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A MINIMAL MASS BLOW-UP SOLUTION ON
A NONLINEAR QUANTUM STAR GRAPH

FRANÇOIS GENOUD, STEFAN LE COZ, AND JULIEN ROYER

Abstract. The main contribution of this article is the construction of a finite time blow-up
solution to the mass-critical focusing nonlinear Schrödinger equation set on a metric star graph
G with N edges, for any N > 2. After establishing well-posedness of the corresponding Cauchy
problem in H1(G), we obtain the sharp threshold for global existence in terms of the mass of the
ground state, called minimal mass. We then construct a minimal mass solution which blows up in
finite time at the vertex of G. The blow-up profile and blow-up speed are characterized explicitly.

1. Introduction

Let G be a metric star graph of size N , i.e. a vertex v to which are connected N edges e1, . . . , eN ,
each edge being a half-line. We thus identify each edge e with the interval Ie = [0,∞), the point 0
corresponding to the vertex. We shall use v or 0 interchangeably to denote the vertex. A schematic
representation of a star graph is given in Figure 1.
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Figure 1. A star graph with 3 edges.

A function u on G is a collection of functions uj : Iej → C, j = 1, . . . , N . Letting R+ = [0,∞),
a point x ∈ G will be identified with (x1, . . . , xN) ∈ RN

+ . Thus, u : G → C can be described as

u(x) = (u1(x1), . . . , uN(xN)), xj ∈ R+, j = 1, . . . , N.

A function u : G → C will be called radial if all its components uj : R+ → C are identical. In this
case, x ∈ G will be identified with x ∈ R+, and we will simply interpret u as a complex-valued
function of x ∈ R+.

Next, we define on G the formal Hamiltonian

Hγ = −∂xx + γδ,

where ∂xx acts as the one-dimensional Laplacian on each edge and the delta potential γδ encodes
Robin boundary conditions at the vertex. The coupling constant γ is real, ensuring that Hγ
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is selfadjoint; see Section 1.3 for a precise definition of Hγ. Our graph G, equipped with the
Hamiltonian Hγ, is a model case of a quantum graph; see e.g. [17] and references therein.

In this paper, we are interested in a nonlinear quantum graph, namely, we equip the quantum
graph (G, Hγ) with the focusing nonlinear Schrödinger equation

iut −Hγu+ |u|4u = 0, (1.1)

where u = u(t, x), t ∈ R, x ∈ G, is complex-valued. The energy

E(u) := qγ(u)− 1

6
‖u‖6

L6(G)

and the mass

MG(u) :=
1

2
‖u‖2

L2(G)

are the main conserved quantities associated with this nonlinear dynamical system. The usual
function spaces on G will be defined in Section 1.3, as well as the quadratic form qγ appearing in
the energy.

Our goal in this paper is to construct a finite time blow-up solution of (1.1). Let us denote by
Q the positive radial ground state of the focusing mass-critical nonlinear Schrödinger equation on
the line (see Section 1.2). It is well-known that the mass

MR(Q) :=
1

2

∫
R
Q2 dx

of Q gives the threshold between global existence and finite time blow-up for this problem. It turns
out that MR(Q) also determines the mass threshold for global existence of solutions of (1.1) on
the graph. Indeed, we shall prove in Section 3.2 that, if the initial condition u0 ∈ H1(G) satisfies

MG(u0) < min{N
2
, 1}MR(Q),

then the corresponding solution of (1.1) is global. Furthermore, if we restrain ourselves to radial
solutions, then the threshold for global existence becomes

MG(Q) =
N

2
MR(Q), (1.2)

where, for simplicity, we have also denoted by Q the function on the star graph consisting of N
half-copies of Q on each edge. In the attractive case γ < 0, we construct a radial minimal mass
blow-up solution, that is, a solution with mass (1.2) which blows up in finite time at the vertex v.

More precisely, our main result is the following theorem.

Theorem 1.1. Suppose γ < 0. Let E? ∈ R. There exist t0 < 0 and a solution u ∈ C([t0, 0), H1
rad(G))

of (1.1) such that

MG(u) = MG(Q) and E(u) = E?,

which blows up at t = 0 as

lim
t→0−

|t|2/3‖ux(t)‖L2(G) = C, (1.3)

for a constant C > 0.
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1.1. Remarks on Theorem 1.1. To the best of our knowledge, the present work is the first
construction of a finite time blow-up solution for a nonlinear Schrödinger equation on a quantum
graph. By contrast, for NLS equations on RN a substantial literature exists, which is partly
reviewed in Section 1.4. Beside the particular blow-up solution given by Theorem 1.1, we conjecture
there exist solutions which blow up in finite time outside of v as a translate of the pseudo-conformal
solution S(t) defined in (1.5); such solutions should exist irrespective of the sign of γ.

For γ = 0, one may construct an explicit finite time blow-up solution on G by simply putting N
half-copies of S(t) on the edges. Since γ = 0, the function thus constructed verifies the required
compatibility condition at the vertex (see (1.7)), is a solution of (1.1), and blows up at time T = 0
at the vertex with pseudo-conformal speed (1.6). When γ < 0, one cannot construct a simple
solution based on S(t), but we believe that solutions which blow up in finite time by concentrating
their mass at v should also be governed by the symmetric profile Q in this case. In the repulsive
case γ > 0, there are no solutions blowing up in finite time at v with minimal mass; see Section 3.2.

Our approach to prove Theorem 1.1 will follow the strategy laid down in [37,50] with some
improvements obtained by Matsui [40–46]. In particular, we shall work directly in the virial space,
which allows us to avoid the localization procedure of the virial-energy functional used in [37]. We
have also reformulated the blow-up profile expansion borrowed from [37], thereby making it more
tractable for the proofs. In the particular case of the 2-star graph, we recover the result obtained
in [52] for the mass-critical NLS on the line with an attractive delta potential.

1.2. The mass-critical NLS on the line. Consider the classical mass-critical nonlinear Schrödinger
equation on the line

iut + uxx + |u|4u = 0. (1.4)

Let us recall a few well-known facts about this equation. The Cauchy problem for (1.4) is well-
posed in the energy space H1(R), we have conservation of energy, mass (and momentum) and the
blow-up alternative holds. Of particular interest is the standing wave solution eitQ(x), where the
profile Q is explicitly given by

Q(x) = 3
1
4 sech

1
2 (2x)

and is the unique even positive solution in H1(R) of the differential equation

−Q′′ +Q−Q5 = 0.

The mass of Q gives the threshold between global existence and blow-up: any solution of (1.4)
with MR(u0) < MR(Q) = π

√
3/4 is global, whereas there exists a minimal blow-up mass solution,

i.e. a solution such that MR(u0) = MR(Q) and the associated solution of (1.4) blows up in finite
time. It turns out that such a solution can be found by an explicit pseudo-conformal transform of
the standing wave. Indeed, let

S(t, x) =
1√
|t|
Q
( x
|t|

)
e−i

|x|2
4|t| e

i
t , (1.5)

then S is a solution of (1.4) and we have

‖S(t)‖L2(R) = ‖Q‖L2(R), ‖∂xS(t)‖L2 ∼ 1

|t|
‖Q′‖L2 , t→ 0−. (1.6)

In particular, S blows up at t = 0 with the so-called pseudo-conformal speed |t|−1. Furthermore,
up to the symmetries of the equation, S is the unique minimal mass blow-up solution (see [47]).
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1.3. Functional setting on G. Lebesgue and Sobolev spaces on G are defined by

Lp(G) =
N⊕
j=1

Lp(Iej), Hs(G) =
N⊕
j=1

Hs(Iej),

with norms

‖u‖pLp(G) =
N∑
j=1

‖uj‖pLp(R+), ‖u‖2
Hs(G) =

N∑
j=1

‖uj‖2
Hs(R+).

Observe that no compatibility condition is imposed at the vertex. We introduce below the
notation H1

D(G) for the space of functions of H1(G) which are continuous at the vertex.
We equip G with the Laplace operator with Dirac condition at the vertex, i.e. the Hamiltonian

operator Hγ defined by

Hγ : D(Hγ) ⊂ L2(G)→ L2(G),

(u1, . . . , uN) 7→ (−∂xxu1, . . . ,−∂xxuN),

where the domain D(Hγ) is defined by

D(Hγ) =

{
u ∈ H2(G) : ∀j, k = 1, . . . , N, u(0) := uj(0) = uk(0),

N∑
j=1

u′j(0) = γu(0)

}
. (1.7)

We observe that the domain contains a continuity condition at 0 and a jump condition for the
derivatives. For γ = 0 we recover the classical Kirchhoff-Neumann conditions. For γ 6= 0 and
N = 2, we recover the case of the line with a δ potential at 0.

The quadratic form associated with Hγ is

qγ(u) := 〈Hγu, u〉 =
1

2

N∑
j=1

‖u′j‖2
L2(R+) +

γ

2
|u(0)|2,

defined on the domain

H1
D(G) = D(qγ) :=

{
u ∈ H1(G) : ∀j, k = 1, . . . , N, u(0) := uj(0) = uk(0)

}
.

Observe that the domain of the quadratic form retains the continuity at the vertex, but the
jump condition on the derivatives now appears in the expression of the quadratic form instead of
appearing in the expression of the domain. In this paper, we will mostly work on a subspace of
H1
D(G), the space H1

rad(G) of functions which are symmetric with respect to the vertex. Namely,

H1
rad(G) =

{
u ∈ H1(G) : ∀j, k = 1, . . . , N, uj = uk

}
.

We will also use the notation Hγ for the operator from H1
D(G) to H−1(G). In particular, we may

write

Hγ = −∂xx + γδ,

where it is understood that −∂xx denotes the second derivative on each edge of the graph and δ
is defined by the duality pairing 〈δu, v〉 = u(0)v(0). This allows us to split the operator Hγ into
two parts, −∂xx and γδ, whenever needed. We emphasize that whenever −∂xx and γδ are treated
separately, they are always taken in the H1 −H−1 sense (the operator Hγ as an L2 − L2 operator
with domain cannot be split).
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1.4. History of construction of minimal mass blow-up solutions. For the classical pure
power mass-critical nonlinear Schrödinger equation on RN , a minimal blow-up mass solution is
explicitly obtained from a pseudo-conformal transform of a standing wave, in any dimension,
similarly to (1.5) for N = 1. In the seminal paper [47], Merle showed that it is the unique
minimal blow-up mass solution up to the symmetries of the equation. Existence and uniqueness
of a minimal mass blow-up solution for NLS equations which do not possess pseudo-conformal
symmetry is more involved. The study was initiated by Merle himself in [48], where he established a
sufficient condition for the existence of a minimal mass blow-up solution in the case of a Schrödinger
equation with inhomogeneous mass-critical nonlinearity k(x)|u| 4du. Further contributions (see
e.g. Banica, Carles, Duyckaerts [15], Bourgain and Wang [21], Krieger and Schlag [35]) treated
the problem perturbatively from the homogeneous case, and required a flatness assumption on
k. A nonperturbative approach was called for in order to remove the flatness assumption. The
breakthrough came from the work of Raphaël and Szeftel [50], in which existence and uniqueness of
a minimal mass blow-up solution for the inhomogeneous mass-critical nonlinearity was established.
The approach of [50] is very robust and was used for instance by Krieger, Lenzmann and Raphaël
[34] in the case of the critical half-wave equation, or by Martel and Pilod [39] for the Benjamin-Ono
equation. The construction of the profile of the minimal mass blow-up solution was later refined by
Le Coz, Martel, Raphaël [37] in the case of the nonlinear Schrödinger equation with a double power
nonlinearity, where a minimal mass solution exhibiting a new blow-up speed was constructed. The
approach of [37,50] was successfully implemented by Matsui [40–44,46] for various Schrödinger
equations (e.g. with singular potentials or with a Hartree nonlinearity). Several improvements to
the work [37] have been made by Matsui, in particular the observation that the blow-up profile
is more naturally constructed in the virial space instead of H1. Recently, the paper [37] was
transposed by Tang and Xu [52] to the nonlinear Schrödinger equation on the line with a delta
potential at the origin.

1.5. Earlier results on star graphs. There is now a wide literature on nonlinear quantum graphs
cannot be shortly summarized. For an introduction to nonlinear Schrödinger equations on quantum
graphs and their physical motivations, one may refer to the survey of Noja [49]. For star graphs in
particular, one may refer to the recent monograph of Angulo Pava and Cavalcante de Melo [10].
In this introduction, we will only present the results close to our work, along with a very partial
sample of the rest of the literature. Many of the works devoted to nonlinear quantum graphs focus
on existence and variational characterizations of standing waves. Among the earliest studies, one
finds the works by Fukuizumi in collaboration with (separately) Jeanjean, Le Coz, Ohta and Ozawa
[24,25,36], which are devoted to the case of a line with a delta potential at the origin (equivalent
to a 2-star graph). The first author, together with Malomed and Weisshäupl [26], studied orbital
stability of standing waves for the 2-star graph with a cubic-quintic nonlinearity. The variational
characterization of standing waves on star graphs was considered by Adami, Cacciapuoti, Finco
and Noja [2–5]. Further developments for the study of standing waves on generic quantum graphs
started with Adami, Serra and Tilli [6–8], where a topological obstruction for the existence of
ground states on quantum graphs was discovered. Elements such as well-posedness of the Cauchy
problem, Strichartz estimates and conservation laws on star graphs can be found in the work
of Adami, Cacciapuoti, Finco and Noja [1] (along with the analysis of the collision of a fast
solitary wave with the vertex, which is the main object of the paper). The 2-star graph with
non-zero boundary conditions has been investigated by Ianni, Le Coz and Royer [31]. The case
of a loop (which is equivalent to a segment with periodic boundary conditions) was studied by
Gustafson, Le Coz and Tsai [30]. Absence of scattering of global solutions towards standing
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waves was established by Aoki, Inui, Mizutani [13], while scattering on the 2-star graph was
obtained by Banica and Visciglia [16]. Exponential stability in the presence of damping on one
branch was obtained by Ammari, Bchatnia and Mehenaoui [9]. Existence of ground states on
star graphs with finite and infinite egdes was studied by Li, Li and Shi [38]. On balanced star
graphs (i.e. star graphs with adjusted coefficients on the edges, see [51]), Kairzhan, Pelinovsky
and Goodman [33] proved the nonlinear instability (by drift) of spectrally stable (see [33]) shifted
states. Standing waves of the nonlinear Schrödinger equation with logarithmic nonlinearity was
considered by Goloshchapova [27] (see also the earlier work of Ardila [14] for well-posedness and
existence results). Instability of non-ground state standing waves on star graphs was obtained
by Kairzhan [32] in the repulsive and attractive cases. Instability by blow-up of standing waves
on star graphs for mass-supercritical nonlinearities was proved by Goloshchapova and Ohta [29].
Stability and instability results were obtained by Angulo Pava and Goloshchapova [11,12] using the
extension theory of symmetric operators for star graphs with δ or δ′ interaction at the vertex. Star
graphs with δ′s conditions were considered by Goloshchapova in [28]. Recently, Besse, Duboscq
and Le Coz [18,19] developed a Python Library [20] for the numerical simulation of Schrödinger
equations on quantum graphs. A numerical approach for the calculations of ground states is
studied in [18] whereas the implementation of the library and further experiments are presented
in [19].

