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Abstract: Brucella intermedia (formerly Ochrobactrum intermedium), a non-fermentative bacterium,
has been isolated from animals and human clinical specimens. It is naturally resistant to polymyx-
ins, including colistin (CO), and may cause opportunistic infections in humans. We isolated six
Brucella intermedia strains from Senegalese monkey stool. In order to determine whether an efflux
pump mechanism was involved in CO resistance in B. intermedia, we evaluated the effects of ve-
rapamil (VRP), reserpine (RSP), phe-arg β-naphthylamide dihydrochloride (PAβN) and carbonyl
cyanide 3-chloro phenyl hydrazone (CCCP), four efflux pump inhibitors, on these colistin-resistant
strains. Using the broth microdilution method, a CO and CCCP combination of 2 µg/mL and
10 µg/mL, respectively, significantly reduced the CO minimal inhibitory concentration (MIC) of
B. intermedia, supporting an efflux pump mechanism. In contrast, VRP, PAβN and RSP did not
restore CO susceptibility. A time kill assay showed a bactericidal effect of the CO–CCCP combination.
Genomic analysis revealed a potential implication in the CO resistance mechanism of some conserved
efflux pumps, such as YejABEF, NorM and EmrAB, as previously reported in other bacteria. An
inhibitory effect of the CO–CCCP combination was observed on biofilm formation using the crystal
violet method. These results suggest that the intrinsic CO resistance in Brucella intermedia is linked
to an efflux pump mechanism and that the synergistic effect of CO–CCCP may open a new field to
identify new treatments to restore antibiotic efficacy in humans.

Keywords: intrinsic colistin resistance; efflux pump inhibitors; carbonyl cyanide 3-chloro phenyl
hydrazone; CO-MIC; synergy; efflux pump; biofilm formation

1. Introduction

Colistin (CO) was isolated in 1947 from the Gram-positive bacterium Bacillus
polymyxa [1]. Since 2005, it has been recognized as being bactericidal against Gram-negative
aerobic bacteria and several Mycobacterium species [2]. Consequently, CO has become a
key antibiotic, alone or in combination with other antimicrobial agents [3], to treat mul-
tidrug resistant (MDR), especially carbapenemase-producing bacteria [3]. CO binds to
the negatively charged lipopolysaccharides (LPS) of Gram-negative bacteria (GNB) and
penetrates the outer membrane by a “self-promoted uptake” mechanism. This leads to
a destabilization of the inner membrane integrity, eventually causing cell death [4]. Re-
sistance to CO may be explained by several mechanisms: (i) The most common is the
modification of LPS, the main target of CO. LPS is able to reduce the negative charge
of the bacterial surface, and thus the electrostatic interactions with CO [5]. Such an al-
teration targets the chromosomally encoded genes associated with LPS modification by
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activating mutational [6] or non-mutational (adaptive) effects in response to environmental
signals such as the presence of CO or other inducers [7]. (ii) CO-degrading enzymes have
been identified in CO-producing Bacillus polymyxa for self-protection [8] and recently in
Bacillus lichenformis [9], but they have never been linked to CO resistance in other micro-
organisms [10]. (iii) Since 2015, plasmid-borne mobilized CO resistance (mcr) genes have
been reported, initially in China [11]. mcr genes play a role in bacterial outer membrane
remodeling and CO resistance. Such plasmids are easily transmitted and increase the
spread of CO resistance. (iv) Other strategies include capsule polysaccharide shielding, as
in Klebsiella pneumoniae [12], and the efflux pump system related to proton motive force, as
was reported in Acinetobacter sp. and Pseudomonas sp. [13,14].

