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A MINIMAL MASS BLOW-UP SOLUTION ON A NONLINEAR QUANTUM STAR GRAPH

The main contribution of this article is the construction of a finite time blow-up solution to the mass-critical focusing nonlinear Schrödinger equation set on a metric star graph G with N edges, for any N 2. After establishing well-posedness of the corresponding Cauchy problem in H 1 (G), we obtain the sharp threshold for global existence in terms of the mass of the ground state, called minimal mass. We then construct a minimal mass solution which blows up in finite time at the vertex of G. The blow-up profile and blow-up speed are characterized explicitly.

Introduction

Let G be a metric star graph of size N , i.e. a vertex v to which are connected N edges e 1 , . . . , e N , each edge being a half-line. We thus identify each edge e with the interval I e = [0, ∞), the point 0 corresponding to the vertex. We shall use v or 0 interchangeably to denote the vertex. A schematic representation of a star graph is given in Figure 1. A function u on G is a collection of functions u j : I e j → C, j = 1, . . . , N . Letting R + = [0, ∞), a point x ∈ G will be identified with (x 1 , . . . , x N ) ∈ R N + . Thus, u : G → C can be described as u(x) = (u 1 (x 1 ), . . . , u N (x N )), x j ∈ R + , j = 1, . . . , N.

A function u : G → C will be called radial if all its components u j : R + → C are identical. In this case, x ∈ G will be identified with x ∈ R + , and we will simply interpret u as a complex-valued function of x ∈ R + .

Next, we define on G the formal Hamiltonian

H γ = -∂ xx + γδ,
where ∂ xx acts as the one-dimensional Laplacian on each edge and the delta potential γδ encodes Robin boundary conditions at the vertex. The coupling constant γ is real, ensuring that H γ is selfadjoint; see Section 1.3 for a precise definition of H γ . Our graph G, equipped with the Hamiltonian H γ , is a model case of a quantum graph; see e.g. [START_REF] Berkolaiko | Introduction to quantum graphs[END_REF] and references therein.

In this paper, we are interested in a nonlinear quantum graph, namely, we equip the quantum graph (G, H γ ) with the focusing nonlinear Schrödinger equation iu t -H γ u + |u| 4 u = 0, (1.1) where u = u(t, x), t ∈ R, x ∈ G, is complex-valued. The energy E(u) := q γ (u) -

1 6 u 6 L 6 (G)
and the mass

M G (u) := 1 2 u 2 L 2 (G)
are the main conserved quantities associated with this nonlinear dynamical system. The usual function spaces on G will be defined in Section 1.3, as well as the quadratic form q γ appearing in the energy. Our goal in this paper is to construct a finite time blow-up solution of (1.1). Let us denote by Q the positive radial ground state of the focusing mass-critical nonlinear Schrödinger equation on the line (see Section 1.2). It is well-known that the mass

M R (Q) := 1 2 R Q 2 dx
of Q gives the threshold between global existence and finite time blow-up for this problem. It turns out that M R (Q) also determines the mass threshold for global existence of solutions of (1.1) on the graph. Indeed, we shall prove in Section 3.2 that, if the initial condition u 0 ∈ H 1 (G) satisfies M G (u 0 ) < min{ N 2 , 1}M R (Q), then the corresponding solution of (1.1) is global. Furthermore, if we restrain ourselves to radial solutions, then the threshold for global existence becomes

M G (Q) = N 2 M R (Q), (1.2) 
where, for simplicity, we have also denoted by Q the function on the star graph consisting of N half-copies of Q on each edge. In the attractive case γ < 0, we construct a radial minimal mass blow-up solution, that is, a solution with mass (1.2) which blows up in finite time at the vertex v. More precisely, our main result is the following theorem.

Theorem 1.1. Suppose γ < 0. Let E ∈ R. There exist t 0 < 0 and a solution u ∈ C([t 0 , 0), H 1 rad (G)) of (1.1) such that

M G (u) = M G (Q) and E(u) = E ,
which blows up at t = 0 as lim t→0 -|t| 2/3 u x (t) L 2 (G) = C, (1.3) for a constant C > 0.

1.1. Remarks on Theorem 1.1. To the best of our knowledge, the present work is the first construction of a finite time blow-up solution for a nonlinear Schrödinger equation on a quantum graph. By contrast, for NLS equations on R N a substantial literature exists, which is partly reviewed in Section 1.4. Beside the particular blow-up solution given by Theorem 1.1, we conjecture there exist solutions which blow up in finite time outside of v as a translate of the pseudo-conformal solution S(t) defined in (1.5); such solutions should exist irrespective of the sign of γ.

For γ = 0, one may construct an explicit finite time blow-up solution on G by simply putting N half-copies of S(t) on the edges. Since γ = 0, the function thus constructed verifies the required compatibility condition at the vertex (see (1.7)), is a solution of (1.1), and blows up at time T = 0 at the vertex with pseudo-conformal speed (1.6). When γ < 0, one cannot construct a simple solution based on S(t), but we believe that solutions which blow up in finite time by concentrating their mass at v should also be governed by the symmetric profile Q in this case. In the repulsive case γ > 0, there are no solutions blowing up in finite time at v with minimal mass; see Section 3.2.

Our approach to prove Theorem 1.1 will follow the strategy laid down in [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF][START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] with some improvements obtained by Matsui [START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a potential[END_REF][START_REF] Matsui | Remarks on minimal mass blow up solutions for a double power nonlinear Schrödinger dinger equation[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for double power nonlinear Schrödinger dinger equations with an inverse potential[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a Hartree nonlinearity[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a singular potential[END_REF][START_REF] Matsui | Minimal-mass blow-up solutions for nonlinear Schrödinger dinger equations with growth potentials[END_REF][START_REF] Matsui | Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential[END_REF]. In particular, we shall work directly in the virial space, which allows us to avoid the localization procedure of the virial-energy functional used in [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF]. We have also reformulated the blow-up profile expansion borrowed from [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF], thereby making it more tractable for the proofs. In the particular case of the 2-star graph, we recover the result obtained in [START_REF] Tang | Minimal mass blow-up solutions for the l 2 -critical nls with the delta potential for radial data in one dimension[END_REF] for the mass-critical NLS on the line with an attractive delta potential. 

Let us recall a few well-known facts about this equation. The Cauchy problem for (1.4) is wellposed in the energy space H 1 (R), we have conservation of energy, mass (and momentum) and the blow-up alternative holds. Of particular interest is the standing wave solution e it Q(x), where the profile Q is explicitly given by

Q(x) = 3 1 4 sech 1 2 ( 
2x) and is the unique even positive solution in H 1 (R) of the differential equation

-Q + Q -Q 5 = 0.
The mass of Q gives the threshold between global existence and blow-up: any solution of (1.4) with M R (u 0 ) < M R (Q) = π √ 3/4 is global, whereas there exists a minimal blow-up mass solution, i.e. a solution such that M R (u 0 ) = M R (Q) and the associated solution of (1.4) blows up in finite time. It turns out that such a solution can be found by an explicit pseudo-conformal transform of the standing wave. Indeed, let

S(t, x) = 1 |t| Q x |t| e -i |x| 2 4|t| e i t , (1.5) 
then S is a solution of (1.4) and we have

S(t) L 2 (R) = Q L 2 (R) , ∂ x S(t) L 2 ∼ 1 |t| Q L 2 , t → 0 -. (1.6)
In particular, S blows up at t = 0 with the so-called pseudo-conformal speed |t| -1 . Furthermore, up to the symmetries of the equation, S is the unique minimal mass blow-up solution (see [START_REF] Merle | Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power[END_REF]).

1.3. Functional setting on G. Lebesgue and Sobolev spaces on G are defined by

L p (G) = N j=1 L p (I e j ), H s (G) = N j=1 H s (I e j ),
with norms

u p L p (G) = N j=1 u j p L p (R + ) , u 2 H s (G) = N j=1 u j 2 H s (R + ) .
Observe that no compatibility condition is imposed at the vertex. We introduce below the notation H 1 D (G) for the space of functions of H 1 (G) which are continuous at the vertex. We equip G with the Laplace operator with Dirac condition at the vertex, i.e. the Hamiltonian operator H γ defined by

H γ : D(H γ ) ⊂ L 2 (G) → L 2 (G), (u 1 , . . . , u N ) → (-∂ xx u 1 , . . . , -∂ xx u N ),
where the domain D(H γ ) is defined by

D(H γ ) = u ∈ H 2 (G) : ∀j, k = 1, . . . , N, u(0) := u j (0) = u k (0), N j=1 u j (0) = γu(0) . (1.7) 
We observe that the domain contains a continuity condition at 0 and a jump condition for the derivatives. For γ = 0 we recover the classical Kirchhoff-Neumann conditions. For γ = 0 and N = 2, we recover the case of the line with a δ potential at 0. The quadratic form associated with H γ is

q γ (u) := H γ u, u = 1 2 N j=1 u j 2 L 2 (R + ) + γ 2 |u(0)| 2 ,
defined on the domain

H 1 D (G) = D(q γ ) := u ∈ H 1 (G) : ∀j, k = 1, . . . , N, u(0) := u j (0) = u k (0) .
Observe that the domain of the quadratic form retains the continuity at the vertex, but the jump condition on the derivatives now appears in the expression of the quadratic form instead of appearing in the expression of the domain. In this paper, we will mostly work on a subspace of H 1 D (G), the space H 1 rad (G) of functions which are symmetric with respect to the vertex. Namely,

H 1 rad (G) = u ∈ H 1 (G) : ∀j, k = 1, . . . , N, u j = u k .
We will also use the notation H γ for the operator from H 1 D (G) to H -1 (G). In particular, we may write

H γ = -∂ xx + γδ,
where it is understood that -∂ xx denotes the second derivative on each edge of the graph and δ is defined by the duality pairing δu, v = u(0)v(0). This allows us to split the operator H γ into two parts, -∂ xx and γδ, whenever needed. We emphasize that whenever -∂ xx and γδ are treated separately, they are always taken in the H 1 -H -1 sense (the operator H γ as an L 2 -L 2 operator with domain cannot be split).

1.4. History of construction of minimal mass blow-up solutions. For the classical pure power mass-critical nonlinear Schrödinger equation on R N , a minimal blow-up mass solution is explicitly obtained from a pseudo-conformal transform of a standing wave, in any dimension, similarly to (1.5) for N = 1. In the seminal paper [START_REF] Merle | Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power[END_REF], Merle showed that it is the unique minimal blow-up mass solution up to the symmetries of the equation. Existence and uniqueness of a minimal mass blow-up solution for NLS equations which do not possess pseudo-conformal symmetry is more involved. The study was initiated by Merle himself in [START_REF] Merle | Nonexistence of minimal blow-up solutions of equations iu t = -∆u -k(x)|u| 4/N u in R N[END_REF], where he established a sufficient condition for the existence of a minimal mass blow-up solution in the case of a Schrödinger equation with inhomogeneous mass-critical nonlinearity k(x)|u|

4 d u.
Further contributions (see e.g. Banica, Carles, Duyckaerts [START_REF] Banica | Minimal blow-up solutions to the mass-critical inhomogeneous NLS equation[END_REF], Bourgain and Wang [START_REF] Bourgain | Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity[END_REF], Krieger and Schlag [START_REF] Krieger | Non-generic blow-up solutions for the critical focusing NLS in 1-D[END_REF]) treated the problem perturbatively from the homogeneous case, and required a flatness assumption on k. A nonperturbative approach was called for in order to remove the flatness assumption. The breakthrough came from the work of Raphaël and Szeftel [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF], in which existence and uniqueness of a minimal mass blow-up solution for the inhomogeneous mass-critical nonlinearity was established. The approach of [START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] is very robust and was used for instance by Krieger, Lenzmann and Raphaël [START_REF] Krieger | Nondispersive solutions to the L 2 -critical half-wave equation[END_REF] in the case of the critical half-wave equation, or by Martel and Pilod [START_REF] Martel | Construction of a minimal mass blow up solution of the modified Benjamin-Ono equation[END_REF] for the Benjamin-Ono equation. The construction of the profile of the minimal mass blow-up solution was later refined by Le Coz, Martel, Raphaël [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF] in the case of the nonlinear Schrödinger equation with a double power nonlinearity, where a minimal mass solution exhibiting a new blow-up speed was constructed. The approach of [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF][START_REF] Raphaël | Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS[END_REF] was successfully implemented by Matsui [START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a potential[END_REF][START_REF] Matsui | Remarks on minimal mass blow up solutions for a double power nonlinear Schrödinger dinger equation[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for double power nonlinear Schrödinger dinger equations with an inverse potential[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a Hartree nonlinearity[END_REF][START_REF] Matsui | Minimal mass blow-up solutions for nonlinear Schrödinger dinger equations with a singular potential[END_REF][START_REF] Matsui | Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential[END_REF] for various Schrödinger equations (e.g. with singular potentials or with a Hartree nonlinearity). Several improvements to the work [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF] have been made by Matsui, in particular the observation that the blow-up profile is more naturally constructed in the virial space instead of H 1 . Recently, the paper [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF] was transposed by Tang and Xu [START_REF] Tang | Minimal mass blow-up solutions for the l 2 -critical nls with the delta potential for radial data in one dimension[END_REF] to the nonlinear Schrödinger equation on the line with a delta potential at the origin.

Earlier results on star graphs.

