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Abstract

The aim of this short note is to give a synthetic presentation of the mathematical elements
that are used to solve the elastic wave system of equations in a bounded anisotropic elastic
body, in a general framework. In particular, the proof of existence of a basis of orthogonal
modes is given. We explain how these modes can by used to efficiently approach dynamic
problems in time or harmonic regimes.

The mathematical content of this note is an application of classical results from elliptic
equation theory and from spectral theory of self-adjoint operators. Such elements can be found
for instance in the well known books [3, 2] or in French [1] for scalar elliptic equations. Even
if the mathematics described in this note are classical, their presentation in a synthetic way,
directly applicable to anisotropic and heterogeneous elastic bodies, may be useful for shortening
the study of the dynamics of such media.

We consider a bounded elastic body ©Q € R? attached to fixed referential on a part of its
boundary. We investigate the existence of an orthogonal basis of modes and recall how these
modes can be used to efficiently approach the solutions of the static, harmonic and dynamic
elastic problems.

1 Notations

The elastic body €2 is characterized by a fully anisotropic 4th-order elastic tensor Cjxe(x) and a
density p(z). Its boundary is denoted 9f2. The space of the 3 x 3 hermitian matrices is denoted
S§3(C). The double dot product denotes the twice-contracted tensorial product. Depending on
the situation we write

(C:8)ij = ZciijSkZ7 (S:Ce = Z SiiCijkeSke, S:T= Z SiiTij. (1)
ke ij ij
for any S,T € S3(R).
The space H'(Q) is the Sobolev space of complex valued square integrable functions whose

the gradient is also square integrable. The space H'(2)3 is three dimensional vectorial valued
version of H1(Q).
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2 General hypotheses

The following hypotheses on the elastic medium are general and match both the classical frame-
work of continuum mechanics and the mathematical theory of variational formulations that
provides the well-posedness of the problem.

We assume that the elastic body € is Lipschitz smooth (the boundary is locally a graph of
a Lipschitz function). We also assume that this body is rigidly attached on a open part I'p; of
its boundary 02 to a fixed referential. We then make the three following assumptions on the
elastic tensor C.

It has bounded coefficients:

CeL™ (Q,R34) , 2)
it is symmetric on S3(R):
VeeQ, VS, TeS3R), S:C(x):T=T:C(x):S, (3)
and it is positive definite on S3(R):
Ja>0, YreQ, VSeSR), S:C(z):8>als;. (4)

Remark that such tensor is characterized by 21 independent coefficients in dimension 3. We
also assume that the density is bounded by above and by below by a positive value.

p € LX) and IB>0, VeeQ, px)>p. (5)

3 The elasto-static problem

The body is fixed on I'p;; and some boundary stress g is applied on I'xey := OQ\I'pi;. A internal
stress f is also applied inside 2. Hence the displacement u satisfies the following system of
equations/boundary conditions:

—div(C:€(u))=f inQ
u=0 onlIp; (6)
(C:&u) - n=g on I'Ney.

Theorem 1. Define the space H = {u € H*(Q)? | uw = 0 onTp;}. If f € L*(Q)3 and
g € L2(Tnew)?, then the problem (6) admits a unique solution w in H. Moreover, this solution
satisfies the energy estimate

1€l 2y < et 1 Fll 2y + e2 gl 2 ry,)

where ¢1 and ca are constants depending only on Q, T ney, and « from (4). In the case g = 0,
this problem defines a bounded linear operator A : f € L*(Q) — u € H.