Brucella intermedia (formerly Ochrobactrum intermedium) is a non-fermentative bac-
terium that is widely distributed in soil, plants, water, animals and polluted or industrial
environments [15]. Its presence in hospitals and its multi-resistance to antibiotics led to
its increasingly frequent isolation in human infections, in particular in immunocompro-
mised patients [16] and cystic fibrosis [17]. It is associated with a variety of infections
including bacteremia [18], pelvic abscess [19], dyspepsia [20], endocarditis [21] and pneu-
monia [17]. B. intermedia is naturally resistant to polymyxins, including CO [22]. The
resistance mechanism in B. intermedia is thus probably mediated by the cell envelope [23].
The export of antimicrobial agents through the activity of efflux pumps plays an impor-
tant role in both the intrinsic and acquired resistance in MDR bacteria. Recently, several
studies have demonstrated that the resistance to CO was reversed by carbonyl cyanide
3-chloro phenyl hydrazone (CCCP) in Enterobacteriaceae [23], Acinetobacter baumannii [24]
and Stenotrophomonas maltophilia [25]. CCCP is a strong uncoupler that disrupts proton
motive force by affecting the electrochemical transmembrane gradients and reducing the
ATP production. Its use was restricted to experimentally testing the active efflux or the
biofilm formation [25,26] in resistant bacteria. However, the mechanism of CO–CCCP
synergy is still unknown. To date, one report has shown the direct antibacterial activity of
CCCP against Mycobacterium abscessus [27].

In this article, we investigated the role of efflux pumps in the intrinsic mechanism
of CO resistance in B. intermedia, isolated from healthy chimpanzee stool, by using CCCP,
verapamil (VRP), reserpine (RSP) and phe-arg β-naphtylamide dihydrochloride (PAβN) as
efflux pump inhibitors (EPI).

2. Results
2.1. Bacterial Isolation and Identification

Six B. intermedia strains (Q1103, Q1105, Q1107, Q1108, Q1109 and Q1111) and one
B. tritici strain (Q1106) were cultivated from the stool sample and identified by MALDI-TOF
MS. A total of 16S rRNA and recA genes confirmed the affiliation of the five strains to
B. intermedia. A total of 16S rRNA sequences showed a similarity of >98.8% with those of
B. intermedia strains available in NCBI. recA gene sequences exhibited a >98.5% similarity
with B. intermedia. Phylogenetic trees based on the 16S rRNA and recA genes confirmed
that all isolated B. intermedia were clustered together (Figure 1).

Strain Q1103 was phenotypically different from other isolated Brucella strains by
an important production of an extracellular matrix around colonies. The Q1105, Q1107,
Q1108, Q1109 and Q1111 strains were phenotypically similar. Thus, we selected two strains
that were phenotypically different, Q1103 and Q1105 (chosen randomly among the five
remaining strains), for the following analyses.
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Figure 1. Phylogenetic trees showing the clustering of B. intermedia strains based on 16S rRNA
(a) and RecA (b) genes using the maximum likelihood method. The scale bar represents a 1%
sequence divergence. Brevundimonas diminuta NCTC 8545 was used as outgroup for the 16S rRNA
gene. Species in bold letters indicate those for which genomes were downloaded from GenBank.