The rest of the paper is organized as follows. Section 2 provides a detailed outline of the con-
struction of our blow-up solution. The proof of Theorem 1.1 is given there, assuming a number
of propositions. Section 3 presents some basic results underlying the whole analysis: the Cauchy
theory for (1.1) and some detailed properties of linearized operators. In Sections 4 to7, the propo-
sitions used in the proof of Theorem 1.1 are proved.

Notation. We shall write f . g or g & f to mean that there is a universal constant C > 0
(i.e. which does not depend on the dynamical variables) such that f 6 Cg. We will write f ∼ g
as t → 0− (or s → +∞) if f/g → 1 as t → 0− (or s → +∞). When no confusion is possible, we
may simply write L2, H1, etc. instead of L2(G), H1(G), etc.

2. Outline of the proof

The approach we adopt is via a change of variables transforming a finite time blow-up solution
into a solution that is global in positive time. We seek a radial solution u of (1.1) in the form of

u(t, x) =
1√
λ(s)

w(s, y)ei(θ(s)−b(s)y
2/4), t < 0, x ∈ R+, (2.1)

where the new variables s and y satisfy

ds

dt
=

1

λ(s)2
, y =

x

λ(s)
. (2.2)

We will construct w global and bounded in H1
D(G), together with modulation parameters λ(s), b(s)

and θ(s) such that λ(s) > 0,

λ(s)→ 0+, b(s)→ 0+, θ(s)→ 0, s→ +∞.

This type of ansatz is common in blow-up analysis (see the references in the introduction for
similar constructions). The exact definition of the rescaled time s will appear in Section 6. By



BLOW-UP SOLUTIONS ON NONLINEAR QUANTUM STAR GRAPHS 7

straightforward calculations, u solves (1.1) if and only if w solves

iws − Hλγw − w + |w|4w + (1 − θs)w +
(
bs − b2 − 2b

λs
λ

)y2

4
w − i

(
b +

λs
λ

)
Λw = 0, (2.3)

where the scaling operator Λ is defined for each component wj of w by

Λwj(yj) =
1

2
wj(yj) + yjw

′
j(yj), j = 1, . . . , N.

Our strategy to prove Theorem 1.1 is to seek w of the form

w(s, y) = P (s, y) + h(s, y),

for a suitable approximate solution profile P constructed using the ground state Q and the dy-
namical parameters λ(s) and b(s). The result will then follow from (2.1) and (2.2) by proving that
λ(s) ∼ s−2 and h(s)→ 0 in a well-chosen norm, as s→ +∞.

The blow-up profile P is constructed as an approximate solution of the auxiliary equation

iPs + Pyy − P − γλδP + f(P ) + α
y2

4
P = 0,

where we have defined

f(z) = |z|4z, z ∈ C.
For κ ∈ N, let

Σκ =
{

(j, k) ∈ N× N∗ :
j

2
+ k < κ

}
. (2.4)

For u ∈ C1(G,R), let

‖u‖C1
exp

= sup
y∈G

e
|y|
2

(
|u(y)|+ |u′(y)|

)
.

We say that u belongs to C1
exp if ‖u‖C1

exp
< +∞. The following proposition will be proved in

Section 4.

Proposition 2.1 (Approximate blow-up profile). Let κ ∈ N. Let J be an interval of R. There
exist C > 0 and two families (aj,k)(j,k)∈Σκ ⊂ R and (Pj,k)(j,k)∈Σκ ⊂ C1

exp with the following property.

For any b ∈ C1(J,R) and λ ∈ C1(J,R∗+), if we set

P = P (b, λ) = Q+
∑

(j,k)∈Σκ

(ib)jλkPj,k, (2.5)

α = α(b, λ) =
∑

(j,k)∈Σκ
j even

(ib)jλkαj,k (2.6)

and

Ψκ = Ψκ(b, λ) = iPs + Pyy − P − γλδP + f(P ) + α
y2

4
P, (2.7)

then we have

‖Ψκ‖C1
exp
6 C

(
|λb+ λs|+ λ|bs + b2 − α|

)
+ C(b2 + λ)κ. (2.8)

Furthermore, letting P̃ (b, λ, θ) = λ−1/2P (b, λ)ei(θ−b
y2

4
), there holds∣∣∣ d

ds
E(P̃ )

∣∣∣ . 1

λ2

(∣∣∣λs
λ

+ b
∣∣∣+ |bs + b2 − α|+ (b2 + λ)κ

)
. (2.9)
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Finally, there exist (εj,k)(j,k)∈Σκ ⊂ R such that∣∣∣E(P̃ (b, λ, θ))− CQE(b, λ)
∣∣∣ . (b2 + λ)κ

λ2
, (2.10)

where CQ = 1
8
‖yQ‖2

L2,

E(b, λ) = Emo(b, λ) +
∑

(j,k)∈Σκ
j even, j/2+k>1

bjλk−1εj,k (2.11)

and Emo is the Hamiltonian of the model dynamical system, defined in (2.14).

Next, a choice of modulation parameters θ(s), b(s), λ(s) can be made so that the remainder h
satisfies orthogonality conditions which are useful to construct our solution. This is ensured by
the following proposition, which will be proved in Section 5.

Proposition 2.2 (Modulation parameters). Let η > 0. Let I be an interval of R and consider a
solution u ∈ C0(I,H1(G)) ∩ C1(I,H−1(G)) of (1.1). There exists δ > 0 such that, if

sup
t∈I

inf
θ∈R

0<λ<δ

∥∥∥∥u(t, x)− 1√
λ
eiθQ

(x
λ

)∥∥∥∥
L2(G)

6 δ, (2.12)

then there exist θ ∈ C1(I,R), b ∈ C1(I, (−η, η)) and λ ∈ C1(I, (0, η)) with the following property.
The function h ∈ C0(I, L2(G)) defined by

u(t, x) =
1√
λ(t)

e
iθ(t)−i b(t)x

2

4λ(t)2

(
Pb(t),λ(t)

(
x

λ(t)

)
+ h

(
t,

x

λ(t)

))
, t ∈ I, x ∈ R,

satisfies the orthogonality conditions(
h(t), iΛPb(t),λ(t)

)
L2(G)

=
(
h(t), y2Pb(t),λ(t)

)
L2(G)

=
(
h(t), iρ

)
L2(G)

= 0, t ∈ I.

We use here the notation Pb,λ ≡ P (b, λ).

Remark 2.3. To keep a light notation in this section, we use the same letters b, λ, θ, h to denote
the modulation parameters and rest as functions of t or s. We will later be more specific, see (6.2).

As we shall see in Section 6.1, the modulation parameters b(s) and λ(s) are governed, at first
order as s→ +∞, by the nonlinear ODE system

bs + b2 − βλ = 0,
λs
λ

+ b = 0, (2.13)

where

β := α0,1 = −2
γQ(0)2

‖yQ‖2
L2

> 0,

is the coefficient of the first term in the expansion (2.6) (see (4.2)). The system (2.13) is Hamil-
tonian, with conserved energy

Emo(b, λ) =
b2

λ2
− 2β

λ
. (2.14)

An exact solution with energy Emo = 0 is given by

bmo(s) =
2

s
, λmo(s) =

2

βs2
.

Thus, Proposition 2.1 shows that, at leading order, the energy of the rescaled profile P̃ is governed
by the Hamiltonian energy (2.14). However, it should be noted that the correction appearing as a
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power expansion in (2.11) does not vanish as s→∞. Indeed, by Proposition 2.5 below, the terms
corresponding to (j, k) = (0, 1) and (j, k) = (2, 0) behave asymptotically as

ε0,1 + ε2,0
b2

λ
∼ ε0,1 + ε2,0

b2
mo

λmo

∼ ε0,1 + 2βε2,0, s→∞.

Hence,
E(b, λ) ∼ Emo(b, λ) + ε0,1 + 2βε2,0, s→∞.

Remark 2.4. Remarks 2.7 and 6.2 show that the energy shift ε0,1 + 2βε2,0 has an influence on the
asymptotic behaviour of b and λ as t→ 0−/s→ +∞.

The relation between E(P̃ ) and Emo suggests that, up to a shift in energy (and a rescaling by
CQ), one should be able to control the energy of the solution of (1.1) by the model Hamiltonian
energy Emo. Unfortunately, as can be seen by a direct calculation, the difference

Emo(b, λ)− Emo(b, λ)

evaluated between the modulation parameters (b, λ) and a solution (b, λ) of the model system (2.13)
with energy E = Emo(b(s1), λ(s1)) grows logarithmically as s → ∞. For this reason, the choice
of final data (b1, λ1) is rather made using the full expansion E(b, λ) by the following proposition,
proved in Appendix 7.

Proposition 2.5. Let E? ∈ R. For any s1 � 1, there exists b1, λ1 > 0 satisfying∣∣∣ λ
1/2
1

λmo(s1)1/2
− 1
∣∣∣ . 1

s1

,
∣∣∣ b1

bmo(s1)
− 1
∣∣∣ . 1

s1

,

F(λ1) = s1, E(b1, λ1) = E?,
where

F(λ) =

∫ λ0

λ

dµ

µ3/2
√
E?µ+ 2β

, λ ∈ (0, λ0], (2.15)

with λ0 > 0 a fixed parameter such that E?λ0 + 2β > 0.

We now define the final data which will give rise to an approximate solution of our problem by
backward in time integration of (1.1). Let E? ∈ R. Consider t1 < 0 and close to 0. Let

E? = C−1
Q E?, (2.16)

and (b1, λ1) given by Proposition 2.5. Let u1 be the radial solution of (1.1) such that

u1(t1, x) =
1√
λ1

Pb1,λ1

(
x

λ1

)
e
−i b1x

2

4λ21 (2.17)

Let I ⊂ R be the maximal interval such that t1 ∈ I, u1 exists on I and verifies (2.12). Then the
asymptotics as t→ 0− of the functions θ, b, λ and h given by Proposition 2.2 follow from the next
proposition, which will be proved in Section 6.

Proposition 2.6 (Uniform estimates in the t variable). There exists t0 ∈ (−∞, t1), independent
of t1, such that the solution u1 defined by (2.17) and its decomposition given by Proposition 2.2
satisfy, for all t ∈ [t0, t1], ∣∣b(t)− Cb|t| 13 ∣∣ . |t|, ∣∣λ(t)− Cλ|t|

2
3

∣∣ . |t|5/3, (2.18)

‖h(t)‖L2(G) . |t|
κ−1
3 , ‖hy(t)‖L2(G) . |t|

κ−1
3 , ‖yh(t)‖L2(G) . |t|

κ−2
3 , (2.19)

|E(P̃ (b, λ, θ)(t))− E?| . |t|
κ−5
3 , (2.20)



10 F. GENOUD, S. LE COZ, AND J. ROYER

where Cb = 2
(

3β2

4

)1/3
, Cλ = 2

β

(
3β2

4

)2/3
and κ > 7 is the integer introduced in (2.4).

Furthermore, all these estimates are independent of t1.

Remark 2.7. Thanks to Remark 6.2, the first two estimates in Proposition 2.6 can be improved to∣∣b(t)− Cb|t| 13 ∣∣ . |t|5/3, ∣∣λ(t)− Cλ|t|
2
3

∣∣ . |t|7/3
by replacing the energy E? in (2.15) with E? = E? − (ε0,1 + 2βε2,0).

We are now in position to prove our main result.

Proof of Theorem 1.1, assuming Propositions 2.1, 2.2, 2.5 and 2.6. Let E? ∈ R and define E? by
(2.16). Choose an increasing sequence of times (tn) ⊂ (t0, 0) such that tn → 0 as n→∞. For each
n ∈ N∗, let bn and λn as given by Proposition 2.5 and un(tn) defined by (2.17), with the change
of notation t1 → tn, b1 → bn, λ1 → λn. For each n ∈ N∗, the corresponding solution un of (1.1)
satisfies Proposition 2.6, where all the estimates are independent of n. We will show that (un)
converges to a solution u of (1.1) with the desired properties.

Let χ ∈ C∞([0,∞), [0, 1]) be equal to 0 on [0, 1] and equal to 1 on [2,∞). For R > 0 we define
the radial function χR on G by χ(x/R) on each edge. Let δ > 0. From the formula (2.17) defining
un(tn) we deduce that there exists R > 0 such that∫

G
|un(tn)|2χR dx 6 δ.

By (1.1), we have
d

dt

∫
G
|un|2χR dx = 2 Im

∫
G
∂xunūn∂xχR dx.

Using the decomposition of the solution given by Proposition 2.2, the estimates of Proposition 2.6
for the corresponding variables bn, λn, hn and the exponential decay of Pbn,λn , direct calculations
show that∣∣∣∣ d

dt

∫
G
|un|2χR dx

∣∣∣∣ . 1

Rλn(t)

(
e−

R
2λn(t) + ‖yhn(t)‖2

L2(y>R/λn(t)) + ‖hn(t)‖2
H1(y>R/λn(t))

)
.
|t| 23 (κ−3)

R
.

