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Abstract: Visual Question Answering (VQA) is a complex task requiring large datasets and expensive training. Neural
Module Networks (NMN) first translate the question to a reasoning path, then follow that path to analyze the
image and provide an answer. We propose an NMN method that relies on predefined cross-modal embeddings
to “warm start” learning on the GQA dataset, then focus on Curriculum Learning (CL) as a way to improve
training and make a better use of the data. Several difficulty criteria are employed for defining CL methods.
We show that by an appropriate selection of the CL method the cost of training and the amount of training
data can be greatly reduced, with a limited impact on the final VQA accuracy. Furthermore, we introduce
intermediate losses during training and find that this allows to simplify the CL strategy.

1 INTRODUCTION

Visual Question Answering (VQA) consists in an-
swering potentially complex questions regarding the
content of images. Datasets like VQA2.0 (Goyal
et al., 2017) and GQA (Hudson and Manning, 2019)
were put forward in support of this task. These
datasets are very large, leading to expensive training.
However, since they are built from collected real im-
ages with (possibly assisted) human labeling, they in-
evitably contain many biases. Integrated approaches
like (Xiong et al., 2022; Wang et al., 2021) have the
highest overall accuracies on these databases but are
prone to taking bias-promoted “shortcuts”, as shown
e.g. by their lower performance on out-of-distribution
data (Kervadec et al., 2021). Furthermore, integrated
approaches lack transparency in the reasoning pro-
cess, even though some limited explanations can be
obtained by following the flow of attention.

Alternatively, Neural Module Networks (NMN)
were introduced (Hu et al., 2017) with the aim to
make the reasoning explicit. They were quite success-
ful for visual reasoning on synthetic image datasets
like CLEVR, where word grounding is comparatively
easy and there is significant control over scene com-
position. NMNs are nevertheless hard to train on
real images where grounding is difficult, attributes
are more diverse and data biases are hard to control.
To make learning more effective and less expensive,

we rely on NMN but employ predefined cross-modal
embeddings to “warm start” the training process on
GQA, then explore Curriculum Learning to improve
learning of such a complex task and reduce both the
cost and the amount of data required.

Curriculum Learning (CL) (Elman, 1993; Soviany
et al., 2022; Wang et al., 2022) consists in learning the
easier parts of the task first, rather than the entire task
at once. However, adequate difficulty criteria are not
easy to define. We show that by an appropriate se-
lection of these criteria for VQA, the cost of training
can be significantly reduced and less training data is
required to reach a comparable level of accuracy.

To summarize, the contributions of our work are
three fold:

• First, we employ text and image object embed-
dings produced by a cross-modal transformer,
with the goal of aligning multi-modal features
to reinforce joint data patterns and thus help the
learning process to achieve results faster.

• Second, we propose several Curriculum Learning
strategies to reduce both the training cost and the
amount of data required for learning complex rea-
soning tasks.

• Third, we define and employ intermediate mod-
ule losses (one per module) during training, using
ground-truth labels generated from image graphs.
The aim is to stabilize the learning and help the



modules converge to the expected behavior de-
fined by the modules’ ground-truth and controlled
by the local loss.
The paper is organized as follows: the next sec-

tion situates our proposals in the context of existing
work on VQA and Curriculum learning, Sec. 3 de-
scribes the modular framework we employ and our
use of cross-modal features. Then in Sec. 4 we define
and motivate the CL strategies we propose. Evalua-
tion results are presented and discussed in Sec. 5.

2 RELATED WORK

We first review some recent work on visual reasoning
for VQA. We then turn to the use of Curriculum learn-
ing for complex tasks, more specifically for VQA.

2.1 Visual question answering

VQA is usually addressed with either integrated
cross-modal frameworks or compositional neural
module networks.