2.2. CO, CCCP and CO/CCCP MIC Determination

Using the broth microdilution, all six B. intermedia isolates showed a CO-MIC of
>512 µg/mL, confirming their intrinsic resistance (Figure 2a and Figure S1a). VRP, RSP and
PaβN did not cause any decrease in CO MIC of B. intermedia at the tested concentrations
(Figure S2). Therefore, only results for CCCP were discussed. For the protonophore CCCP,
we obtained distinct MICs, even for a given strain, by repeating the experiment 10 times.
Only the most frequent MIC for each strain was noted in Table 1. This led us to think that the
population within a Brucella strain may be heterogeneous with regard to response to CCCP.
A successful isolation of colonies for each strain that respond to different concentrations of
CCCP (5, 6, 7, 8, 9, 10 and 15 µg/mL) confirmed our hypothesis. As a result, we divided
each strain into two populations with regard to the used concentration in the literature
(10 µg/mL of CCCP) [28]. The first including colonies that were able to survive at
10 µg/mL CCCP and the second were those exhibiting a CCCP MIC < 10 µg/mL. In
our study, we focused on the colonies with higher CCCP MIC (>10 µg/mL). Most of the
cells within strain Q1103 exhibited a CCCP MIC of <30 µg/mL; for strains Q1105, Q1107
and Q1109, the majority of MICs were <20 µg/mL; for strains Q1111 and Q1108, MICs were
most commonly <15 µg/mL (Table 1). We then assessed the effect of the efflux pump on the
antibacterial susceptibility profile to CO by evaluating the CO MIC in the presence of CCCP.
The addition of the CCCP inhibitor significantly reduced the MIC of CO to <2 µg/mL,
with a mean fold-change of 426.66, which is more than an 8-fold change, confirming the
involvement of the efflux pump in the resistance mechanism (Table 1). The FICI of the
combination was lower than 0.5, confirming the synergism of the two drugs with the chosen
concentration of CCCP (10 µg/mL). Table 1 summarizes the CO MICs alone as well as with
CCCP, the MIC fold change and the fractional inhibitory concentration. The effect of CCCP
on the CO MIC was also assessed on agar plates. All plates showed that CCCP had an effect
alone on Brucella growth. Likewise, CCCP revived the activity of CO by the appearance of
the circular inhibition zone. The diameters were measured at between 21 and 23 mm for
all strains, except Q1103, which exhibited a diameter of 19 mm (Figures 2b and S1b). The
E. coli strain, used as a positive control, was resistant to CO and has a known CO MIC
of 4–8 µg/mL, determined by broth microdilution [28]. The strain become susceptible to
CO with an MIC of <0.5 µg/mL when 10 µg/mL of CCCP was added. On agar plates,
the diameter of the CO inhibition zone increased from 12 mm to 15 mm on plates con-
taining CCCP. CCCP alone had no effect on the used E. coli strain, either in broth or in
agar (Figure 2a,b).
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Figure 2. Observation of the effect of CCCP alone and in combination with CO using the liquid
method (a) and the agar method (b) on tested Brucella strains. (a): CO-MIC determination by the
microdilution method with and without CCCP (10 µg/mL). (b): Left two columns, CO inhibition
diameter on CAMH plates containing 0.2% DMSO or CCCP (10 µg/mL); right column, growth
of strains on CAMH + CCCP (10 µg/mL) without CO as positive control to effect CCCP. The two
photographs are not to scale. CO: colistin; CCCP: carbonyl cyanide 3-chloro phenyl hydrazone;
MIC: minimal inhibitory concentration; DMSO: di-methyl-sulfoxide; CAMB: cation adjusted Muller
Hinton; Ctrl: control bacterial growth.

Table 1. Antibiotic susceptibility of B. intermedia strains to CO with and without CCCP by the
microdilution method and FIC index interpretation.

Microdilution Method

MIC (µg/mL) FIC Index

Strains CO CCCP CO/CCCP MIC Fold
Change Value Interpretation

E. coli >4–8 >30 <1 4–8 0.1–0.2 Synergism
Q1103 >512 <30 <2–4 128–256 0.0 Synergism
Q1105 >512 <20 <1 512 0.0 Synergism
Q1107 >512 <20 <2 256 0.0 Synergism
Q1108 >512 <15 <0.5 512 0.0 Synergism
Q1109 >512 <20 <1 512 0.0 Synergism
Q1111 >512 <15 <1 512 0.0 Synergism

CO: colistin; CCCP: carbonyl cyanide 3-chloro phenyl hydrazone; MIC: minimal inhibitory concentration; FIC
index: fractional inhibitory concentration index.