Thus, integrating over [t0, tn], we find a constant C > 0 such that (choosing R larger if necessary)∫
G
|un(t0)|2χR dx 6 C

|t0|
2
3

(κ−3)+1

R
+

∫
G
|un(tn)|χR dx 6 2δ.

After extracting a subsequence if necessary, we obtain that the sequence (un(t0)) has a limit u0 in
L2(G). We denote by u the maximal solution of (1.1) with initial condition u(t0) = u0.

Let τ ∈ (t0, 0) and assume by contradiction that u is not defined on [t0, τ ]. Let n ∈ N∗ such
that tn > τ . Let C > 0 be such that ‖un(t)‖H1(G) 6 C for all n ∈ N∗ and t ∈ [t0, τ ]. By the
blow-up alternative (see Section 3.1), there exists τ1 in [t0, τ ] such that u is defined on [t0, τ1] and
‖u(τ1)‖H1(G) > 2C. For all t ∈ [0, τ1] the sequence (un(t)) goes to u(t) in L2(G) and has a weak
limit in H1(G). Thus, (un(t)) goes weakly to u(t) in H1(G). In particular, ‖u(t)‖H1(G) 6 C. This
gives a contradiction and proves that u is defined on [t0, τ ]. Finally, u is well defined on [t0, 0).

By conservation of the mass and convergence of un(t0) to u(t0) in L2(G) we have, for all t ∈ [t0, 0),∫
G
|u(t)|2 dx = lim

n→∞

∫
G
|un(tn)|2 dx =

∫
G
Q2 dx.
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Moreover, the fact that un(t) goes to u(t) weakly in H1(G) implies that u satisfies the assumption
of Proposition 2.2 on [t0, 0). Let b∞(t), λ∞(t), θ∞(t), h∞ denote the modulation parameters and
corresponding rest given by Proposition 2.2. Then, by standard arguments,

θn(t)→ θ∞(t), bn(t)→ b∞(t), λn(t)→ λ∞(t),

and, weakly in H1(G),

hn(t) ⇀ h∞(t), t→ 0−.

By Proposition 2.6 we deduce that, as t→ 0−,

b∞(t) ∼ Cb|t|
1
3 , λ∞(t) ∼ Cλ|t|

2
3 ,

‖h∞(t)‖L2(G) . |t|
κ−1
3 , ‖∂yh∞(t)‖L2(G) . |t|

κ−1
3 , ‖yh∞(t)‖L2(G) . |t|

κ−2
3 .

Using y = x/λ∞, the decomposition of u given by Proposition 2.2 and the formula for Pb∞,λ∞ in
Proposition 2.1, it then follows by direct calculations that

‖u(t)‖2
L2 =

∫
G
|Pb∞,λ∞(y) + h∞(t, y)|2 dy −→ ‖Q‖2

L2 , t→ 0−, and

‖ux(t)‖2
L2 = λ∞(t)−1‖uy(t)‖2

L2

∼ λ∞(t)−2

∫
G

∣∣∣−iby
2

(
Pb∞,λ∞(y) + h∞(t, y)

)
+ ∂y

(
Pb∞,λ∞(y) + h∞(t, y)

)∣∣∣2 dy

∼ λ∞(t)−2‖Qy‖2
L2 ∼ C−2

λ ‖Qy‖2
L2|t|−

4
3 , t→ 0−.

This proves (1.3) and, since ‖u‖2
L2 is constant, that M(u) = M(Q).

To complete the proof, we now show that E(u) = E?. By (2.10) and (2.20), there exists a
function ε : [t0, 0)→ R∗+ with limt→0− ε(t) = 0 and such that, for all n ∈ N∗,∣∣E(bn(t), λn(t)

)
− C−1

Q E?
∣∣ 6 ε(t), t ∈ [t0, 0).

Taking the limit n→∞ gives∣∣E(b∞(t), λ∞(t)
)
− C−1

Q E?
∣∣ 6 ε(t), t ∈ [t0, 0).

Hence, using again (2.10), we conclude that

E
(
Pb∞(t),λ∞(t)

)
−→ E?, t→ 0−.

It then follows from the above information about b∞, λ∞ and h∞ that

E(u(t)) −→ E?, t→ 0−.

By conservation of the energy, we deduce that E(u(t)) = E? for all t ∈ [t0, 0). �

3. General context

In this section we collect some basic definitions and results which will be used throughout the
paper.
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3.1. The Cauchy Problem. Since the operator Hγ is self-adjoint, it generates a strongly con-
tinuous group e−itHγ . Since we are working in a one-dimensional setting, the nonlinearity |u|4u is
Lipschitz continuous from bounded sets of H1

D(G) to Lq(G), 2 6 q 6∞, and well-posedness of the
Cauchy problem for (1.1) may be obtained (see e.g. [4]) following a classical line of arguments (see
e.g. [22]). For any initial data u0 ∈ H1

D(G), there exists a unique maximal solution

u ∈ C
(
(−Tmin, Tmax), H1

D(G)
)
∩ C1

(
(−Tmin, Tmax), H−1(G)

)
such that u(t = 0) = u0. The energy E and the mass M , defined by

M(u) =
1

2
‖u‖2

L2(G), E(u) =
1

2
‖ux‖2

L2(G) −
1

6
‖u‖6

L6(G) +
γ

2
|u(0)|2.

are preserved along the time evolution, i.e. for any t ∈ (−Tmin, Tmax), we have

E(u(t)) = E(u0), M(u(t)) = M(u0).

The blow-up alternative holds, i.e. either Tmax =∞ (resp. Tmin =∞) or

lim
t→Tmax (resp. Tmin)

‖u(t)‖H1(G) =∞.

There is continuous dependence with respect to the initial data, i.e. for any (u0,n) ⊂ H1(G) such
that u0,n → u0 in H1(G) the associated solutions (un) of (1.1) verify un → u in C((−T∗, T ∗), H1(G))
for any 0 < T∗ < Tmin, 0 < T ∗ < Tmax. Finally, if in addition u0 ∈ D(Hγ), then u verifies

u ∈ C ((−Tmin, Tmax), D(Hγ)) ∩ C1
(
(−Tmin, Tmax), L2(G)

)
.

3.2. Global existence. We now establish some global existence results for the nonlinear Schrödinger
equation (1.1).

Lemma 3.1 (Gagliardo-Nirenberg inequalities on star-graphs). The following inequalities hold

‖u‖6
L6(G) 6

3

‖Q‖4
L2(R)

‖ux‖2
L2(G)‖u‖4

L2(G), u ∈ H1
D(G), (3.1)

‖u‖6
L6(G) 6

12

N2‖Q‖4
L2(R)

‖ux‖2
L2(G)‖u‖4

L2(G), u ∈ H1
rad(G). (3.2)

Proof. The inequality (3.1) is well-known to hold on the line R, and the extension to star-graphs
is immediate (see e.g. [4, (2.3)]). On the half-line R+, we infer from (3.1) that

‖u‖6
L6(R+) 6

12

‖Q‖4
L2(R)

‖ux‖2
L2(R+)‖u‖4

L2(R+), u ∈ H1(R+).

Let u ∈ H1
rad(G) and denote by ue : R+ → R the function representing u on any of the branches of

the graph. We have

‖u‖6
L6(G) = N‖ue‖6

L6(R+) 6 N
12

‖Q‖4
L2(R)

‖(ue)x‖2
L2(R+)‖ue‖4

L2(R+) =
12

N2‖Q‖4
L2(R)

‖ux‖2
L2(G)‖u‖4

L2(G),

which establishes (3.2). �

Proposition 3.2 (Global wellposedness). Let γ ∈ R, u0 be an initial data and u be the corre-
sponding solution of (1.1) such that u(0, ·) = u0.

If u0 ∈ H1
D(G) satisfies ‖u0‖L2 < min

{
1, N

2

}
‖Q‖L2, then u is global in H1(G). Furthermore,

if γ > 0, then for any solution with ‖u0‖L2 = min
{

1, N
2

}
‖Q‖L2, u(t, 0) remains bounded on the

lifespan of u.
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If u0 ∈ H1
rad(G) satisfies ‖u0‖L2 < N

2
‖Q‖L2, then u is global in H1

rad(G). Furthermore, if γ > 0,

then for any solution with ‖u0‖L2 = N
2
‖Q‖L2, u(t, 0) remains bounded on the lifespan of u.

Proof. The proof follows by combining (3.1) with the conservation laws of (1.1). We have

E(u0) = E(u(t)) =
1

2
‖ux(t)‖2

L2 −
1

6
‖u(t)‖6

L6 +
γ

2
|u(t, 0)|2

>
1

2

[
1−

(
‖u0‖L2

‖Q‖L2

)4
]
‖ux(t)‖2

L2 +
γ

2
|u(t, 0)|2.

If γ > 0, it follows that ‖ux(t)‖L2 remains bounded provided ‖u0‖L2 < ‖Q‖L2 , and global
existence in H1(G) follows by the blow-up alternative. Moreover in this case, if ‖u0‖L2 = ‖Q‖L2 ,
we see that |u(t, 0)|2 must remain bounded.

If γ < 0, the inequality |u(t, 0)|2 6 2‖ux(t)‖L2‖u(t)‖L2 yields

|u(t, 0)|2 6 ε‖ux(t)‖2
L2 +

4

ε
‖u(t)‖2

L2

for any ε > 0, and it follows that

E(u0) >
1

2

[
1−

(
‖u0‖L2

‖Q‖L2

)4

− |γ|ε

]
‖ux(t)‖2

L2 +
2γ

ε
‖u0‖2

L2 .

If ‖u0‖L2 < ‖Q‖L2 , we can choose ε > 0 so that 1−
(
‖u0‖L2

‖Q‖L2

)4

− |γ|ε > 0, showing that ‖ux(t)‖L2

remains bounded. This concludes the proof. �

3.3. The linearized operators. In this subsection, we establish some useful properties of the
linearized operators

L− = − d2

dy2
+ 1−Q4 and L+ = − d2

dy2
+ 1− 5Q4.

They are seen as bounded operators from H1
rad(G,R) to its dual H−1

rad(G,R). For instance, for
ϕ, ψ ∈ H1

rad(G,R) we have

〈L−ϕ, ψ〉 = (ϕ′, ψ′)L2(G) + (ϕ−Q4ϕ, ψ)L2(G).

We can also consider the corresponding (unbounded) operators on L2
rad(G,R). We set

L− = − d2

dy2
+ 1−Q4 and L+ = − d2

dy2
+ 1− 5Q4.

They are defined on the same domain D(L−) = D(L+) = D(H0) ∩H1
rad(G,R).

We denote by σ(A), σess(A) the spectrum, respectively the essential spectrum, of a linear operator
A on L2

rad(G). The following spectral properties of the operators L± are well-known in the context
of radial functions on the line (see e.g. [23,53] and references therein) and it is straightforward to
transpose them to L2

rad(G,R).
We denote by Λ the generator of dilations on G. For v ∈ C1

rad(G),

Λv =
v

2
+ yv′ =

d

dλ

(√
λv(λy)

)∣∣
λ=1

.

Lemma 3.3. The operators L± have the following properties:

(i) L± are selfadjoint and bounded below.
(ii) σess(L±) = [1,∞).
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(iii) −8 is the only eigenvalue of L+, with N(L+ + 8I) = span{Q3}.
(iv) 0 is the only eigenvalue of L−, with N(L−) = span{Q}.
(v) Setting ρ = L−1

+ (y2Q), we have the relations

L−Q = 0, L+ΛQ = −2Q, L−y
2Q = −4ΛQ, L+ρ = y2Q.

From these results on L± we deduce similar properties for L±.

Proposition 3.4. The operators L± have the following properties:

(i) L+ : H1
rad(G,R)→ H−1

rad(G,R) is bijective;
(ii) ker(L−) = span(Q) and Ran(L−) = {ϕ ∈ H−1

rad(G) : ϕ(Q) = 0}.
Proof. We have span(Q) = ker(L−) ⊂ ker(L−), and if ϕ ∈ ker(L−) we have ϕ ∈ D(L−) and
L−ϕ = 0. This proves that ker(L−) = span(Q).

Since L− = (IdH−1
rad(G,R) −K)(−∂2

x + 1) with K = Q4(−∂2
x + 1)−1 ∈ L(H−1

rad(G,R)) compact, its

range is closed. Then Ran(L−) = ker(L−)⊥ and the second statement of the proposition follows.
The first statement about L+ is similar. �

Next, we give some useful integral identities.

Lemma 3.5. Let Q, ΛQ and ρ be as in Lemma 3.4. Then:

(i)
∫
G y

2QΛQ dy = −
∫
G y

2Q2 dy;

(ii)
∫
G QΛQ dy = 0;

(iii)
∫
G Qρ dy = 1

2

∫
G y

2Q2 dy.

Proof. (i) For real parameters µ > −1 and r > 1, we will show that∫
G
yµQrΛQ dy =

(
1

2
− µ+ 1

r + 1

)∫
G
yµQr+1 dy, (3.3)

from which (i) follows. Now, to prove (3.3), we only need to show that∫
G
yµQry Qy dy = −µ+ 1

r + 1

∫
G
yµQr+1 dy. (3.4)

Integrating by parts, we have∫
G
yµ+1QrQy dy = −

∫
G
[(µ+ 1)Qryµ + ryµ+1Qr−1Qy]Q dy

= −(µ+ 1)

∫
G
yµQr+1 dy − r

∫
G
QrQyy

µ+1 dy,

which is equivalent to (3.4). This completes the proof of (3.3).
(ii) follows directly from (3.3) with µ = 0 and r = 1, but the following argument is more

instructive. Since the L2 scaling Qλ(y) = λ
1
2Q(λy) leaves the L2 norm invariant, we have that

0 =
d

dλ
‖Qλ‖2

L2 = 2

∫
G
Qλ

∂Qλ

∂λ
dy, ∀λ > 0.