There is now a wide literature on nonlinear quantum graphs cannot be shortly summarized. For an introduction to nonlinear Schrödinger equations on quantum graphs and their physical motivations, one may refer to the survey of Noja [START_REF] Noja | Nonlinear Schrödinger equation on graphs: recent results and open problems[END_REF]. For star graphs in particular, one may refer to the recent monograph of Angulo Pava and Cavalcante de Melo [START_REF] Angulo Pava | Nonlinear Dispersive Equations on Star Graphs[END_REF]. In this introduction, we will only present the results close to our work, along with a very partial sample of the rest of the literature. Many of the works devoted to nonlinear quantum graphs focus on existence and variational characterizations of standing waves. Among the earliest studies, one finds the works by Fukuizumi in collaboration with (separately) Jeanjean, Le Coz, Ohta and Ozawa [START_REF] Fukuizumi | Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential[END_REF][START_REF] Fukuizumi | Nonlinear Schrödinger equation with a point defect[END_REF][START_REF] Le Coz | Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential[END_REF], which are devoted to the case of a line with a delta potential at the origin (equivalent to a 2-star graph). The first author, together with Malomed and Weisshäupl [START_REF] Genoud | Stable NLS solitons in a cubic-quintic medium with a delta-function potential[END_REF], studied orbital stability of standing waves for the 2-star graph with a cubic-quintic nonlinearity. The variational characterization of standing waves on star graphs was considered by Adami, Cacciapuoti, Finco and Noja [START_REF] Adami | On the structure of critical energy levels for the cubic focusing NLS on star graphs[END_REF][START_REF] Adami | Constrained energy minimization and orbital stability for the NLS equation on a star graph[END_REF][START_REF] Adami | Variational properties and orbital stability of standing waves for NLS equation on a star graph[END_REF][START_REF] Adami | Stable standing waves for a NLS on star graphs as local minimizers of the constrained energy[END_REF]. Further developments for the study of standing waves on generic quantum graphs started with Adami, Serra and Tilli [START_REF] Adami | Threshold phenomena and existence results for NLS ground states on metric graphs[END_REF][START_REF] Adami | Negative energy ground states for the L 2 -critical NLSE on metric graphs[END_REF][START_REF] Adami | Nonlinear dynamics on branched structures and networks[END_REF], where a topological obstruction for the existence of ground states on quantum graphs was discovered. Elements such as well-posedness of the Cauchy problem, Strichartz estimates and conservation laws on star graphs can be found in the work of Adami, Cacciapuoti, Finco and Noja [START_REF] Adami | Fast solitons on star graphs[END_REF] (along with the analysis of the collision of a fast solitary wave with the vertex, which is the main object of the paper). The 2-star graph with non-zero boundary conditions has been investigated by Ianni, Le Coz and Royer [START_REF] Ianni | On the Cauchy problem and the black solitons of a singularly perturbed Gross-Pitaevskii equation[END_REF]. The case of a loop (which is equivalent to a segment with periodic boundary conditions) was studied by Gustafson, Le Coz and Tsai [START_REF] Gustafson | Stability of periodic waves of 1D cubic nonlinear Schrödinger equations[END_REF]. Absence of scattering of global solutions towards standing waves was established by Aoki, Inui, Mizutani [START_REF] Aoki | Failure of scattering to standing waves for a Schrödinger equation with long-range nonlinearity on star graph[END_REF], while scattering on the 2-star graph was obtained by Banica and Visciglia [START_REF] Banica | Scattering for NLS with a delta potential[END_REF]. Exponential stability in the presence of damping on one branch was obtained by Ammari, Bchatnia and Mehenaoui [START_REF] Ammari | Exponential stability for the nonlinear Schrödinger equation on a star-shaped network[END_REF]. Existence of ground states on star graphs with finite and infinite egdes was studied by Li, Li and Shi [START_REF] Li | Ground states of nonlinear Schrödinger equation on star metric graphs[END_REF]. On balanced star graphs (i.e. star graphs with adjusted coefficients on the edges, see [START_REF] Sobirov | Integrable nonlinear schrödinger equation on simple networks: Connection formula at vertices[END_REF]), Kairzhan, Pelinovsky and Goodman [START_REF] Kairzhan | Drift of spectrally stable shifted states on star graphs[END_REF] proved the nonlinear instability (by drift) of spectrally stable (see [START_REF] Kairzhan | Drift of spectrally stable shifted states on star graphs[END_REF]) shifted states. Standing waves of the nonlinear Schrödinger equation with logarithmic nonlinearity was considered by Goloshchapova [START_REF] Goloshchapova | On the standing waves of the NLS-log equation with a point interaction on a star graph[END_REF] (see also the earlier work of Ardila [START_REF] Ardila | Logarithmic NLS equation on star graphs: existence and stability of standing waves[END_REF] for well-posedness and existence results). Instability of non-ground state standing waves on star graphs was obtained by Kairzhan [START_REF] Kairzhan | Orbital instability of standing waves for NLS equation on star graphs[END_REF] in the repulsive and attractive cases. Instability by blow-up of standing waves on star graphs for mass-supercritical nonlinearities was proved by Goloshchapova and Ohta [START_REF] Goloshchapova | Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph[END_REF]. Stability and instability results were obtained by Angulo Pava and Goloshchapova [START_REF] Angulo Pava | Extension theory approach in the stability of the standing waves for the NLS equation with point interactions on a star graph[END_REF][START_REF] Angulo Pava | On the orbital instability of excited states for the NLS equation with the δ-interaction on a star graph[END_REF] using the extension theory of symmetric operators for star graphs with δ or δ interaction at the vertex. Star graphs with δ s conditions were considered by Goloshchapova in [START_REF] Goloshchapova | Dynamical and variational properties of the NLS-δ s equation on the star graph[END_REF]. Recently, Besse, Duboscq and Le Coz [START_REF] Besse | Gradient flow approach to the calculation of ground states on nonlinear quantum graphs[END_REF][START_REF] Besse | Numerical simulations on nonlinear quantum graphs with the grafidi library[END_REF] developed a Python Library [START_REF] Besse | PLMlab repository[END_REF] for the numerical simulation of Schrödinger equations on quantum graphs. A numerical approach for the calculations of ground states is studied in [START_REF] Besse | Gradient flow approach to the calculation of ground states on nonlinear quantum graphs[END_REF] whereas the implementation of the library and further experiments are presented in [START_REF] Besse | Numerical simulations on nonlinear quantum graphs with the grafidi library[END_REF].

The rest of the paper is organized as follows. Section 2 provides a detailed outline of the construction of our blow-up solution. The proof of Theorem 1.1 is given there, assuming a number of propositions. Section 3 presents some basic results underlying the whole analysis: the Cauchy theory for (1.1) and some detailed properties of linearized operators. In Sections 4 to7, the propositions used in the proof of Theorem 1.1 are proved.

Notation. We shall write f g or g f to mean that there is a universal constant C > 0 (i.e. which does not depend on the dynamical variables) such that f Cg. We will write f ∼ g as t → 0 -(or s → +∞) if f /g → 1 as t → 0 -(or s → +∞). When no confusion is possible, we may simply write L 2 , H 1 , etc. instead of L 2 (G), H 1 (G), etc.

Outline of the proof

The approach we adopt is via a change of variables transforming a finite time blow-up solution into a solution that is global in positive time. We seek a radial solution u of (1.1) in the form of

u(t, x) = 1 λ(s) w(s, y)e i(θ(s)-b(s)y 2 /4) , t < 0, x ∈ R + , (2.1) 
where the new variables s and y satisfy

ds dt = 1 λ(s) 2 , y = x λ(s) . (2.2)
We will construct w global and bounded in H 1 D (G), together with modulation parameters λ(s), b(s) and θ(s) such that λ(s) > 0,

λ(s) → 0 + , b(s) → 0 + , θ(s) → 0, s → +∞.
This type of ansatz is common in blow-up analysis (see the references in the introduction for similar constructions). The exact definition of the rescaled time s will appear in Section 6. By straightforward calculations, u solves (1.1) if and only if w solves

iw s -H λγ w -w + |w| 4 w + (1 -θ s )w + b s -b 2 -2b λ s λ y 2 4 w -i b + λ s λ Λw = 0, (2.3)
where the scaling operator Λ is defined for each component w j of w by Λw j (y j ) = 1 2 w j (y j ) + y j w j (y j ), j = 1, . . . , N.

Our strategy to prove Theorem 1.1 is to seek w of the form w(s, y) = P (s, y) + h(s, y), for a suitable approximate solution profile P constructed using the ground state Q and the dynamical parameters λ(s) and b(s). The result will then follow from (2.1) and (2.2) by proving that λ(s) ∼ s -2 and h(s) → 0 in a well-chosen norm, as s → +∞. The blow-up profile P is constructed as an approximate solution of the auxiliary equation

iP s + P yy -P -γλδP + f (P ) + α y 2 4 P = 0,
where we have defined We say that u belongs to C 1 exp if u C 1 exp < +∞. The following proposition will be proved in Section 4.

f (z) = |z| 4 z, z ∈ C. For κ ∈ N, let Σ κ = (j, k) ∈ N × N * : j 2 + k < κ . (2.4) For u ∈ C 1 (G, R), let u C 1 exp = sup
Proposition 2.1 (Approximate blow-up profile). Let κ ∈ N. Let J be an interval of R. There exist C > 0 and two families (a j,k ) (j,k)∈Σκ ⊂ R and (P j,k ) (j,k)∈Σκ ⊂ C 1 exp with the following property. For any b ∈ C 1 (J, R) and λ ∈ C 1 (J, R * + ), if we set

P = P (b, λ) = Q + (j,k)∈Σκ (ib) j λ k P j,k , (2.5) 
α = α(b, λ) = (j,k)∈Σκ j even (ib) j λ k α j,k (2.6) 
and

Ψ κ = Ψ κ (b, λ) = iP s + P yy -P -γλδP + f (P ) + α y 2 4 P, (2.7) 
then we have

Ψ κ C 1 exp C |λb + λ s | + λ|b s + b 2 -α| + C(b 2 + λ) κ . (2.8)
Furthermore, letting P (b, λ, θ) = λ -1/2 P (b, λ)e i(θ-b y 2 4 ) , there holds d ds

E( P ) 1 λ 2 λ s λ + b + |b s + b 2 -α| + (b 2 + λ) κ .
(2.9)

Finally, there exist (ε j,k ) (j,k)∈Σκ ⊂ R such that

E( P (b, λ, θ)) -C Q E(b, λ) (b 2 + λ) κ λ 2 , (2.10) 
where

C Q = 1 8 yQ 2 L 2 , E(b, λ) = E mo (b, λ) + (j,k)∈Σκ j even, j/2+k 1 b j λ k-1 ε j,k (2.11)
and E mo is the Hamiltonian of the model dynamical system, defined in (2.14).

Next, a choice of modulation parameters θ(s), b(s), λ(s) can be made so that the remainder h satisfies orthogonality conditions which are useful to construct our solution. This is ensured by the following proposition, which will be proved in Section 5.

Proposition 2.2 (Modulation parameters). Let η > 0. Let I be an interval of R and consider a solution u ∈ C 0 (I, H 1 (G)) ∩ C 1 (I, H -1 (G)) of (1.1). There exists δ > 0 such that, if

sup t∈I inf θ∈R 0<λ<δ u(t, x) - 1 √ λ e iθ Q x λ L 2 (G) δ, (2.12 
)

then there exist θ ∈ C 1 (I, R), b ∈ C 1 (I, (-η, η)) and λ ∈ C 1 (I, (0, η)) with the following property. The function h ∈ C 0 (I, L 2 (G)) defined by u(t, x) = 1 λ(t) e iθ(t)-i b(t)x 2 4λ(t) 2 P b(t),λ(t) x λ(t) + h t, x λ(t) , t ∈ I, x ∈ R,
satisfies the orthogonality conditions

h(t), iΛP b(t),λ(t) L 2 (G) = h(t), y 2 P b(t),λ(t) L 2 (G) = h(t), iρ L 2 (G) = 0, t ∈ I.
We use here the notation P b,λ ≡ P (b, λ).

Remark 2.3. To keep a light notation in this section, we use the same letters b, λ, θ, h to denote the modulation parameters and rest as functions of t or s. We will later be more specific, see (6.2).

As we shall see in Section 6.1, the modulation parameters b(s) and λ(s) are governed, at first order as s → +∞, by the nonlinear ODE system

b s + b 2 -βλ = 0, λ s λ + b = 0, (2.13) 
where

β := α 0,1 = -2 γQ(0) 2 yQ 2 L 2 > 0,
is the coefficient of the first term in the expansion (2.6) (see (4.2)). The system (2.13) is Hamiltonian, with conserved energy

E mo (b, λ) = b 2 λ 2 - 2β λ . (2.14)
An exact solution with energy E mo = 0 is given by

b mo (s) = 2 s , λ mo (s) = 2 βs 2 .
Thus, Proposition 2.1 shows that, at leading order, the energy of the rescaled profile P is governed by the Hamiltonian energy (2.14). However, it should be noted that the correction appearing as a power expansion in (2.11) does not vanish as s → ∞. Indeed, by Proposition 2.5 below, the terms corresponding to (j, k) = (0, 1) and (j, k) = (2, 0) behave asymptotically as

ε 0,1 + ε 2,0 b 2 λ ∼ ε 0,1 + ε 2,0 b 2 mo λ mo ∼ ε 0,1 + 2βε 2,0 , s → ∞.
Hence,

E(b, λ) ∼ E mo (b, λ) + ε 0,1 + 2βε 2,0 , s → ∞.
Remark 2.4. Remarks 2.7 and 6.2 show that the energy shift ε 0,1 + 2βε 2,0 has an influence on the asymptotic behaviour of b and λ as t → 0 -/s → +∞.