2.3. Synergistic Effect of CCCP-CO Inhibits Bacterial Growth

To confirm the obtained MIC results and to choose the best CCCP–CO combination,
we monitored the growth kinetics of the treated bacterial strain cultures in a microtiter plate.
The control curves of strains Q1105 and Q1103 showed a prolific growth as the populations
reached the maximum OD of 1.5 after 24 h (Figure 3). Increasing concentrations of CO
did not affect significantly the growth of both strains (p < 0.0388; p = 0.999) (Figure 3a,b).
Furthermore, the addition of CCCP at different concentrations resulted in variable levels of
growth inhibition of both strains. CCCP treatment showed a remarkable dose-dependent
effect, with an increase in lag phase duration and a decrease in the maximum specific growth
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rate (p < 0.0001) (Figure 4c,e). Complete growth inhibition was observed at 20 µg/mL and
30 µg/mL in strains Q1105 and Q1103, respectively, confirming the MIC results. Growth
was suppressed from 2 µg/mL of CO with CCCP for both Q1103 and Q1105 strains
(p < 0.0001) (Figure 4d,f). Unlike CCCP, VRP, RSP and PAβN exhibit an incomplete
inhibitory effect in combination with CO on B. intermedia growth (Figure S2). These growth
inhibition assays not only confirmed our MIC results, but also showed that the synergistic
effect of CO/CCCP could be bactericidal too. Based on our findings, we decided to perform
a time-kill assay with the combination of 2 µg/mL CO and 10 µg/mL CCCP.
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Figure 4. Growth curves of studied strains in different conditions. (a) Shows the growth of E. coli
in different CO concentrations, (c) and (e) show the growth of Brucella strains Q1103 and Q1105
in different CCCP concentrations (b) and (d,f) show the growth of the three strains in different
CO concentrations with CCCP (10 µg/mL). Each graph represents the mean of three independent
experiments (p < 0.0001). CCCP: carbonyl cyanide 3-chloro phenyl hydrazone.

2.4. Bactericidal Effect of CCCP–CO

Due to the heterogeneous treatment responses to CCCP, time-kill curves were assessed
for strains Q1105 and Q1103 which represent both populations (CCCP MIC > 10 µg/mL
and CCCP MIC < 10 µg/mL, respectively). For population 1, exhibiting a CCCP MIC of
>10 µg/mL, both Q1105 and Q1103 Brucella strains had lower growth rates than the controls
when treated with CCCP alone (Figure 5a,c). However, after 24 h, a weak bactericidal effect,
estimated to be 19.2% for Q1103 and 29.2% for strain Q1105, was observed in the presence
of the CO/CCCP combination. This effect increased much more in strain Q1105 after
48 h (23.5% for strain Q1103 and 62.8% for strain Q1105). For population 2 (CCCP MIC
< 10 µg/mL), a bactericidal effect was shown for CCCP alone in strains Q1103 and Q1105
(67.8% and 74.5%, respectively) after 24 h, which increased after 48 h (91% and 99%,
respectively) (Figure 5b,d). A complete bactericidal effect was obtained with the CO/CCCP
combination after 24 h in both strains.

2.5. CO-Treatment with CO/CCCP Inhibits Biofilm Formation of B. intermedia

To explain the difference in bactericidal effect between the two strains after 48 h
in population 1, we considered the phenotypic differences between them. Strain Q1103
was able to form a matrix on agar plates much more efficiently than strain Q1105, which
can be considered a biofilm layer. Therefore, biofilm formation assays were carried out
using the crystal violet (CV) method. After 48 h of incubation time, we found that strain
Q1103 adhered to the culture plate much more than strain Q1105 (p < 0.0003). Biofilm
formation capability of both strains was not affected when treated with 10 µg/mL of CCCP
or with increasing concentrations of CO (Figure 6). Furthermore, treatment of both strain
cultures with various CO/CCCP combinations yielded a dose-dependent decrease in their
biofilm formation ability; where a clear and significant decrease began at the CO/CCCP
combination of 10 µg/mL and 2 µg/mL (p < 0.0001). The inhibitory effect between the
CCCP-treated and the non-CCCP-treated groups was statistically significant for strains
Q1103 and Q1105 (p < 0.0001 and p < 0.0014, respectively). Taken together, our data suggest
that B. intermedia biofilms may play a crucial role in CO resistance.
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2.6. Pangenomic Analysis