Cross-modality Transformers. Transformer net-
works (Vaswani et al., 2017) have been widely ap-
plied to multiple language and vision tasks, and they
have been recently adapted for reasoning problems
such as VQA. Models like ViLBERT (Lu et al., 2019),
VisualBERT (Li et al., 2019b) and LXMERT (Tan
and Bansal, 2019) showcased good performances on
the VQA datasets VQA2.0 (Goyal et al., 2017) and
GQA (Hudson and Manning, 2019). These frame-
works start by extracting the text and image fea-
tures: word embeddings are obtained via a pretrained
BERT (Devlin et al., 2019) model, while Faster R-
CNN (Ren et al., 2015) produces image region bound-
ing boxes and corresponding visual features. Then, a
cross-attention mechanism allows to align word em-
beddings and image features after training on a wide
range of multi-modal tasks. One downside of inte-
grated visual reasoning models is their lack of inter-
pretability. Another drawback is their tendency to
make “shortcuts” in reasoning, by learning the bias
in the data as evidenced by their limited performance
on the out-of-distribution data in GQA-OOD (Ker-
vadec et al., 2021). However, an effective cross-
modal feature encoder can be obtained by discarding
the final classification component from an integrated
model. We employ here input features generated by
an off-the-shelf large-scale cross-modal transformer
encoder.

Neural Module Networks (NMN). To make the
reasoning process more transparent and human-like,
compositional NMNs (Hu et al., 2017; Li et al.,

2019a) perform multi-hop reasoning by decompos-
ing a complex reasoning task into several easier sub-
tasks. An NMN consists of a generator and an ex-
ecutor. The generator maps a question to a sequence
of reasoning instructions (called a program). The ex-
ecutor assigns each sub-task from this program to a
neural module and passes the results to the next mod-
ules. In (Chen et al., 2021) a meta-learning approach
is employed in the NMN framework to improve the
scalability and generalization of the resulting model.
The generator decodes the question into a program
whose sub-tasks are used to instantiate a meta mod-
ule. The image features are extracted by a visual
encoder implemented as a transformer network and
a cross-attention layer mixes word embeddings and
image features. While the combination of a gener-
ator and an executor in NMNs appears more com-
plex than an integrated model, the “hardwired” rea-
soning process of an NMN is inherently transparent
and has the potential to avoid part of the reasoning
“shortcuts” caused by data bias. Interestingly, it was
shown in (Kervadec et al., 2021) that by using the pro-
grams resulting from questions as additional supervi-
sion for the LXMERT integrated model allows to re-
duce sample complexity and improve performance on
GQA-OOD. In our work, we aim to take advantage
of both the transparency of NMN architectures and
the quality of transformer-encoded representations by
implementing a composable NMN over multimodal
transformer vision and language features.

2.2 Curriculum Learning

Curriculum learning was introduced in (Elman, 1993)
where the author shows that successful learning may
depend on “starting small” by first learning a simple
grammar with a recurrent network and then gradually
learning more complex tasks such as relative clauses,
number agreement, etc. CL was later applied to var-
ious machine learning tasks and recently adapted to
textual question answering (QA) in (Liu et al., 2018).
The authors use a sampling function that gives higher
selection weights to simple QA pairs and then, as the
training advances, it selects more complex QA pairs.
A term frequency selector and a grammar selector as-
sess the difficulty of the training examples. In (Sachan
and Xing, 2016) CL is reframed as a self-paced learn-
ing (SPL) algorithm and the question loss is taken as
the measure of difficulty. The authors implement sev-
eral heuristics reminding of active learning in order to
improve SPL performance.

Curriculum Learning for VQA. The definition
of relevant difficulty criteria for VQA is challeng-
ing and this may explain why there is little work on



the use of CL for VQA. The recent work in (Askar-
ian et al., 2021) applies CL in a modular VQA con-
text to the synthetic CLEVR dataset (Johnson et al.,
2017a). The base model is from (Johnson et al.,
2017b), with an LSTM generator and generic resid-
ual blocks for the executor modules. The experiments
were conducted on the executor alone, using as input
the ground-truth programs directly. Several difficulty
criteria were evaluated, including program length, an-
swer hierarchy, and question loss. The results demon-
strated that CL with a question loss difficulty criterion
has a positive impact in a low data setting. However,
the study in (Askarian et al., 2021) was focused on the
CLEVR dataset (Johnson et al., 2017a) consisting of
synthetic images of simple 3D objects, with a limited
number of classes or attributes and reliable object de-
tection. In our work, we employ the GQA dataset that
is based on real-world images with many classes and
several names for some of them, as well as more com-
plex relations and more challenging object detection.
We thus have to completely redefine the candidate CL
strategies.