The result follows by letting λ = 1.
(iii) Using Lemma 3.3 and (i), we have the identities∫

G
Qρ dy = −1

2

∫
G
L+ΛQρ dy = −1

2

∫
G

ΛQL+ρ dy = −1

2

∫
G

ΛQy2Q dy =
1

2

∫
G
y2Q2 dy.

The proof is complete. �
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We now state well-known coercivity properties of the operators L±, which we prove for the
reader’s convenience. We start with positivity properties.

Lemma 3.6. L± satisfy the following positivity relations in H1
rad, where ⊥ denotes orthogonality

in L2:

〈L−v, v〉H−1×H1 & ‖v‖2
H1 on {ρ}⊥, (3.5)

〈L+v, v〉H−1×H1 & ‖v‖2
H1 on {Q, y2Q}⊥. (3.6)

Proof. To prove (3.5), we first observe that Lemma 3.3 implies

〈L−w,w〉H−1×H1 > ‖w‖2
L2 , ∀w ∈ {Q}⊥. (3.7)

From now on, we denote by ‖ · ‖ and (·, ·) the L2 norm and inner product, and 〈·, ·〉 the duality
product.

Let v ∈ {ρ}⊥. Let w ∈ {Q}⊥ and t ∈ R such that v = w+tQ. Since (Q, ρ) 6= 0 (see Lemma 3.5),
we necessarily have

t = − (w, ρ)

(Q, ρ)
,

and hence

‖v‖2
L2 = ‖w‖2 + 2t(w,Q) + t2‖Q‖2

L2 = ‖w‖2
L2 +

(w, ρ)2

(Q, ρ)2
‖Q‖2

L2 6 ‖w‖2
L2

(
1 +
‖ρ‖2

L2‖Q‖2
L2

(Q, ρ)2

)
.

Setting

C1 =

(
1 +
‖ρ‖2

L2‖Q‖2
L2

(Q, ρ)2

)−1

> 0,

it then follows by (3.7) that

〈L−v, v〉 = 〈L−w,w〉 > ‖w‖2
L2 > C1‖v‖2

L2 . (3.8)

To deduce (3.5), we argue by contradiction. Suppose there exists a sequence {vn} in H1
rad ∩ {ρ}⊥

such that ‖vn‖H1 = 1 for all n and 〈L−vn, vn〉 → 0 as n→∞. Then (3.8) implies ‖vn‖L2 → 0, so
‖∂xvn‖L2 → 1. Then

〈L−vn, vn〉 = ‖∂xvn‖2
L2 + ‖vn‖2

L2 −
∫
G
Qp−1v2

n dy

> ‖∂xvn‖2
L2 + ‖vn‖2

L2

(
1− ‖Q‖p−1

L∞

)
→ 1.

This contradiction concludes the proof of (3.5).
The proof of (3.6) follows in the same way from

〈L+v, v〉 & ‖v‖2
L2 on {Q, y2Q}⊥.

However, the proof of this inequality is much more involved than that of (3.8), see [53]. �

Lemma 3.7. There exist µ−, µ+ > 0 such that, for all v ∈ H1
rad,

〈L−v, v〉H−1×H1 > µ−‖v‖2
H1 − µ−1

− (v, ρ)2
L2 (3.9)

and
〈L+v, v〉H−1×H1 > µ+‖v‖2

H1 − µ−1
+

[
(v,Q)2

L2 + (v, y2Q)2
L2

]
. (3.10)

There exists µ > 0 such that

〈L+v, v〉H−1×H1 + 〈L−v, v〉H−1×H1 > µ‖v‖2
H1 − µ−1

[
(v,Q)2

L2 + (v, y2Q)2
L2 + (v, ρ)2

L2

]
. (3.11)
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Proof. We prove (3.10) and leave the proof of (3.9), which is very similar, to the reader. Estimate
(3.11) will then be a consequence of (3.9) and (3.10).

Any v ∈ H1
rad can be written as

v = w + sQ+ ty2Q, w ∈ {Q, y2Q}⊥

with

s =
(v,Q)L2‖y2Q‖2 − (v, y2Q)L2(Q, y2Q)L2

‖Q‖2‖y2Q‖2 − (Q, y2Q)2
L2

, t =
(v, y2Q)L2‖Q‖2 − (v,Q)L2(Q, y2Q)L2

‖Q‖2‖y2Q‖2 − (Q, y2Q)2
L2

.

Then

‖v‖2
H1 = ‖w‖2

H1 + s2‖Q‖2
H1 + t2‖y2Q‖2

H1 + 2st〈Q, y2Q〉H1 + 2s〈w,Q〉H1 + 2t〈w, y2Q〉H1

6 ‖w‖2
H1 + s2‖Q‖2

H1 + t2‖y2Q‖2
H1 + (s2 + t2)|〈Q, y2Q〉H1|

+ 2s‖w‖H1‖Q‖H1 + 2t‖w‖H1‖y2Q‖H1

6 ‖w‖2
H1 + s2‖Q‖2

H1 + t2‖y2Q‖2
H1 + (s2 + t2)|〈Q, y2Q〉H1|

+ s2 + ‖w‖2
H1‖Q‖2

H1 + t2 + ‖w‖2
H1‖y2Q‖2

H1

6
(
1 + ‖Q‖2

H1 + ‖y2Q‖2
H1

)
‖w‖2

H1 +
(
1 + ‖Q‖2

H1 + |〈Q, y2Q〉H1|
)
s2

+
(
1 + ‖y2Q‖2

H1 + |〈Q, y2Q〉H1|
)
t2.

Hence, there exist constants A,B,C > 0 such that

‖w‖2
H1 > A‖v‖2

H1 −B
(v,Q)2

‖Q‖4
− C (v, y2Q)2

‖y2Q‖4
. (3.12)

Using similar calculations, (3.6) yields a constant K > 0 such that, for any ε > 0,

〈L+v, v〉
= 〈L+w,w〉+ s2〈L+Q,Q〉+ t2〈L+y

2Q, y2Q〉+ 2st〈L+Q, y
2Q〉+ 2s〈w,L+Q〉+ 2t〈w,L+y

2Q〉
> K‖w‖2

H1 −
(
|〈L+Q,Q〉|+ |〈L+y

2Q, y2Q〉|
)
s2 −

(
|〈L+y

2Q, y2Q〉|+ |〈L+y
2Q, y2Q〉|

)
t2

− 2ε−1|s|ε‖w‖L2‖L+Q‖L2 − 2ε−1|t|ε‖w‖L2‖L+y
2Q‖L2

> K‖w‖2
H1 −

(
|〈L+Q,Q〉|+ |〈L+Q, y

2Q〉|
)
s2 −

(
|〈L+y

2Q, y2Q〉|+ |〈L+Q, y
2Q〉|

)
t2

−
(
ε−2s2 + ε2‖L+Q‖2

L2‖w‖2
H1

)
−
(
ε−2t2 + ε2‖L+y

2Q‖2
L2‖w‖2

H1

)
>
[
K − ε2

(
‖L+Q‖2

L2 + ‖L+y
2Q‖2

L2

)]
‖w‖2

H1

−
(
ε−2 + |〈L+Q,Q〉|+ |〈L+Q, y

2Q〉|
)
s2 −

(
ε−2 + |〈L+y

2Q, y2Q〉|+ |〈L+Q, y
2Q〉|

)
s2.

Therefore, choosing ε > 0 small enough, there exist constants K1, K2, K3 > 0 such that

〈L+v, v〉 > K1‖w‖2
H1 −K2

(v,Q)2

‖Q‖4
−K3

(v, y2Q)2

‖y2Q‖4
.

Combining this with (3.12) concludes the proof of (3.10). �

4. Construction of the profile

In this section we prove Proposition 2.1. For b ∈ C1(J,R), λ ∈ C1(J,R∗+) and α ∈ C1(J,R), we
denote by OC1

exp
(b, λ, α) any function u : J → C1

exp such that we have, for some C > 0

∀s ∈ J, ‖u(s)‖C1
exp
6 C

(
|λb+ λs|+ λ|bs + b2 − α|

)
+ C(b2 + λ)κ.
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Then we have to construct α and P of the form (2.6) and (2.5) such that Ψκ = OC1
exp

(b, λ, α),

where Ψκ is defined by (2.7).

Lemma 4.1. Let g ∈ C1
exp, η ∈ R and µ ∈ R. Suppose that u ∈ H1

rad(G) is a solution of

−u′′ + u+ µQ4u = ηδ + g.

Then we have u ∈ C1
exp.

Proof. By elliptic regularity we have u ∈ H2(G), so u is of class C1 and then of class C3 on each
edge. For y ∈ G we have

u(y) =
1

2

∫ +∞

0

e−|y−z|
(
g(z)− κQ(z)4u(z)

)
dz + e−y

(
η

N
+

∫ +∞

0

e−z
(
g(z)− µQ(z)4u(z)

)
dz

)
.

Since z 7→ g(z)− µQ(z)4u(z) decays at least like e−
z
2 , the conclusion follows. �

Proof of Proposition 2.1. Let Pj,k ∈ C1
exp for (j, k) ∈ Σκ and αj,k ∈ R for (j, k) ∈ Σκ with j even.

Let P and α be defined by (2.6) and (2.5). For (j, k) ∈ Σκ we have

i∂s
(
(ib)jλkPj,k

)
= −j(ib)j−1bsλ

kPj,k + i(ib)jkλk−1λsPj,k

= −j(ib)j+1λkPj,k − j(ib)j−1αλkPj,k − (ib)j+1kλkPj,k +OC1
exp

(b, λ, α)

= −(j + k)(ib)j+1λkPj,k −
∑

(p,q)∈Σκ
p even

jαp,q(ib)
j−1+pλk+qPj,k +OC1

exp
(b, λ, α).

Notice that some terms in the sum are actually in OC1
exp

(b, λ, α). On the other hand there exists

a family (Φj,k)(j,k)∈Σκ in C1
exp which only depends on Q and the Pj,k, (j, k) ∈ Σκ, such that

|P |4P = Q5 +
∑

(j,k)∈Σκ

(ib)jλkΦj,k +OC1
exp

(b, λ, α).

In particular Φ0,1 = 5Q4P0,1. Then we have

Ψκ =
∑

(j,k)∈Σκ

(ib)jλkΨj,k +OC1
exp

(b, λ, α)

where, for (j, k) ∈ Σκ,

Ψj,k = −(j − 1 + k)Pj−1,k +
∑

(p,q)∈Σκ
p even

(j + 1− p)αp,qPj+1−p,k−q

+ ∂yyPj,k − Pj,k − γδPj,k−1 + Φj,k +
∑

p1+p2=j
q1+q2=k
p1 even

αp1,q1
y2

4
Pp2,q2 .

We have used the convention that

Pp,q =

{
Q if p = 0 and q = 0,

0 if p < 0 or q 6 0.

We now show that we can choose the Pj,k and αj,k in such a way that Ψj,k = 0 for all (j, k) ∈ Σκ.
For (j1, k1), (j2, k2) ∈ Z2 we say that (j1, k1) < (j2, k2) if k1 < k2 or (k1 = k2 and j1 < j2).
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Let (m, k) ∈ N × N∗ with m + k < κ. Assume that for all (j′, k′) ∈ Σκ with (j′, k′) < (2m, k)

we have defined αj′,k′ (if j′ is even) and Pj′,k′ in such a way that Ψj̃,k̃ = 0 for all (j̃, k̃) ∈ Σκ with

(j̃, k̃) < (2m, k). For j ∈ {2m, 2m+ 1} we have

Φj,k =
(
3 + 2(−1)j

)
Q4Pj,k + Φ̃j,k,

for some Φ̃j,k ∈ C1
exp which only depends on Pj′,k′ with (j′, k′) < (j, k). Then for some Ψ̃2m,k and

Ψ̃2m+1,k in C1
exp (which depend on Pj′,k′ and αj′,k′ for (j′, k′) < (2m, k)) we have

Ψ2m,k = −L+P2m,k − γδP2m,k−1 + α2m,k
y2

4
Q+ Ψ̃2m,k,

Ψ2m+1,k = −L−P2m+1,k − γδP2m+1,k−1 − (2m+ k)P2m,k + Ψ̃2m+1,k.

By Proposition 3.4 there exists P2m,k ∈ H1(G) such that Ψ2m,k = 0 for any choice of α2m,k ∈ R.
Moreover, P2m,k ∈ C1

exp by Lemma 4.1. We choose α2m,k in such a way that (see Proposition 3.4
again)

(2m+ k)P2m,k + γδP2m+1,k−1 − Ψ̃2m+1,k ∈ span {Q}⊥ = Ran(L−). (4.1)

Using L+ΛQ = −2Q and the selfadjointness of L+, this condition reads

(2m+ k) 〈L+P2m,k,ΛQ〉+
〈
γδP2m+1,k−1 − Ψ̃2m+1,k, L+ΛQ

〉
= 0,

that is,

α2m,k =
4

‖yQ‖2
L2

(〈
−γδP2m,k−1 + Ψ̃2m,k,ΛQ

〉
+

1

2m+ k

〈
γδP2m+1,k−1 − Ψ̃2m+1,k), L+ΛQ

〉)
.

By (4.1), we can then choose P2m+1,k ∈ H1(G) (defined up to a multiple ofQ) such that Ψ2m+1,k = 0.
Again, by Lemma 4.1 we have P2m+1,k ∈ C1

exp. The base case of the above induction process is
given by the equations

0 = −L+P0,1 − γδQ+ α0,1
y2

4
Q,

0 = −L−P1,1 − P0,1,

from which we can compute explicitly α0,1 using the results of Section 3.3:

0 = 〈P0,1, Q〉 =
〈
P0,1,−

1

2
L+ΛQ

〉
= −1

2
〈L+P0,1,ΛQ〉

= −1

2

〈
− γδQ+ α0,1

y2

4
Q,ΛQ

〉
=

1

2
γ〈δQ,ΛQ〉 − α0,1

8
〈y2Q,ΛQ〉

=⇒ α0,1 =
4γ〈δQ,ΛQ〉
〈y2Q,ΛQ〉

=
4γQ(0)ΛQ(0)∫
G y

2QΛQ
= −2γ

Q(0)2

‖yQ‖2
L2

. (4.2)

This gives the formula for the coefficient β in the model dynamical system (2.13), and completes
the proof of (2.5)-(2.8).