Based on our results, the addition of CCCP in combination with CO rescued the intrin-
sic resistance to CO in studied B. intermedia strains. This led us to assume that efflux pumps
may be involved in their resistance mechanism. Through genomic analysis, we decided
to identify the common genes encoding for efflux pumps that can be involved in the CO
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resistance mechanism. A pangenome analysis showed that B. intermedia genomes contained
8276 gene clusters, and 3546 of these comprised the core genome in which conserved
putative efflux pumps were found (Figure 7). Some of these have been experimentally
shown to be involved in the resistance to polymyxins, including CO, in other bacteria.
Among the core genome cluster of B. intermedia, we found ATP-Binding (ABC) transporters
such as YejABEF and LolCDE. These effluxes were reported in Brucella melitensis and
Acinetobacter baumannii, respectively [29,30]. NorM, which is a member of multidrug and
toxic efflux (MATE) family, was detected in the core genome. It contributes to the polymyxin
B intrinsic resistance in Burkholderia Vietnamiensis [31]. Furthermore, EmrE, a small mul-
tidrug resistance (SMR) efflux pump, was conserved within the studied strains and showed
more than 60% similarity with that of Burkholderia stabilis, representing a multi-resistant
transporter of cationic drugs (www.uniprot.org). Another Emr pump, EmrAB, that is
known to form a tripartite complex with the outer membrane protein TolC, was also found
in Brucella strains. It belongs to the major facilitator superfamily (MFS) and was reportedly
involved in a CO resistance mechanism in Acinetobacter baumannii [13]. Brucella genomes
contained, in addition, a conserved permease ATP-dependent MapB, a TamB ortholog that
has been demonstrated to play a role in CO resistance in Brucella suis [32]. Other conserved
multiresistant efflux pumps that may be involved in the CO resistance mechanism include
BepE, YbhRFS, Mdtk, Bmr3, EmrK and OqxB28.
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3. Discussion

In recent years, CO has been receiving much attention in response to an increasing
prevalence of antibiotic resistance worldwide [33]. In human medicine, CO has been used
as last resort drug to treat MDR bacteria, especially carbapenem-resistant bacteria. CO is
inactive against intrinsically resistant bacteria, including Brucella species, which suggests
a role of the cell wall in this mechanism [34]. The conventional mechanisms of intrinsic
resistance include the outer membrane impermeability to antibiotics and the activity of
multidrug efflux pumps that prevent the access of the drugs to their targets [35]. Several
EPI have been evaluated to re-establish CO activity, such as VRP, RSP, PABN and CCCP. In
our study, VRP, PAβN and RSP failed to restore the CO activity in B. intermedia, confirming
previous studies on MDR-GNB [25]. In contrast, a potential synergy between CCCP and CO
was observed in reversing CO resistance in B. intermedia, as it was reported in A. baumannii,
Stenotrophomonas maltophilia [25] and Enterobacteriaceae [34]. CCCP reduced CO MIC more
than 256-fold, suggesting that the mechanism inhibited by CCCP is essential for their CO
resistance. CCCP, a potential nonspecific protonophore uncoupler, acts by dissipating
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PMF, the most common source of energy in bacterial cells, and subsequently inhibiting
their efflux pump activity [36]. Our findings strongly suggest the efflux pump inhibitory
effect of CCCP. Time-kill curves showed that CCCP had a bactericidal effect alone and in
combination with CO. This can be explained by the fact that CCCP and CO may share
common efflux pumps that are essential for Brucella growth.