3 MODULAR VQA FRAMEWORK

Our model takes as input a triplet composed of an im-
age, a question and a program, and predicts an an-
swer. We start by extracting aligned language and vi-
sion features for both the image and the question us-
ing a state-of-the-art cross-modal transformer. Then
the program, which is a sequence of modules, is used
to build the neural modules network that is executed
on the image to answer the question (see Fig. 1). In
the next subsections, we present the feature extraction
process and describe the program executor.

Cross-modal features. Compositional visual rea-
soning aims to perform logical and/or geometrical in-
ferences involving several related objects in a com-
plex scene. To achieve this, the reasoning modules are
conditioned by text arguments. The visual and tex-
tual representations are vital to the reasoning process,
therefore having good bounding box features and
question text embeddings is crucial. To extract cross-
modal language and vision representations we rely
on LXMERT (Tan and Bansal, 2019), a transformer
model pretrained on multiple multi-modal tasks such
as Masked Cross-Modality language models, masked
object predictions, Cross-Modality Matching, and
VQA. LXMERT showcases high accuracy on the
training tasks, so we employ it as a feature extrac-
tor. It is worth mentioning that we only use the
cross-modality encoder representations and discard
the answer classification component. More precisely,

we freeze LXMERT weights and we pass the im-
age I through the object-relationship encoder and the
question Q through the language encoder. Then, the
Cross-Modality Encoder aligns the representations to
finally output the object bounding box features v j of
each object o j in the image I and the embedding hi of
each word qi in the question Q.

Neural Modules. Our compositional reasoning
model allows to perform complex reasoning tasks by
decomposing them into easier sub-tasks. These sub-
tasks are inspired by the human generic reasoning
skills such as object detection, attribute identification,
object relation recognition, object comparison, etc.
We designed a library of modules where each module
is responsible for performing a reasoning sub-task.
The modules were designed to be intuitive and eas-
ily interpretable, each of them being implemented by
a series of basic algorithmic operations such as dot
products and MLPs. Modules can be categorized into
three different groups based on their output type: at-
tention, boolean and answer modules. For instance,
an attention module such as Select is responsible of
detecting an object bounding box by rendering an at-
tention vector over the object bounding boxes con-
tained in the image. Boolean modules such as And or
Or make logical inferences and answer modules such
as QueryName give a probability distribution over the
answer vocabulary. Table 1 shows an example from
each module category. An exhaustive module list with
definitions is provided in the appendix.

Table 1: Sample module definitions. S: softmax, σ: sig-
moid, r: RELU, Wi: weight matrix, a: attention vector
(36 × 1), V: visual features (768 × 36), t: text features
(768×1), ⊙: Hadamard product.

Name Dependencies Output Definition

Select − attention
x = r(Wt)
Y = r(WV)

o = S(W(YT x))

RelateSub [a] attention

x = r(Wt)
Y = r(WV)

z = S(W(YT x))
o = S(W(x⊙y⊙ z))

VerifyAttr [a] boolean
x = r(Wt)

y = r(W(Va)
o = σ(W(x⊙y))

And [b1,b2] boolean o = b1 ×b2

ChooseAttr [a] answer
x = r(Wt)

y = r(W(Va)
o = S(W(x⊙y))

QueryName [a] answer y = r(W(Va))
o = S(Wy)

Modular network instantiation. A program con-
sists of a sequence of modules implemented as neural
networks, as illustrated in Table 1. Each program is



Figure 1: The proposed modular VQA framework: The (question, image) pair is used by a transformer model to generate
aligned cross-modal embeddings for words and objects. These are used by a Program Generator module to produce a program
(represented as a sequence of sub-task modules), which will be then applied by the Program Executor module to the image
to answer the question. The proposed work focuses on improving the Program Executor by using several curriculum learning
(CL) strategies.

instantiated as a larger NMN following the sequence
of program modules, where each module has depen-
dencies dm to get information from the previous one,
and arguments am to condition its behavior. For ex-
ample, the FilterAttribute module depends on the
output of the Select module: it shifts the attention on
the selected objects corresponding to the input text ar-
gument. The program executor is responsible of man-
aging module dependencies by using a memory buffer
to save the outputs that serve as inputs for the next
modules. The design insures that a module can have
at most two dependencies.