The relation between E( P ) and E mo suggests that, up to a shift in energy (and a rescaling by C Q ), one should be able to control the energy of the solution of (1.1) by the model Hamiltonian energy E mo . Unfortunately, as can be seen by a direct calculation, the difference

E mo (b, λ) -E mo (b, λ)
evaluated between the modulation parameters (b, λ) and a solution (b, λ) of the model system (2.13) with energy E = E mo (b(s 1 ), λ(s 1 )) grows logarithmically as s → ∞. For this reason, the choice of final data (b 1 , λ 1 ) is rather made using the full expansion E(b, λ) by the following proposition, proved in Appendix 7.

Proposition 2.5. Let E ∈ R. For any s 1 1, there exists b 1 , λ 1 > 0 satisfying λ 1/2 1 λ mo (s 1 ) 1/2 -1 1 s 1 , b 1 b mo (s 1 ) -1 1 s 1 , F(λ 1 ) = s 1 , E(b 1 , λ 1 ) = E , where 
F(λ) = λ 0 λ dµ µ 3/2 √ E µ + 2β , λ ∈ (0, λ 0 ], (2.15) 
with λ 0 > 0 a fixed parameter such that E λ 0 + 2β > 0.

We now define the final data which will give rise to an approximate solution of our problem by backward in time integration of (1.1). Let E ∈ R. Consider t 1 < 0 and close to 0. Let

E = C -1 Q E , (2.16) 
and (b 1 , λ 1 ) given by Proposition 2.5. Let u 1 be the radial solution of (1.1) such that

u 1 (t 1 , x) = 1 √ λ 1 P b 1 ,λ 1 x λ 1 e -i b 1 x 2 4λ 2 1
(2.17)

Let I ⊂ R be the maximal interval such that t 1 ∈ I, u 1 exists on I and verifies (2.12). Then the asymptotics as t → 0 -of the functions θ, b, λ and h given by Proposition 2.2 follow from the next proposition, which will be proved in Section 6.

Proposition 2.6 (Uniform estimates in the t variable). There exists t 0 ∈ (-∞, t 1 ), independent of t 1 , such that the solution u 1 defined by (2.17) and its decomposition given by Proposition 2.2 satisfy, for all t

∈ [t 0 , t 1 ], b(t) -C b |t| 1 3 |t|, λ(t) -C λ |t| 2 3 |t| 5/3 , (2.18) 
h(t) L 2 (G) |t| κ-1 3 , h y (t) L 2 (G) |t| κ-1 3 , yh(t) L 2 (G) |t| κ-2 3 , (2.19 
)

|E( P (b, λ, θ)(t)) -E | |t| κ-5 3 , (2.20) 
where

C b = 2 3β 2 4 1/3 , C λ = 2 β 3β 2 4 
2/3 and κ 7 is the integer introduced in (2.4).

Furthermore, all these estimates are independent of t 1 .

Remark 2.7. Thanks to Remark 6.2, the first two estimates in Proposition 2.6 can be improved to

b(t) -C b |t| 1 3 |t| 5/3 , λ(t) -C λ |t| 2 3 |t| 7/3
by replacing the energy E in (2.15) with E = E -(ε 0,1 + 2βε 2,0 ).

We are now in position to prove our main result.

Proof of Theorem 1.1, assuming Propositions 2.1, 2.2, 2.5 and 2.6. Let E ∈ R and define E by (2.16). Choose an increasing sequence of times (t n ) ⊂ (t 0 , 0) such that t n → 0 as n → ∞. For each n ∈ N * , let b n and λ n as given by Proposition 2.5 and u n (t n ) defined by (2.17), with the change of notation

t 1 → t n , b 1 → b n , λ 1 → λ n .
For each n ∈ N * , the corresponding solution u n of (1.1) satisfies Proposition 2.6, where all the estimates are independent of n. We will show that (u n ) converges to a solution u of (1.1) with the desired properties.

Let χ ∈ C ∞ ([0, ∞), [0, 1]
) be equal to 0 on [0, 1] and equal to 1 on [2, ∞). For R > 0 we define the radial function χ R on G by χ(x/R) on each edge. Let δ > 0. From the formula (2.17) defining u n (t n ) we deduce that there exists R > 0 such that

G |u n (t n )| 2 χ R dx δ. By (1.1), we have d dt G |u n | 2 χ R dx = 2 Im G ∂ x u n ūn ∂ x χ R dx.
Using the decomposition of the solution given by Proposition 2.2, the estimates of Proposition 2.6 for the corresponding variables b n , λ n , h n and the exponential decay of P bn,λn , direct calculations show that

d dt G |u n | 2 χ R dx 1 Rλ n (t) e -R 2λn(t) + yh n (t) 2 L 2 (y R/λn(t)) + h n (t) 2 H 1 (y R/λn(t)) |t| 2 3 (κ-3) R .
Thus, integrating over [t 0 , t n ], we find a constant C > 0 such that (choosing R larger if necessary)

G |u n (t 0 )| 2 χ R dx C |t 0 | 2 3 (κ-3)+1 R + G |u n (t n )|χ R dx 2δ.
After extracting a subsequence if necessary, we obtain that the sequence (u n (t 0 )) has a limit u 0 in L 2 (G). We denote by u the maximal solution of (1.1) with initial condition u(t 0 ) = u 0 . Let τ ∈ (t 0 , 0) and assume by contradiction that u is not defined on

[t 0 , τ ]. Let n ∈ N * such that t n > τ . Let C > 0 be such that u n (t) H 1 (G)
C for all n ∈ N * and t ∈ [t 0 , τ ]. By the blow-up alternative (see Section 3.1), there exists τ 1 in [t 0 , τ ] such that u is defined on [t 0 , τ 1 ] and u(τ 1 ) H 1 (G) 2C. For all t ∈ [0, τ 1 ] the sequence (u n (t)) goes to u(t) in L 2 (G) and has a weak limit in H 1 (G). Thus, (u n (t)) goes weakly to u(t) in H 1 (G). In particular, u(t) H 1 (G) C. This gives a contradiction and proves that u is defined on [t 0 , τ ]. Finally, u is well defined on [t 0 , 0).

By conservation of the mass and convergence of u n (t 0 ) to u(t 0 ) in L 2 (G) we have, for all t ∈ [t 0 , 0),

G |u(t)| 2 dx = lim n→∞ G |u n (t n )| 2 dx = G Q 2 dx.
Moreover, the fact that u n (t) goes to u(t) weakly in H 1 (G) implies that u satisfies the assumption of Proposition 2.2 on [t 0 , 0). Let b ∞ (t), λ ∞ (t), θ ∞ (t), h ∞ denote the modulation parameters and corresponding rest given by Proposition 2.2. Then, by standard arguments,

θ n (t) → θ ∞ (t), b n (t) → b ∞ (t), λ n (t) → λ ∞ (t),
and, weakly in H 1 (G),

h n (t) h ∞ (t), t → 0 -.
By Proposition 2.6 we deduce that, as

t → 0 -, b ∞ (t) ∼ C b |t| 1 3 , λ ∞ (t) ∼ C λ |t| 2 3 , h ∞ (t) L 2 (G) |t| κ-1 3 , ∂ y h ∞ (t) L 2 (G) |t| κ-1 3 , yh ∞ (t) L 2 (G) |t| κ-2 3 .
Using y = x/λ ∞ , the decomposition of u given by Proposition 2.2 and the formula for P b∞,λ∞ in Proposition 2.1, it then follows by direct calculations that

u(t) 2 L 2 = G |P b∞,λ∞ (y) + h ∞ (t, y)| 2 dy -→ Q 2 L 2 , t → 0 -, and 
u x (t) 2 L 2 = λ ∞ (t) -1 u y (t) 2 L 2 ∼ λ ∞ (t) -2 G -ib y 2 P b∞,λ∞ (y) + h ∞ (t, y) + ∂ y P b∞,λ∞ (y) + h ∞ (t, y) 2 dy ∼ λ ∞ (t) -2 Q y 2 L 2 ∼ C -2 λ Q y 2 L 2 |t| -4 3 , t → 0 -.
This proves (1.3) and, since u 2 L 2 is constant, that M (u) = M (Q). To complete the proof, we now show that E(u) = E . By (2.10) and (2.20), there exists a function ε : [t 0 , 0) → R * + with lim t→0 -ε(t) = 0 and such that, for all n ∈ N * ,

E b n (t), λ n (t) -C -1 Q E ε(t), t ∈ [t 0 , 0). Taking the limit n → ∞ gives E b ∞ (t), λ ∞ (t) -C -1 Q E ε(t), t ∈ [t 0 , 0).
Hence, using again (2.10), we conclude that

E P b∞(t),λ∞(t) -→ E , t → 0 -. It then follows from the above information about b ∞ , λ ∞ and h ∞ that E(u(t)) -→ E , t → 0 -.
By conservation of the energy, we deduce that E(u(t)) = E for all t ∈ [t 0 , 0).

General context

In this section we collect some basic definitions and results which will be used throughout the paper.

3.1. The Cauchy Problem. Since the operator H γ is self-adjoint, it generates a strongly continuous group e -itHγ . Since we are working in a one-dimensional setting, the nonlinearity |u| 4 u is Lipschitz continuous from bounded sets of H 1 D (G) to L q (G), 2 q ∞, and well-posedness of the Cauchy problem for (1.1) may be obtained (see e.g. [START_REF] Adami | Variational properties and orbital stability of standing waves for NLS equation on a star graph[END_REF]) following a classical line of arguments (see e.g. [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF]). For any initial data u 0 ∈ H 1 D (G), there exists a unique maximal solution

u ∈ C (-T min , T max ), H 1 D (G) ∩ C 1 (-T min , T max ), H -1 (G) such that u(t = 0) = u 0 .
The energy E and the mass M , defined by

M (u) = 1 2 u 2 L 2 (G) , E(u) = 1 2 u x 2 L 2 (G) - 1 6 u 6 L 6 (G) + γ 2 |u(0)| 2 .
are preserved along the time evolution, i.e. for any t ∈ (-T min , T max ), we have

E(u(t)) = E(u 0 ), M (u(t)) = M (u 0 ).
The blow-up alternative holds, i.e. either T max = ∞ (resp.

T min = ∞) or lim t→Tmax (resp. T min ) u(t) H 1 (G) = ∞.
There is continuous dependence with respect to the initial data, i.e. for any (u

0,n ) ⊂ H 1 (G) such that u 0,n → u 0 in H 1 (G) the associated solutions (u n ) of (1.1) verify u n → u in C((-T * , T * ), H 1 (G)) for any 0 < T * < T min , 0 < T * < T max . Finally, if in addition u 0 ∈ D(H γ ), then u verifies u ∈ C ((-T min , T max ), D(H γ )) ∩ C 1 (-T min , T max ), L 2 (G) .
3.2. Global existence. We now establish some global existence results for the nonlinear Schrödinger equation (1.1).

Lemma 3.1 (Gagliardo-Nirenberg inequalities on star-graphs). The following inequalities hold

u 6 L 6 (G) 3 Q 4 L 2 (R) u x 2 L 2 (G) u 4 L 2 (G) , u ∈ H 1 D (G), (3.1) 
u 6 L 6 (G) 12 N 2 Q 4 L 2 (R) u x 2 L 2 (G) u 4 L 2 (G) , u ∈ H 1 rad (G). (3.2)
Proof. The inequality (3.1) is well-known to hold on the line R, and the extension to star-graphs is immediate (see e.g. [4, (2.3)]). On the half-line R + , we infer from (3.1) that

u 6 L 6 (R + ) 12 Q 4 L 2 (R) u x 2 L 2 (R + ) u 4 L 2 (R + ) , u ∈ H 1 (R + ).
Let u ∈ H 1 rad (G) and denote by u e : R + → R the function representing u on any of the branches of the graph. We have

u 6 L 6 (G) = N u e 6 L 6 (R + ) N 12 Q 4 L 2 (R) (u e ) x 2 L 2 (R + ) u e 4 L 2 (R + ) = 12 N 2 Q 4 L 2 (R) u x 2 L 2 (G) u 4 L 2 (G) ,
which establishes (3.2).