It should be noted that CCCP alone showed a heterogenous inhibitory effect in tested
Brucella strains. Such a heterogeneity in CCCP response was reported recently in E. coli and
explained by a heterogenous dissipation of PMF between cells [37]. The heterogeneity in
response to CCCP that was observed among cells of a given strain may be explained by the
fact that the molecule targets efflux pumps that act on itself and exclude it from cells with
high efflux pump activity. Therefore, these cells maintain their PMF and the efflux pump
activity, generating a positive feedback between CCCP and efflux pumps [37].

Based on the pangenome analysis, several efflux pumps, such as YejABEF, LolCDE
and NorM, were identified in the Brucella core genome. Previous studies have found their
involvement in CO resistance in other organisms [13,29]. Emr (MFS), especially EmrA, a
part of the tripartite EmrAB-TolC efflux pump, was demonstrated to confer resistance to
CCCP in E. coli and to CO in A. baumannii. This may explain the common bactericidal
effect of CCCP alone and combined with CO [13,38]. TamB provided resistance to CO in
Brucella suis. It should be noted that the Mex and Acr efflux pumps that contributed to CO
resistance in Pseudomonas aeruginosa and Acinetobacter baumannii were detected in some
Brucella strains, but as they were not located in the core genome, their involvement in CO
resistance is unlikely [30,39].

As CCCP blocks PMF and ATP synthesis, it affects, in addition to the efflux pump
activity, the cellular metabolism in all energy requiring reactions [36]. Subsequently, we
detected several conserved enzymes that confer resistance to polymyxins, such as those
involved in the biosynthesis of lipopolysaccharides WadA, WadC [40], LpxM or MsbB [41]
and EptA [42] and in carbohydrate pathways such as pgm [43].

Biofilm formation can be a second factor in the CO resistance mechanism. The in-
hibitory effect of the CO–CCCP combination observed using the crystal violet method may
either be explained by an inhibition of the efflux pumps involved in the biofilm formation or
by the bactericidal effect induced by the CCCP–CO combination. To elucidate the potential
effect of CCCP on biofilm formation and its relation to CO resistance, more experimental
analyses, including analysis of the biomass and the extracellular matrix of treated cells,
should be carried out.

In summary, we demonstrated for the first time that CO resistance in B. intermedia
can be reversed by CCCP. The precise mechanism of this antibiotic efficiency restoration
requires further investigation, especially in the elucidation of the specific role of each
efflux pump system identified by the pangenome analysis. Additional work is also needed
to clarify the effect of CCCP on biofilm formation in B. intermedia. Due to its intrinsic
cytotoxicity, this molecule cannot be applied in the clinical field but may serve as a model to
identify new agents that potentiate the activity of colistin for the treatment of CO-resistant
infections.

4. Materials and Methods
4.1. Bacterial Isolation and Culture Conditions

Six Brucella strains were isolated from chimpanzee stool collected on the ground on
6 June 2016, in the Dindefelo Community Nature Reserve (12◦22′01.4′′ N 12◦18′00.0′′ W) in
south-eastern Senegal. Stools were externally decontaminated with 70% ethanol prior to
culture. Then, they were enriched in Tryptone Soy Broth TSB (bioMérieux, Marcy-l’Étoile,
France) at 37 ◦C for 72 h. Ten microliters of culture were inoculated on CO TSB agar. Four
micrograms of CO/mL was chosen based on the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines. The plates were then incubated for 24 h at
37 ◦C. Individual colonies were replicated on 5% sheep blood-enriched Columbia agar
(COS, bioMérieux), and then identified by the matrix assisted laser desorption/ionization
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time-of-light mass spectrometry MALDI-TOF MS (Bruker Daltonics, Leipzig, Germany).
The study of strains was permitted by the Senegalese Nagoya authority under reference
001042. The strains were deposited in the CSUR collection as follows: Q1103, Q1105, Q1107,
Q1108, Q1109 and Q1111.

