫
G
y2Q2(y) dy + Polκ(b, λ) +O((b2 + λ)κ)

= b2CQ + Polκ(b, λ) +O((b2 + λ)κ).

(5.24)

On the other hand, since L+ρ = y2Q (see Lemma 4.1), we deduce from (5.4) that

P0,1,0 =
α0,1,0

4
ρ =

α⋆

4
ρ.

Hence, by Lemma 4.3 and Lemma 4.9,

(Q,P0,1,0) =
α⋆

4
(Q, ρ) = α⋆

∫
G y

2Q(y)2 dy

8
.

This gives

−λ(Qγλ, P0,1,γλ) = −λα⋆CQ + Polκ(b, λ) +O((b2 + λ)κ). (5.25)

With (5.23)-(5.25) it follows that

1

λ2

(γλ
4
Qγλ(0)

2 +
b2

8

∫
G
y2Q2

γλ dy − λ(Qγλ, P0,1,γλ)
)
= CQEop +

1

λ2
(
Polκ(b, λ) +O((b2 + λ)κ)

)
.

Finally, upon close inspection of the other terms in (5.21), using the definition of Z, we have

− 1

6

∫
G

(
|Qγλ + λZ|6 −Q6

γλ − 6Q5
γλRe

(
λZ̄

))
dy

− b

2
λ Im

∫
G
y
(
ZyQγλ + ∂yQγλZ̄

)
dy − b

2
λ2 Im

∫
G
yZyZ̄ dy

+
λ2

2

∫
G
|Zy|2 dy +

b2

4
λ

∫
G
y2Qγλ Re

(
Z̄
)
dy +

b2

8
λ2

∫
G
y2|Z|2 dy + γλ3

2
|Z(0)|2

= Polκ(b, λ) +O((b2 + λ)κ).

This gives (5.22) and concludes the proof. □

Corollary 5.2. Let k ∈ N. There exists C > 0 such that for λ > 0 with γλ ∈ (−N,N) we have

∥Qγλ −Q∥Σk ⩽ Cλ, ∥Pb,λ −Q∥Σk ⩽ Cλ.



34 F. GENOUD, S. LE COZ, AND J. ROYER

Proof. By construction of the profile we have

∥Pb,λ −Qλγ∥Σk ≲ λ.

On the other hand, we see from (2.11) that

∥Qβ −Q∥Σk ≲ β,

and the conclusion follows. □

6. Modulation

In this section we prove Proposition 2.4. We set

Ω = R× R× (0, N/|γ|).
Then for π = (θ, b, λ) ∈ Ω and w = (wj)j=1,...,N ∈ L2(G) we define Θπw ∈ L(L2(G)) by

(Θπw)j(x) =
1√
λ
eiθe−

ibx2

4λ2 wj

(x
λ

)
, j = 1, . . . , N.

This defines a unitary operator Θπ on L2(G).
For ε > 0 we also set

Qε =
⋃

θ∈R,λ∈(0,ε)

BL2(G)(Θθ,0,λQ, ε).

It is endowed with the topology inherited from L2(G). Finally, we recall that Pb,λ is defined in
Proposition 2.3 and ρ by Lemma 4.1. Then Proposition 2.4 is a consequence of the following result.

Proposition 6.1. There exist ε > 0 and a function π = (θ, b, λ) ∈ C1(Qε,Ω) such that for any
u ∈ Qε we have in L2(G)

Θ−1
π(u)u− Pb(u),λ(u),γλ(u) ∈

{
y2Pb(u),λ(u),γλ(u), iΛPb(u),λ(u),γλ(u), iρ

}⊥
.

Proof. For π = (θ, b, λ) ∈ R× R× (0, 2), w ∈ L2(G) and σ ∈
(
− N

2|γ| ,
N
2|γ|

)
, we set

h(π;w, σ) = Θ−1
π w − Pb,σλ,γσλ and F (π;w, σ) =

(h(π,w, σ), y2Pb,σλ,γσλ)L2(G)
(h(π,w, σ), iΛPb,σλ,γσλ)L2(G)

(h(π,w, σ), iρ)L2(G)

 .

This defines functions of class C1 from R × R × (0, 2) × L2(G) ×
(
− N

2|γ| ,
N
2|γ|

)
to L2(G) and R3,

respectively. Moreover, we have h(0, 0, 1;Q, 0) = 0 and F (0, 0, 1;Q, 0) = 0 (the interest of the
extra parameter σ is that we can start the analysis around λ = 1 and Q = P0,0,0). We have
(∂θPb,σλ,γσλ, ∂bPb,σλ,γσλ, ∂λPb,σλ,γσλ)|b=0,λ=1,σ=0 = (0, 0, 0), so

∇θ,b,λh(0, 0, 1;Q, 0) =

−iQ
iy2

4
Q

ΛQ

 .

By Lemma 4.3 we have (Q,ΛQ) = 0, so

Jacθ,b,λF
(
0, 0, 1;Q, 0

)
=

 0 0 (ΛQ, y2Q)
0 1

4
(y2Q,ΛQ) 0

−(Q, ρ) 1
4
(y2Q, ρ) 0

 .

We also have (y2Q,ΛQ) ̸= 0 and (Q, ρ) ̸= 0, so this partial Jacobian is invertible. By the Implicit
Function Theorem, there exist a neighborhood U ⊂ R × R × (0, 2) of (0, 0, 1), a neighborhood V
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of (Q, 0) in L2(G) ×
(
− N

2|γ| ,
N
2|γ|

)
and a function Π0 = (θ0, b0, λ0) : V → U of class C1 such that,

for all π ∈ U and (w, σ) ∈ V , there holds

F (π;w, σ) = 0 ⇐⇒ π = Π0(w, σ).

We now fix ε ∈
(
0, N

2|γ|

)
so small that B(Q, ε)× (−ε, ε) ⊂ V .

Let u ∈ Qε. For (θ1, λ1) ∈ R× (0, ε) such that w1 = Θ−1
θ1,0,λ1

u ∈ B(Q, ε), we set

θ(u) = θ0(w1, λ1) + θ1, b(u) = b0(w1, λ1), λ(u) = λ0(w1, λ1)λ1. (6.1)

We have to check that this definition does not depend on the choice of (θ1, λ1). Let (θ2, λ2) ∈
R× (0, ε) such that we also have w2 = Θ−1

θ2,0,λ2
u ∈ B(Q, ε). Since w1 = Θ−1

θ1−θ2,0,λ1/λ2
w2, we have

F
(
θ0(w1, λ1) + θ1 − θ2, b0(w1, λ1), λ(w1, λ1)λ1/λ2;w2, λ2

)
= F

(
θ0(w1, λ1), b0(w1, λ1), λ(w1, λ1);w1, λ1

)
= 0,

which implies that

θ0(w2, λ2) + θ2 = θ0(w1, λ1) + θ1, b0(w2, λ2) = b0(w1, λ1), λ0(w2, λ2)λ2 = λ0(w1, λ1)λ1.