The generic modules require a textual argument
am,i to determine which facet of the module to use,
for example, the FilterAttribute module can be
called for multiple attribute categories such as color
and size. For instance, to filter the red objects we use
the argument word “red” and input its cross-modal
embedding to the module.

Module execution supervision. The executor
network takes as input an image in the form of a list
of object bounding boxes and their LXMERT em-
beddings. Every executor network ends with an an-
swer module, the output of which is compared to
the ground-truth to compute the output loss. To help
modules converge faster to their expected behavior we
also add the loss of each module to the output loss.
The ground truth for each module is extracted from
the image graphs given by the GQA dataset. Each
image graph has k assigned bounding boxes bbox∗1...k
with their names, coordinates, attributes, and rela-

tions. Since we have two different intermediate mod-
ule types, we define an intermediate loss for the atten-
tion modules and another for the boolean modules.

4 CURRICULUM LEARNING
FOR VQA

Our aim is to study CL for VQA and find a CL method
that allows to significantly reduce training cost while
making a better use of the data.

A CL method is usually defined by a difficulty
criterion, a scheduler and a sampling function. The
difficulty criterion allows to characterize the samples:
training starts with the easiest samples, then progres-
sively moves toward more difficult samples. Ques-
tion loss was employed with some success as a diffi-
culty criterion in (Sachan and Xing, 2016) for QA and
in (Askarian et al., 2021) for VQA. However, com-
puting question loss requires a first training iteration
over all the training data. To make our own diffi-
culty criteria, we assume that reasoning about a sin-
gle object and its properties is simpler than examining
the relations between several objects and comparing
their attributes. The number of different objects in
the question should then be a good indication of the
complexity of reasoning and thus a relevant a priori
difficulty criterion for CL. Program length is another
potentially relevant criterion that takes into account
the flow of gradient in module networks correspond-



ing to longer programs and is related to the previous
criterion (more objects in the question require longer
programs). Note that several criteria can be combined
to define the increasing difficulty of the training sam-
ples in CL. When employing the number of objects
as a primary criterion, we also evaluate its refinement
based on program length: for each number of objects
in the question, we start with the short programs, then
continue with the medium length ones and end with
the long programs.

The scheduler in CL decides when the curriculum
should be updated. A simple solution is to employ a
fixed sample size for each difficulty level. The evolu-
tion of the loss can be employed to adjust this size.

The sampling function allows to modulate the se-
lection of training samples within each difficulty level
and works by assigning weights to all the examples. A
relevant choice is to balance the occurrence probabili-
ties of the different types of answer modules. Another
criterion, used in boosting, is to privilege programs
that lead to higher errors.

When the curriculum is updated, the new training
sample has a higher level of difficulty than the pre-
vious ones. This does not mean that it subsumes the
past samples and this is particularly true for the com-
plex task of VQA. To avoid catastrophic forgetting,
we add to the current sample (corresponding to the
current difficulty level) a random selection from the
past samples.

5 EXPERIMENTS

5.1 Experimental setup

GQA Dataset. GQA (Hudson and Manning, 2019)
features over 18M compositional questions and 113K
real-world images. The reasoning steps of the ques-
tions are represented by functional programs. The
questions and programs are generated by a question
engine from the corresponding image graph. The im-
age graphs are composed from ground-truth object
bounding boxes together with their names, attributes,
and relations. GQA is based on the Visual Genome
dataset.

The GQA dataset has two versions: a balanced
version (with a uniform distribution over the answers)
and an unbalanced one. For the unbalanced version,
the train-all split has over 14M examples and the
testdev-all has 172,174 examples, while the bal-
anced version has over 943,000 examples for train,
132,062 for val and a testdev of 12,578 examples.
To have a larger number of examples available for
CL, we use the unbalanced GQA dataset. The exper-

iments trained on the balanced dataset use the union
of train and val as done in (Tan and Bansal, 2019),
this combination also allows us to get over 1M ex-
amples when training on the balanced set. We follow
the recommendations of the dataset authors by evalu-
ating the performance on the test-dev split instead
of the val split when using the object-based features
because they were trained on some images from the
val set (Anderson et al., 2018).