Formula (2.9), (2.10) and (2.11) can be proved in the same way as in [37,52]. �
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5. Modulation

In this section we prove Proposition 2.2. The strategy is classical but for the reader’s convenience
we provide a proof adapted to our context.

For π = (θ, b, λ) ∈ S1 × R× R+ and u = (uj) ∈ L2(G) we define Θπv ∈ L(L2(G)) by

(Θπu)j(x) =
1√
λ
eiθe−

ibx2

4λ2 uj

(x
λ

)
.

This defines a unitary operator Θπ on L2(G).
For δ > 0 we set

Qδ =
⋃

θ∈R,λ∈]0,δ[

BL2(G)(Θθ,0,λQ, δ).

It is endowed with the topology inherited from L2(G). For η > 0 we also set

Ωη = S1 × (−η, η)× (0, η).

Proposition 5.1. Let η > 0. There exist δ > 0 and a function π = (θ, b, λ) ∈ C1(Qδ,Ωη) such
that for any u ∈ Qδ we have in L2(G)

Θ−1
π(u)u− P (b(u), λ(u)) ∈

{
y2P (b(u), λ(u)), iΛP (b(u), λ(u)), iρ

}⊥
,

where P (b, λ) is as defined in Proposition 2.1.

Proof. For π = (θ, b, λ) ∈ S1 × R× R+, β ∈ R and v ∈ L2(G) we set

h(π; v, β) = Θ−1
π v − Pb,βλ and F (π; v, β) =

(h(π, v, β), y2Pb,βλ)L2(G)

(h(π, v, β), iΛPb,βλ)L2(G)

(h(π, v, β), iρ)L2(G)

 .

This defines functions of class C1 on S1×R×R+×L2(G)×R. Moreover we have h(0, 0, 1;Q, 0) = 0
and F (0, 0, 1;Q, 0) = 0 (the interest of the extra parameter β is that we can start the analysis
around λ = 1 and Q = P (b = 0, λ = 0)). We have (∂bPb,βλ, ∂λPb,βλ)|b=0,β=0,λ=1 = (0, 0), so

∇θ,b,λh(0, 0, 1;Q, 0) =

−iQiy2

4
Q

ΛQ

 .

By Lemma 3.5 we have (Q,ΛQ) = 0, so

Jacθ,b,λF
(
0, 0, 1;Q, 0

)
=

 0 0 (ΛQ, y2Q)
0 1

4
(y2Q,ΛQ) 0

−(Q, ρ) 1
4
(y2Q, ρ) 0

 .

We also have (y2Q,ΛQ) 6= 0 and (Q, ρ) 6= 0, so this partial jacobian is invertible. By the Implicit
Function Theorem, there exist a neighborhood U ⊂ S1×(−η, η)×(0, 2) of (0, 0, 1), a neighborhood
V of (Q, 0) in L2(G) × R and a function Π0 = (θ0, b0, λ0) : V → U of class C1 such that for all
π ∈ U and (v, β) ∈ V we have

F (π; v, β) = 0 ⇐⇒ π = Π0(v, β).

We fix δ > 0 so small that B(Q, δ)× (−δ, δ) ⊂ V .
Let u ∈ Qδ. Let θ1, θ2 ∈ S1 and λ1, λ2 ∈]0, δ[ be such that v1 = Θ−1

θ1,0,λ1
u and v2 = Θ−1

θ2,0,λ2
u

belong to B(Q, δ). By definition we have

Θθ0(v1,λ1),b0(v1,λ1),λ(v1,λ1) − P̃ ∈
{
y2P̃ , iΛP̃ , iρ

}⊥
,
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where we have set P̃ = P
(
b0(v1, λ1), λ1λ0(v1, λ1)

)
. Since v1 = Θ−1

θ1−θ2,0,λ1/λ2v2 we also have

Θθ0(v1,λ1)+θ1−θ2,b0(v1,λ1),λ(v1,λ1)λ1/λ2 − P̃ ∈
{
y2P̃ , iΛP̃ , iρ

}⊥
,

where we can also write P̃ = P
(
b0(v1, λ1), λ2λ0(v1, λ1)λ1/λ2

)
. This proves that

θ0(v2, λ2) + θ2 = θ0(v1, λ1) + θ1, b0(v2, λ2) = b0(v1, λ1), λ0(v2, λ2)λ2 = λ0(v1, λ1)λ1.

Thus we can set

θ(u) = θ0(v1, λ1) + θ1, b(u) = b0(v1, λ1), λ(u) = λ0(v1, λ1)λ1, (5.1)

and this definition does not depend on the choice of θ1 or λ1. This defines a function π = (θ, b, λ) ∈
C1(Qδ,Ωη). Moreover we have

Θ−1
θ(u),b(u),λ(u)u− P (b(u), λ(u)) = Θθ0(v1,λ1),0,λ0(v1,λ1)v1 − P (b0(v1, λ1), λ1λ0(v1, λ1))

∈
{
y2P (b(u), λ(u)), iΛP (b(u), λ(u)), iρ

}⊥
,

which completes the proof. �

The function π = (θ, b, λ) defined on Qδ in the previous proposition is of class C1 if Qδ is
endowed with the topology of L2(G). However, a typical solution u(t) of (1.1) is only of class C1

in H−1(G), and continuous in H1(G) (hence in L2(G)). To prove Proposition 2.2, we will use the
fact that a solution of (1.1) can by approximated by a regular solution, of class C1 in L2(G).

Proposition 5.2. Let I be an interval of R. Let u ∈ C0(I, L2(G)) ∩ C1(I,H−1(G)). Assume that
there exists a sequence (uk)k∈N in C1(I, L2(G)) which goes to u in C0(I, L2(G)) ∩ C1(I,H−1(G)).
Then the map π ◦ u (with π given by Proposition 5.1) is of class C1 on I.

Proof. We use the notation introduced in the proof of Proposition 5.1.
For t ∈ I we set π(t) = (θ(t), b(t), λ(t)) = π(u(t)). We fix τ1 ∈ I and prove that π ◦ u is of

class C1 on a neighborhood of τ1. Let θ1 ∈ S1 and λ1 ∈]0, δ[ be such that Θ−1
θ1,0,λ1

u(τ1) ∈ B(Q, δ).

For t ∈ I we set v(t) = Θ−1
θ1,0,λ1

u(t), and for k ∈ N we set vk(t) = Θ−1
θ1,0,λ1

uk(t). Let I1 be a
neighborhood of τ1 in I such that v(t) ∈ B(Q, δ) and vk(t) ∈ B(Q, δ) for all t ∈ I1 and k ∈ N. For
t ∈ I1 we have by (5.1)

θ(t) = θ0(v(t), λ1) + θ1, b(t) = b0(v(t), λ1), λ(t) = λ0(v(t), λ1)λ1,

so it is enough to prove that t 7→ Π0(v(t), λ1) is of class C1 on I1. Notice that vk belongs to
C1(I1, L

2(G)) and goes to v in C0(I1, L
2(G)) ∩ C1(I1, H

−1(G)) as k →∞.

For t ∈ I1 we set π̃(t) = Π0(v(t), λ1), and for k ∈ N we set π̃k(t) = (θ̃k(t), b̃k(t), λ̃k(t)) =
Π0(vk(t), λ1). We have π̃ ∈ C0(I1,Ωη) and π̃k ∈ C1(I1,Ωη). Let k ∈ N. For all t ∈ I1 we have
F (π̃k(t); vk(t), λ1) = 0. After differentiation we get for t ∈ I1

π̃′k(t) = −DπF (π̃k(t), vk(t), λ1)−1 ·DvF (π̃k(t), vk(t), λ1) · v′k(t).

For t ∈ J we set Pk(t) = Pb̃k(t),λ1λ̃k(t). Then

DvF
(
π̃(t), vk(t), λ1

)
· v′k(t) =


(
Θ−1
π̃k(t)v

′
k(t), y

2Pk(t)
)(

Θ−1
π̃k(t)v

′
k(t), iΛPk(t)

)(
Θ−1
π̃k(t)v

′
k(t), iρ

)
 =

〈v′k(t),Θπ̃k(t)(y
2Pk(t))

〉〈
v′k(t),Θπ̃k(t)(iΛPk(t))

〉〈
v′k(t),Θπ̃k(t)(iρ)

〉
 .
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Then π′k is continuous on I1. For all t ∈ I1 we have

π̃k(t) = π̃k(τ1) +

∫ t

τ1

π̃′k(τ) dτ.

Taking the limit k →∞ gives for all t ∈ J

π̃(t) = π̃(τ1)−
∫ t

τ1

DπF (π̃(t), v(t), λ1)−1

〈v′(t),Θπ̃(t)(y
2P (t))

〉〈
v′(t),Θπ̃(t)(iΛP (t))

〉〈
v′(t),Θπ̃(t)(iρ)

〉
 dτ,

where P (t) = Pb̃(t),λ1λ̃(t). The integrand is a continuous functions of τ , so π̃ is of class C1 on I1. �

Now we have all the ingredients for the proof of Proposition 2.2.

Proof of Proposition 2.2. Let τ1 ∈ I and u1 = u(τ1). Let K be a compact neighborhood of τ1 in
I. Since D(Hγ) is dense in L2(G) there exists a sequence (u1,k)n∈N in D(Hγ) which goes to u1 in
L2(G). For k ∈ N we denote by uk ∈ C0(Ik, D(Hγ))∩C1(Ik, L

2(G)) the maximal solution (defined
on the interval Ik) of (1.1) such that uk(τ1) = u1,k. Removing a finite number of terms if necessary,
we can assume that K ⊂ Ik for all k ∈ N, and uk goes to u in C0(K,H1(G)) ∩ C1(K,H−1(G)).
Then we can apply Propositions 5.1 and 5.2, which gives Proposition 2.2. �

6. Proof of the uniform estimates

Using λ̃, we can now define precisely the rescaled time variable s that appears in the formal
change of variables (2.1)–(2.2). We let

s := s(t) = s1 −
∫ t1

t

1

λ̃(τ)2
dτ (6.1)

where the final time s1 is computed as follows by means of the solution

λmo(s) =
2

β

1

s2

of the model dynamical system (2.13):

dt = λ2
mo(s) ds =⇒ |t1| = −t1 =

4

β2

∫ +∞

s1

s−4 ds =⇒ s1 =

(
4

3β2

)1/3

|t1|−1/3.

Observe that s is a strictly increasing function of t. Hence, t may in turn be expressed as a
function of s. This will allow us to obtain Proposition 2.6 as a consequence of the uniform estimates
in variable s which are stated below, in Proposition 6.1.

We then express the modulation parameters b̃, λ̃ and θ̃ as functions of the variable s by setting

b(s) := b̃(t(s)), λ(s) = λ̃(t(s)), θ(s) = θ̃(t(s)). (6.2)

Next, in the change of variables (2.1)–(2.2), we write

w = P + h,

where P = Pb,λ is defined in (2.5). That is, in the original variables,

u = λ−1/2ei(θ−b
y2

4
)(P + h).

For v ∈ Σ, we let

M̃odop(s)v := (1− θs)v + (bs + b2)
y2

4
v − i

(
b+

λs
λ

)
Λv − b

(
b+

λs
λ

)y2

2
v
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and

Modop(s)v := (1− θs)v + (bs + b2 − α)
y2

4
v − i

(
b+

λs
λ

)
Λv.

Hence,

M̃odop(s)v = Modop(s)v + α
y2

4
v − b

(
b+

λs
λ

)y2

2
v.

With this notation, (2.3) becomes

ihs+hyy−h−γλδh+f(P +h)−f(P ) + M̃odop(s)h = −ΨK−Modop(s)P + b
(
b+

λs
λ

)y2

2
P. (6.3)

For any fixed λ > 0, we define the norm ‖ · ‖λ on Σ, equivalent to the usual norm ‖ · ‖1, by

‖v‖2
λ := ‖v‖2

H1 + λ‖yv‖2
L2 , v ∈ Σ. (6.4)

We now let s? be the infimum of σ ∈ [s0, s1] such that, for all s ∈ [σ, s1],

‖h(s)‖λ . s−(κ−2),
∣∣∣ λ(s)1/2

λmo(s)1/2
− 1
∣∣∣ . 1

s1/2
,
∣∣∣ b(s)
bmo(s)

− 1
∣∣∣ . 1

s1/2
, (6.5)

for some κ ∈ N, κ > 7. Since, by construction, h(s1) = 0, it follows from Proposition 2.5 that
(6.5) is satisfied at s = s1. Hence, by continuity, s? ∈ [s0, s1).

We will use a bootstrap argument involving (6.5) to prove the following uniform estimates in s,
from which Proposition 2.6 will follow using the change of variables (6.1).

Proposition 6.1 (Uniform estimates in the s variable). There exists s0 independent of s1 such
that the solution u1 of (1.1) defined by (2.17) exists and, under the change of variables (6.1),
satisfies (2.12) on [s0, s1]. Moreover, the corresponding functions b(s), λ(s) and h(s) given by
Proposition 2.2 satisfy

‖h(s)‖λ(s) . s−(κ−1), (6.6)∣∣∣ λ(s)1/2

λmo(s)1/2
− 1
∣∣∣ . 1

s2
,
∣∣∣ b(s)
bmo(s)

− 1
∣∣∣ . 1

s2
, s ∈ [s0, s1]. (6.7)

Remark 6.2. The estimates (6.7) can be improved to∣∣∣ λ(s)1/2

λmo(s)1/2
− 1
∣∣∣ . 1

s4
,
∣∣∣ b(s)
bmo(s)

− 1
∣∣∣ . 1

s4
, s ∈ [s0, s1], (6.8)

by shifting the energy level in the definition of F in (2.15) to E? = E? − (ε0,1 + 2βε2,0) (see the
proof of Proposition 6.1).

6.1. Modulation estimates. We now justify quantitatively that, for large times, the modulation
parameters are approximate solutions of the model dynamical system (2.13).