Thus, θ(u), b(u) and λ(u) are well defined by (6.1). This yields a function π = (θ, b, λ) ∈ C1(Qε,Ω)
such that, for all u ∈ Qε,

Θ−1
θ(u),b(u),λ(u)u− Pb(u),λ(u),γλ(u) = Θ−1

θ0(w1,λ1),0,λ0(w1,λ1)
w1 − Pb0(w1,λ1),λ1λ0(w1,λ1),γλ1λ0(w1,λ1)

∈
{
y2Pb(u),λ(u),γλ(u), iΛPb(u),λ(u),γλ(u), iρ

}⊥
,

which completes the proof. □

The functions θ(t), b(t), λ(t) obtained in Proposition 2.4 are C1 since they come from the com-
position π ◦ u, and u ∈ C1(I, L2(G)). More generally, one could show that they remain C1 even
for a weak solution u ∈ C(I, L2(G)) ∩ C1(I,H1(G)⋆) by using the following result.

Proposition 6.2. Let I be an interval of R. Let u ∈ C0(I, L2(G)) ∩ C1(I,H1(G)⋆). Assume that
there exists a sequence (uk)k∈N in C1(I, L2(G)) which goes to u in C0(I, L2(G)) ∩ C1(I,H1(G)⋆).
Then the map π ◦ u (with π given by Proposition 6.1) is of class C1 on I.

7. Uniform estimates

In this section, we prove Proposition 2.7.

7.1. Change of variables and bootstrap argument. We recall that the profile P was defined
in Proposition 2.3. We consider t1 < 0 and the maximal solution u1 of (1.1) such that u1(t1) is given
by (2.28). We denote by It1 the maximal interval on which u1 is defined and satisfies (2.21). Since

u1(t1) ∈ Dγ ∩ Σ2(G), it follows that u1 ∈ C(It1 , Dγ ∩ Σ2(G)) ∩ C1(It1 , L
2(G)). Let θ̃ ∈ C1(It1 ,R),

b̃ ∈ C1(It1 ,R), λ̃ ∈ C1(It1 ,R∗
+) and h̃ ∈ C(I,Dγλ ∩ Σ2(G)) ∩ C1(I, L2(G)) be the corresponding

modulation parameters and remainder constructed in Proposition 2.4.
We now define precisely the rescaled time variable s that appears in the formal change of

variables (2.4)-(2.5). We first define the final time s1 via the solution λmo of the model dynamical
system (2.22) (see (2.24)) by setting

t1 = −
∫ +∞

s1

λmo(s)
2 ds = − 4

3α2
⋆s

3
1

, (7.1)
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where we recall that α⋆ was defined in (2.12). This yields

s1 =
( 4

3α2
⋆

)1/3

|t1|−1/3. (7.2)

Then for t ∈ It1 we define

s(t) = s1 −
∫ t1

t

1

λ̃(τ)2
dτ. (7.3)

We set Js1 = s(It1). Since s : It1 → Js1 is strictly increasing, t may in turn be expressed as a
function of s via t = s−1 : Js1 → It1 . This will allow us to obtain Proposition 2.7 as a consequence
of the uniform estimates in variable s which are stated in Proposition 7.1 below.

We then express the modulation parameters b̃, λ̃ and θ̃ and the remainder h̃ as functions of the
variable s by setting on Js1

b(s) = b̃(t(s)), λ(s) = λ̃(t(s)), θ(s) = θ̃(t(s)), h(s, ·) = h̃(t(s), ·). (7.4)

In the rest of this section, we will often use the notation

h1 = Reh, h2 = Imh.

In the new variables (s, y), the function v : (s, y) ∈ Js1 × G 7→ u
(
t(s), λ(s)y

)
satisfies

ivs −Hγλv −
λs
λ
yvy + λ2|v|4v = 0, (7.5)

and the final condition

v1(s1, y) =
1√
λ1
Pb1,λ1(y)e

−i
b1y

2

4 . (7.6)

From now on we denote by
P : (s, y) 7→ Pb(s),λ(s),γλ(s)(y)

the profile given by Proposition 2.3 for the modulation parameters (7.4). Then, in view of (2.4),

w = P + h =
√
λe−iθeib(s)y

2/4v

satisfies (2.6).
With the definition (2.15) of Ψκ, (2.6) can then be rewritten as an equation for h:

ihs −Hγλh− h+ f(P + h)− f(P ) +M1(s)h = −Ψκ −M0(s)P + b
(
b+

λs
λ

)y2
2
P, (7.7)

where for ϕ ∈ Σ2(G) we have set

M1(s)ϕ := (1− θs)ϕ+ (bs + b2)
y2

4
ϕ− i

(
b+

λs
λ

)
Λϕ− b

(
b+

λs
λ

)y2
2
ϕ

and

M0(s)ϕ := (1− θs)ϕ+ (bs + b2 − α)
y2

4
ϕ− i

(
b+

λs
λ

)
Λϕ.

Notice that

M1(s)ϕ = M0(s)ϕ+ α
y2

4
ϕ− b

(
b+

λs
λ

)y2
2
ϕ.

For any fixed λ > 0, we define on Σ1(G) the norm ∥ · ∥λ by

∥ϕ∥2λ := ∥ϕ∥2H1 + λ∥yϕ∥2L2 , ϕ ∈ Σ1(G). (7.8)

Note that ∥ · ∥λ is equivalent to the usual norm ∥ · ∥1 ≡ ∥ · ∥Σ1 .
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Proposition 7.1 (Uniform estimates in the s variable). Let s0 be given by Proposition 2.6. Choos-
ing s0 larger if necessary, there exist C, c > 0 such that, for any s1 > s0 and κ ∈ N∗, we have
[s0, s1] ⊂ Js1 and, for all s ∈ [s0, s1],

∥h(s)∥λ(s) ⩽ Cs−(κ−1), (7.9)∣∣∣ λ(s)1/2

λmo(s)1/2
− 1

∣∣∣ ⩽ c

s2
,

∣∣∣ b(s)

bmo(s)
− 1

∣∣∣ ⩽ c

s2
. (7.10)

Remark 7.2. The estimates (7.10) can be improved to∣∣∣ λ(s)1/2

λmo(s)1/2
− 1

∣∣∣ ≲ 1

s4
,

∣∣∣ b(s)

bmo(s)
− 1

∣∣∣ ≲ 1

s4
, s ∈ [s0, s1], (7.11)

by shifting the energy level in the definition of F in (2.25) to E⋆ = E⋆ − (ε0,2 + 2α⋆ε2,1) (see
Remark 7.15).

Proof of Proposition 2.7, assuming Proposition 7.1. Let s1 > s0 and t1 be defined by (7.1). Since
[s0, s1] ⊂ Js1 , we have t([s0, s1]) ⊂ t(Js1) = It1 , for all s1 > 0. However, since the map t depends
on s1, so does the left end-point of the interval t([s0, s1]). We now construct t0, independent of t1,
such that t(s0) ⩽ t0, and so [t0, t1] ⊂ It1 for any t1.
By (7.1), we have

t(s0) = t1 −
∫ s1

s0

λ2(σ) dσ

= −
∫ +∞

s1

λ2mo(σ) dσ −
∫ s1

s0

λ2(σ) dσ

= −
∫ +∞

s0

λ2mo(σ) dσ +

∫ s1

s0

λ2mo(σ) dσ −
∫ s1

s0

λ2(σ) dσ

= −
( 4

3α2
⋆

)
s−3
0 −

∫ s1

s0

[
λ2(σ)− λ2mo(σ)

]
dσ.