In the GQA dataset, each question/image pair
in the train, val, and testdev sets is associated
with a functional program. The programs use 124
distinct modules, some of which only correspond
to very few questions. We consider that modules
should only differ when they correspond to operations
that are different. We thus group specific modules
into more general ones. For example, modules like
ChooseHealthier and ChooseOlder are grouped in
a ChooseAttribute module. This results in only
32 modules, the list of which is presented in the ap-
pendix.

Metrics. Several metrics are employed to com-
pare CL and standard learning. Since our focus is
on reducing the cost of training, we measure the to-
tal number of example presentations during training
(Comp. cost). We also mention the maximal number
of different examples seen during training (# exam-
ples), as different methods can make use of larger or
smaller portions of the training set. While we focus
on the cost of training, we nevertheless want to reach
an accuracy that is close to the one obtained by stan-
dard learning, so we also report the accuracy of the
predicted answers.

5.2 Evaluated methods

When describing the different performed experi-
ments, we use the following notations, which corre-
spond to different algorithmic choices:
– Unbalanced: We train on all the examples from
the unbalanced GQA train split, we use the traditional
random batch training strategy and the model sees all
the data examples in every epoch.
– Balanced: We train on the balanced version of the
GQA dataset. At every epoch, the model is trained on
all the balanced dataset examples.
– Random: Instead of training on all the dataset ex-
amples, only 1M random examples from the unbal-
anced dataset are presented to the model at every iter-
ation.
– CL: The model is trained using Curriculum Learn-
ing and the filtering is driven by the number of objects
in the programs. At every CL iteration the model sees
1M examples filtered from the unbalanced dataset by



the curriculum sampler. The training needs 4 CL it-
erations to be complete, where each iteration has an
increased difficulty given by the number of objects of
its programs (ranging from 1 to 4).
– Length (L): The curriculum sampler filters the pro-
grams by their lengths for every number of objects, a
CL-iteration is defined by a number of objects and a
program length (short or medium or long).
– Weights (W): We use several sampling weights for
the filtered programs: ‘uniform’ indicates that the
sampling is uniform, so the sampling with replace-
ment results in a sample that is uniformly distributed
over all the dataset. To make the answer modules dis-
tribution of the resulting sample more uniform we use
the ‘answer module’ weighting (denoted by W.a); this
balances the answer modules appearances in the result
sample so that the model equally sees all the defined
answer modules. The ‘modules loss’ weighting (de-
noted by W.b) indicates that the example’s weight is
proportional to the sum of the average losses of the
modules composing its program, to focus the model
on hard examples.
– Pretrain (P): The model’s parameters are initial-
ized from a model trained using the Random variant
described above.
– Repeat (R): We repeat the same CL-iteration twice.

5.3 Implementation details

We perform the experiments using the pre-processed
GQA dataset programs and we focus on investigat-
ing the effect of several CL policies on the Program
Executor module. Although our system also uses a
transformer model as a generator to translate the ques-
tion to its corresponding program, its task is relatively
easy compared to the executor training and, simi-
lar to previous works (Li et al., 2019a; Chen et al.,
2021), we achieve near perfect translation results on
the testdev-all set.

We employ LXMERT as a feature extractor and
freeze its weights. LXMERT image inputs are the ob-
ject bounding boxes provided by a Faster R-CNN ob-
ject detection model (Anderson et al., 2018), where
the number of bounding boxes per image is fixed to
36. We feed the questions and their corresponding ob-
ject bounding boxes to LXMERT; the encoding yields
36 object features and the question word embeddings
for each question/image pair. The extracted features
and embeddings have the size of the LXMERT hidden
size, i.e. 768.

During CL, we fix the sample size to 1M ex-
amples per CL iteration. Starting from the second
CL iteration, 20% of the training sample is sam-
pled from the examples seen in the previous itera-

tion. Concerning the number of training examples,
it is worth mentioning that we sample the training ex-
amples with replacement. Therefore, the number of
distinct examples seen by the executor is lower than
the sample size. To reduce the complexity of our
proposed model, we allow weight sharing between
compatible modules. For example, the relateObj
and relateSub modules have similar structures and
functionalities, both have visual and textual layers to
project bounding box features and word embeddings
in a multi-modal reasoning space (they also have an
output layer to classify the answer). These two mod-
ules also have similar functionalities, i.e. they both re-
late to an object given an anchor object and a relation
but they have a different relation direction. Therefore,
we share the weights between the visual layers and the
textual layers of both modules respectively, but with-
out sharing the output layers to guarantee transitional
direction differences. For training all the models we
use SGD with a learning rate of 0.1 and a batch size
of 1024.