4.2. Genome Sequencing, Annotation and Phylogenetic Analyses

Genomic DNA (gDNA) of Brucella strains was extracted using the EZ1 biorobot with
the DNA Tissue kit, as recommended by the manufacturer (Qiagen, Hilden, Germany).
gDNA was quantified by a Qubit assay with the highly sensitive dsDNA kit (Invitrogen,
Carlsbad, CA, USA). Sequencing was performed with the Miseq technology and the mate-
pair strategy (Illumina Inc., San Diego, CA, USA), as previously described [44]. Genomes
were assembled using Spades version 3.14.0 and were annotated by PROKKA version 1.14.5.
Pangenomic analysis was performed using Roary software version 3.10.5 and was visual-
ized on the available Phandango website phandango (jameshadfield.github.io) accessed
on March 2021 [44–46]. A total of 16S rRNA sequences were extracted from the genomes
using contEst16S EZbiocloud ContEst16S|Ezbiocloud.net. Two B. intermedia genomes were
downloaded from NCBI (NCTC12171 and LMG3301) to be compared to those of chim-
panzee strains. Their accession numbers were UGSH00000000.1 and ACQA00000000.1,
respectively. RecA gene sequences, also extracted from genome sequences, were used
to confirm the affiliation of the strains. The sequences were aligned by Clustal W [47].
Evolutionary analyses were inferred using the maximum likelihood method based on the
Tamura-Nei model, and were conducted in MEGA version 7.0.26 [48].

4.3. Chemicals and Stock Solution

CO sulphate salt (CO) was purchased from MP-Biomedicals (Illkirch-Graffenstaden,
France). All efflux pump inhibitors, CCCP, verapamil (VRP), reserpine (RSP) and phe-arg
β-naphthylamide dihydrochloride (PAβN) were purchased from Sigma Aldrich (Lyon,
France). CCCP and RSP were dissolved in DMSO at a concentration of 5 mg/mL. VRP was
dissolved in ethanol 99% in a concentration of 5 mg/mL. PAβN was diluted to 5 mg/mL
in deionized water. All stock solutions were preserved at −20 ◦C. The final concentration
of PaβN, RSP and VRP was 50 µg/mL.

4.4. Minimal Inhibitory Concentration (MICs) Determination

Currently, the broth microdilution method is the recommended technique to determine
the susceptibility to CO [49]. Susceptibility testing was performed according to the EUCAST
guidelines using the cation-adjusted Mueller Hinton broth CAMHB (BD-ThermoFisher,
Bourgoin-Jallieu, France). MICs were evaluated in the presence of CO alone and with the
four efflux pump inhibitors. CO was diluted to final concentrations ranging from 0.25
to 256 µg/mL. Efflux pump inhibitor concentrations ranged from 2.5 to 100 µg/mL. To
test the effect of efflux pump inhibitors on the CO MIC of the tested strains, a sub-MIC of
10 µg/mL for CCCP and 50 µg/mL for each of VRP, RSP and PAβN were combined with
the various CO concentrations mentioned above [28,50].

A mcr-mediated CO-resistant E. coli strain, used as positive control, became susceptible
when adding 10 µg/mL CCCP, as previously described [28].

For each tested strain, the inoculum was prepared by resuspending three to five
colonies in 0.85% NaCl medium to obtain the standard turbidity using MacFarland standard
0.5. Then, 5 × 105 CFU/mL was added in each well of a 96-well plate containing the tested
antibiotic dilutions. Plates were incubated at 37 ◦C and MIC results were visualized after
16 h–18 h by adding iodonitrotetrazolium (Sigma-Aldrich S.A.R.L, Lyon, France). MIC
testing for each strain was carried out in duplicate in three independent experiments.
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4.5. MIC Fold Change and Synergy Index

The MIC fold change after CO–CCCP combination was defined by the ratio of the
CCCP-free CO to that of CCCP-added CO. The mean fold change was calculated following
the equation:

[1/n] × Σ[MIC fold change x frequency of fold change]