Furthermore, for s ∈ Js1 , (7.10) implies∣∣λ(s)2 − λmo(s)
2
∣∣ ≲ s−6.

Hence, ∣∣∣ ∫ s1

s0

[
λ2(σ)− λ2mo(σ)

]
dσ

∣∣∣ ⩽ ∫ +∞

s0

σ−6 dσ ≲ s−5
0 .

It follows that, upon choosing s0 large enough, t(s0) ⩽ t0 := −( 2
3α2

⋆
)s−3

0 for any t1.

Next, for t ∈ [t0, t1],

t = t1 −
∫ s1

s(t)

λ(σ)2 dσ = −
∫ ∞

s(t)

λmo(σ)
2 dσ +O

(
s(t)−5) = − 4

3α2
⋆

s(t)−3 +O
(
s(t)−5).

Hence,

s(t) =
(3α2

⋆

4
|t|
)−1/3(

1 +O(|t|
2
3 )
)
, t→ 0−.

It follows that

bmo(s(t)) =
2

s(t)
= 2

(3α2
⋆

4
|t|
)1/3

+O(|t|), t→ 0−
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and

λmo(s(t)) =
2

α⋆s(t)2
=

2

α⋆

(3α2
⋆

4
|t|
)2/3

+O(|t|
4
3 ), t→ 0−.

Estimates (2.29) now follow directly from (7.10). Recalling the definition of the norm ∥·∥λ in (7.8),
the estimates (2.30) then follow from (2.29) and (7.9). Finally, (2.31) follows from estimate (7.49),
proved below. □

The proof of Proposition 7.1 relies on the following bootstrap result.

Proposition 7.3. Let s0 be given by Proposition 2.6. For s1 > s0, define s⋆ = s⋆(s1) as the
infimum of σ ∈ Js1 ∩ [1, s1] such that, for all s ∈ [σ, s1],

∥h(s)∥λ < s−(κ−2),
∣∣∣ λ(s)1/2

λmo(s)1/2
− 1

∣∣∣ < 1

s1/2
,

∣∣∣ b(s)

bmo(s)
− 1

∣∣∣ < 1

s1/2
. (7.12)

There exist κ0 ⩾ 2 and C, c > 0, all independent of s1, such that (7.9) and (7.10) hold for κ ⩾ κ0
and s ∈ [s⋆, s1].

Remark 7.4. The constant κ0 can be chosen as the smallest integer larger than max{9, 2k/k0 +1}
(see Proposition 7.6, Proposition 7.7 and (7.51)).

Note that, for s ∈ [s⋆, s1], (2.24) and (7.12) yield

b(s) ∼ 2

s
, λ(s) ∼ 2

α⋆

1

s2
. (7.13)

Proof of Proposition 7.1, assuming Proposition 7.3. It is enough to prove Proposition 7.1 for some
large κ. We thus assume that κ ⩾ κ0, where κ0 is given by Proposition 7.3, and hence (7.9)-(7.10)
hold on [s⋆, s1] for any s1. Choosing s0 larger if necessary, we can assume that s0 ⩾ max{2C, 2c2/3}.
Suppose by contradiction that there exists s1 > s0 such that either Js1 ̸⊂ [s0, s1] or Js1 ⊂ [s0, s1]
but one of the inequalities in (7.9)-(7.10) fails on [s0, s1]. By Proposition 7.3, this implies s0 < s⋆.
By (7.12) and Corollary 5.2, we have inf Js1 < s⋆ if s0 is large enough. Furthermore, since h(s1) = 0
by construction, it follows from Proposition 2.6 that (7.12) is satisfied at s = s1, provided s0 is
large enough. Hence, by continuity, s⋆ < s1 and at least one of the inequalities of (7.12) becomes
an equality at s = s⋆. Since s⋆ > max{2C, 2c2/3}, this yields a contradiction with (7.9)-(7.10).
Thus, s⋆ ⩽ s0. This means that s0 ∈ Js1 and (7.9)-(7.10) hold on [s0, s1]. □

The rest of this section is devoted to the proof of Proposition 7.3.

7.2. Modulation estimates. For the rest of the section we work under the assumptions of Propo-
sition 7.3. All the estimates which appear in the discussion are independent of s1.

We first justify quantitatively that, for large times, the modulation parameters are approximate
solutions of the model dynamical system (2.22).

Let

Mod(s) :=

 b+ λs/λ
bs + b2 − α

1− θs

 , s ∈ [s0, s1].

Then by (7.13) and (2.14) we have

|bs| ≲
1

s2
+ |Mod(s)|, |λs| ≲

1

s3
+

|Mod(s)|
s2

(7.14)
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Lemma 7.5. If κ ⩾ 5, there exists Cκ > 0 (independent of s1) such that, for all s ∈ [s⋆, s1],

|Mod(s)| ⩽ Cκs
−κ, (7.15)

|(h(s), Q)L2| ⩽ Cκs
−κ. (7.16)

Proof. Let us first define

s⋆⋆ := inf
{
σ ∈ [s⋆, s1] : |(h(s), P (s))L2| < s−κ, ∀s ∈ [σ, s1]

}
.

Since h(s1) = 0, we have s⋆⋆ ∈ [s⋆, s1). The main step is to prove that (7.15) holds on [s⋆⋆, s1]. By
a bootstrap argument, it will then follow that s⋆⋆ = s⋆, and we will finally deduce (7.16).
We start by differentiating the equality (h, iΛP ) = 0 with respect to s. Since P , h and ΛP

belong to C1(Js1 , L
2(G)) by Proposition 2.3, this simply gives, on [s⋆⋆, s1],

(hs, iΛP ) + (h, iΛPs) = 0. (7.17)

Firstly, for κ ⩾ 4, (2.14), (2.15), (2.16), (5.7) and (7.12) yield

|(h, iΛPs)| ≲ ∥h∥L2

(
|Mod(s)|+ s−2) ≲ s−(κ−2)|Mod(s)|+ s−κ ≲ s−2|Mod(s)|+ s−κ. (7.18)

We next estimate (hs, iΛP ) = − (ihs,ΛP ). By Corollary 5.2 and (7.12), we have

f(P + h)− f(P ) = df(P )h+O(|h|2) = df(P )h+O(s−(κ−2)|h|) = df(Qγλ)h+O(s−2|h|),

where df denotes the differential (in the real sense) of f : C → C, f(z) = |z|4z, that is, df(z)h =
|z|4h+ 4|z|2zRe(zh̄). Thus, the equation for h reads

ihs = Hγλh+ h− df(Qγλ)h+O(s−2|h|)

−
[
M1(s)h+M0(s)P − b

(
b+

λs
λ

)y2
2
P +Ψκ

]
. (7.19)

Furthermore, noting that

Hγλh+ h− df(Qγλ)h = L+,γλh1 + iL−,γλh2 (7.20)

we have, for all s ∈ [s⋆⋆, s1],

(Hγλh+ h− df(Qγλ)h,ΛP ) = (L+,γλh1,ΛQ) + (Hγλh+ h− df(Qγλ)h,Λ(P −Q)).

By Corollary 5.2, it follows that

|(Hγλh+ h− df(Qγλ)h,Λ(P −Q))| ≲ ∥h∥H1∥Λ(P −Q)∥H1 ≲ s−2∥h∥H1 .

