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Abstract. We propose a two-point flux approximation finite-volume
scheme for a stochastic non-linear parabolic equation with a multiplica-
tive noise. The time discretization is implicit except for the stochastic
noise term in order to be compatible with stochastic integration in the
sense of Itô. We show existence and uniqueness of solutions to the scheme
and the appropriate measurability for stochastic integration follows from
the uniqueness of approximate solutions.
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1 Introduction

Let Λ be a bounded, open, connected and polygonal set of R2. Moreover let
(Ω,A,P) be a probability space endowed with a right-continuous, complete fil-
tration (Ft)t≥0 and let (W (t))t≥0 be a standard, one-dimensional Brownian mo-
tion with respect to (Ft)t≥0 on (Ω,A,P).
For T > 0, we consider the following non-linear parabolic problem forced by a
multiplicative stochastic noise:

du−∆udt+ div
(
vf(u)

)
dt = g(u) dW (t) + β(u) dt, in Ω × (0, T )× Λ;

u(0, .) = u0, in Ω × Λ;

∇u · n = 0, on Ω × (0, T )× ∂Λ;

(1)

where div is the divergence operator with respect to the space variable and n
denotes the unit normal vector to ∂Λ outward to Λ. After setting Lf , Lβ and Lg

in R∗
+, we assume the following hypotheses on the data:
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H1: u0 ∈ L2(Ω;H1(Λ)) is F0-measurable.
H2: f : R → R is nondecreasing, Lf -Lipschitz continuous with f(0) = 0.
H3: g : R → R is a Lg-Lipschitz continuous function.
H4: β : R → R is Lβ-Lipschitz continuous with β(0) = 0.
H5: v ∈ C 1([0, T ] × Λ;R2) such that div(v) = 0 in [0, T ] × Λ and v · n = 0 on

[0, T ]× ∂Λ.

1.1 Concept of Solution and Main Result

We will be interested in the concept of solution as defined below, which we will
call a variational solution:

Definition 1. A predictable stochastic process u is a variational solution to
Problem (1) if it belongs to

L2(Ω;C ([0, T ];L2(Λ))) ∩ L2(Ω;L2(0, T ;H1(Λ)))

and satisfies, for all t ∈ [0, T ], in L2(Λ), and P-a.s. in Ω

u(t)− u0 −
∫ t

0

∆u(s) ds+

∫ t

0

div
(
v(s, .)f(u(s))

)
ds

=

∫ t

0

g(u(s)) dW (s) +

∫ t

0

β(u(s)) ds.

Existence, uniqueness and regularity of this variational solution is well-known
in the literature, see, e.g., [2].

1.2 Outline

In this contribution, we propose a finite-volume approximation scheme for the
solution of (1) in the sense of Definition 1. We show existence and uniqueness of
solutions to the scheme. In Section 2, we introduce the notation for our finite-
volume framework. In Section 3, we introduce our finite-volume scheme. The
main result is contained in Section 4.

2 Admissible Finite-Volume Meshes and Notations

In order to perform a finite-volume approximation of the variational solution of
Problem (1) on [0, T ] × Λ we need first of all to set a choice for the temporal
and spatial discretization. For the time-discretization, let N ∈ N∗ be given. We
define the fixed time step ∆t = T

N and divide the interval [0, T ] in 0 = t0 < t1 <
... < tN = T equidistantly with tn = n∆t for all n ∈ {0, ..., N}. For the space
discretization, we refer to [1] and consider finite-volume admissible meshes in
the sense of the following definition.

Definition 2 (Admissible finite-volume mesh). An admissible finite-volume
mesh T of Λ (see Fig. 1) is given by a family of open polygonal and convex sub-
sets K, called control volumes of T , satisfying the following properties:
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– Λ =
⋃

K∈T K.
– If K,L ∈ T with K ̸= L then intK ∩ intL = ∅.
– If K,L ∈ T , with K ̸= L then either the 1-dimensional Lebesgue measure of

K ∩L is 0 or K ∩L is the edge, denoted by σ = K|L, separating the control
volumes K and L.