Let

Mod(s) :=

 b+ λs/λ
bs + b2 − α

1− θs

 , s ∈ [s0, s1].

Lemma 6.3. For all s ∈ [s?, s1], there holds

|Mod(s)| . s−κ (6.9)

|(h(s), Q)L2| . s−κ. (6.10)
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Proof. Let us first define

s?? := inf
{
σ ∈ [s?, s1] : |(h(s), Pb,λ)L2| < s−κ ∀s ∈ [σ, s1]

}
.

Since h(s1) = 0, we have s?? ∈ [s?, s1). We will show by a bootstrap argument that s?? = s?, from
which (6.10) easily follows. This will come as a by-product of (6.9), which we now prove using
(6.3) and the orthogonality conditions from Proposition 2.2 on the interval [s??, s1].

We start by differentiating (h(s), iΛP ) = 0 with respect to s:

〈hs, iΛP 〉+ 〈h, iΛPs〉 = 0, s ∈ [s?, s1]. (6.11)

Using (2.5), (2.6) and (6.5), we have that

|(h, iΛPs)| . ‖h‖L2

(
|Mod(s)|+ s−2) . s−(κ−2)|Mod(s)|+ s−κ . s−2|Mod(s)|+ s−κ.

On the other hand, 〈hs, iΛP 〉 = −〈ihs,ΛP 〉. Since

f(P + h)− f(P ) = df(P )h+O(|h|2) = df(P )h+O(s−(κ−2)|h|) = df(Q)h+O(s−2|h|),
the equation for h reads

ihs = L+h1 + iL−h2 + γλδh+O(s−2|h|)

−
[
M̃odop(s)h+ Modop(s)P − b

(
b+

λs
λ

)y2

2
P + Ψκ

]
. (6.12)

Now, the definition of s?? yields

〈L+h1 + iL−h2 + γλδh+O(s−2|h|),ΛP 〉 = 〈L+h1 + iL−h2 + γλδh,ΛQ〉+O(s−2‖h‖L2)

= 〈h1, L+ΛQ〉 − 〈L−h2, iΛQ〉+ γλh(0)ΛQ(0) +O(s−2‖h‖L2)

= −2(h,Q) + γλh(0)ΛQ(0) +O(s−2‖h‖L2)

= −2(h, P ) + γλh(0)ΛQ(0) +O(s−2‖h‖L2)

= O(s−κ), ∀s ∈ [s??, s1].

The second line of (6.12) has three terms. Firstly,〈
M̃odop(s)h,ΛP

〉
=
〈

Modop(s)h+ α
y2

4
h− b

(
b+

λs
λ

)y2

2
h,ΛP

〉
= O(|Mod(s)|‖h‖L2) +O(b|Mod(s)|‖h‖L2) +O(|α(s)|‖h‖L2)

= O(|Mod(s)|‖h‖L2) +O(s−κ).

Next, by Lemma 3.5,

〈Modop(s)P,ΛP 〉 −
〈
b
(
b+

λs
λ

)y2

2
P,ΛP

〉
= 〈Modop(s)Q,ΛQ〉 −

〈
b
(
b+

λs
λ

)y2

2
Q,ΛQ

〉
+O(s−2|Mod(s)|)

= −1

4
(bs + b2 − α)‖yQ‖2

L2 −
〈(
b+

λs
λ

)
ΛQ,ΛQ

〉
+

1

2
b
(
b+

λs
λ

)
‖yQ‖2

L2 +O(s−2|Mod(s)|)

=
1

4
‖yQ‖2

L2

[
2b
(
b+

λs
λ

)
− (bs + b2 − α)

)]
+O(s−2|Mod(s)|).

Finally,

〈Ψκ,ΛP 〉 = O(s−2|Mod(s)|) +O(s−2κ).
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All in all, we find that

〈hs, iΛP 〉 =
1

4
‖yQ‖2

L2

[
2b
(
b+

λs
λ

)
− (bs + b2 − α)

)]
+O(s−2|Mod(s)|) +O(s−κ).

Hence, the restriction of (6.11) to [s??, s1] gives

(bs + b2 − α)− 2b
(
b+

λs
λ

)
= O(s−2|Mod(s)|) +O(s−κ). (6.13)

We next differentiate (h(s), y2P ) = 0 with respect to s:

〈hs, y2P 〉+ 〈h, y2Ps〉 = 0, s ∈ [s?, s1]. (6.14)

As above, we obtain

|(h, y2Ps)| . ‖h‖L2

(
|Mod(s)|+ b2 + λ) . s−2|Mod(s)|+ s−κ.

On the other hand, 〈hs, y2P 〉 = 〈ihs, iy2P 〉. We shall again use (6.12) on [s??, s1]. It follows by
Proposition 2.2 and (6.5) that

〈L+h1 + iL−h2 + γλδh+O(s−2|h|), iy2P 〉 = 〈L+h1 + iL−h2 + γλδh, iy2Q〉+O(s−2‖h‖L2)

= 〈h2, L−y
2Q〉+O(s−2‖h‖L2)

= −4(h2,ΛQ) +O(s−2‖h‖L2)

= −4(h, iΛP ) +O(s−2‖h‖L2)

= O(s−κ), ∀s ∈ [s??, s1].

Using Lemma 3.5 and (6.5), similar calculations as above yield〈
M̃odop(s)h+ Modop(s)P − b

(
b+

λs
λ

)y2

2
P + Ψκ, iy

2P
〉

= ‖yQ‖2
L2

(
b+

λs
λ

)
+O(s−2|Mod(s)|) +O(s−κ).

Hence, gathering all terms of (6.14), we find that∣∣∣b+
λs
λ

∣∣∣ . s−2|Mod(s)|+ s−κ, ∀s ∈ [s??, s1]. (6.15)

It then follows from (6.13) that

|bs + b2 − α| . s−2|Mod(s)|+ s−κ, ∀s ∈ [s??, s1]. (6.16)

Finally, differentiating (h(s), iρ) = 0 with respect to s yields

〈ihs, ρ〉 = 0, s ∈ [s?, s1].

Using again Proposition 2.2 and (6.5), we have

〈L+h1 + iL−h2 + γλδh+O(s−2|h|), ρ〉 = 〈h1, L+ρ〉+O(s−2‖h‖L2)

= (h1, y
2Q) +O(s−2‖h‖L2)

= O(s−κ), ∀s ∈ [s??, s1].
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On the other hand, Lemma 3.5 and (6.5) yield〈
M̃odop(s)h+ Modop(s)P − b

(
b+

λs
λ

)y2

2
P + ΨK , ρ

〉
=

1

4
(y2Q, ρ)(bs + b2 − α) +

1

2
‖yQ‖2

L2(1− θs)−
1

2
(y2Q, ρ)b

(
b+

λs
λ

)
+O(s−2|Mod(s)|) +O(s−κ).

It follows that

|1− θs| = O(|bs + b2 − α|) +O
(
b
∣∣∣b+

λs
λ

∣∣∣)+O(s−2|Mod(s)|) +O(s−κ).

Thus, by (6.15) and (6.16),

|1− θs| . s−2|Mod(s)|+ s−κ, ∀s ∈ [s??, s1]. (6.17)

Gathering (6.15), (6.16) and (6.17), we conclude that

|Mod(s)| . s−2|Mod(s)|+ s−κ,

whence

|Mod(s)| . s−κ, ∀s ∈ [s??, s1]. (6.18)

Since h(s1) = 0, (b, λ)(s1) = (b1, λ1), by conservation of the mass and L2 scaling, we now have

‖Pb1,λ1‖2
L2
y

= ‖u(t1)‖2
L2
x

= ‖u(t)‖2
L2
x

= ‖Pb,λ + h‖2
L2
y

= ‖Pb,λ‖2
L2 + 2(Pb,λ, h) + ‖h‖2

L2

=⇒ (Pb,λ, h) = −1

2
‖h‖2

L2 +
1

2

(
‖Pb1,λ1‖2

L2 − ‖Pb,λ‖2
L2

)
.

Furthermore, using (2.7), (2.8) and (6.18), we find that∣∣∣ d

ds
‖Pb,λ‖2

L2

∣∣∣ = 2|(Pb,λ, ∂sPb,λ)| = 2 Re
∣∣∣ ∫
G
Pb,λ∂sPb,λ dy

∣∣∣
= 2 Im

∣∣∣ ∫
G
Pb,λi∂sPb,λ dy

∣∣∣ = 2 Im
∣∣∣ ∫
G
Pb,λΨκ dy

∣∣∣ . ‖Ψκ‖C1
exp

= O(s−(κ+2)).

Hence, integrating from s to s1, ∣∣‖Pb1,λ1‖2
L2 − ‖Pb,λ‖2

L2

∣∣ . s−(κ+1)

and so, by (6.5),

|(Pb,λ, h)| . ‖h‖2
L2 + s−(κ+1) . s−(κ+1), ∀s ∈ [s??, s1].

Therefore, s?? = s? and

|(Pb,λ, h)| . s−(κ+1), ∀s ∈ [s?, s1].

Finally, (6.10) follows from (6.5) by observing that

(Q, h) = (Pb,λ, h)−O(λ‖h‖L2) = (Pb,λ, h)−O(s−2‖h‖L2).

We thus conclude that (6.9) holds on the whole interval [s?, s1], which completes the proof. �



26 F. GENOUD, S. LE COZ, AND J. ROYER

6.2. A monotone energy-virial functional. Our main tool to bootstrap the estimate on h in
(6.5) will be the functional

S(s, h) :=
H(s, h)

λm(s)
, (6.19)

where

H(s, h) :=
1

2
‖h‖2

H1 +
λ

2
‖yh‖2

L2 +
γλ

2
|h(0)|2 −

∫
G

[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
dy, (6.20)

and m is a positive integer which will be determined later.
We start with a simple upper bound for H.

Lemma 6.4. For s ∈ [s?, s1],

H(s, h) 6
1

2
‖h‖2

λ +O(s−3(κ−2)).

Proof. We have

F (P +h)−F (P )−dF (P )h =
1

6
|P +h|6− 1

6
|P |6−Re |P |4Ph̄ =

5

2
Q4h2

1 +
1

2
Q4h2

2 +O(|h|3) (6.21)

and the result follows from (6.5) and the Sobolev embedding H1 ↪→ L3. �

Proposition 6.5. For s ∈ [s?, s1], there holds

S(s, h) &
1

λm
(
‖h‖2

λ +O(s−2κ)
)
.

Proof. By (6.21), the embedding H1 ↪→ L3, Lemma 3.7 and Proposition 2.2, we have

1

2
‖h‖2

H1 −
∫
G

[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
dy

=
1

2

[
‖h‖2

H1 −
∫
G
(5Q4h2

1 +Q4h2
2) dy

]
+O(‖h‖3

H1)

=
1

2

[
〈L+h1, h1〉+ 〈L−h2, h2〉

]
+O(‖h‖3

H1)

>
µ

2
‖h‖2

H1 −
1

2µ

(
(h,Q)2

L2 +O(s−4‖h‖2
L2)
)

+O(‖h‖3
H1).

By (6.5) and (6.10), we conclude that

1

2
‖h‖2

H1 −
∫
G

[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
dy >

µ

2
‖h‖2

H1 +O(s−2κ) +O(s−3(κ−2)).

Let k0 = 1
2

min{µ, 1}. Since κ > 6 and γλ
2
|h(0)|2 > 0, it follows that

H(s, h) > k0‖h‖2
λ +O(s−2κ), ∀s ∈ [s?, s1], (6.22)

which completes the proof. �

We now estimate the time derivative of H(s, h(s)):

d

ds
H(s, h(s)) = DsH(s, h(s)) + 〈DhH(s, h(s)), hs〉. (6.23)

Proposition 6.6. There exists a constant k > 0 such that, for all s ∈ [s?, s1],

dH

ds
> b

(
−k‖h‖2

λ +O(s−2(κ−1))
)
. (6.24)
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The proof of Proposition 6.6 breaks down into several lemmas. In a number of arguments below,
it is understood implicitly that an estimate holds provided s0 is chosen sufficiently large.

Remark 6.7. By inspecting closely the estimates involved, one observes that it suffices to choose

k > 1 + max{1, 4/β}+ max{2, β/2}.

Lemma 6.8. There exists k1 > 0 such that, for all s ∈ [s?, s1],

DsH(s, h(s)) > −b k1‖h‖2
λ.

Proof. We have

DsH =
λs
2
‖yh‖2

L2 +
γλs
2
|h(0)|2 − ∂s

∫
G

[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
dy.

First, by (6.9),

λs = −bλ+O(s−(κ+2)) = O(s−3).

Hence, ∣∣∣λs
2
‖yh‖2

L2 +
γλs
2
|h(0)|2

∣∣∣ . s−3‖yh‖2
L2 + s−3‖h‖2

H1 .

On the other hand, writing

f(Pb,λ + h)− f(Pb,λ) = df(Pb,λ)h+RQ(h),

where
|RQ(h)| . |h|2,

we have that

∂s
[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
= Re

[(
df(Pb,λ)h+RQ(h)

)
∂sPb,λ − ∂sf(Pb,λ)h̄

]
= ReRQ(h)∂sPb,λ.

Therefore,

∂s

∫
G

[
F (Pb,λ + h)− F (Pb,λ)− dF (Pb,λ)h

]
dy = Re

∫
G
RQ(h)∂sPb,λ dy . bλ‖h‖2

L2 . s−3‖h‖2
H1 .

Thus,
|DsH| . s−3‖yh‖2

L2 + s−3‖h‖2
H1 . s−1

(
‖h‖2

H1 + s−2‖yh‖2
L2

)
.