On the other hand, by Lemma 4.1 and (7.12),

(L+,γλh1,ΛQ) = ⟨L+,γλh1,ΛQ⟩
= ⟨L+h1,ΛQ⟩+ γλh1(0)(ΛQ)(0)

= (h1, L+ΛQ) +O(s−2∥h∥H1)

= −2(h,Q) +O(s−κ).

Therefore, by Corollary 5.2 and the definition of s⋆⋆ we have, on [s⋆⋆, s1],(
Hγλh+ h− df(Qγλ)h+O(s−2|h|),ΛP

)
= −2(h,Q) +O(s−κ)

= −2(h, P ) +O(s−κ) = O(s−κ).
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Now we estimate the terms in the second line of (7.19). Firstly, putting the factors y2 on the right,

(M1(s)h,ΛP ) =

(
M0(s)h+ α

y2

4
h− b

(
b+

λs
λ

)y2
2
h,ΛP

)
= O(|Mod(s)|∥h∥L2) +O(|α(s)|∥h∥L2) +O(b|Mod(s)|∥h∥L2)

= O(|Mod(s)|∥h∥L2) +O(s−κ).

Next, by Lemma 4.3,

(M0(s)P,ΛP )−
(
b
(
b+

λs
λ

)y2
2
P,ΛP

)
= (M0(s)Q,ΛQ)−

(
b
(
b+

λs
λ

)y2
2
Q,ΛQ

)
+O(s−2|Mod(s)|)

= −1

4
(bs + b2 − α)∥yQ∥2L2 +

1

2
b
(
b+

λs
λ

)
∥yQ∥2L2 +O(s−2|Mod(s)|).

Finally,

(Ψκ,ΛP ) = O(s−2|Mod(s)|) +O(s−2κ).

All in all, we find that

(hs, iΛP ) =
1

4
∥yQ∥2L2

[
2b
(
b+

λs
λ

)
− (bs + b2 − α)

)]
+O(s−2|Mod(s)|) +O(s−κ).

Hence, the restriction of (7.17) to [s⋆⋆, s1] gives

(bs + b2 − α)− 2b
(
b+

λs
λ

)
= O(s−2|Mod(s)|) +O(s−κ). (7.21)

We next differentiate (h, y2P ) = 0 with respect to s and we get, on [s⋆⋆, s1],(
hs, y

2P
)
+
(
h, y2Ps

)
= 0. (7.22)

Similarly to (7.18), for κ ⩾ 4 we deduce from (7.12) that

|(h, y2Ps)| ≲ s−2|Mod(s)|+ s−κ.

For the term (hs, y
2P ) = (ihs, iy

2P ) we shall again use (7.19) on [s⋆⋆, s1]. By Lemma 4.1, (7.12),
Corollary 5.2 and Proposition 2.4 we have, on [s⋆⋆, s1],(

Hγλh+ h− df(Qγλ)h+O(s−2|h|), iy2P
)
=

(
Hγλh+ h− df(Q)h, iy2Q

)
+O(s−κ)

=
(
h2, L−y

2Q
)
+O(s−κ)

= −4(h2,ΛQ) +O(s−κ)

= −4(h, iΛP ) +O(s−κ)

= O(s−κ).

Using Lemma 4.3 and (7.12), similar calculations to the above yield(
M1(s)h+M0(s)P − b

(
b+

λs
λ

)y2
2
P +Ψκ, iy

2P

)
= ∥yQ∥2L2

(
b+

λs
λ

)
+O(s−2|Mod(s)|) +O(s−κ).
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Hence, gathering all terms of (7.22), we find that∣∣∣b+ λs
λ

∣∣∣ ≲ s−2|Mod(s)|+ s−κ, s ∈ [s⋆⋆, s1]. (7.23)

It then follows from (7.21) that

|bs + b2 − α| ≲ s−2|Mod(s)|+ s−κ, s ∈ [s⋆⋆, s1]. (7.24)

Finally, differentiating (h, iρ) = 0 with respect to s yields, on [s⋆⋆, s1],

(ihs, ρ) = 0. (7.25)

As above we have, on [s⋆⋆, s1],(
Hγλh+ h− df(Qγλ)h+O(s−2|h|), ρ

)
= (h1, L+ρ) +O(s−κ) = (h1, y

2Q) +O(s−κ) = (h, y2P ) +O(s−κ) = O(s−κ).

On the other hand, Lemma 4.3 and (7.12) yield (notice that ρ also decays exponentially)(
M1(s)h+M0(s)P − b

(
b+

λs
λ

)y2
2
P +ΨK , ρ

)
=

1

2
∥yQ∥2L2(1− θs) +

1

4
(y2Q, ρ)(bs + b2 − α)− 1

2
(y2Q, ρ)b

(
b+

λs
λ

)
+O(s−2|Mod(s)|) +O(s−κ).

It then follows from (7.25) that

|1− θs| = O(|bs + b2 − α|) +O
(
b
∣∣∣b+ λs

λ

∣∣∣)+O(s−2|Mod(s)|) +O(s−κ).

Thus, by (7.23) and (7.24),

|1− θs| ≲ s−2|Mod(s)|+ s−κ, s ∈ [s⋆⋆, s1]. (7.26)

Gathering (7.23), (7.24) and (7.26), we conclude that

|Mod(s)| ≲ s−2|Mod(s)|+ s−κ,

which implies that (7.15) holds on [s⋆⋆, s1].
Since h(s1) = 0 and by conservation of the mass, we now have, for s ∈ [s⋆⋆, s1],

∥P (s1)∥2L2 = ∥v(s1)∥2L2 = ∥v(s)∥2L2 = ∥P (s) + h(s)∥2L2

= ∥P (s)∥2L2 + 2(P (s), h(s)) + ∥h(s)∥2L2 ,

so that

(P (s), h(s)) = −1

2
∥h(s)∥2L2 +

1

2

(
∥P (s1)∥2L2 − ∥P (s)∥2L2

)
.

Furthermore, using (2.15), (2.16) and (7.15) (proved on [s⋆⋆, s1]), we get∣∣∂s∥P∥2L2

∣∣ = 2|(P, Ps)| = 2|(P,−iΨκ)| ≲ ∥Ψκ∥ ≲ s−(κ+2).

Hence, integrating from s to s1,∣∣∥P (s1)∥2L2 − ∥P (s)∥2L2

∣∣ ≲ s−(κ+1).

For κ ⩾ 5, it thus follows by (7.12) that

|(P, h)| ≲ ∥h∥2L2 + s−(κ+1) ≲ s−(κ+1), s ∈ [s⋆⋆, s1].

Therefore, s⋆⋆ = s⋆ and in particular (7.15) holds on [s⋆, s1].
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Finally, (7.16) follows from Corollary 5.2, (7.12) and the estimate |(P, h)| ≲ s−κ, which now
holds on [s⋆, s1]. □

7.3. Monotone energy-virial functional. We define F : C → C by F (z) = 1
6
|z|6. The differ-

ential of F (in the real sense) is given by dF (z)h = |z|4Re(zh̄). For s ∈ [s⋆, s1] and ϕ ∈ H1(G),
we set

G(s, ϕ) =
1

2
∥ϕ∥2λ +

γλ

2
|ϕ(0)|2 −

∫
G

[
F (P + ϕ)− F (P )− dF (P )ϕ

]
dy. (7.27)

If ϕ ∈ Dγλ, we also have

G(s, ϕ) =
1

2
(Hγλϕ+ ϕ, ϕ) +

λ

2
∥yϕ∥2L2 −

∫
G

[
F (P + ϕ)− F (P )− dF (P )ϕ

]
dy.