Proof. The space H is endowed with the inner product
<wmﬂ:lfmyam

and the associated norm |[|u|l,, := <u,u);_l/2 = [|€(w)[lf2()- This is indeed a norm (equivalent
to the H'-norm) thanks to Poincaré (constant cp) and Korn (constant ck) inequalities:

[ull i) < cp IVullp2iq) < cpex |E(w)]| 120y = cpex [[ully, -

2



The variational formulation of (6) reads
/(C:S(u)):é’(’u):/f‘v—i-/ g-v, Vv € H. (7)
Q Q I'Neu
The left-hand side bilinear form a(w, v) is continuous in #:
|a(u, v)| <{|C| o) 1wl [0]l3 -
The right-hand side linear form Lwv is continuous in H:

(L] < [[fll 22y vllz2) + 191 220y 191 22(0xen)
< 1l 2o 1ol gy + e 19l 2y 101 a0

< epexc (IFl 2oy + e 902y ) 10l

Where cr is the norm of the trace operator T : H — LZ(FNeu). Moreover a is coercive in H.:

MWMN=A&M%1&wzaAWWW2aM%-

Thanks to Lax-Milgram theorem, the variational formulation (7) admits a unique solution
u € H. Moreover, it satisfies

2
o l[ulf, < a(u,w) < [Lul < cpexc (11 fll 2y + 1 1902y ) T2l
CpCK
(6]

lellz < 2 (IF Nz + er 92y )

4 The elasto-dynamic problem

In the same setting, we look for elasto-dynamic solutions U (z,t) that satisfies the elastic wave
system of equations/boundary conditions

popU —div(C : E(U))=F in QxR
U=0 on FDir x R (8)
(C:EWU)) - n=G onI'new xR.

where the sources F(z,t) and G(x,t) can varry in space and time. We may look for time
solutions under the frequency decomposition (Fourier) form

U, 1) = / w(a, w)e“tdw.
R
We then write the sources as
F(z,t) = / f(a:,w)emdw and G(z,t) = / g(fl?,W)ei”tdw.
R R

Then for each fixed frequency w € R, u(.,w) satisfies the harmonic wave system of equations

div(C: E(u)) + puwu=—Ff inQ
u=0 onlp; (9)
(C:&(u)) - n=g on 'Ney-
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The specific case f = 0 and g = 0 is called the homogenous harmonic problem and, as we
will see, it is an eigenvalue problem. The following theorem states the existence of an orthogonal
modal basis in a weighed space that depends on the density.

Theorem 2. There exists a unique non decreasing sequence of eigenvalues (Ag)ren Satisfying
Ao > 0 and limy,—, oo Ay = 400 and there exists a sequence of eigenmodes (ug)ren i H such

that
div(C : E(ur)) + pAyur, =0 in )

Vk € N, u,=0 onTl
(C:E&(ug)) - n=0 ondQ\T.

The sequence (ug)gen is complete in L?(Q)® and orthonormal in the sense
/p’u,k"ug:(ske, Vk,¢ € N.
Q

Moreover, the eigenmodes uy, are in C*°(Q)3 and even in C=(Q)3 if Q is smooth.

Proof. We first define a new Hilbert space

L?)(Q)3 = {u Q= R? | / plul? < —i—oo}
Q

endowed with the inner product

(), = [ pu-s.

This Hilbert space is isomorphic to the classic Hilbert space L?(Q2)% as0 < 8 < p < 1o/l oo ) <
+00. We define now a linear operator A, by

A,f = Apf) (10)
where A : L?(2) — H is the bounded linear operator given by Theorem 1. This new operator
satisfies the following properties:

1. A, L?)(Q)?’ — L%(Q)3 is bounded. Indeed,
1 1
145l 35y = IVBAGW Dl gy < 12l gy 1460 Py < 1 ol e gy 10 Fll ooy
< c1 1ol ey IV L2y < 1 1ol o |12y

2. The operator A, is self-adjoint in L%(Q)S. Indeed, consider f € L%(Q)?’ and callu := A, f.
It satisfies

a(u,v)—/gpf~v, Vv € H.

Then for any ¢ € L%(Q)3>

(A, F,0), = (), = /Q
= <.f7 Ap‘P>p .