5.4 Evaluation results

This section presents an analysis of the performance
and the cost of our modular VQA framework with
multiple CL training strategies, followed by a com-
parison with models not using CL to show the effec-
tiveness of our proposed training approach.

Comparison of CL methods. We start by a com-
parative analysis of the proposed CL strategies as de-
scribed in Sec. 4. Table 2 reports the performance of
our model based on the different CL configurations
detailed in Sec. 5.2. The goal of CL is to make the
training more effective and to achieve the highest ac-
curacy while training for fewer iterations. Therefore,
for each model are shown the number of iterations and
training examples required to reach the highest accu-
racy.

From the results, it is clear that the ‘answer’
weighting is the most effective weighting function.
One can see this as a balancing of the answer mod-
ules presence over the training sample. The CL+W.a
model (using the ‘answer’ weighting) achieves higher
accuracy results than the CL+W.b model (with the
‘losses’ weighting), both reaching their top respective
accuracies after 4 training iterations only. The ‘an-
swer’ weighting also yields better accuracy than the
‘uniform’ weighting after the same number of train-
ing iterations. This is shown by comparing CL+L
and CL+L+W.a in Table 3. Moreover, the accuracy
of CL+L+W.a continues to increase after the 11th it-
eration to achieve its top at iteration 12. The supe-
rior performance of the ‘answer’ weighting function



Table 2: Results on testdev-all for several CL strategies.

Model CL configuration Iterations Number of Accuracyweighting pretraining iterations/level examples (≤)
CL+W.a answer − 1 4 4 M 0.642
CL+W.b losses − 1 4 4 M 0.635
CL+W.a+P answer 2 iterations 1 [2]+3 5 M 0.670
CL+W.a+P+R answer 2 iterations 2 [2]+5 7 M 0.681

in two different comparable settings makes us select
this weighting for the rest of the experiments.

The refinement of the CL difficulty (or hard-
ness) measure using the number of question objects
(Length-CL difficulty measure) increases the CL+W.a
top accuracy by 1%, see the CL+L+W.a line in Ta-
ble 3. However, this improvement has a significant
cost, as CL+L+W.a requires 12 training iterations
(12M examples) unlike CL+W.a which only needs 4
iterations (4M examples). This reinforces the idea
that with a more refined difficulty measure the model
has more time to adjust to difficult examples, and its
accuracy gradually increases to achieve a better top
accuracy in a CL setting. But training on 12M ex-
amples is expensive since the overall dataset size is
14M examples. We thus decided to explore different
options to obtain comparable results at a lower cost.

A promising finding was that pretraining the mod-
els for a few iterations with a randomly sampled 1M
examples each leads to an accuracy increase of over
1.5%, as shown by the CL+W.a+P model which was
pretrained for only 2 iterations. This “warms up” the
model to the modular aspect of our VQA framework,
allowing it to be more general and effective before
starting the CL. An interesting finding was that the
model reached peak accuracy before iterating over the
full CL configuration. The accuracy drop resulting af-
ter the 4th iteration may be explained by model over-
fitting on the questions with 4 objects. Indeed, in the
GQA dataset these questions have a substantially un-
balanced answer distribution.

A further finding is that repeating the same CL-
iteration twice (as in CL+W.a+P+R) improves the
top accuracy results by 1.1%, while only moderately
increasing the number of iterations. This can be
explained by the fact that doubling the number of
training iterations helps the model better understand
the structure of training data without augmenting the

Table 3: Results on testdev-all with program length as
a refinement for the CL difficulty measure. Computation
cost is the number of seen examples per iteration times the
number of iterations.

Model Comp. cost # examples Accuracy
CL+L 11 11 M 0.650
CL+L+W.a 12 12 M 0.655

training data size. As detailed in Sec. 5.3, when sam-
pling with replacement we obtain a number of distinct
examples that is slightly lower than the sample size,
therefore the reported number of examples (# exam-
ples) is an upper bound of the # examples actually
employed.