Proposition 3.2 (Global wellposedness). Let γ ∈ R, u 0 be an initial data and u be the corresponding solution of (1.1) such that u(0,

•) = u 0 . If u 0 ∈ H 1 D (G) satisfies u 0 L 2 < min 1, N 2 Q L 2 , then u is global in H 1 (G). Furthermore, if γ > 0, then for any solution with u 0 L 2 = min 1, N 2 Q L 2 , u(t, 0) remains bounded on the lifespan of u. If u 0 ∈ H 1 rad (G) satisfies u 0 L 2 < N 2 Q L 2 , then u is global in H 1 rad (G). Furthermore, if γ > 0, then for any solution with u 0 L 2 = N 2 Q L 2
, u(t, 0) remains bounded on the lifespan of u. Proof. The proof follows by combining (3.1) with the conservation laws of (1.1). We have

E(u 0 ) = E(u(t)) = 1 2 u x (t) 2 L 2 - 1 6 u(t) 6 L 6 + γ 2 |u(t, 0)| 2 1 2 1 - u 0 L 2 Q L 2 4 u x (t) 2 L 2 + γ 2 |u(t, 0)| 2 .
If γ > 0, it follows that u x (t) L 2 remains bounded provided u 0 L 2 < Q L 2 , and global existence in H 1 (G) follows by the blow-up alternative. Moreover in this case, if

u 0 L 2 = Q L 2 , we see that |u(t, 0)| 2 must remain bounded. If γ < 0, the inequality |u(t, 0)| 2 2 u x (t) L 2 u(t) L 2 yields |u(t, 0)| 2 u x (t) 2 L 2 + 4 u(t) 2 L 2
for any > 0, and it follows that

E(u 0 ) 1 2 1 - u 0 L 2 Q L 2 4 -|γ| u x (t) 2 L 2 + 2γ u 0 2 L 2 . If u 0 L 2 < Q L 2 , we can choose > 0 so that 1 - u 0 L 2 Q L 2 4
-|γ| > 0, showing that u x (t) L 2 remains bounded. This concludes the proof.

3.3. The linearized operators. In this subsection, we establish some useful properties of the linearized operators

L -= - d 2 dy 2 + 1 -Q 4 and L + = - d 2 dy 2 + 1 -5Q 4 .
They are seen as bounded operators from H 1 rad (G, R) to its dual

H -1 rad (G, R). For instance, for ϕ, ψ ∈ H 1 rad (G, R) we have L -ϕ, ψ = (ϕ , ψ ) L 2 (G) + (ϕ -Q 4 ϕ, ψ) L 2 (G) .
We can also consider the corresponding (unbounded) operators on L 2 rad (G, R). We set R). We denote by σ(A), σ ess (A) the spectrum, respectively the essential spectrum, of a linear operator A on L 2 rad (G). The following spectral properties of the operators L ± are well-known in the context of radial functions on the line (see e.g. [START_REF] Chang | Spectra of linearized operators for NLS solitary waves[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] and references therein) and it is straightforward to transpose them to L 2 rad (G, R). We denote by Λ the generator of dilations on G.

L -= - d 2 dy 2 + 1 -Q 4 and L + = - d 2 dy 2 + 1 -5Q 4 . They are defined on the same domain D(L -) = D(L + ) = D(H 0 ) ∩ H 1 rad (G,
For v ∈ C 1 rad (G), Λv = v 2 + yv = d dλ √ λv(λy) λ=1 .
Lemma 3.3. The operators L ± have the following properties: (i) L ± are selfadjoint and bounded below.

(ii) σ ess (L ± ) = [1, ∞).
(iii) -8 is the only eigenvalue of L + , with N (L + + 8I) = span{Q 3 }.

(iv) 0 is the only eigenvalue of L -, with

N (L -) = span{Q}. (v) Setting ρ = L -1 + (y 2 Q), we have the relations L -Q = 0, L + ΛQ = -2Q, L -y 2 Q = -4ΛQ, L + ρ = y 2 Q.
From these results on L ± we deduce similar properties for L ± .

Proposition 3.4. The operators L ± have the following properties:

(i) L + : H 1 rad (G, R) → H -1 rad (G, R) is bijective; (ii) ker(L -) = span(Q) and Ran(L -) = {ϕ ∈ H -1 rad (G) : ϕ(Q) = 0}. Proof.
We have span(Q) = ker(L -) ⊂ ker(L -), and if ϕ ∈ ker(L -) we have ϕ ∈ D(L -) and L -ϕ = 0. This proves that ker(L -) = span(Q).

Since

L -= (Id H -1 rad (G,R) -K)(-∂ 2 x + 1) with K = Q 4 (-∂ 2 x + 1) -1 ∈ L(H -1 rad (G, R))
compact, its range is closed. Then Ran(L -) = ker(L -) ⊥ and the second statement of the proposition follows.

The first statement about L + is similar.

Next, we give some useful integral identities.

Lemma 3.5. Let Q, ΛQ and ρ be as in Lemma 3.4. Then:

(i) G y 2 QΛQ dy = -G y 2 Q 2 dy; (ii) G QΛQ dy = 0; (iii) G Qρ dy = 1 2 G y 2 Q 2 dy. Proof. (i) For real parameters µ > -1 and r 1, we will show that G y µ Q r ΛQ dy = 1 2 - µ + 1 r + 1 G y µ Q r+1 dy, (3.3) 
from which (i) follows. Now, to prove (3.3), we only need to show that

G y µ Q r y Q y dy = - µ + 1 r + 1 G y µ Q r+1 dy. (3.4)
Integrating by parts, we have

G y µ+1 Q r Q y dy = - G [(µ + 1)Q r y µ + ry µ+1 Q r-1 Q y ]Q dy = -(µ + 1) G y µ Q r+1 dy -r G Q r Q y y µ+1 dy,
which is equivalent to (3.4). This completes the proof of (3.3).

(ii) follows directly from (3.3) with µ = 0 and r = 1, but the following argument is more instructive. Since the

L 2 scaling Q λ (y) = λ 1 2 Q(λy) leaves the L 2 norm invariant, we have that 0 = d dλ Q λ 2 L 2 = 2 G Q λ ∂Q λ ∂λ dy, ∀λ > 0.
The result follows by letting λ = 1.

(iii) Using Lemma 3.3 and (i), we have the identities

G Qρ dy = - 1 2 G L + ΛQρ dy = - 1 2 G ΛQL + ρ dy = - 1 2 G ΛQy 2 Q dy = 1 2 G y 2 Q 2 dy.
The proof is complete.

We now state well-known coercivity properties of the operators L ± , which we prove for the reader's convenience. We start with positivity properties. Lemma 3.6. L ± satisfy the following positivity relations in H 1 rad , where ⊥ denotes orthogonality in L 2 :

L -v, v H -1 ×H 1 v 2 H 1 on {ρ} ⊥ , (3.5) 
L + v, v H -1 ×H 1 v 2 H 1 on {Q, y 2 Q} ⊥ . (3.6)
Proof. To prove (3.5), we first observe that Lemma 3.3 implies

L -w, w H -1 ×H 1 w 2 L 2 , ∀w ∈ {Q} ⊥ . (3.7) 
From now on, we denote by • and (•, •) the L 2 norm and inner product, and •, • the duality product.

Let v ∈ {ρ} ⊥ . Let w ∈ {Q} ⊥ and t ∈ R such that v = w +tQ. Since (Q, ρ) = 0 (see Lemma 3.5), we necessarily have

t = - (w, ρ) (Q, ρ) ,
and hence

v 2 L 2 = w 2 + 2t(w, Q) + t 2 Q 2 L 2 = w 2 L 2 + (w, ρ) 2 (Q, ρ) 2 Q 2 L 2 w 2 L 2 1 + ρ 2 L 2 Q 2 L 2 (Q, ρ) 2 .
Setting

C 1 = 1 + ρ 2 L 2 Q 2 L 2 (Q, ρ) 2 -1 > 0,
it then follows by (3.7) that

L -v, v = L -w, w w 2 L 2 C 1 v 2 L 2 . (3.8) 
To deduce (3.5), we argue by contradiction. Suppose there exists a sequence

{v n } in H 1 rad ∩ {ρ} ⊥ such that v n H 1 = 1 for all n and L -v n , v n → 0 as n → ∞. Then (3.8) implies v n L 2 → 0, so ∂ x v n L 2 → 1. Then L -v n , v n = ∂ x v n 2 L 2 + v n 2 L 2 - G Q p-1 v 2 n dy ∂ x v n 2 L 2 + v n 2 L 2 1 -Q p-1 L ∞ → 1.
This contradiction concludes the proof of (3.5).

The proof of (3.6) follows in the same way from

L + v, v v 2 L 2 on {Q, y 2 Q} ⊥ .
However, the proof of this inequality is much more involved than that of (3.8), see [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF].

Lemma 3.7. There exist µ -, µ + > 0 such that, for all v ∈ H 1 rad , L -v, v H -1 ×H 1 µ -v 2 H 1 -µ -1 -(v, ρ) 2 L 2
(3.9)

and L + v, v H -1 ×H 1 µ + v 2 H 1 -µ -1 + (v, Q) 2 L 2 + (v, y 2 Q) 2 L 2 .
(3.10) There exists µ > 0 such that

L + v, v H -1 ×H 1 + L -v, v H -1 ×H 1 µ v 2 H 1 -µ -1 (v, Q) 2 L 2 + (v, y 2 Q) 2 L 2 + (v, ρ) 2 L 2 . (3.11)
Proof. We prove (3.10) and leave the proof of (3.9), which is very similar, to the reader. Estimate (3.11) will then be a consequence of (3.9) and (3.10). Any v ∈ H 1 rad can be written as

v = w + sQ + ty 2 Q, w ∈ {Q, y 2 Q} ⊥ with s = (v, Q) L 2 y 2 Q 2 -(v, y 2 Q) L 2 (Q, y 2 Q) L 2 Q 2 y 2 Q 2 -(Q, y 2 Q) 2 L 2 , t = (v, y 2 Q) L 2 Q 2 -(v, Q) L 2 (Q, y 2 Q) L 2 Q 2 y 2 Q 2 -(Q, y 2 Q) 2 L 2 . Then v 2 H 1 = w 2 H 1 + s 2 Q 2 H 1 + t 2 y 2 Q 2 H 1 + 2st Q, y 2 Q H 1 + 2s w, Q H 1 + 2t w, y 2 Q H 1 w 2 H 1 + s 2 Q 2 H 1 + t 2 y 2 Q 2 H 1 + (s 2 + t 2 )| Q, y 2 Q H 1 | + 2s w H 1 Q H 1 + 2t w H 1 y 2 Q H 1 w 2 H 1 + s 2 Q 2 H 1 + t 2 y 2 Q 2 H 1 + (s 2 + t 2 )| Q, y 2 Q H 1 | + s 2 + w 2 H 1 Q 2 H 1 + t 2 + w 2 H 1 y 2 Q 2 H 1 1 + Q 2 H 1 + y 2 Q 2 H 1 w 2 H 1 + 1 + Q 2 H 1 + | Q, y 2 Q H 1 | s 2 + 1 + y 2 Q 2 H 1 + | Q, y 2 Q H 1 | t 2 . Hence, there exist constants A, B, C > 0 such that w 2 H 1 A v 2 H 1 -B (v, Q) 2 Q 4 -C (v, y 2 Q) 2 y 2 Q 4 . (3.12) 
Using similar calculations, (3.6) yields a constant K > 0 such that, for any ε > 0,

L + v, v = L + w, w + s 2 L + Q, Q + t 2 L + y 2 Q, y 2 Q + 2st L + Q, y 2 Q + 2s w, L + Q + 2t w, L + y 2 Q K w 2 H 1 -| L + Q, Q | + | L + y 2 Q, y 2 Q | s 2 -| L + y 2 Q, y 2 Q | + | L + y 2 Q, y 2 Q | t 2 -2ε -1 |s|ε w L 2 L + Q L 2 -2ε -1 |t|ε w L 2 L + y 2 Q L 2 K w 2 H 1 -| L + Q, Q | + | L + Q, y 2 Q | s 2 -| L + y 2 Q, y 2 Q | + | L + Q, y 2 Q | t 2 -ε -2 s 2 + ε 2 L + Q 2 L 2 w 2 H 1 -ε -2 t 2 + ε 2 L + y 2 Q 2 L 2 w 2 H 1 K -ε 2 L + Q 2 L 2 + L + y 2 Q 2 L 2 w 2 H 1 -ε -2 + | L + Q, Q | + | L + Q, y 2 Q | s 2 -ε -2 + | L + y 2 Q, y 2 Q | + | L + Q, y 2 Q | s 2 .
Therefore, choosing ε > 0 small enough, there exist constants

K 1 , K 2 , K 3 > 0 such that L + v, v K 1 w 2 H 1 -K 2 (v, Q) 2 Q 4 -K 3 (v, y 2 Q) 2 y 2 Q 4 .
Combining this with (3.12) concludes the proof of (3.10).

Construction of the profile

In this section we prove Proposition 2.1. For b ∈ C 1 (J, R), λ ∈ C 1 (J, R * + ) and α ∈ C 1 (J, R), we denote by O C 1 exp (b, λ, α) any function u : J → C 1 exp such that we have, for some C > 0 ∀s ∈ J, u(s)

C 1 exp C |λb + λ s | + λ|b s + b 2 -α| + C(b 2 + λ) κ .
Then we have to construct α and P of the form (2.6) and (2.5) such that Ψ κ = O C 1 exp (b, λ, α), where Ψ κ is defined by (2.7). Since z → g(z) -µQ(z) 4 u(z) decays at least like e -z 2 , the conclusion follows.