3. The operator A, : L%(Q)?’ — L%(Q)3 is compact. Indeed, from the Rellish theorem,
the canonical injection I : H(Q) < L2(Q) is compact. By equivalence of topologies I :
H — L%(Q)?’ is also compact. Hence the operator A, : L%(Q)3 — L%(Q)3 is compact as the
composition of A, : L2(Q)* — H continuous and I : # < L2(€2)? compact.

pu-@=a(A(pp),u) = a(App,u) = a(u, Ayp) = /pr Apyp
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From the spectral theory of self-adjoint compact operators(see [2] chapter 6), A, admits
an orthogonal spectral decomposition: there exists a unique positive decreasing sequence of
eigenvalues (p)nen of R such that p, — 0 when n — +oco, and there exists an orthogonal
Hilbert basis of eigenvectors (f,,)nen of L%(Q)‘3 such that

Asfr = tinfn Vn € N.

Call now Ap :=1/pn and wn := Apf,/ | Apfpll2(q) € H- For all n € N, u,, satisfies
P

p# — p)\ %
145 Full 20 140z

—div(C : E(uy)) = = pApty,.

Moreover, [|unl|2(q) =1 and for any n # m, Jo Pty - Ty = 0 because
P

Q Q

The smoothness of the eigenmodes u,, is showed be recurrence and with the use of the Sobolev
injection theorem. O

5 Approximation of the solution using the modes

If the modes are computed in advance, they can be used to efficiently approach any solution of
the elastic system by computing only few first coefficients of the modal decomposition of the
solution.

5.1 Elasto-static solution

Let u € H be a solution of the elastostatic system with sources f and g. We can decompose u
on the eigenmodes:

u = Zanun (11)

neN
where (a;,) € £2(N). Hence

Zan/(c:a‘(un)):g(v):/f.v+/ g-v, YvetH
neN Q Q2 'Neu
Zan)\n/pun-v:/f-v+/ g-v, Yv € H.
Q Q 1—‘Ncu

neN

Choosing v = u,, we get from the orthogonallity of the modes in L%(Q)‘g,

Oén)\n:/f'%+/ g - Uy, Vn € N.
Q 1—‘Neu

If we call f, := [, f - un and g, := fFNeu g - Uy, we get the formula

_ fotgn

n . 12
o =T (12)

In a practical point of view, if one has knowledge of the modes (A, u,), given f and g, we
fix a maximum mode number N € N and compute the inner products fy,..., fn, 90,---, 9N



and the corresponding coefficients «y, ..., ay. The approximated solution is computed as the
truncation of the series
uPP( Z iy (2

An L?-error bound can be computed. It depends both on the smoothness of f and g and the
increase speed of the eigenvalues sequence.
5.2 Harmonic solutions

Let u(.,w) € H be a solution of the of the harmonic system with sources f and g. We can
decompose u in space using the eigenmodes:

= o (w)un(x). (13)
neN

We then write

S an(w /c:g(un)):g(v)wan( )/pun v_/f 'v+/FNeug(.,w)"v, Vo € H

neN
Zan(w)()\n—wQ)/qun-v:/Qf(.,w)-v—i—/FNeug(.,w)-'v, Vv € H.

neN

Choosing v = u,, we get from the orthogonallity of the modes:
an(W)(Np — w?) :/ f(.,w)-un—i—/ g, w) - Uy, Vn € N.
Q FNeu

If we call f,(w) = [q f( U, and g, (w fFN - U, we get the formula

Ial®) + gn(0)

14
— (14)

ap(w) =

We clearly see the problem when w? is equal to one eigenvalue \,. If w? ¢ {\, | n € N} it

can be shown that the problem (9) admits a unique solution in H and this solution is given by
formulas (13) and (14).

5.3 Dynamic solutions

Let U(.,t) € H be a solution of the of the time wave system of equations with sources f and g.
This solution can be approached by Fourier recomposition mode-by-mode through the formula

U(x,t) Z/ Yetdw u, (), Vz e, teR, (15)

neN
where a,(w) is given by (14).
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