As a general conclusion, we consider the
CL+W.a+P+R model as the best modular VQA model
that scores the best accuracy of 68.1% after 7 training
iterations using less than 7M distinct examples, i.e.
less than half of the training data.

Impact of CL. We perform several experiments to
assess the impact of the CL on our compositional vi-
sual reasoning framework. We do this by training our
model without CL (Unbalanced, Balanced, and Ran-
dom), then comparing the accuracy performance and
the experiment cost in terms of computation cost and
training data examples. In Table 4 we report the ac-
curacy and cost results of the conducted experiments
and compare them to the performance of our best CL
model CL+W.a+P+R.

The Unbalanced model (trained on the entire un-
balanced training set of 14M) achieves the highest ac-
curacy value of 70.2%. This model also has the high-
est training cost among the evaluated models.

The Balanced model, trained on the balanced
dataset for a large number of epochs, achieves lower
results than the Unbalanced model. This is partly due
to the fact that the balancing reduces not only the
number of questions in the dataset, but also the di-
versity of the programs. Also, to the use of the unbal-
anced testdev-all for evaluation.

By comparing our best CL model
(CL+W.a+P+R) to the models trained without
CL (no-CL), we find very significant gains in terms
of computational cost, e.g. an 18-fold reduction
compared to the top contender, the model trained on
the Unbalanced dataset. The price to pay—a drop
of only 2% in accuracy—appears reasonable. The
Random model, trained on randomly sampled 12M
examples, performs almost as well as the Unbalanced
model, an expected result since both models use a
similar amount of distinct training examples (12M
vs 14M). The Unbalanced model requires an almost
9 times more expensive training than Random, but



the improvement in accuracy (70.2 % vs. 69.4%)
hardly justifies it. However, the proposed CL model
has an almost 2 times lower computational cost than
Random, confirming the superiority of curriculum
learning in this type of application.

Table 4: Comparaison of our CL model (CL+W.a+P+R)
with no-CL models (Unbalanced, Balanced, and Random)
on the testdev-all set.

Model Comp. cost # examples Accuracy
Unbalanced 9×14 M 14 M 0.702
Balanced 50×1.4 M 1.4 M 0.678
Random 12×1 M ≤ 12 M 0.694
CL+W.a+P+R 7×1 M < 7 M 0.681

6 CONCLUSION

In this work we present several Curriculum Learn-
ing (CL) strategies within a Neural Module Net-
work (NMN) framework for Visual Question An-
swering (VQA). Our visual reasoning approach lever-
ages a cross-modal Transformer encoder to extract
aligned question/image features along with question
programs to perform multi-step reasoning over the
image and predict an answer. Our model employs
an NMN architecture composed of multiple neural
modules, each capable of performing a reasoning sub-
task. We compare several CL strategies for VQA. Our
model is evaluated on the GQA dataset and shows
very interesting results in terms of computational cost
reduction. To drive the CL strategy, we introduce a
difficulty measure based on the number of objects in
the question and we achieve close accuracy results by
training on a judiciously sampled 50% of the training
data, compared to an NMN model trained without CL
on the entire training set.
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APPENDIX

In this appendix, for reference purposes, we present
the exhaustive list of modules together with their de-
pendencies, types, and definitions (see Table 5). The
column ‘output’ represents the module type: Atten-
tion, Boolean, or Answer.

Attention modules produce an attention vector a
where each element represents the relevance of the
attended image object. Boolean modules make log-
ical inferences and output a scalar representing the
probability of the outcome. Answer modules give a
probability distribution over the answer classes.

As mentioned in Section 5.3, we used a weight
sharing technique to reduce the number of the model
parameters; this also allows the shared layers to have
a better defined behavior and to be updated based on a
larger number of training examples. The overall prin-
ciple is that a transfer is made only between some of

the textual and visual layers, each module having a
distinct output layer to guarantee its fine-tuning to the
module’s sub-task.