Then our main tool to bootstrap the estimate on h will be the functional

S(s, h(s)) :=
G(s, h(s))

λm(s)
, (7.28)

where m is a large positive integer which will be determined later.

Proposition 7.6. There exists k0 > 0 and C > 0 such that, for s ∈ [s⋆, s1], there holds

1

λm
(
k0∥h∥2λ − Cs−2(κ−1)

)
⩽ S(s, h) ⩽

1

2
∥h∥2λ + Cs−2∥h∥2H1 .

Proof. By (7.13) we have

|γ|λ
2

|h(0)|2 ≲ s−2∥h∥2H1 .

On the other hand, by Corollary 5.2,

F (P + h)− F (P )− dF (P )h =
1

6
|P + h|6 − 1

6
|P |6 − Re

(
|P |4Ph̄

)
=

5

2
Q4h21 +

1

2
Q4h22 +O(λ|h|) +O(|h|3).

Hence ∣∣∣∣∫
G

[
F (P + h)− F (P )− dF (P )h

]
dy

∣∣∣∣ ≲ s−2∥h∥2H1

and the upper bound follows.
For the lower bound, we use Lemma 4.5, Proposition 2.4 and Corollary 5.2 to write

1

2
∥h∥2H1 −

∫
G

[
F (P + h)− F (P )− dF (P )h

]
dy

=
1

2

[
∥h∥2H1 −

∫
G
(5Q4h21 +Q4h22) dy

]
+O(s−2∥h∥2L2) +O(∥h∥3H1)

=
1

2

[
⟨L+h1, h1⟩+ ⟨L−h2, h2⟩

]
+O(s−2∥h∥2L2) +O(∥h∥3H1)

⩾
µ

2
∥h∥2H1 −

1

2µ

(
(h,Q)2L2 +O(s−4∥h∥2L2)

)
+O(s−2∥h∥2L2) +O(∥h∥3H1).
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By (7.12) and (7.16), we conclude that

1

2
∥h∥2H1 −

∫
G

[
F (P + h)− F (P )− dF (P )h

]
dy

⩾
µ

2
∥h∥2H1 +O(s−2κ) +O(s−2(κ−1)) +O(s−3(κ−2)),

and hence
G(s, h) ⩾

µ

2
∥h∥2λ +O(s−2(κ−1)),

which completes the proof. □

We shall next estimate the total derivative of G(s, h(s)) with respect to s. Note that G is Fréchet
differentiable with respect to its second variable at any h ∈ Dγλ, with derivative

DhG = Hγλh+ h+ λy2h−
(
f(P + h)− f(P )

)
. (7.29)

This can also be written as

DhG = Hγλh+ h+ λy2h− df(P )h−R(h), (7.30)

where
R(h) = f(P + h)− f(P )− df(P )h = O(|h|2).

Since h(s) ∈ Dγλ for all s ∈ Js1 and h ∈ C1(Js1 , L
2(G)), we can write

d

ds
G(s, h(s)) = DsG(s, h(s)) + (DhG(s, h(s)), hs). (7.31)

Proposition 7.7. There exists a constant k > 0 such that, for all s ∈ [s⋆, s1],

d

ds
G(s, h(s)) ⩾ b

(
−k∥h∥2λ +O(s−2(κ−1))

)
. (7.32)

The proof of Proposition 7.7 breaks down into several lemmas.

Remark 7.8. Upon close inspection of the estimates involved, one notices that (7.32) holds for any
k verifying

k > 1 + max{1, 4/α⋆}+max{2, α⋆/2}.

Lemma 7.9. There exists k1 > 0 such that, for all s ∈ [s⋆, s1],

DsG(s, h(s)) ⩾ −b k1∥h∥2λ.

Proof. We have

DsG =
λs
2
∥yh∥2L2 +

γλs
2

|h(0)|2 −Ds

∫
G

[
F (P + h)− F (P )− dF (P )h

]
dy.

By (7.14) and (7.15) we have λs = O(s−3), so

|λs|
2

∥yh∥2L2 +
γ|λs|
2

|h(0)|2 ≲ s−3∥yh∥2L2 + s−3∥h∥2H1 .

The expression
F (P + h)− F (P )− dF (P )h

is composed of a collection of polynomial terms in P , P̄ , h and h̄, all of which of order 6, and at
least of order 2 in (h, h̄). As a consequence, we may apply Ds to get

Ds

∫
G

[
F (P + h)− F (P )− dF (P )h

]
dy = O(λs∥h∥2H1) = O(s−3∥h∥2H1).
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Thus,
|DsG| ≲ s−3∥yh∥2L2 + s−3∥h∥2H1 ≲ s−1

(
∥h∥2H1 + s−2∥yh∥2L2

)
.

The result now follows from (7.13). □

We next estimate the second term (DhG, hs) = (iDhG, ihs) in (7.31). We rewrite (7.7) as

ihs = DhG− λy2h−M1(s)h−M0(s)P + Φκ,

where, by (2.16) and (7.15),

Φκ = b
(
b+

λs
λ

)y2
2
P −Ψκ(s) = OΣ1(G)(s

−(κ+1)). (7.33)

Since (iDhG,DhG) = 0, we have

(DhG, hs) = −λ(iDhG, y
2h)− (iDhG,M1(s)h)− (iDhG,M0(s)P ) + (iDhG,Φκ). (7.34)

The main contributions in the right-hand side of (7.34) are estimated as follows (in (7.36) we
estimate a contribution coming from the term (iDhG,M1(s)h)).

Lemma 7.10. For s ∈ [s⋆, s1], we have

|λ(iDhG, y
2h)| ≲ s−1∥h∥2λ (7.35)

and ∣∣∣1
4

(
bs − b2 − 2b

λs
λ

)
(iDhG, y

2h)
∣∣∣ ≲ s−1∥h∥2λ. (7.36)

Proof. We begin with (7.35). Discarding inner products whose real part is zero, we have

(iDhG, y
2h) = −(Hγλh+ h+ λy2h− df(P )h−R(h), iy2h)

= −(Hγλh− df(P )h−R(h), iy2h)

= −(∂yh, i∂y(y
2h)) + (df(P )h+R(h), iy2h).

First, ∣∣(∂yh, i∂y(y2h))∣∣ = ∣∣2(∂yh, iyh)∣∣ ⩽ 2s1/2∥hy∥L2s−1/2∥yh∥L2 ⩽ s∥hy∥2L2 + s−1∥yh∥2L2 .

On the other hand,
|(df(P )h, y2h)| ≲ ∥h∥2L2

and

|(R(h), y2h)| ≲
∫
G
(|P |3y2|h|3 + y2|h|6) dy ≲ ∥h∥3H1 + ∥h∥4H1∥yh∥2L2 .