Proof of Proposition 2.1. Let P j,k ∈ C 1 exp for (j, k) ∈ Σ κ and α j,k ∈ R for (j, k) ∈ Σ κ with j even. Let P and α be defined by (2.6) and (2.5). For (j, k) ∈ Σ κ we have

i∂ s (ib) j λ k P j,k = -j(ib) j-1 b s λ k P j,k + i(ib) j kλ k-1 λ s P j,k = -j(ib) j+1 λ k P j,k -j(ib) j-1 αλ k P j,k -(ib) j+1 kλ k P j,k + O C 1 exp (b, λ, α) = -(j + k)(ib) j+1 λ k P j,k - (p,q)∈Σκ p even jα p,q (ib) j-1+p λ k+q P j,k + O C 1 exp (b, λ, α).
Notice that some terms in the sum are actually in O C 1 exp (b, λ, α). On the other hand there exists a family (Φ j,k ) (j,k)∈Σκ in C 1 exp which only depends on Q and the P j,k , (j, k) ∈ Σ κ , such that

|P | 4 P = Q 5 + (j,k)∈Σκ (ib) j λ k Φ j,k + O C 1 exp (b, λ, α).
In particular Φ 0,1 = 5Q 4 P 0,1 . Then we have

Ψ κ = (j,k)∈Σκ (ib) j λ k Ψ j,k + O C 1 exp (b, λ, α)
where, for (j, k) ∈ Σ κ ,

Ψ j,k = -(j -1 + k)P j-1,k + (p,q)∈Σκ p even (j + 1 -p)α p,q P j+1-p,k-q + ∂ yy P j,k -P j,k -γδP j,k-1 + Φ j,k + p 1 +p 2 =j q 1 +q 2 =k p 1 even α p 1 ,q 1 y 2 4 P p 2 ,q 2 .
We have used the convention that P p,q = Q if p = 0 and q = 0, 0 if p < 0 or q 0.

We now show that we can choose the P j,k and α j,k in such a way that Ψ j,k = 0 for all (j, k) ∈ Σ κ . For (j 1 , k 1 ), (j 2 , k 2 ) ∈ Z 2 we say that (j

1 , k 1 ) < (j 2 , k 2 ) if k 1 < k 2 or (k 1 = k 2 and j 1 < j 2 ).
Let (m, k) ∈ N × N * with m + k < κ. Assume that for all (j , k ) ∈ Σ κ with (j , k ) < (2m, k) we have defined α j ,k (if j is even) and P j ,k in such a way that Ψ j, k = 0 for all ( j, k) ∈ Σ κ with ( j, k) < (2m, k). For j ∈ {2m, 2m + 1} we have Φ j,k = 3 + 2(-1) j Q 4 P j,k + Φj,k , for some Φj,k ∈ C 1 exp which only depends on P j ,k with (j , k ) < (j, k). Then for some Ψ2m,k and Ψ2m+1,k in C 1 exp (which depend on P j ,k and α j ,k for (j , k ) < (2m, k)) we have

Ψ 2m,k = -L + P 2m,k -γδP 2m,k-1 + α 2m,k y 2 4 Q + Ψ2m,k , Ψ 2m+1,k = -L -P 2m+1,k -γδP 2m+1,k-1 -(2m + k)P 2m,k + Ψ2m+1,k .
By Proposition 3.4 there exists P 2m,k ∈ H 1 (G) such that Ψ 2m,k = 0 for any choice of α 2m,k ∈ R. Moreover, P 2m,k ∈ C 1 exp by Lemma 4.1. We choose α 2m,k in such a way that (see Proposition 3.4 again)

(2m + k)P 2m,k + γδP 2m+1,k-1 -Ψ2m+1,k ∈ span {Q} ⊥ = Ran(L -). ( 4.1) 
Using L + ΛQ = -2Q and the selfadjointness of L + , this condition reads

(2m + k) L + P 2m,k , ΛQ + γδP 2m+1,k-1 -Ψ2m+1,k , L + ΛQ = 0, that is, α 2m,k = 4 yQ 2 L 2 -γδP 2m,k-1 + Ψ2m,k , ΛQ + 1 2m + k γδP 2m+1,k-1 -Ψ2m+1,k ), L + ΛQ .
By (4.1), we can then choose P 2m+1,k ∈ H 1 (G) (defined up to a multiple of Q) such that Ψ 2m+1,k = 0. Again, by Lemma 4.1 we have P 2m+1,k ∈ C 1 exp . The base case of the above induction process is given by the equations

0 = -L + P 0,1 -γδQ + α 0,1 y 2 4 Q, 0 = -L -P 1,1 -P 0,1 ,
from which we can compute explicitly α 0,1 using the results of Section 3.3:

0 = P 0,1 , Q = P 0,1 , - 1 2 L + ΛQ = - 1 2 L + P 0,1 , ΛQ = - 1 2 -γδQ + α 0,1 y 2 4 Q, ΛQ = 1 2 γ δQ, ΛQ - α 0,1 8 y 2 Q, ΛQ =⇒ α 0,1 = 4γ δQ, ΛQ y 2 Q, ΛQ = 4γQ(0)ΛQ(0) G y 2 QΛQ = -2γ Q(0) 2 yQ 2 L 2 . (4.2)
This gives the formula for the coefficient β in the model dynamical system (2.13), and completes the proof of (2.5)-(2.8). Formula (2.9), (2.10) and (2.11) can be proved in the same way as in [START_REF] Le Coz | Minimal mass blow up solutions for a double power nonlinear Schrödinger equation[END_REF][START_REF] Tang | Minimal mass blow-up solutions for the l 2 -critical nls with the delta potential for radial data in one dimension[END_REF].

Modulation

In this section we prove Proposition 2.2. The strategy is classical but for the reader's convenience we provide a proof adapted to our context.

For

π = (θ, b, λ) ∈ S 1 × R × R + and u = (u j ) ∈ L 2 (G) we define Θ π v ∈ L(L 2 (G)) by (Θ π u) j (x) = 1 √ λ e iθ e -ibx 2 4λ 2 u j x λ .
This defines a unitary operator Θ π on L 2 (G).

For δ > 0 we set

Q δ = θ∈R,λ∈]0,δ[ B L 2 (G) (Θ θ,0,λ Q, δ).
It is endowed with the topology inherited from L 2 (G). For η > 0 we also set

Ω η = S 1 × (-η, η) × (0, η).
Proposition 5.1. Let η > 0. There exist δ > 0 and a function π = (θ, b, λ)

∈ C 1 (Q δ , Ω η ) such that for any u ∈ Q δ we have in L 2 (G) Θ -1 π(u) u -P (b(u), λ(u)) ∈ y 2 P (b(u), λ(u)), iΛP (b(u), λ(u)), iρ ⊥ ,
where P (b, λ) is as defined in Proposition 2.1.

Proof. For π = (θ, b, λ) ∈ S 1 × R × R + , β ∈ R and v ∈ L 2 (G) we set h(π; v, β) = Θ -1 π v -P b,βλ and F (π; v, β) =   (h(π, v, β), y 2 P b,βλ ) L 2 (G) (h(π, v, β), iΛP b,βλ ) L 2 (G) (h(π, v, β), iρ) L 2 (G)   .
This defines functions of class C 1 on S 1 ×R×R + ×L 2 (G)×R. Moreover we have h(0, 0, 1; Q, 0) = 0 and F (0, 0, 1; Q, 0) = 0 (the interest of the extra parameter β is that we can start the analysis around λ = 1 and Q = P (b = 0, λ = 0)). We have (∂ b P b,βλ , ∂ λ P b,βλ )| b=0,β=0,λ=1 = (0, 0), so

∇ θ,b,λ h(0, 0, 1; Q, 0) =   -iQ iy 2 4 Q ΛQ   .
By Lemma 3.5 we have (Q, ΛQ) = 0, so

Jac θ,b,λ F 0, 0, 1; Q, 0 =   0 0 (ΛQ, y 2 Q) 0 1 4 (y 2 Q, ΛQ) 0 -(Q, ρ) 1 4 (y 2 Q, ρ) 0   .
We also have (y 2 Q, ΛQ) = 0 and (Q, ρ) = 0, so this partial jacobian is invertible. By the Implicit Function Theorem, there exist a neighborhood U ⊂ S 1 × (-η, η) × (0, 2) of (0, 0, 1), a neighborhood

V of (Q, 0) in L 2 (G) × R and a function Π 0 = (θ 0 , b 0 , λ 0 ) : V → U of class C 1 such that for all π ∈ U and (v, β) ∈ V we have F (π; v, β) = 0 ⇐⇒ π = Π 0 (v, β).
We fix δ > 0 so small that B(Q, δ)

× (-δ, δ) ⊂ V. Let u ∈ Q δ . Let θ 1 , θ 2 ∈ S 1 and λ 1 , λ 2 ∈]0, δ[ be such that v 1 = Θ -1 θ 1 ,0,λ 1 u and v 2 = Θ -1 θ 2 ,0,λ 2 u belong to B(Q, δ). By definition we have Θ θ 0 (v 1 ,λ 1 ),b 0 (v 1 ,λ 1 ),λ(v 1 ,λ 1 ) -P ∈ y 2 P , iΛ P , iρ ⊥ ,
where we have set P = P b 0 (v 1 , λ 1 ), λ 1 λ 0 (v 1 , λ 1 ) . Since v 1 = Θ -1 θ 1 -θ 2 ,0,λ 1 /λ 2 v 2 we also have

Θ θ 0 (v 1 ,λ 1 )+θ 1 -θ 2 ,b 0 (v 1 ,λ 1 ),λ(v 1 ,λ 1 )λ 1 /λ 2 -P ∈ y 2 P , iΛ P , iρ ⊥ ,
where we can also write P = P b 0 (v 1 , λ 1 ), λ 2 λ 0 (v 1 , λ 1 )λ 1 /λ 2 . This proves that

θ 0 (v 2 , λ 2 ) + θ 2 = θ 0 (v 1 , λ 1 ) + θ 1 , b 0 (v 2 , λ 2 ) = b 0 (v 1 , λ 1 ), λ 0 (v 2 , λ 2 )λ 2 = λ 0 (v 1 , λ 1 )λ 1 .
Thus we can set

θ(u) = θ 0 (v 1 , λ 1 ) + θ 1 , b(u) = b 0 (v 1 , λ 1 ), λ(u) = λ 0 (v 1 , λ 1 )λ 1 , (5.1) 
and this definition does not depend on the choice of θ 1 or λ 1 . This defines a function

π = (θ, b, λ) ∈ C 1 (Q δ , Ω η ). Moreover we have Θ -1 θ(u),b(u),λ(u) u -P (b(u), λ(u)) = Θ θ 0 (v 1 ,λ 1 ),0,λ 0 (v 1 ,λ 1 ) v 1 -P (b 0 (v 1 , λ 1 ), λ 1 λ 0 (v 1 , λ 1 )) ∈ y 2 P (b(u), λ(u)), iΛP (b(u), λ(u)), iρ ⊥ ,
which completes the proof.

The function π = (θ, b, λ) defined on Q δ in the previous proposition is of class C 1 if Q δ is endowed with the topology of L 2 (G). However, a typical solution u(t) of (1.1) is only of class C 1 in H -1 (G), and continuous in H 1 (G) (hence in L 2 (G)). To prove Proposition 2.2, we will use the fact that a solution of (1.1) can by approximated by a regular solution, of class

C 1 in L 2 (G). Proposition 5.2. Let I be an interval of R. Let u ∈ C 0 (I, L 2 (G)) ∩ C 1 (I, H -1 (G)). Assume that there exists a sequence (u k ) k∈N in C 1 (I, L 2 (G)) which goes to u in C 0 (I, L 2 (G)) ∩ C 1 (I, H -1 (G)).
Then the map π • u (with π given by Proposition 5.1) is of class C 1 on I.

Proof. We use the notation introduced in the proof of Proposition 5.1.

For t ∈ I we set π(t) = (θ(t), b(t), λ(t)) = π(u(t)). We fix τ 1 ∈ I and prove that π • u is of class C 1 on a neighborhood of τ 1 . Let θ 1 ∈ S 1 and λ 1 ∈]0, δ[ be such that Θ -1 θ 1 ,0,λ 1 u(τ 1 ) ∈ B(Q, δ). For t ∈ I we set v(t) = Θ -1 θ 1 ,0,λ 1 u(t), and for k ∈ N we set v k (t) = Θ -1 θ 1 ,0,λ 1 u k (t). Let I 1 be a neighborhood of τ 1 in I such that v(t) ∈ B(Q, δ) and v k (t) ∈ B(Q, δ) for all t ∈ I 1 and k ∈ N. For t ∈ I 1 we have by (5.1)

θ(t) = θ 0 (v(t), λ 1 ) + θ 1 , b(t) = b 0 (v(t), λ 1 ), λ(t) = λ 0 (v(t), λ 1 )λ 1 , so it is enough to prove that t → Π 0 (v(t), λ 1 ) is of class C 1 on I 1 . Notice that v k belongs to C 1 (I 1 , L 2 (G)) and goes to v in C 0 (I 1 , L 2 (G)) ∩ C 1 (I 1 , H -1 (G)) as k → ∞.
For t ∈ I 1 we set π(t) = Π 0 (v(t), λ 1 ), and for k ∈ N we set πk (t) = ( θk (t), bk (t), λk (t

)) = Π 0 (v k (t), λ 1 ). We have π ∈ C 0 (I 1 , Ω η ) and πk ∈ C 1 (I 1 , Ω η ). Let k ∈ N. For all t ∈ I 1 we have F (π k (t); v k (t), λ 1 ) = 0. After differentiation we get for t ∈ I 1 π k (t) = -D π F (π k (t), v k (t), λ 1 ) -1 • D v F (π k (t), v k (t), λ 1 ) • v k (t).
For t ∈ J we set P k (t) = P bk (t),λ 1 λk (t) . Then

D v F π(t), v k (t), λ 1 • v k (t) =    Θ -1 πk (t) v k (t), y 2 P k (t) Θ -1 πk (t) v k (t), iΛP k (t) Θ -1 πk (t) v k (t), iρ    =   v k (t), Θ πk (t) (y 2 P k (t)) v k (t), Θ πk (t) (iΛP k (t)) v k (t), Θ πk (t) (iρ)   .
Then π k is continuous on I 1 . For all t ∈ I 1 we have

πk (t) = πk (τ 1 ) + t τ 1 π k (τ ) dτ.
Taking the limit k → ∞ gives for all t ∈ J

π(t) = π(τ 1 ) - t τ 1 D π F (π(t), v(t), λ 1 ) -1   v (t), Θ π(t) (y 2 P (t)) v (t), Θ π(t) (iΛP (t)) v (t), Θ π(t) (iρ)   dτ,
where P (t) = P b(t),λ 1 λ(t) . The integrand is a continuous functions of τ , so π is of class C 1 on I 1 .