To decide what layers from which modules will
share parameters, we assess the similarity between the
modules by analyzing their functional and architec-
tural properties. The former is derived from the mod-
ule reasoning sub-task and the latter is derived from
the module layer architectures. We cannot exhaus-
tively describe here all the performed analysis, but in
the following, we exemplify our strategy by compar-
ing some of the modules and explaining their inher-
ent similarities and differences. The Select mod-
ule detects a relevant bounding box (given the name
of an object) and the FilterAttr detects a relevant
bounding box given an attribute. Functionally, they
both solve a detection problem but have different tex-
tual argument semantics. Architecturally, they both
have the same layer structure: a textual layer, a vi-
sual layer, and an output layer. We decide to share the
visual layer between these two modules but use differ-
ent textual layers to respect the semantic differences
between the textual arguments.

However, FilterAttr can share its textual layer
with other modules having an attribute as a textual
argument (VerifyAttr, FilterNot).

The Same and Different boolean modules assess
whether or not two selected objects share the same
characteristic (provided by the textual argument). The
probability p of two objects being similar is the oppo-
site of them being different. Therefore, they share the
same layers including the output layer and we use the
relation p(Different) = 1− p(Same) to differentiate
them.

The object relations modules such as RelateSub
and RelateObj have similar functionalities and neu-
ral structures. They share their visual layers to get a
common scene representation and they share the tex-
tual layer due to the semantic similarity of their argu-
ments (a relation).



Table 5: Exhaustive module definitions. S: softmax, σ: sigmoid, r: RELU, W: weight matrix, a: attention vector (36× 1),
b: boolean scalar, V: visual features (768× 36), t: text features (768× 1), ⊙: Hadamard product, [a∥b]: concatenation,
min: element-wise minimum.

Name Dependencies Output Definition

Select − attention
x = r(Wt),Y = r(WV),

o = S(W(YT x))

FilterAttr [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = min(a,z)

FilterNot [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = min(a,1− z)

FilterPos [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = min(a,z)

RelateSub [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = S(W(x⊙y⊙ z))

RelateObj [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = S(W(x⊙y⊙ z))

RelateAttr [a] attention x = r(Wt),Y = r(WV),z = S(W(YT x)),
o = S(W(x⊙y⊙ z))

Fusion [a1,a2] attention o = min(a1,a2)

And [b1,b2] boolean o = b1 ×b2
Or [b1,b2] boolean o = b1 +b2 −b1 ×b2

Same [a1,a2] boolean x = r(Wt),y = r(W(Va1)),z = r(W(Va2)),
o = σ(W(x⊙y⊙ z))

SameAll [a] boolean x = r(Wt),y = r(W(Va)),
o = σ(W(x⊙y))

Different [a1,a2] boolean o = 1− same(a1,a2)
DifferentAll [a] boolean o = 1− same(a)
Exist [a] boolean o = σ(W([a∥max(a)∥min(a)∥mean(a)]))

VerifyRelSub [a1,a2] boolean x = r(Wt),y = r(W(Va1)),z = r(W(Va2)),
o = σ(W(x⊙y⊙ z))

VerifyRelObj [a1,a2] boolean x = r(Wt),y = r(W(Va1)),z = r(W(Va2)),
o = σ(W(x⊙y⊙ z))

VerifyAttr [a] boolean x = r(Wt),y = r(W(Va),
o = σ(W(x⊙y))

VerifyPos [a] boolean x = r(Wt),y = r(W(Va),
o = σ(W(x⊙y))

ChooseName [a] answer x = r(Wt),y = r(W(Va),
o = S(W(x⊙y))

ChooseAttr [a] answer x = r(Wt),y = r(W(Va),
o = S(W(x⊙y))

Compare [a1,a2] answer x = r(Wt),y = r(W(Va1),z = r(W(Va2),
o = S(W(x⊙y⊙ z))

ChoosePos [a] answer x = r(Wt),y = r(W(Va),
o = S(W(x⊙y))

ChooseRel [a1,a2] answer x = r(Wt),y = r(W(Va1),z = r(W(Va2),
o = S(W(x⊙y⊙ z))

Common [a1,a2] answer x = r(W(Va1),y = r(W(Va2),
o = S(W(x⊙y))

QueryName [a] answer x = r(W(Va),o = S(W(x))

QueryAttr [a] answer x = r(W(Va),
o = S(W(x))

QueryPos [a] answer x = r(W(Va),
o = S(W(x))

AnswerLogic [b] answer oyes = b,ono = 1−b