It follows that

|λ(iDhG, y
2h)| ≲ λ

(
s∥hy∥2L2 + s−1∥yh∥2L2 + ∥h∥2L2 + ∥h∥3H1 + ∥h∥4H1∥yh∥2L2

)
≲ s−1

(
∥hy∥2L2 + λ∥yh∥2L2 + ∥h∥2L2

)
+ s−2∥h∥3H1

≲ s−1
(
∥h∥2H1 + λ∥yh∥2L2

)
,

which concludes the proof of (7.35). The estimate (7.36) follows by the same arguments using

bs − b2 − 2b
λs
λ

= O(λ).

□

We now estimate the other contributions in (7.34).
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Lemma 7.11. For s ∈ [s⋆, s1],

|(iDhG,M1(s)h)| ≲ s−1∥h∥2λ.

Proof. We have

(iDhG,M1(s)h) = (1− θs)(iDhG, h) +
1

4

(
bs − b2 − 2b

λs
λ

)
(iDhG, y

2h)−
(
b+

λs
λ

)
(iDhG, iΛh).

Note that the second term has already been dealt with in Lemma 7.10. Recall that h ∈ Σ2, hence
Λh ∈ L2. Now,

(iDhG, h) = −(DhG, ih) = −(Hγλh+ h+ λy2h− df(P )h−R(h), ih)

= (df(P )h+R(h), ih)

so, by (7.15),

|(1− θs)(iDhG, h)| ≲ s−κ∥h∥2H1 . (7.37)

Next,

(iDhG, iΛh) = (DhG,Λh) = (Hγλh+ h+ λy2h− [f(P + h)− f(P )],Λh). (7.38)

Integrating by parts, we find that

(Hγλh,Λh) =
(
Hγλh,

h

2
+ yhy

)
=

1

2
(Hγλh, h)− Re

∫
G
hyyyhy dy

=
1

2
∥hy∥2L2 +

γλ

2
|h(0)|2 + 1

2
∥hy∥2L2 .

Further integrations by parts give

Re

∫
G
hΛh dy = 0, Re

∫
G
y2hΛh dy = −

∫
G
y2|h|2 dy.

Hence, ∣∣(Hγλh+ h+ λy2h, ih)
∣∣ ≲ ∥h∥2λ. (7.39)

Next, integrating by parts,

(f(P + h)− f(P ),Λh)

=
1

2
Re

∫
G

(
f(P + h)− f(P )

)
h̄ dy +Re

∫
G

(
f(P + h)− f(P )

)
yhy dy

= −1

2
Re

∫
G

(
f(P + h)− f(P )

)
h̄ dy − Re

∫
G
y∂y

(
f(P + h)− f(P )

)
h dy.

For the second term, we have∫
G
y∂y

(
f(P + h)− f(P )

)
h dy =

∫
G
y
(
df(P + h)(Py + hy)− df(P )Py

)
h dy

=

∫
G
y
(
df(P + h)− df(P )

)
Pyh dy +

∫
G
ydf(P + h)hyh̄ dy.

We estimate ∣∣∣ ∫
G

(
f(P + h)− f(P )

)
h̄ dy

∣∣∣ ⩽ ∥f(P + h)− f(P )∥L2∥h∥L2 ≲ ∥h∥2H1
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and ∣∣∣ ∫
G
y
(
f(P + h)− f(P )

)
y
h dy

∣∣∣
⩽ ∥yPy∥L∞∥df(P + h)− df(P )∥L2∥h∥L2 + ∥df(P + h)∥L∞∥hy∥L2∥yh∥L2

≲ ∥h∥2H1 + ∥yh∥2L2 .

We conclude that

|(f(P + h)− f(P ),Λh)| ≲ s2∥h∥2λ.

With (7.38), (7.39) and (7.15) we get∣∣∣(b+ λs
λ

)
(iDhG, iΛh)

∣∣∣ ≲ s−(κ−2)∥h∥2λ, (7.40)

and the result follows from (7.36), (7.37) and (7.40), provided κ ⩾ 3. □

Lemma 7.12. For s ∈ [s⋆, s1],

|(iDhG,M0(s)P )| ≲ s−2κ.

Proof. By Corollary 5.2 and (7.15), we have

|(iDhG,M0(s)(P −Q))| ≲ ∥h∥H1∥M0(s)(P −Q)∥H1 ≲ s−2κ. (7.41)

Furthermore,

(iDhG,M0(s)Q) = (1−θs)(iDhG,Q)+
1

4

(
bs−b2−2b

λs
λ
−α

)
(iDhG, y

2Q)−
(
b+

λs
λ

)
(iDhG, iΛQ).

Let us recall here the notation h = h1 + ih2. By Corollary 5.2 and (7.12), we have

(iDhG,Q) = −(DhG, iQ) = −(Hγλh+ h− df(P )h+ λy2h−R(h), iQ)

= −(Hγλh+ h− df(Q)h+ λy2h−R(h), iQ) +O(s−2∥h∥L2)

= −(h2, L−Q)− γλ Imh(0)Q(0)− λ Im

∫
G
y2hQ dy +O(s−κ).

Since L−Q = 0, it follows by (7.15), (7.13) and (7.12) that

|(1− θs)(iDhG,Q)| ≲ s−κ
(
s−2∥h∥H1 + s−κ

)
≲ s−2κ. (7.42)

Next, by Lemma 4.1,

(iDhG, y
2Q) = −(DhG, iy

2Q) = −(Hγλh+ h− df(P )h+ λy2h−R(h), iy2Q)

= −(h2, L−y
2Q)− λ Im

∫
G
y2hy2Q dy +O(s−κ)

= 4(h2,ΛQ)−O(s−2∥h∥L2) +O(s−κ).

Since (h2,ΛQ) = O(s−2∥h∥L2) by Proposition 2.4 and Corollary 5.2, it follows that∣∣∣1
4

(
bs − b2 − 2b

λs
λ

− α
)
(iDhG, y

2Q)
∣∣∣ ≲ s−2κ. (7.43)
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Finally, by (7.12) and (7.16),

(iDhG, iΛQ) = (DhG,ΛQ)

= (Hγλh+ h− df(P )h+ λy2h−R(h),ΛQ)

= (h1, L+ΛQ) + γλReh(0)ΛQ(0) + λRe

∫
G
y2hΛQ dy +O(s−κ)

= −2(h,Q)L2 +O(s−κ).

Using (7.16), this implies ∣∣∣(b+ λs
λ

)
(iDhG, iΛQ)

∣∣∣ ≲ s−2κ. (7.44)

The result now follows by combining estimates (7.41), (7.42), (7.43) and (7.44). □

Lemma 7.13. For s ∈ [s⋆, s1],

|(iDhG,Φκ)| ≲ s−(2κ−1).

Proof. We have

(iDhG,Φκ) = −(DhG, iΦκ) = −(Hγλh+ h+ λy2h− df(P )h−R(h), iΦκ).

Hence, by (7.12) and (7.33),

|(iDhG,Φκ)| ⩽ ∥h∥H1∥Φκ∥H1 + λ

∫
G
y2|h||Φκ| dy + |(df(P )h,Φκ)|+ |(R(h),Φκ)|

≲ ∥h∥H1∥Φκ∥H1 + s−2∥yh∥L2∥yΦκ∥L2

≲ s−(2κ−1).