Now we have all the ingredients for the proof of Proposition 2.2.

Proof of Proposition 2.2. Let τ 1 ∈ I and u 1 = u(τ 1 ). Let K be a compact neighborhood of τ 1 in

I. Since D(H γ ) is dense in L 2 (G) there exists a sequence (u 1,k ) n∈N in D(H γ ) which goes to u 1 in L 2 (G). For k ∈ N we denote by u k ∈ C 0 (I k , D(H γ )) ∩ C 1 (I k , L 2 (G))
the maximal solution (defined on the interval I k ) of (1.1) such that u k (τ 1 ) = u 1,k . Removing a finite number of terms if necessary, we can assume that K ⊂ I k for all k ∈ N, and

u k goes to u in C 0 (K, H 1 (G)) ∩ C 1 (K, H -1 (G)).
Then we can apply Propositions 5.1 and 5.2, which gives Proposition 2.2.

Proof of the uniform estimates

Using λ, we can now define precisely the rescaled time variable s that appears in the formal change of variables (2.1)-(2.2). We let

s := s(t) = s 1 - t 1 t 1 λ(τ ) 2 dτ (6.1)
where the final time s 1 is computed as follows by means of the solution

λ mo (s) = 2 β 1 s 2 of the model dynamical system (2.13): dt = λ 2 mo (s) ds =⇒ |t 1 | = -t 1 = 4 β 2 +∞ s 1 s -4 ds =⇒ s 1 = 4 3β 2 1/3 |t 1 | -1/3 .
Observe that s is a strictly increasing function of t. Hence, t may in turn be expressed as a function of s. This will allow us to obtain Proposition 2.6 as a consequence of the uniform estimates in variable s which are stated below, in Proposition 6.1.

We then express the modulation parameters b, λ and θ as functions of the variable s by setting

b(s) := b(t(s)), λ(s) = λ(t(s)), θ(s) = θ(t(s)). (6.2)
Next, in the change of variables (2.1)-(2.2), we write

w = P + h,
where P = P b,λ is defined in (2.5). That is, in the original variables,

u = λ -1/2 e i(θ-b y 2 4 ) (P + h). For v ∈ Σ, we let Mod op (s)v := (1 -θ s )v + (b s + b 2 ) y 2 4 v -i b + λ s λ Λv -b b + λ s λ y 2 2 v and Mod op (s)v := (1 -θ s )v + (b s + b 2 -α) y 2 4 v -i b + λ s λ Λv.
Hence,

Mod op (s)v = Mod op (s)v + α y 2 4 v -b b + λ s λ y 2 2 v.
With this notation, (2.3) becomes

ih s + h yy -h -γλδh + f (P + h) -f (P ) + Mod op (s)h = -Ψ K -Mod op (s)P + b b + λ s λ y 2 2 P. (6.3) 
For any fixed λ > 0, we define the norm • λ on Σ, equivalent to the usual norm • 1 , by

v 2 λ := v 2 H 1 + λ yv 2 L 2 , v ∈ Σ. (6.4) 
We now let s be the infimum of σ ∈ [s 0 , s 1 ] such that, for all s ∈ [σ, s 1 ],

h(s) λ s -(κ-2) , λ(s) 1/2 λ mo (s) 1/2 -1 1 s 1/2 , b(s) b mo (s) -1 1 s 1/2 , (6.5) 
for some κ ∈ N, κ 7. Since, by construction, h(s 1 ) = 0, it follows from Proposition 2.5 that (6.5) is satisfied at s = s 1 . Hence, by continuity, s ∈ [s 0 , s 1 ).

We will use a bootstrap argument involving (6.5) to prove the following uniform estimates in s, from which Proposition 2.6 will follow using the change of variables (6.1). Proposition 6.1 (Uniform estimates in the s variable). There exists s 0 independent of s 1 such that the solution u 1 of (1.1) defined by (2.17) exists and, under the change of variables (6.1), satisfies (2.12) on [s 0 , s 1 ]. Moreover, the corresponding functions b(s), λ(s) and h(s) given by Proposition 2.2 satisfy h(s) λ(s) s -(κ-1) , (

λ(s) 1/2 λ mo (s) 1/2 -1 1 s 2 , b(s) b mo (s) -1 1 s 2 , s ∈ [s 0 , s 1 ]. 6.6) 
Remark 6.2. The estimates (6.7) can be improved to

λ(s) 1/2 λ mo (s) 1/2 -1 1 s 4 , b(s) b mo (s) -1 1 s 4 , s ∈ [s 0 , s 1 ], (6.8) 
by shifting the energy level in the definition of F in (2.15) to E = E -(ε 0,1 + 2βε 2,0 ) (see the proof of Proposition 6.1).

6.1. Modulation estimates. We now justify quantitatively that, for large times, the modulation parameters are approximate solutions of the model dynamical system (2.13). Let

Mod(s) :=   b + λ s /λ b s + b 2 -α 1 -θ s   , s ∈ [s 0 , s 1 ].
Lemma 6.3. For all s ∈ [s , s 1 ], there holds |Mod(s)| s -κ (6.9)

|(h(s), Q) L 2 | s -κ . (6.10) 
Proof. Let us first define

s := inf σ ∈ [s , s 1 ] : |(h(s), P b,λ ) L 2 | < s -κ ∀s ∈ [σ, s 1 ] .
Since h(s 1 ) = 0, we have s ∈ [s , s 1 ). We will show by a bootstrap argument that s = s , from which (6.10) easily follows. This will come as a by-product of (6.9), which we now prove using (6.3) and the orthogonality conditions from Proposition 2.2 on the interval [s , s 1 ]. We start by differentiating (h(s), iΛP ) = 0 with respect to s:

h s , iΛP + h, iΛP s = 0, s ∈ [s , s 1 ]. (6.11) 
Using (2.5), (2.6) and (6.5), we have that

|(h, iΛP s )| h L 2 |Mod(s)| + s -2 ) s -(κ-2) |Mod(s)| + s -κ s -2 |Mod(s)| + s -κ .
On the other hand, h s , iΛP = -ih s , ΛP . Since

f (P + h) -f (P ) = df (P )h + O(|h| 2 ) = df (P )h + O(s -(κ-2) |h|) = df (Q)h + O(s -2 |h|),
the equation for h reads

ih s = L + h 1 + iL -h 2 + γλδh + O(s -2 |h|) -Mod op (s)h + Mod op (s)P -b b + λ s λ y 2 2 P + Ψ κ . (6.12) 
Now, the definition of s yields

L + h 1 + iL -h 2 + γλδh + O(s -2 |h|), ΛP = L + h 1 + iL -h 2 + γλδh, ΛQ + O(s -2 h L 2 ) = h 1 , L + ΛQ -L -h 2 , iΛQ + γλh(0)ΛQ(0) + O(s -2 h L 2 ) = -2(h, Q) + γλh(0)ΛQ(0) + O(s -2 h L 2 ) = -2(h, P ) + γλh(0)ΛQ(0) + O(s -2 h L 2 ) = O(s -κ ), ∀s ∈ [s , s 1 ].
The second line of (6.12) has three terms. Firstly,

Mod op (s)h, ΛP = Mod op (s)h + α y 2 4 h -b b + λ s λ y 2 2 h, ΛP = O(|Mod(s)| h L 2 ) + O(b|Mod(s)| h L 2 ) + O(|α(s)| h L 2 ) = O(|Mod(s)| h L 2 ) + O(s -κ ).
Next, by Lemma 3.5,

Mod op (s)P, ΛP -b b + λ s λ y 2 2 P, ΛP = Mod op (s)Q, ΛQ -b b + λ s λ y 2 2 Q, ΛQ + O(s -2 |Mod(s)|) = - 1 4 (b s + b 2 -α) yQ 2 L 2 -b + λ s λ ΛQ, ΛQ + 1 2 b b + λ s λ yQ 2 L 2 + O(s -2 |Mod(s)|) = 1 4 yQ 2 L 2 2b b + λ s λ -(b s + b 2 -α) + O(s -2 |Mod(s)|). Finally, Ψ κ , ΛP = O(s -2 |Mod(s)|) + O(s -2κ ).
All in all, we find that

h s , iΛP = 1 4 yQ 2 L 2 2b b + λ s λ -(b s + b 2 -α) + O(s -2 |Mod(s)|) + O(s -κ ).
Hence, the restriction of (6.11) to [s , s 1 ] gives

(b s + b 2 -α) -2b b + λ s λ = O(s -2 |Mod(s)|) + O(s -κ ). (6.13) 
We next differentiate (h(s), y 2 P ) = 0 with respect to s:

h s , y 2 P + h, y 2 P s = 0, s ∈ [s , s 1 ]. (6.14) 
As above, we obtain

|(h, y 2 P s )| h L 2 |Mod(s)| + b 2 + λ) s -2 |Mod(s)| + s -κ .
On the other hand, h s , y 2 P = ih s , iy 2 P . We shall again use (6.12) on [s , s 1 ]. It follows by Proposition 2.2 and (6.5) that

L + h 1 + iL -h 2 + γλδh + O(s -2 |h|), iy 2 P = L + h 1 + iL -h 2 + γλδh, iy 2 Q + O(s -2 h L 2 ) = h 2 , L -y 2 Q + O(s -2 h L 2 ) = -4(h 2 , ΛQ) + O(s -2 h L 2 ) = -4(h, iΛP ) + O(s -2 h L 2 ) = O(s -κ ), ∀s ∈ [s , s 1 ].
Using Lemma 3.5 and (6.5), similar calculations as above yield

Mod op (s)h + Mod op (s)P -b b + λ s λ y 2 2 P + Ψ κ , iy 2 P = yQ 2 L 2 b + λ s λ + O(s -2 |Mod(s)|) + O(s -κ ).
Hence, gathering all terms of (6.14), we find that

b + λ s λ s -2 |Mod(s)| + s -κ , ∀s ∈ [s , s 1 ]. (6.15) 
It then follows from (6.13) that

|b s + b 2 -α| s -2 |Mod(s)| + s -κ , ∀s ∈ [s , s 1 ]. (6.16) 
Finally, differentiating (h(s), iρ) = 0 with respect to s yields

ih s , ρ = 0, s ∈ [s , s 1 ].
Using again Proposition 2.2 and (6.5), we have

L + h 1 + iL -h 2 + γλδh + O(s -2 |h|), ρ = h 1 , L + ρ + O(s -2 h L 2 ) = (h 1 , y 2 Q) + O(s -2 h L 2 ) = O(s -κ ), ∀s ∈ [s , s 1 ].
On the other hand, Lemma 3.5 and (6.5) yield

Mod op (s)h + Mod op (s)P -b b + λ s λ y 2 2 P + Ψ K , ρ = 1 4 (y 2 Q, ρ)(b s + b 2 -α) + 1 2 yQ 2 L 2 (1 -θ s ) - 1 2 (y 2 Q, ρ)b b + λ s λ + O(s -2 |Mod(s)|) + O(s -κ ).
It follows that

|1 -θ s | = O(|b s + b 2 -α|) + O b b + λ s λ + O(s -2 |Mod(s)|) + O(s -κ ).
Thus, by (6.15) and (6.16),

|1 -θ s | s -2 |Mod(s)| + s -κ , ∀s ∈ [s , s 1 ]. (6.17) 
Gathering (6.15), (6.16) and (6.17), we conclude that

|Mod(s)| s -2 |Mod(s)| + s -κ , whence |Mod(s)| s -κ , ∀s ∈ [s , s 1 ]. (6.18) Since h(s 1 ) = 0, (b, λ)(s 1 ) = (b 1 , λ 1 )
, by conservation of the mass and L 2 scaling, we now have

P b 1 ,λ 1 2 L 2 y = u(t 1 ) 2 L 2 x = u(t) 2 L 2 x = P b,λ + h 2 L 2 y = P b,λ 2 
L 2 + 2(P b,λ , h) + h 2 L 2 =⇒ (P b,λ , h) = - 1 2 h 2 L 2 + 1 2 P b 1 ,λ 1 2 L 2 -P b,λ 2 
L 2 .
Furthermore, using (2.7), (2.8) and (6.18), we find that

d ds P b,λ 2 
L 2 = 2|(P b,λ , ∂ s P b,λ )| = 2 Re G P b,λ ∂ s P b,λ dy = 2 Im G P b,λ i∂ s P b,λ dy = 2 Im G P b,λ Ψ κ dy Ψ κ C 1 exp = O(s -(κ+2) ).
Hence, integrating from s to s 1 ,

P b 1 ,λ 1 2 L 2 -P b,λ 2 L 2 s -(κ+1)
and so, by (6.5), κ+1) , ∀s ∈ [s , s 1 ]. Therefore, s = s and

|(P b,λ , h)| h 2 L 2 + s -(κ+1) s -(
|(P b,λ , h)| s -(κ+1) , ∀s ∈ [s , s 1 ].
Finally, (6.10) follows from (6.5) by observing that

(Q, h) = (P b,λ , h) -O(λ h L 2 ) = (P b,λ , h) -O(s -2 h L 2 ).
We thus conclude that (6.9) holds on the whole interval [s , s 1 ], which completes the proof.