The result now follows from the asymptotics b = O(s−1) and λ = O(s−2) for large s. �

We next compute the second term in (6.23) as follows:

〈DhH, hs〉 = 〈iDhH, ihs〉, (6.25)

where

DhH = −∂2
yh+ h+ λy2h+ γλδh− [f(P + h)− f(P )]

= −∂2
yh+ h+ λy2h+ γλδh− df(Pb,λ)h−RQ(h),

and (6.3) reads

ihs = DhH − λy2h− M̃odop(s)h−Modop(s)P + Φκ,

where, by (2.8) and (6.9),

Φκ := b
(
b+

λs
λ

)y2

2
P −Ψκ(s) = OΣ(s−(κ+1)). (6.26)
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Now, using (6.25) and the relation 〈iDhH,DhH〉 = 0, we have

〈DhH, hs〉 = −λ〈iDhH, y
2h〉 − 〈iDhH, M̃odop(s)h〉 − 〈iDhH,Modop(s)P 〉+ 〈iDhH,Φκ〉. (6.27)

The higher order terms in the right-hand side of (6.27) is the first one and the term

1

4

(
bs − b2 − 2b

λs
λ

)
〈iDhH, y

2h〉

coming from the second one. We now show that they both are of order s−1‖h‖2
λ.

Lemma 6.9. For s ∈ [s?, s1], we have

|λ〈iDhH, y
2h〉| . s−1‖h‖2

λ (6.28)

and ∣∣∣1
4

(
bs − b2 − 2b

λs
λ

)
〈iDhH, y

2h〉
∣∣∣ . s−1‖h‖2

λ. (6.29)

Proof. We only prove (6.28). (6.29) follows by the same arguments since

bs − b2 − 2b
λs
λ

= O(λ)

for large s.
Discarding duality products whose real part is zero, we have that

〈iDhH, y
2h〉 = −〈−∂2

yh+ h+ λy2h+ γλδh− df(P )h−RQ(h), iy2h〉
= −〈−∂2

yh− df(P )h−RQ(h), iy2h〉.

An integration by parts yields

〈∂2
yh, iy

2h〉 = 2 Im

∫
G
yhyh̄ dy.

Now, ∣∣∣2 Im

∫
G
yhyh̄ dy

∣∣∣ 6 2s1/2‖hy‖L2s−1/2‖yh‖L2 6 s‖hy‖2
L2 + s−1‖yh‖2

L2 .

On the other hand,

|〈df(P )h, y2h〉| . ‖h‖2
L2

and

|〈RQ(h), y2h〉| .
∫
G
Q3y2|h|3 dy 6

(∫
G
Q6y4 dy

)1/2(∫
G
|h|6 dy

)1/2

. ‖h‖3
H1 ,

thanks to the continuous embedding H1 ↪→ L6. It follows that

|λ〈iDhH, y
2h〉| . λ

(
s‖hy‖2

L2 + s−1‖yh‖2
L2 + ‖h‖2

L2 + ‖h‖3
H1

)
. s−1

(
‖hy‖2

L2 + λ‖yh‖2
L2 + ‖h‖2

L2

)
+ s−2‖h‖3

H1

. s−1
(
‖h‖2

H1 + λ‖yh‖2
L2

)
,

which concludes the proof. �

Lemma 6.10. For s ∈ [s?, s1],

|〈iDhH, M̃odop(s)h〉| . s−1‖h‖2
λ.
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Proof. We have

〈iDhH, M̃odop(s)h〉 = (1− θs)〈iDhH, h〉+
1

4

(
bs − b2 − 2b

λs
λ

)
〈iDhH, y

2h〉 −
(
b+

λs
λ

)
〈iDhH, iΛh〉

and we have already estimated the second term in Lemma 6.9.
By (6.9),

〈iDhH, h〉 = −〈DhH, ih〉 = −〈−∂2
yh+ h+ λy2h+ γλδh− df(P )h−RQ(h), ih〉

= 〈γλδh+ df(P )h+RQ(h), ih〉

=⇒ |(1− θs)〈iDhH, h〉| . s−κ
(
λ|h(0)|2 + ‖h‖2

L2 + ‖h‖3
H1

)
. s−κ‖h‖2

H1 . (6.30)

Next, integrating by parts,

〈iDhH, iΛh〉 = 〈DhH,Λh〉 = 〈−∂2
yh+ h+ λy2h+ γλδh− [f(P + h)− f(P )],Λh〉

= 〈−∂2
yh+ h,Λh〉+ λ〈y2h,Λh〉+ γλReh(0)Λh(0)− 〈f(P + h)− f(P ),Λh〉

= ‖hy‖2
L2 − λ

∫
G
y2|h|2 dy +

γλ

2
|h(0)|2 − 〈f(P + h)− f(P ),Λh〉.

Hence,

|〈iDhH, iΛh〉| . ‖h‖2
λ + |〈f(P + h)− f(P ),Λh〉|.

Now,

〈f(P + h)− f(P ),Λh〉 = Re

∫
G

(
f(P + h)− f(P )

)
Λh dy

=
1

2
Re

∫
G

(
f(P + h)− f(P )

)
h̄ dy + Re

∫
G

(
f(P + h)− f(P )

)
yhy dy

and∫
G

(
f(P + h)− f(P )

)
yhy dy = −

∫
G

(
f(P + h)− f(P )

)
h dy −

∫
G
y
(
f(P + h)− f(P )

)
y
h dy,

so that

〈f(P + h)− f(P ),Λh〉 = −1

2
Re

∫
G

(
f(P + h)− f(P )

)
h̄ dy − Re

∫
G
y
(
f(P + h)− f(P )

)
y
h dy.

On the other hand,∫
G
y
(
f(P + h)− f(P )

)
y
h dy =

∫
G
y
(
df(P + h)(P + h)y − df(P )Py

)
h dy

=

∫
G
y
(
df(P + h)− df(P )

)
Pyh dy +

∫
G

df(P + h)hyh̄ dy.

Using Sobolev embeddings, we have∣∣∣ ∫
G

(
f(P + h)− f(P )

)
h̄ dy

∣∣∣ 6 ‖f(P + h)− f(P )‖L2‖h‖L2 . ‖h‖2
H1
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and ∣∣∣ ∫
G
y
(
f(P + h)− f(P )

)
y
h dy

∣∣∣ 6 ‖yPy‖L∞‖df(P + h)− df(P )‖L2‖h‖L2

+ ‖df(P + h)‖L∞‖hy‖L2‖yh‖L2

. ‖h‖2
H1 + ‖yh‖2

L2 .

We conclude that

|〈f(P + h)− f(P ),Λh〉| . s2‖h‖2
λ.

Hence, by (6.9), we have ∣∣∣(b+
λs
λ

)
〈iDhH, iΛh〉

∣∣∣ . s−(κ−2)‖h‖2
λ. (6.31)

The result now follows from estimates (6.29), (6.30) and (6.31). �

Lemma 6.11. For s ∈ [s?, s1],

|〈iDhH,Modop(s)P 〉| . s−(2κ−1).

Proof. It will be convenient to write DhH as

DhH = L+h1 + iL−h2 + λy2h+ γλδh−RQ(h),

for h = h1 + ih2 ∈ Σ. It then follows from (6.5) and (6.9) that

〈iDhH,Modop(s)P 〉 = 〈iDhH,Modop(s)Q〉+O(s−(κ+2)‖h‖Σ)

= 〈iDhH,Modop(s)Q〉+O(s−(κ+1)‖h‖λ)
= 〈iDhH,Modop(s)Q〉+O(s−(2κ−1)).

Now,

〈iDhH,Modop(s)Q〉 = (1−θs)〈iDhH,Q〉+
1

4

(
bs−b2−2b

λs
λ
−α
)
〈iDhH, y

2Q〉−
(
b+

λs
λ

)
〈iDhH, iΛQ〉.

First, since L−Q = 0, we have

〈iDhH,Q〉 = −〈DhH, iQ〉 = −〈L+h1 + iL−h2 + λy2h+ γλδh−RQ(h), iQ〉

= −〈L−h2, Q〉 − λRe

∫
G
y2hiQ dy − γλReh(0)iQ(0) +O(‖h‖2

L2)

= −〈h2, L−Q〉 − λ Im

∫
G
y2hQ dy − γλ Imh(0)Q(0) +O(‖h‖2

L2)

= −λ Im

∫
G
y2hQ dy − γλ Imh(0)Q(0) +O(‖h‖2

L2).

Hence, by (6.5),

|(1− θs)〈iDhH,Q〉| . s−κ
(
s−2‖h‖H1 + s−2‖yh‖L2 + ‖h‖2

L2

)
. s−(κ+1)‖h‖λ + s−κ‖h‖2

L2

. s−(2κ−1). (6.32)
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Next,

〈iDhH, y
2Q〉 = −〈DhH, iy

2Q〉 = −〈L+h1 + iL−h2 + λy2h+ γλδh−RQ(h), iy2Q〉

= −〈L−h2, y
2Q〉 − λRe

∫
G
y2hiy2Q dy +O(‖h‖2

L2)

= −〈h2, L−y
2Q〉 − λ Im

∫
G
y2hy2Q dy +O(‖h‖2

L2)

= 4〈h2,ΛQ〉 − λ Im

∫
G
yhy3Q dy +O(‖h‖2

L2).

Since 〈h2,ΛQ〉 = O(s−2‖h‖L2) by Proposition 2.2, it follows that∣∣∣1
4

(
bs − b2 − 2b

λs
λ
− βλ

)
〈iDhH, y

2Q〉
∣∣∣ . s−κ

(
s−2‖yh‖L2 + ‖h‖2

L2

)
. s−(κ+2)‖h‖Σ + s−κ‖h‖2

L2

. s−(2κ−1). (6.33)

Finally, by (6.5) and (6.10),

〈iDhH, iΛQ〉 = 〈DhH,ΛQ〉
= 〈L+h1 + iL−h2 + λy2h+ γλδh−RQ(h),ΛQ〉

= 〈h1, L+ΛQ〉+ λRe

∫
G
y2hΛQ dy + γλReh(0)ΛQ(0) +O(‖h‖2

L2)

= −2(h,Q)L2 + λRe

∫
G
yhyΛQ dy + γλReh(0)ΛQ(0) +O(‖h‖2

L2)

=⇒
∣∣∣(b+

λs
λ

)
〈iDhH, iΛQ〉

∣∣∣ . s−κ
(
|(h,Q)L2|+ s−2‖yh‖L2 + s−2‖h‖H1 + ‖h‖2

L2

)
. s−2κ + s−(κ+1)‖h‖λ + s−κ‖h‖2

L2

. s−(2κ−1). (6.34)

The result now follows by combining estimates (6.32), (6.33) and (6.34). �

Lemma 6.12. For s ∈ [s?, s1],

|〈iDhH,Φκ〉| . s−(2κ−1).

Proof. We have

〈iDhH,Φκ〉 = −〈DhH, iΦκ〉 = −〈−∂2
yh+ h+ λy2h+ γλδh− df(Pb,λ)h−RQ(h), iΦκ〉.

Hence,

|〈iDhH,Φκ〉| 6 ‖h‖H1‖Φκ‖H1 + λ

∫
G
y2|h||Φκ| dy + γλ|h(0)||Φκ(0)|+ |〈df(P )h,Φκ〉|+ |〈RQ(h),Φκ〉|

. ‖h‖H1‖Φκ‖H1 + s−2
(∫
G
y2|h|2 dy

)1/2(∫
G
y2|Φκ|2 dy

)1/2

+ s−2‖h‖H1‖Φκ‖H1 + ‖h‖L2‖Φκ‖L2 .

Therefore, by (6.5) and (6.26),

|〈iDhH,Φκ〉| . s−(κ+1)‖h‖H1 + s−(κ+3)‖yh‖L2 . s−(κ+1)‖h‖λ . s−(2κ−1),
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as claimed. �

Lemma 6.13. There exists k2 > 0 such that, for all s ∈ [s?, s1],

〈DhH(s, h(s)), hs〉 > −b k2‖h‖2
λ +O(s−(2κ−1)).

Proof. Using the fact that b ∼ s−1, this is a direct consequence of (6.27) and Lemmas 6.9 to
6.12. �

Proof of Proposition 6.6. Proposition 6.6 now follows from Lemmas 6.8 and 6.13. �

Proposition 6.14. Let k0 and k be as in (6.22) and Proposition 6.6. Choose m ∈ N such that
m > 2k/k0. Then, for all s ∈ [s?, s1],

dS

ds
&

b

λm
(
‖h‖2

λ +O(s−2(κ−1))
)
.

Proof. We have

dS

ds
=

1

λm

(
−mλs

λ
H +

dH

ds

)
.

Furthermore, for s large enough, −λs/λ > b/2. Hence, in view of (6.22) and Proposition 6.6,

dS

ds
>

b

λm

[m
2

(
k0‖h‖2

λ +O(s−2κ)
)

+
(
−k‖h‖2

λ +O(s−2(κ−1))
)]

&
b

λm
(
‖h‖2

λ +O(s−2(κ−1))
)
, ∀s ∈ [s?, s1],

as claimed. �

6.3. Proof of Proposition 2.6. We first prove the uniform estimates in s.

Proof of Proposition 6.1. We will prove that estimates (6.5) can be improved to (6.6) and (6.7) on
[s?, s1]. Then, choosing s0 large enough, it follows by continuity that, in fact, s? = s0, so that (6.6)
and (6.7) hold on [s0, s1].

We first prove (6.6). By Proposition 6.5 and the definition of S, there exists a constant a > 1
such that

1

a

1

λm
(
‖h‖2

λ − a2s−2(κ−1)
)
6 S(s, h) 6

a

λm
‖h‖2

λ, s ∈ [s?, s1]. (6.35)

Choosing a large enough, Proposition 6.14 yields

dS

ds
>

1

a

b

λm
(
‖h‖2

λ − a2s−2(κ−1)
)
, s ∈ [s?, s1]. (6.36)

Let

s† := inf{s ∈ [s?, s1] : ‖h(σ)‖λ(σ) 6 2a2σ−(κ−1) ∀σ ∈ [s†, s1]}.

Since h(s1) = 0, it follows by continuity that s† ∈ [s?, s1). We will prove that s† = s?.