□

Proof of Proposition 7.7. By (7.34), Lemmas 7.10 to 7.13 and the fact that s−1 = O(b), there
exists k2 > 0 such that, for all s ∈ [s⋆, s1],

(DhG(s, h(s)), hs) ⩾ −b k2∥h∥2λ +O(s−(2κ−1)).

Together with Lemma 7.9, this gives Proposition 7.7. □

Proposition 7.14. Let k0 and k be as in Propositions 7.6 and 7.7, respectively. Choose m ∈ N
such that m > 2k/k0. Then, for all s ∈ [s⋆, s1],

dS

ds
≳

b

λm
(
∥h∥2λ +O(s−2(κ−1))

)
.

Proof. We have
dS

ds
=

1

λm

(
−mλs

λ
G+

dG

ds

)
.

Furthermore, for s large enough, −λs/λ ⩾ b/2. Hence, in view of Propositions 7.6 and 7.7,

dS

ds
⩾

b

λm

[m
2

(
k0∥h∥2λ +O(s−2(κ−1))

)
+
(
−k∥h∥2λ +O(s−2(κ−1))

)]
≳

b

λm
(
∥h∥2λ +O(s−2(κ−1))

)
,

as claimed. □
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7.4. Uniform estimates in rescaled time. This section is entirely devoted to the proof of the
uniform estimates in s.

Proof of Proposition 7.3. We will prove that estimates (7.12) can be improved to (7.9) and (7.10)
on [s⋆, s1]. Then, choosing s0 large enough, it follows by continuity that, in fact, s⋆ = s0, so that
(7.9) and (7.10) hold on [s0, s1].
We first prove (7.9). By Proposition 7.6 there exists a constant a > 1 such that, for s ∈ [s⋆, s1]

1

a

1

λm
(
∥h∥2λ − a2s−2(κ−1)

)
⩽ S(s, h) ⩽

a

λm
∥h∥2λ. (7.45)

Choosing a large enough, we also have by Proposition 7.14

dS

ds
⩾

1

a

b

λm
(
∥h∥2λ − a2s−2(κ−1)

)
. (7.46)

Let

s† := inf{s ∈ [s⋆, s1] : ∥h(σ)∥λ(σ) ⩽ 2a2σ−(κ−1) ∀σ ∈ [s†, s1]}.
Since h(s1) = 0, it follows by continuity of h in Σ1 that s† ∈ [s⋆, s1). We prove that s† = s⋆.

Suppose by contradiction that s† > s⋆. Then, in particular, ∥h(s†)∥λ(s†) = 2a2s
−(κ−1)
† . Defining

s‡ := sup{s ∈ [s†, s1] : ∥h(σ)∥λ(σ) ⩾ aσ−(κ−1) ∀σ ∈ [s†, s]},

we have s⋆ < s† < s‡ < s1 and ∥h(s‡)∥λ(s‡) = as
−(κ−1)
‡ . Furthermore, by (7.46), S is non-decreasing

on [s†, s‡]. Hence, using (7.45) and our bootstrap assumption on λ in (7.12), we find that

∥h(s†)∥2λ(s†) − a2s
−2(κ−1)
† ⩽ aλm(s†)S(s†, h(s†)) ⩽ aλm(s†)S(s‡, h(s‡))

⩽ a2
λm(s†)

λm(s‡)
∥h(s‡)∥2λ(s‡) = a4

λm(s†)

λm(s‡)
s
−2(κ−1)
‡

⩽ 2a4
(s‡
s†

)2m

s
−2(κ−1)
‡ ⩽ 2a4

(s‡
s†

)2m(s‡
s†

)−2(κ−1)

s
−2(κ−1)
† ⩽ 2a4s

−2(κ−1)
† ,

where the last inequality holds since we may choose κ so large that 2m− 2(κ− 1) < 0. It follows
that

∥h(s†)∥2λ(s†) ⩽ a2s
−2(κ−1)
† + 2a4s

−2(κ−1)
† ⩽ 3a4s

−2(κ−1)
† ,

a contradiction.
We now prove (7.10). Let E⋆ ∈ R, E⋆ = C−1

Q E⋆ and b1, λ1 be given by Proposition 2.6. It follows
from (2.19) that

|E(P̃ (b1, λ1, θ1))− E⋆| ≲ (b21 + λ1)

λ21

κ

≲ s4−2κ
1 . (7.47)

Now, the energy estimate (2.18) and the modulation estimate (7.15) yield

|E(P̃ (b(s), λ(s), θ(s)))− E(P̃ (b1, λ1, θ1))| =
∣∣∣ ∫ s1

s

d

dσ
E(P̃ (b(σ), λ(σ), θ(σ))) dσ

∣∣∣
≲

∫ s1

s

σ4−κ dσ ≲ s5−κ, s ∈ [s⋆, s1]. (7.48)

It then follows by (7.47) and (7.48) that

|E(P̃ (b(s), λ(s), θ(s)))− E⋆| ≲ s5−κ, s ∈ [s⋆, s1]. (7.49)
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Next, using (2.19) at time s, we deduce that

|E(b(s), λ(s))− E⋆| ≲
∣∣∣E(b, λ)− E(P̃ (b, λ, θ))

CQ

∣∣∣+ ∣∣∣E(P̃ (b, λ, θ))
CQ

− E⋆
∣∣∣

≲ s4−2κ + s5−κ ≲ s5−κ, s ∈ [s⋆, s1], (7.50)

and the formula (2.20) defining E yields

λ2E(b, λ) = b2 − 2α⋆λ+O(λ2).

For κ ⩾ 9, (7.50) implies

|b2 − 2α⋆λ− E⋆λ2| ≲ λ2(s) + s5−κ ≲ s−4 (7.51)

and it follows that ∣∣b−√
2α⋆λ+ E⋆λ2

∣∣∣∣b+√
2α⋆λ+ E⋆λ2

∣∣ ≲ s−4.

Hence, by (7.12), ∣∣b−√
2α⋆λ+ E⋆λ2

∣∣ ≲ s−3, s ∈ [s⋆, s1]. (7.52)

From (7.15), we have b = −λs/λ+O(s−κ), hence∣∣∣λs
λ

+
√

2α⋆λ+ E⋆λ2
∣∣∣ ≲ s−3

and we deduce from the definition of F in (2.25) that∣∣∣ d
ds

F(λ(s))− 1
∣∣∣ = ∣∣∣ λs

λ
√
2α⋆λ+ E⋆λ2

+ 1
∣∣∣ = 1√

2α⋆λ+ E⋆λ2

∣∣∣λs
λ

+
√
2α⋆λ+ E⋆λ2

∣∣∣ ≲ s−2.

Integrating from s to s1 and using F(λ(s1)) = s1 yields∣∣∣F(λ(s))− s
∣∣∣ ⩽ ∣∣∣ ∫ s1

s

( d

dσ
F(λ(σ))− 1

)
dσ

∣∣∣ ≲ s−1

=⇒ F(λ(s)) = s+O(s−1), s ∈ [s⋆, s1].

On the other hand, it follows from (A.6) that∣∣∣ λ(s)1/2

λmo(s)1/2
− 1

∣∣∣ ≲ 1

s2
, s ∈ [s⋆, s1].