6.2.

A monotone energy-virial functional. Our main tool to bootstrap the estimate on h in (6.5) will be the functional

S(s, h) := H(s, h) λ m (s) , (6.19) 
where

H(s, h) := 1 2 h 2 H 1 + λ 2 yh 2 L 2 + γλ 2 |h(0)| 2 - G F (P b,λ + h) -F (P b,λ
) -dF (P b,λ )h dy, (6.20) and m is a positive integer which will be determined later.

We start with a simple upper bound for H. Lemma 6.4. For s ∈ [s , s 1 ],

H(s, h) 1 2 h 2 λ + O(s -3(κ-2) ).
Proof. We have

F (P + h) -F (P ) -dF (P )h = 1 6 |P + h| 6 - 1 6 |P | 6 -Re |P | 4 P h = 5 2 Q 4 h 2 1 + 1 2 Q 4 h 2 2 + O(|h| 3 ) (6.21
) and the result follows from (6.5) and the Sobolev embedding H 1 → L 3 . Proposition 6.5. For s ∈ [s , s 1 ], there holds

S(s, h) 1 λ m h 2 λ + O(s -2κ ) .
Proof. By (6.21), the embedding H 1 → L 3 , Lemma 3.7 and Proposition 2.2, we have

1 2 h 2 H 1 - G F (P b,λ + h) -F (P b,λ ) -dF (P b,λ )h dy = 1 2 h 2 H 1 - G (5Q 4 h 2 1 + Q 4 h 2 2 ) dy + O( h 3 H 1 ) = 1 2 L + h 1 , h 1 + L -h 2 , h 2 + O( h 3 H 1 ) µ 2 h 2 H 1 - 1 2µ (h, Q) 2 L 2 + O(s -4 h 2 L 2 ) + O( h 3 H 1 ).
By (6.5) and (6.10), we conclude that 1 2

h 2 H 1 - G F (P b,λ + h) -F (P b,λ ) -dF (P b,λ )h dy µ 2 h 2 H 1 + O(s -2κ ) + O(s -3(κ-2)
).

Let k 0 = The proof of Proposition 6.6 breaks down into several lemmas. In a number of arguments below, it is understood implicitly that an estimate holds provided s 0 is chosen sufficiently large. Remark 6.7. By inspecting closely the estimates involved, one observes that it suffices to choose k > 1 + max{1, 4/β} + max{2, β/2}. Lemma 6.8. There exists k 1 > 0 such that, for all s ∈ [s , s 1 ],

D s H(s, h(s)) -b k 1 h 2 λ . Proof. We have D s H = λ s 2 yh 2 L 2 + γλ s 2 |h(0)| 2 -∂ s G F (P b,λ + h) -F (P b,λ ) -dF (P b,λ )h dy.
First, by (6.9),

λ s = -bλ + O(s -(κ+2) ) = O(s -3 ). Hence, λ s 2 yh 2 L 2 + γλ s 2 |h(0)| 2 s -3 yh 2 L 2 + s -3 h 2 H 1 .
On the other hand, writing

f (P b,λ + h) -f (P b,λ ) = df (P b,λ )h + R Q (h), where |R Q (h)| |h| 2 , we have that ∂ s F (P b,λ + h) -F (P b,λ ) -dF (P b,λ )h = Re df (P b,λ )h + R Q (h) ∂ s P b,λ -∂ s f (P b,λ ) h = Re R Q (h)∂ s P b,λ . Therefore, ∂ s G F (P b,λ + h) -F (P b,λ ) -dF (P b,λ )h dy = Re G R Q (h)∂ s P b,λ dy bλ h 2 L 2 s -3 h 2 H 1 . Thus, |D s H| s -3 yh 2 L 2 + s -3 h 2 H 1 s -1 h 2 H 1 + s -2 yh 2 L 2 .
The result now follows from the asymptotics b = O(s -1 ) and λ = O(s -2 ) for large s.

We next compute the second term in (6.23) as follows:

D h H, h s = iD h H, ih s , (6.25) 
where

D h H = -∂ 2 y h + h + λy 2 h + γλδh -[f (P + h) -f (P )] = -∂ 2 y h + h + λy 2 h + γλδh -df (P b,λ )h -R Q (h)
, and (6.3) reads

ih s = D h H -λy 2 h -Mod op (s)h -Mod op (s)P + Φ κ ,
where, by (2.8) and (6.9), The higher order terms in the right-hand side of (6.27) is the first one and the term

Φ κ := b b + λ s λ y 2 2 P -Ψ κ (s) = O Σ (s -(κ+1)
1 4 b s -b 2 -2b λ s λ iD h H, y 2 h
coming from the second one. We now show that they both are of order s -1 h 2 λ . Lemma 6.9. For s ∈ [s , s 1 ], we have

|λ iD h H, y 2 h | s -1 h 2 λ (6.28) and 1 4 b s -b 2 -2b λ s λ iD h H, y 2 h s -1 h 2 λ . (6.29) 
Proof. We only prove (6.28). (6.29) follows by the same arguments since

b s -b 2 -2b λ s λ = O(λ)
for large s.

Discarding duality products whose real part is zero, we have that

iD h H, y 2 h = --∂ 2 y h + h + λy 2 h + γλδh -df (P )h -R Q (h), iy 2 h = --∂ 2 y h -df (P )h -R Q (h), iy 2
h . An integration by parts yields

∂ 2 y h, iy 2 h = 2 Im G yh y h dy. Now, 2 Im G yh y h dy 2s 1/2 h y L 2 s -1/2 yh L 2 s h y 2 L 2 + s -1 yh 2 L 2 .
On the other hand,

| df (P )h, y 2 h | h 2 L 2 and | R Q (h), y 2 h | G Q 3 y 2 |h| 3 dy G Q 6 y 4 dy 1/2 G |h| 6 dy 1/2 h 3 H 1 ,
thanks to the continuous embedding H 1 → L 6 . It follows that

|λ iD h H, y 2 h | λ s h y 2 L 2 + s -1 yh 2 L 2 + h 2 L 2 + h 3 H 1 s -1 h y 2 L 2 + λ yh 2 L 2 + h 2 L 2 + s -2 h 3 H 1 s -1 h 2 H 1 + λ yh 2 L 2 , which concludes the proof. Lemma 6.10. For s ∈ [s , s 1 ], | iD h H, Mod op (s)h | s -1 h 2 λ .
Proof. We have

iD h H, Mod op (s)h = (1 -θ s ) iD h H, h + 1 4 b s -b 2 -2b λ s λ iD h H, y 2 h -b + λ s λ iD h H, iΛh
and we have already estimated the second term in Lemma 6.9. By (6.9),

iD h H, h = -D h H, ih = --∂ 2 y h + h + λy 2 h + γλδh -df (P )h -R Q (h), ih = γλδh + df (P )h + R Q (h), ih =⇒ |(1 -θ s ) iD h H, h | s -κ λ|h(0)| 2 + h 2 L 2 + h 3 H 1 s -κ h 2 H 1 . (6.30) 
Next, integrating by parts,

iD h H, iΛh = D h H, Λh = -∂ 2 y h + h + λy 2 h + γλδh -[f (P + h) -f (P )], Λh = -∂ 2 y h + h, Λh + λ y 2 h, Λh + γλ Re h(0)Λh(0) -f (P + h) -f (P ), Λh = h y 2 L 2 -λ G y 2 |h| 2 dy + γλ 2 |h(0)| 2 -f (P + h) -f (P ), Λh .
Hence, Using Sobolev embeddings, we have

| iD h H, iΛh | h 2 λ + | f (P + h) -f ( 
G f (P + h) -f (P ) h dy f (P + h) -f (P ) L 2 h L 2 h 2 H 1 and G y f (P + h) -f (P ) y h dy yP y L ∞ df (P + h) -df (P ) L 2 h L 2 + df (P + h) L ∞ h y L 2 yh L 2 h 2 H 1 + yh 2 L 2 . We conclude that | f (P + h) -f (P ), Λh | s 2 h 2
λ . Hence, by (6.9), we have

b + λ s λ iD h H, iΛh s -(κ-2) h 2 λ . (6.31) 
The result now follows from estimates (6.29), (6.30) and (6.31).

Lemma 6.11. For s ∈ [s , s 1 ],

| iD h H, Mod op (s)P | s -(2κ-1) .

Proof. It will be convenient to write D h H as

D h H = L + h 1 + iL -h 2 + λy 2 h + γλδh -R Q (h), for h = h 1 + ih 2 ∈ Σ.
It then follows from (6.5) and (6.9) that

iD h H, Mod op (s)P = iD h H, Mod op (s)Q + O(s -(κ+2) h Σ ) = iD h H, Mod op (s)Q + O(s -(κ+1) h λ ) = iD h H, Mod op (s)Q + O(s -(2κ-1) ). Now, iD h H, Mod op (s)Q = (1-θ s ) iD h H, Q + 1 4 b s -b 2 -2b λ s λ -α iD h H, y 2 Q -b+ λ s λ iD h H, iΛQ . First, since L -Q = 0, we have iD h H, Q = -D h H, iQ = -L + h 1 + iL -h 2 + λy 2 h + γλδh -R Q (h), iQ = -L -h 2 , Q -λ Re G y 2 hiQ dy -γλ Re h(0)iQ(0) + O( h 2 L 2 ) = -h 2 , L -Q -λ Im G y 2 hQ dy -γλ Im h(0)Q(0) + O( h 2 L 2 ) = -λ Im G y 2 hQ dy -γλ Im h(0)Q(0) + O( h 2 L 2 ).
Hence, by (6.5),

|(1 -θ s ) iD h H, Q | s -κ s -2 h H 1 + s -2 yh L 2 + h 2 L 2 s -(κ+1) h λ + s -κ h 2 L 2 s -(2κ-1) . (6.32) Next, iD h H, y 2 Q = -D h H, iy 2 Q = -L + h 1 + iL -h 2 + λy 2 h + γλδh -R Q (h), iy 2 Q = -L -h 2 , y 2 Q -λ Re G y 2 hiy 2 Q dy + O( h 2 L 2 ) = -h 2 , L -y 2 Q -λ Im G y 2 hy 2 Q dy + O( h 2 L 2 ) = 4 h 2 , ΛQ -λ Im G yhy 3 Q dy + O( h 2 L 2 ). Since h 2 , ΛQ = O(s -2 h L 2 ) by Proposition 2.2, it follows that 1 4 b s -b 2 -2b λ s λ -βλ iD h H, y 2 Q s -κ s -2 yh L 2 + h 2 L 2 s -(κ+2) h Σ + s -κ h 2 L 2
s -(2κ-1) . (6.33)

Finally, by (6.5) and (6.10),

iD h H, iΛQ = D h H, ΛQ = L + h 1 + iL -h 2 + λy 2 h + γλδh -R Q (h), ΛQ = h 1 , L + ΛQ + λ Re G y 2 hΛQ dy + γλ Re h(0)ΛQ(0) + O( h 2 L 2 ) = -2(h, Q) L 2 + λ Re G yhyΛQ dy + γλ Re h(0)ΛQ(0) + O( h 2 L 2 ) =⇒ b + λ s λ iD h H, iΛQ s -κ |(h, Q) L 2 | + s -2 yh L 2 + s -2 h H 1 + h 2 L 2 s -2κ + s -(κ+1) h λ + s -κ h 2 L 2 s -(2κ-1) . (6.34) 
The result now follows by combining estimates (6.32), (6.33) and (6.34).

Lemma 6.12. For s ∈ 1) .

[s , s 1 ], | iD h H, Φ κ | s -(2κ - 
Proof. We have

iD h H, Φ κ = -D h H, iΦ κ = --∂ 2 y h + h + λy 2 h + γλδh -df (P b,λ )h -R Q (h), iΦ κ . Hence, | iD h H, Φ κ | h H 1 Φ κ H 1 + λ G y 2 |h||Φ κ | dy + γλ|h(0)||Φ κ (0)| + | df (P )h, Φ κ | + | R Q (h), Φ κ | h H 1 Φ κ H 1 + s -2 G y 2 |h| 2 dy 1/2 G y 2 |Φ κ | 2 dy 1/2 + s -2 h H 1 Φ κ H 1 + h L 2 Φ κ L 2 .
Therefore, by (6.5) and (6.26),

| iD h H, Φ κ | s -(κ+1) h H 1 + s -(κ+3) yh L 2 s -(κ+1) h λ s -(2κ-1) ,
as claimed.