The influence of an efflux pump on the CO-MIC for a bacterial strain was defined as
an at least 8-fold reduction in MIC in the presence of CCCP [28]. The effect of CO appeared
to be reversed when a strain became susceptible with an MIC of ≤2 µg/mL, according to
EUCAST [50,51]. The interaction between the two molecules was determined by calculating
the fractional inhibitory concentration index (FICI). The fractional inhibitory concentration,
FIC, was derived from the lowest concentration of CO and CCCP combination permitting
no visible growth of Brucella intermedia in the wells. The FIC value for each agent was
calculated according to the formula:

FIC CO = (MIC of combination/MIC of CO)

FIC CCCP = (MIC of combination/MIC of CCCP)

To calculate the FIC index, the following formula was used: FICI = FIC (CO) + FIC
(CCCP). The combination was classified as synergistic if the FIC indices were lower than or
equal to 0.5; additive if the FIC indices were greater than 0.5 and lower than or equal to 1;
indifferent if the FIC was greater than 1 and lower than or equal to 2; and antagonistic if
the FIC was greater than 2 [52].

4.6. Effect of CCCP on CO MIC on Agar Plates

The effect of CCCP on CO MIC was assessed on CAMH agar plates. CCCP was added
at a final concentration of 10 µg/mL. Commercial diffusion 50 µg CO disks were deposited
on the plates (bioMérieux). Plates without CCCP were prepared with DMSO 0.2%. Agar
plates were incubated under aerobic conditions at 37 ◦C for 18 h to 24 h. The density of
the inoculum was standardized at 0.5 MacFarland. All experiments were performed in
triplicate.

4.7. Crystal Blue Assay

Brucella intermedia culture was performed using the same method of MIC microdilu-
tion in a 96-well polystyrene microtiter plate. Biofilm formation was assessed under static
growth in Mueller Hinton broth. After 48 h of incubation, the supernatant was removed.
Wells were washed with phosphate-buffered saline (PBS) three times to remove the plank-
tonic bacteria. The plate was dried well. Adherent biofilms were stained with 125 µL of
0.1% crystal violet. The microtiter plate was incubated for 10–15 min at room temperature.
The dye was removed and three washes were performed with water to eliminate all excess
cells and dye. The plate was turned upside-down and air-dried for a few hours. Dye that
was bound to adherent cells was re-solubilized with 125 µL of 30% acetic acid in water
for 10–15 min. The absorbance was measured at 550 nm with a plate reader using 30%
acetic acid in water as a blank. Three biological replicates were performed to confirm
reproducibility.

4.8. Growth Curves

Plates were prepared as described above.
Bacterial growth was measured by optical density (OD 630) using a Gen-5 microplate

reader (Agilent-Biotek, Les ULIS, France). CO concentration ranged from 256 to 0.5 µg/mL.
CCCP concentration was fixed at 10 µg/mL. PaβN, RSP and VRP were used at 50 µg/mL.
Strains Q1103 and Q1105 were grown in Muller Hinton broth at 37 ◦C with shaking
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continuously for 24 h to 48 h. CO and efflux pump inhibitors were added at the beginning
of the experiment.

4.9. Time-Kill Assay

To explore the effect of CCCP alone and in combination with CO, time-kill assays were
performed. Two strains were chosen according to their phenotypic characteristics (Q1103
was more viscous than Q1105). An amount of 5 × 105 CFU/mL were inoculated in MHCA
broth and were incubated for 24 h and 48 h with shaking. Time-kill analysis was performed
by adding a combination of 10 µg/mL CCCP and 2 µg/mL CO.

4.10. Statistical Analysis

Data were represented as the means ± standards deviations for three independent
experiments and replicated twice. Data were analyzed using the GraphPad Prism version 8
software. Significant differences among the various treatment conditions were evaluated
using the one way analysis of variance (ANOVA) and multiple comparisons were per-
formed by the non-parametric student’s t-test. Differences were considered to be significant
at p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24032106/s1.
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