Finally, returning to (7.52) and using again (7.12),

b− bmo =
√

2α⋆λ+ E⋆λ2 −
√

2α⋆λmo +O(s−3) =
2α⋆λ+ E⋆λ2 − 2α⋆λmo√
2α⋆λ+ E⋆λ2 +

√
2α⋆λmo

+O(s−3)

= O(bmo)[E⋆λ2 + 2α⋆(λ
1/2 − λ1/2mo )(λ

1/2 + λ1/2mo )] +O(s−3)

=⇒
∣∣∣ b(s)

bmo(s)
− 1

∣∣∣ ≲ 1

s2
, s ∈ [s⋆, s1].

This concludes the proof. □

Remark 7.15. We observe here that estimates (7.10) can be improved by a closer inspection of the
energy expansion E . Indeed, (2.20) yields

λ2E(b, λ) = b2 − 2α⋆λ+ e0λ
2 +O(s−6), e0 := ε0,1 + 2α⋆ε2,0.

Hence, using (7.50) and choosing κ ⩾ 11, estimate (7.51) improves to

|b2 − 2α⋆λ− (E⋆ − e0)λ
2| ≲ s−6 + s5−κ ≲ s−6.
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Then, replacing E⋆ by E⋆ − e0 in Proposition 2.6 and using this improved estimate in the rest of
the proof yields (7.11).

Appendix A. Dynamical systems

In this appendix, we prove Proposition 2.6. Given s1 ⩾ 1, we consider the systemb+
λs
λ

= 0,

bs + b2 − α⋆λ = 0,
(A.1)

with initial data
b(s1) = b1, λ(s1) = λ1. (A.2)

This is a Hamiltonian system, with conserved energy

Emo(b, λ) =

(
b

λ

)2

− 2α⋆

λ
.

An exact solution with energy Emo = 0 is given by

bmo(s) =
2

s
, λmo(s) =

2

α⋆s2
. (A.3)

Lemma A.1. Let b1, λ1 > 0. The solution of the Cauchy problem (A.1)-(A.2) is given by

b(s) =

(
α⋆(s− s1) +

b1
λ1

)(
1

2
α⋆(s− s1)

2 +
b1
λ1

(s− s1) +
1

λ1

)−1

= bmo(s) +O(s−2),

λ(s) =

(
1

2
α⋆(s− s1)

2 +
b1
λ1

(s− s1) +
1

λ1

)−1

= λmo(s) +O(s−4).

Proof. Defining the auxiliary unkown µ by

µ =
1

λ
,

direct calculations using (A.1) yield

µs = −λs/λ
λ

=
b

λ
, µss =

(
b

λ

)
s

=
bs − bλs/λ

λ
=
bs + b2

λ
= α⋆.

Integrating in s, we get

µs(s) = α⋆(s− s1) +
b1
λ1
, µ(s) =

1

2
α⋆(s− s1)

2 +
b1
λ1

(s− s1) +
1

λ1
,

and the result follows. □

We can now prove Proposition 2.6. Let us first explain how the function F comes into play.
Observe that F is strictly decreasing on (0, λ0], vanishes at λ0 and, since

1

µ3/2
√
E⋆µ+ 2α⋆

∼ 1√
2α⋆µ3/2

, µ→ 0+,

F(λ) → +∞ as λ → 0+. Thus, F is a bijection from (0, λ0] to [0,+∞). Now let s0 ⩾ 0 and
assume that (b, λ) : [s0,+∞) → R × R∗

+ is a solution of energy E⋆ of (A.1) such that λ(s0) = λ0
and E⋆λ2 + 2α⋆λ > 0 for all s ⩾ s0. Then we have

b =
√

E⋆λ2 + 2α⋆λ, b+
λs
λ

= 0, (A.4)



BLOW-UP SOLUTIONS ON NONLINEAR QUANTUM STAR GRAPHS 51

which gives, for all s ⩾ s0,

F(λ(s)) = −
∫ s

s0

λσ(σ)

λ(σ)3/2
√
E⋆λ(σ) + 2α⋆

dσ = s− s0. (A.5)

Conversely, if λ is a solution of (A.5), then we get a solution of energy E⋆ by returning to the first
equation in (A.4).

We use F to construct the final data (b1, λ1) used in (2.28) (notice that the definitions of λ1 and
then b1 will depend on the choice of λ0 in the definition of F , but this does not alter the rates of
decay in the estimates).

Proof of Proposition 2.6. For any s1 > 0, there exists a unique λ1 > 0 such that F(λ1) = s1. For
the model system, (A.3) yields

s1 =

√
2

α⋆λmo(s1)
.

On the other hand, for any λ ∈ (0, λ0], we have∣∣∣∣F(λ)−
√

2

α⋆λ

∣∣∣∣ = ∣∣∣∣∫ λ0

λ

dµ

µ3/2
√
E⋆µ+ 2α⋆

−
√

2

α⋆

λ−1/2

∣∣∣∣
⩽

∣∣∣∣∫ λ0

λ

dµ

µ3/2
√
E⋆µ+ 2α⋆

−
√

2

α⋆

(
λ−1/2 − λ

−1/2
0

)∣∣∣∣+√
2

α⋆

λ
−1/2
0

⩽

∣∣∣∣∫ λ0

λ

1

µ3/2

( 1√
E⋆µ+ 2α⋆

− 1√
2α⋆

)
dµ

∣∣∣∣+√
2

α⋆

λ
−1/2
0

≲
∫ λ0

λ

dµ

µ1/2
+ 1 = Oλ→0(1). (A.6)

Hence, with λ = λ1, we get∣∣∣∣∣
√

2

α⋆λmo(s1)
−
√

2

α⋆λ1

∣∣∣∣∣ =
∣∣∣∣s1 −√

2

α⋆λ1

∣∣∣∣ = O(1).

After some algebra, this yields ∣∣∣ λ
1/2
1

λmo(s1)1/2
− 1

∣∣∣ ≲ λmo(s1)
1/2 ≲

1

s1
.

This also gives ∣∣λ1/21 − λmo(s1)
1/2

∣∣ ≲ λmo(s1) ≲
1

s21
or ∣∣λ1 − λmo(s1)

∣∣ ≲ 1

s31
.

To find b1, we set

g(b) = λ21E(b, λ1) = b2 − 2λ1α⋆ +
∑

(j,k)∈Θκ

j even, j/2+k⩾2

εj,kb
jλk1

(see (2.20)). We then seek a solution of g(b) = λ21E⋆ close to bmo(s1) = 2/s1. We have

g(bmo(s1)) = 2α⋆((λmo(s1)− λ1) +O(s−4
1 ) = O(s−3

1 ).
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Furthermore, for b ∈
[
bmo(s1)− 1

s21
, bmo(s1) +

1
s21

]
we have, if s1 is large enough,

g′(b) = 2b+O(s−3
1 ) ⩾

1

s1
.

Since λ21E⋆ = O(s−4
1 ), if s1 is large enough then there exists a unique b1 > 0 such that

g(b1) = λ21E⋆ and |b1 − bmo(s1)| ⩽
1

s21
.

It follows that ∣∣∣ b1
bmo(s1)

− 1
∣∣∣ ⩽ 1

2s1
,

which finishes the proof. □
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