Lemma 6.13. There exists k 2 > 0 such that, for all s ∈ [s , s 1 ],

D h H(s, h(s)), h s -b k 2 h 2 λ + O(s -(2κ-1)
). Proof. Using the fact that b ∼ s -1 , this is a direct consequence of (6.27) and Lemmas 6.9 to 6.12.

Proof of Proposition 6.6. Proposition 6.6 now follows from Lemmas 6.8 and 6.13. Proposition 6.14. Let k 0 and k be as in (6.22) 

m 2 k 0 h 2 λ + O(s -2κ ) + -k h 2 λ + O(s -2(κ-1) ) b λ m h 2 λ + O(s -2(κ-1) ) , ∀s ∈ [s , s 1 ],
as claimed.

6.3. Proof of Proposition 2.6. We first prove the uniform estimates in s.

Proof of Proposition 6.1. We will prove that estimates (6.5) can be improved to (6.6) and (6.7) on [s , s 1 ]. Then, choosing s 0 large enough, it follows by continuity that, in fact, s = s 0 , so that (6.6) and (6.7) hold on [s 0 , s 1 ]. We first prove (6.6). By Proposition 6.5 and the definition of S, there exists a constant a > 1 such that 1 a

1 λ m h 2 λ -a 2 s -2(κ-1) S(s, h) a λ m h 2 λ , s ∈ [s , s 1 ]. (6.35)
Choosing a large enough, Proposition 6.14 yields dS ds

1 a b λ m h 2 λ -a 2 s -2(κ-1) , s ∈ [s , s 1 ]. (6.36) Let s † := inf{s ∈ [s , s 1 ] : h(σ) λ (σ) 2a 2 σ -(κ-1) ∀σ ∈ [s † , s 1 ]}.
Since h(s 1 ) = 0, it follows by continuity that s † ∈ [s , s 1 ). We will prove that s † = s . Suppose by contradiction that s † > s . Then, in particular, h(s † ) λ(s † ) = 2a 2 s -(κ-1) †

. Defining

s ‡ := sup{s ∈ [s † , s 1 ] : h(σ) λ (σ) aσ -(κ-1) ∀σ ∈ [s † , s]}, we have s < s † < s ‡ < s 1 and h(s ‡ ) λ (s ‡ ) = as -(κ-1) ‡
. Furthermore, by (6.36), S is non-decreasing on [s † , s ‡ ]. Hence, using (6.35) and our bootstrap assumption on λ in (6.5), we find that

h(s † ) 2 λ(s † ) -a 2 s -2(κ-1) † aλ m (s † )S(s † , h(s † )) aλ m (s † )S(s ‡ , h(s ‡ )) a 2 λ m (s † ) λ m (s ‡ ) h(s ‡ ) 2 λ(s ‡ ) = a 4 λ m (s † ) λ m (s ‡ ) s -2(κ-1) ‡ 2a 4 s ‡ s † 4m s -2(κ-1) ‡ 2a 4 s -2(κ-1) † . It follows that h(s † ) 2 λ(s † ) a 2 s -2(κ-1) † + 2a 4 s -2(κ-1) † 3a 4 s -2(κ-1) † , a contradiction.
We now prove (6.7). Let E ∈ R, E = C -1 Q E and b 1 , λ 1 be given by Proposition 2.5. It follows from (2.10) that

|E( P (b 1 , λ 1 , θ 1 )) -E | (b 2 1 + λ 1 ) λ 2 1 κ s 4-2κ 1 . (6.37) 
Now, the energy estimate (2.9) and the modulation estimate (6.9) yield

|E( P (b(s), λ(s), θ(s))) -E( P (b 1 , λ 1 , θ 1 ))| = s 1 s d dσ E( P (b(σ), λ(σ), θ(σ))) dσ s 1 s σ 4-κ dσ s 5-κ , s ∈ [s , s 1 ]. (6.38) 
It then follows by (6.37) and (6. Hence, using (2.10) at time s, we find

|E(b(s), λ(s)) -E | E(b, λ) - E( P (b, λ, θ)) C Q + E( P (b, λ, θ)) C Q -E s 4-2κ + s 5-κ s 5-κ , s ∈ [s , s 1 ]. (6.40) 
Next, the formula (2.11) defining E yields

λ 2 E(b, λ) = b 2 -2βλ + O(λ 2 ).
Thus, by (6.40), Integrating from s to s 1 and using F(λ(s 1 )) = s 1 yields F(λ(s)) -s Remark 6.15. We observe here that the estimates (6.7) can be improved by a closer inspection of the energy expansion E. Indeed, (2.11) yields λ 2 E(b, λ) = b 2 -2βλ + e 0 λ 2 + O(s -6 ), e 0 := ε 0,1 + 2βε 2,0 .

|b 2 -2βλ -E λ 2 | λ 2 (s) + s 5-κ s -4 . (6.41) It follows that b -2βλ + E λ 2 b + 2βλ + E λ 2 s -4 . Hence, by (6.5), b -2βλ + E λ 2 s -3 , s ∈ [s , s 1 ]. ( 6 
Hence, using (6.40) and choosing κ 11, estimate (6.41) improves to |b 2 -2βλ -(E -e 0 )λ 2 | s -6 + s 5-κ s -6 .

Then, replacing E by E -e 0 in Proposition 2.5 and using this improved estimate in the rest of the proof yields (6.8).

We conclude this section with the Proof of Proposition 2.6. The change of variables (6.1) yields dt = λ(t(s)) 2 ds =⇒ t 1 -t = (6.39). This finishes the proof.

Appendix

In this appendix, we consider the model nonlinear dynamical system b s + b 2 -βλ = 0, λ s λ + b = 0, 1 -θ s = 0 appearing for the parameters in the derivation of the profile. We have kept here only the first term of α, where we recall that

β = -2 γQ(0) 2 yQ L 2 > 0.
We denote the parameters depending on the variable t by ( b, λ, θ) and the parameters depending on the variable s by (b, λ, θ), related by b(t) = b(s(t)), λ(t) = λ(s(t)), θ(t) = θ(s(t)). 2βµ 3/2 , µ → 0 + , we deduce that F(λ) is strictly decreasing with F(λ 0 ) = 0 and lim λ→0 + F(λ) = +∞. Therefore, (7.5) can be solved to find λ(s) and the solution of (7.1) then follows by returning to the first equation in (7.4).

We will now use F to construct the final data (b 1 , λ 1 ) of the exact modulation parameters b(s), λ(s) given by Proposition 2.2. Firstly, for any s 1 > 0, there exists a unique λ 1 > 0 such that F(λ 1 ) = s 1 . For the model system, (7.3) yields s 1 = 2 βλ mo (s 1 ) .

On the other hand, After some algebra, this yields 

F(λ) - 2 βλ = λ 0 λ dµ µ 3/2 √ E µ + 2β - 2 β λ -1/2 λ 0 λ dµ µ 3/2 √ E µ + 2β - 2 β λ -1/2 -λ -1/2 0 + 2 β λ -1/2 0 λ 0 λ 1 µ 3/2
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 1 Figure 1. A star graph with 3 edges.
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 2 The mass-critical NLS on the line. Consider the classical mass-critical nonlinear Schrödinger equation on the line iu t + u xx + |u| 4 u = 0. (
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 4120 Let g ∈ C 1 exp , η ∈ R and µ ∈ R. Suppose that u ∈ H 1 rad (G) is a solution of -u + u + µQ 4 u = ηδ + g.Then we have u ∈ C 1 exp . Proof. By elliptic regularity we have u ∈ H 2 (G), so u is of class C 1 and then of class C 3 on each edge. For y ∈ G we have u(y) = 1 -|y-z| g(z) -κQ(z) 4 u(z) dz + e -y η N + +∞ 0 e -z g(z) -µQ(z) 4 u(z) dz .
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  [START_REF] Li | Ground states of nonlinear Schrödinger equation on star metric graphs[END_REF] that|E( P (b(s), λ(s), θ(s))) -E | s 5-κ , s ∈ [s , s 1 ]. (6.39) 

1 =⇒ 1 1 s 2

 112 F(λ(s)) = s + O(s -1 ), s ∈ [s , s 1 ]. On the other hand, it follows from (7.6) thatλ(s) 1/2 λ mo (s) 1/2 -, s ∈ [s , s 1 ].Finally, returning to (6.42) and using again (6.5),b -b mo = 2βλ + E λ 2 -2βλ mo + O(s -3 ) = 2βλ + E λ 2 -2βλ mo 2βλ + E λ 2 + √ 2βλ mo + O(s -3 ) = O(b mo )[E λ 2 + 2β(λ 1/2 -λ 1/2 mo )(λ 1/2 + λ 1/2 mo )] + O(s -3 ) =⇒ b(s) b mo (s) -1 1 s 2 , s ∈ [s , s 1 ]. This concludes the proof.

s 1 s 1 λ

 11 λ(σ) 2 dσ. From (6.7), we haveλ(σ) 2 = λ mo (σ) 2 + O(σ -6 ). Noting that t 1 = -∞ s mo (σ) 2 dσ, we find t(s) = -∞ s λ mo (σ) 2 dσ + O(s -5 ) = -4 3β 2 s -3 + O(s -5

The dynamical system for the parameters is given in t by 2 - 3 ) 7 . 1 . 1 . 1 .

 237111 λ, θ) satisfy the following equivalent system in the variable s:b + λ s λ = 0, b s + b 2 -βλ = 0, θ s -1 = 0.Since the equation for θ is independent, we shall focus our analysis on the first two equations. We thus consider the system b(s 1 ) = b 1 , λ(s 1 ) = λ 1 . (7.2) This is a Hamiltonian system, with conserved energyE mo (b, λ) = b λ 2β λ .An exact solution with energy E mo = 0 is given byb mo (s) = 2 s , λ mo (s) = 2 βs 2 . (7.Proposition For any data b 1 , λ 1 > 0, the solution of the Cauchy problem (7.1)-(7.2) satisfies b(s) = b mo (s) + O(s -2 ), λ(s) = λ mo (s) + O(s -4 ).Proof. Defining the auxiliary unkown µ byIntegrating in s, we getµ s (s) = β(s -s 1Hence, b and λ are given byb(s) = β(s -s 1 ) + b Letting s → ∞, we obtain b(s) = b mo (s) + O(s -2 ), λ(s) = λ mo (s) + O(s -4 ).Proof of Proposition 2.5. We first explain how the function F comes into play. In order to integrate (7.1), one can use the conservation of E mo . Considering a solution of (7.1) with energy E , one has, for λ 1,b = E λ 2 + 2βλ, b + λ s λ = 0. (7.4)Hence, assuming that λ 0 = λ(s 0 ) > 0 is such that E λ 0 + 2β > 0, ) 3/2 E λ(σ) + 2β dσ = s 0 -s, s s 0 , i.e. F(λ) = s -s 0 , s s 0 .

λ 1 /2 1 λ1s 2 1 . 1 .λ 2 1 E 1 ,

 111111 mo (s 1 ) 1/2 -1 λ mo (s 1 ) -λ mo (s 1 ) 1/2 λ mo (s 1 ) 1To find b 1 , we seek a solution ofh(b) := λ 2 1 E(b, λ 1 ) = λ 2 1 E close to b mo (s 1 ) = 2/s 1 . Using the expression of E in (2.11) and E mo (b mo , λ mo ) = 0, we find h(b) = b 2 -b mo (s 1 ) 2 + b mo (s 1 ) 2 -2βλ 1 + O(s -4 1 ) = b 2 -b mo (s 1 ) 2 + 2β λ mo (s 1 ) 1/2 -λ h(b mo (s 1 )) = O(s -3 1 ). Furthermore, by direct calculation, h (b mo (s 1 )) = 2b mo (s 1 ) + O(s -3 1 ) s -1Since = O(s -4 1 ), expanding h around b mo (s 1 ) shows that, if s 1 is sufficiently large then there exists a unique b 1 > 0 such that h(b 1 ) = λ 2 1 E and |b 1 -b mo (s 1 )| which finishes the proof.

  Now, using(6.25) and the relation iD h H, D h H = 0, we haveD h H, h s = -λ iD h H, y 2 h -iD h H, Mod op (s)h -iD h H, Mod op (s)P + iD h H, Φ κ .(6.27) 

	).	(6.26)

  and Proposition 6.6. Choose m ∈ N such that m 2k/k 0 . Then, for all s ∈ [s , s 1 ],

		dS ds	b λ m h 2 λ + O(s -2(κ-1) ) .
	Proof. We have						
		dS ds	=	1 λ m -m	λ s λ	H +	dH ds	.
	dS	b					
	ds	λ m					

Furthermore, for s large enough, -λ s /λ b/2. Hence, in view of (6.22) and Proposition 6.6,

  Estimates (2.18) now follow directly from (6.7). Recalling the definition of the norm • λ in (6.4), the estimates (2.19) then follow from (2.18) and (6.6), while (2.20) follows from

	and	λmo (t) := λ mo (s(t)) =	2 βs(t) 2 ∼	2 β	3β 2 4	|t|	2/3	, t → 0 -.
									).
	Hence,							
		s ∼	4 3β 2	|t|	-1/3	
	It follows that	bmo (t) := b mo (s(t)) =	2 s(t)	∼ 2	3β 2 4	|t|	1/3	, t → 0 -

, t → 0 -.
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