Suppose by contradiction that s† > s?. Then, in particular, ‖h(s†)‖λ(s†) = 2a2s
−(κ−1)
† . Defining

s‡ := sup{s ∈ [s†, s1] : ‖h(σ)‖λ(σ) > aσ−(κ−1) ∀σ ∈ [s†, s]},
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we have s? < s† < s‡ < s1 and ‖h(s‡)‖λ(s‡) = as
−(κ−1)
‡ . Furthermore, by (6.36), S is non-decreasing

on [s†, s‡]. Hence, using (6.35) and our bootstrap assumption on λ in (6.5), we find that

‖h(s†)‖2
λ(s†)
− a2s

−2(κ−1)
† 6 aλm(s†)S(s†, h(s†)) 6 aλm(s†)S(s‡, h(s‡))

6 a2λ
m(s†)

λm(s‡)
‖h(s‡)‖2

λ(s‡)
= a4λ

m(s†)

λm(s‡)
s
−2(κ−1)
‡

6 2a4
(s‡
s†

)4m

s
−2(κ−1)
‡ 6 2a4s

−2(κ−1)
† .

It follows that
‖h(s†)‖2

λ(s†)
6 a2s

−2(κ−1)
† + 2a4s

−2(κ−1)
† 6 3a4s

−2(κ−1)
† ,

a contradiction.
We now prove (6.7). Let E? ∈ R, E? = C−1

Q E? and b1, λ1 be given by Proposition 2.5. It follows
from (2.10) that

|E(P̃ (b1, λ1, θ1))− E?| . (b2
1 + λ1)

λ2
1

κ

. s4−2κ
1 . (6.37)

Now, the energy estimate (2.9) and the modulation estimate (6.9) yield

|E(P̃ (b(s), λ(s), θ(s)))− E(P̃ (b1, λ1, θ1))| =
∣∣∣ ∫ s1

s

d

dσ
E(P̃ (b(σ), λ(σ), θ(σ))) dσ

∣∣∣
.
∫ s1

s

σ4−κ dσ . s5−κ, s ∈ [s?, s1]. (6.38)

It then follows by (6.37) and (6.38) that

|E(P̃ (b(s), λ(s), θ(s)))− E?| . s5−κ, s ∈ [s?, s1]. (6.39)

Hence, using (2.10) at time s, we find

|E(b(s), λ(s))− E?| .
∣∣∣E(b, λ)− E(P̃ (b, λ, θ))

CQ

∣∣∣+
∣∣∣E(P̃ (b, λ, θ))

CQ
− E?

∣∣∣
. s4−2κ + s5−κ . s5−κ, s ∈ [s?, s1]. (6.40)

Next, the formula (2.11) defining E yields

λ2E(b, λ) = b2 − 2βλ+O(λ2).

Thus, by (6.40),
|b2 − 2βλ− E?λ2| . λ2(s) + s5−κ . s−4. (6.41)

It follows that ∣∣b−√2βλ+ E?λ2
∣∣∣∣b+

√
2βλ+ E?λ2

∣∣ . s−4.

Hence, by (6.5), ∣∣b−√2βλ+ E?λ2
∣∣ . s−3, s ∈ [s?, s1]. (6.42)

From (6.9), we have b = −λs/λ+O(s−κ), hence∣∣∣λs
λ

+
√

2βλ+ E?λ2

∣∣∣ . s−3

and we deduce from the definition of F in (2.15) that∣∣∣ d

ds
F(λ(s))− 1

∣∣∣ =
∣∣∣ λs

λ
√

2βλ+ E?λ2
+ 1
∣∣∣ =

1√
2βλ+ E?λ2

∣∣∣λs
λ

+
√

2βλ+ E?λ2

∣∣∣ . s−2.
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Integrating from s to s1 and using F(λ(s1)) = s1 yields∣∣∣F(λ(s))− s
∣∣∣ 6 ∣∣∣ ∫ s1

s

( d

dσ
F(λ(σ))− 1

)
dσ
∣∣∣ . s−1

=⇒ F(λ(s)) = s+O(s−1), s ∈ [s?, s1].

On the other hand, it follows from (7.6) that∣∣∣ λ(s)1/2

λmo(s)1/2
− 1
∣∣∣ . 1

s2
, s ∈ [s?, s1].

Finally, returning to (6.42) and using again (6.5),

b− bmo =
√

2βλ+ E?λ2 −
√

2βλmo +O(s−3) =
2βλ+ E?λ2 − 2βλmo√
2βλ+ E?λ2 +

√
2βλmo

+O(s−3)

= O(bmo)[E?λ2 + 2β(λ1/2 − λ1/2
mo )(λ1/2 + λ1/2

mo )] +O(s−3)

=⇒
∣∣∣ b(s)
bmo(s)

− 1
∣∣∣ . 1

s2
, s ∈ [s?, s1].

This concludes the proof. �

Remark 6.15. We observe here that the estimates (6.7) can be improved by a closer inspection of
the energy expansion E . Indeed, (2.11) yields

λ2E(b, λ) = b2 − 2βλ+ e0λ
2 +O(s−6), e0 := ε0,1 + 2βε2,0.

Hence, using (6.40) and choosing κ > 11, estimate (6.41) improves to

|b2 − 2βλ− (E? − e0)λ2| . s−6 + s5−κ . s−6.

Then, replacing E? by E? − e0 in Proposition 2.5 and using this improved estimate in the rest of
the proof yields (6.8).

We conclude this section with the

Proof of Proposition 2.6. The change of variables (6.1) yields

dt = λ̃(t(s))2 ds =⇒ t1 − t =

∫ s1

s

λ̃(σ)2 dσ.

From (6.7), we have
λ(σ)2 = λmo(σ)2 +O(σ−6).

Noting that

t1 = −
∫ ∞
s1

λmo(σ)2 dσ,

we find

t(s) = −
∫ ∞
s

λmo(σ)2 dσ +O(s−5) = − 4

3β2
s−3 +O(s−5).

Hence,

s ∼
(3β2

4
|t|
)−1/3

, t→ 0−.

It follows that

b̃mo(t) := bmo(s(t)) =
2

s(t)
∼ 2
(3β2

4
|t|
)1/3

, t→ 0−
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and

λ̃mo(t) := λmo(s(t)) =
2

βs(t)2
∼ 2

β

(3β2

4
|t|
)2/3

, t→ 0−.

Estimates (2.18) now follow directly from (6.7). Recalling the definition of the norm ‖ · ‖λ in
(6.4), the estimates (2.19) then follow from (2.18) and (6.6), while (2.20) follows from (6.39). This
finishes the proof. �

7. Appendix

In this appendix, we consider the model nonlinear dynamical system

bs + b2 − βλ = 0,
λs
λ

+ b = 0, 1− θs = 0

appearing for the parameters in the derivation of the profile. We have kept here only the first term
of α, where we recall that

β = −2
γQ(0)2

‖yQ‖L2

> 0.

We denote the parameters depending on the variable t by (b̃, λ̃, θ̃) and the parameters depending
on the variable s by (b, λ, θ), related by

b̃(t) = b(s(t)), λ̃(t) = λ(s(t)), θ̃(t) = θ(s(t)).

The dynamical system for the parameters is given in t by

b̃+ λ̃tλ̃ = 0, b̃t +

(
b̃

λ̃

)2

− β̃

λ̃
= 0, θ̃t −

1

λ̃2
= 0.

With
ds

dt
=

1

λ2(t)
,

(b, λ, θ) satisfy the following equivalent system in the variable s:

b+
λs
λ

= 0, bs + b2 − βλ = 0, θs − 1 = 0.

Since the equation for θ is independent, we shall focus our analysis on the first two equations.
We thus consider the system b+

λs
λ

= 0,

bs + b2 − βλ = 0,
(7.1)

with initial data

b(s1) = b1, λ(s1) = λ1. (7.2)

This is a Hamiltonian system, with conserved energy

Emo(b, λ) =

(
b

λ

)2

− 2β

λ
.

An exact solution with energy Emo = 0 is given by

bmo(s) =
2

s
, λmo(s) =

2

βs2
. (7.3)
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Proposition 7.1. For any data b1, λ1 > 0, the solution of the Cauchy problem (7.1)-(7.2) satisfies

b(s) = bmo(s) +O(s−2), λ(s) = λmo(s) +O(s−4).

Proof. Defining the auxiliary unkown µ by

µ =
1

λ
,

direct calculations using (7.1) yield

µs = −λs/λ
λ

=
b

λ
, µss =

(
b

λ

)
s

=
bs − bλs/λ

λ
=
bs + b2

λ
= β.

Integrating in s, we get

µs(s) = β(s− s1) +
b1

λ1

, µ(s) =
1

2
β(s− s1)2 +

b1

λ1

(s− s1) +
1

λ1

.

Hence, b and λ are given by

b(s) =

(
β(s− s1) +

b1

λ1

)(
1

2
β(s− s1)2 +

b1

λ1

(s− s1) +
1

λ1

)−1

,

λ(s) =

(
1

2
β(s− s1)2 +

b1

λ1

(s− s1) +
1

λ1

)−1

.

Letting s→∞, we obtain

b(s) = bmo(s) +O(s−2), λ(s) = λmo(s) +O(s−4).

�

Proof of Proposition 2.5. We first explain how the function F comes into play. In order to integrate
(7.1), one can use the conservation of Emo. Considering a solution of (7.1) with energy E?, one has,
for λ� 1,

b =
√
E?λ2 + 2βλ, b+

λs
λ

= 0. (7.4)

Hence, assuming that λ0 = λ(s0) > 0 is such that

E?λ0 + 2β > 0,

we obtain that ∫ s

s0

λσ(σ)

λ(σ)3/2
√
E?λ(σ) + 2β

dσ = s0 − s, s > s0,

i.e.

F(λ) = s− s0, s > s0. (7.5)

Since
1

µ3/2
√
E?µ+ 2β

∼ 1√
2βµ3/2

, µ→ 0+,

we deduce that F(λ) is strictly decreasing with

F(λ0) = 0 and lim
λ→0+

F(λ) = +∞.

Therefore, (7.5) can be solved to find λ(s) and the solution of (7.1) then follows by returning to
the first equation in (7.4).
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We will now use F to construct the final data (b1, λ1) of the exact modulation parameters
b(s), λ(s) given by Proposition 2.2. Firstly, for any s1 > 0, there exists a unique λ1 > 0 such that
F(λ1) = s1. For the model system, (7.3) yields

s1 =

√
2

βλmo(s1)
.

On the other hand,∣∣∣∣F(λ)−
√

2

βλ

∣∣∣∣ =

∣∣∣∣∫ λ0

λ

dµ

µ3/2
√
E?µ+ 2β

−
√

2

β
λ−1/2

∣∣∣∣
6

∣∣∣∣∫ λ0

λ

dµ

µ3/2
√
E?µ+ 2β

−
√

2

β

(
λ−1/2 − λ−1/2

0

)∣∣∣∣+

√
2

β
λ
−1/2
0

6

∣∣∣∣∫ λ0

λ

1

µ3/2

( 1√
E?µ+ 2β

− 1√
2β

)
dµ

∣∣∣∣+

√
2

β
λ
−1/2
0

.
∫ λ0

λ

dµ

µ1/2
+ 1 = Oλ→0(1). (7.6)

Hence, with λ = λ1, we get∣∣∣∣s1 −
√

2

βλ1

∣∣∣∣ = O(1), i.e.

∣∣∣∣∣
√

2

βλmo(s1)
−
√

2

βλ1

∣∣∣∣∣ = O(1).

After some algebra, this yields ∣∣∣ λ
1/2
1

λmo(s1)1/2
− 1
∣∣∣ . λmo(s1)1/2 .

1

s1

,

or ∣∣λ1/2
1 − λmo(s1)1/2

∣∣ . λmo(s1) .
1

s2
1

.

To find b1, we seek a solution of

h(b) := λ2
1E(b, λ1) = λ2

1E?

close to bmo(s1) = 2/s1. Using the expression of E in (2.11) and Emo(bmo, λmo) = 0, we find

h(b) = b2 − bmo(s1)2 + bmo(s1)2 − 2βλ1 +O(s−4
1 )

= b2 − bmo(s1)2 + 2β
(
λmo(s1)1/2 − λ1/2

1

)(
λmo(s1)1/2 + λ

1/2
1

)
+O(s−4

1 )

= b2 −
( 2

s1

)2

+ 2βO(s−2
1 )O(s−1

1 ) +O(s−4
1 )

= b2 −
( 2

s1

)2

+O(s−3
1 ).

In particular,

h(bmo(s1)) = O(s−3
1 ).

Furthermore, by direct calculation,

h′(bmo(s1)) = 2bmo(s1) +O(s−3
1 ) & s−1

1 .
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Since λ2
1E? = O(s−4

1 ), expanding h around bmo(s1) shows that, if s1 is sufficiently large then there
exists a unique b1 > 0 such that

h(b1) = λ2
1E? and |b1 − bmo(s1)| . s−3

1

s−1
1

= s−2
1 ,

hence ∣∣∣ b1

bmo(s1)
− 1
∣∣∣ . 1

s1

,

which finishes the proof. �
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[4] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Variational properties and orbital stability of standing waves
for NLS equation on a star graph. J. Differential Equations, 257(10):3738–3777, 2014.

[5] R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Stable standing waves for a NLS on star graphs as local
minimizers of the constrained energy. J. Differential Equations, 260(10):7397–7415, 2016.

[6] R. Adami, E. Serra, and P. Tilli. Threshold phenomena and existence results for NLS ground states on metric
graphs. J. Funct. Anal., 271(1):201–223, 2016.

[7] R. Adami, E. Serra, and P. Tilli. Negative energy ground states for the L2-critical NLSE on metric graphs.
Comm. Math. Phys., 352(1):387–406, 2017.

[8] R. Adami, E. Serra, and P. Tilli. Nonlinear dynamics on branched structures and networks. Riv. Math. Univ.
Parma (N.S.), 8(1):109–159, 2017.

[9] K. Ammari, A. Bchatnia, and N. Mehenaoui. Exponential stability for the nonlinear Schrödinger equation on
a star-shaped network. Z. Angew. Math. Phys., 72(1):Paper No. 35, 19, 2021.

[10] J. Angulo Pava and M. Cavalcante. Nonlinear Dispersive Equations on Star Graphs, volume 32 of Brazilian
Mathematics Colloquium. Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brasil, 2019.
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