– To each control volume K ∈ T , we associate a point xK ∈ K (called the
center of K) such that: If K,L ∈ T are two neighbouring control volumes
the straight line between the centers xK and xL is orthogonal to the edge
σ = K|L.

xK xL

σ =K|L

dK|L

nK,σ

Fig. 1. Notations of the mesh T associated with Λ

Once an admissible finite-volume mesh T of Λ is fixed, we will use the fol-
lowing notations.

2.1 Notation

– h = size(T ) = sup{diam(K) : K ∈ T }, the mesh size.
– dh ∈ N the number of control volumes K ∈ T with h = size(T ).
– Eint := {σ : σ ⊈ ∂Λ} is the set of interior edges of the mesh T .
– For K ∈ T , EK is the set of edges of K, EK,int = EK ∩ Eint and mK is the

Lebesgue measure of K.
– For K ∈ T and σ ∈ EK , nK,σ is the unit normal vector to σ outward to K.
– Let K,L ∈ T be two neighbouring control volumes. For σ = K|L ∈ Eint, let

mσ be the length of σ and dK|L the distance between xK and xL.
– For any vector uh = (uK)K∈T ∈ Rdh , we define the L2-norm on Λ by

∥uh∥L2(Λ) =

(∑
K∈T

mK |uK |2
) 1

2

.

In the sequel, we note |x| the euclidian norm of x ∈ Rd with d ≥ 1.

3 The Finite-Volume Scheme

Firstly, we define the vector u0
h = (u0

K)K∈T ∈ Rdh by the discretization of the
initial condition u0 of Problem (1) over each control volume:

u0
K :=

1

mK

∫
K

u0(x) dx, ∀K ∈ T . (2)
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The finite-volume scheme we propose reads, for this given initial F0-measurable
random vector u0

h ∈ Rdh :
For any n ∈ {0, . . . , N − 1}, knowing un

h = (un
K)K∈T ∈ Rdh we search for

un+1
h = (un+1

K )K∈T ∈ Rdh such that, for almost every ω ∈ Ω, the vector un+1
h is

solution to the following random equations

mK

∆t
(un+1

K − un
K) +

∑
σ=K|L∈EK,int

mσv
n+1
K,σ f(u

n+1
σ )

+
∑

σ=K|L∈EK,int

mσ

dK|L
(un+1

K − un+1
L )

=
mK

∆t
g(un

K)(Wn+1 −Wn) +mKβ(un+1
K ), ∀K ∈ T ,

(3)

where, by denoting γ the (d− 1)-dimensional Lebesgue measure,

vn+1
K,σ =

1

∆tmσ

∫ tn+1

tn

∫
σ

v(t, x) · nK,σ dγ(x)dt,

and un+1
σ denotes the upstream value at time tn+1 with respect to σ defined as

follows: If σ = K|L ∈ EK,int is the interface between the control volumes K and
L, un+1

σ is equal to un+1
K if vn+1

K,σ ⩾ 0 and to un+1
L if vn+1

K,σ < 0. Note also that

Wn+1 −Wn = W (tn+1)−W (tn) for n ∈ {0, . . . , N − 1}.

Remark 1. Since div(v) = 0 in [0, T ] × Λ, for any n ∈ {0, · · · , N − 1} and
K ∈ T one has

∑
σ=K|L∈EK,int

mσv
n+1
K,σ = 0. Thus, using that vn+1

K,σ = (vn+1
K,σ )

+ −
(vn+1

K,σ )
− (where, for r ∈ R, r+ := max{r, 0} and r− := −min{0, r}) an equivalent

formulation of the scheme (3) is given by

mK

∆t
(un+1

K − un
K) +

∑
σ=K|L∈EK,int

mσ(v
n+1
K,σ )

−
(
f(un+1

K )− f(un+1
L )

)
+

∑
σ=K|L∈EK,int

mσ

dK|L
(un+1

K − un+1
L )

=
mK

∆t
g(un

K)
(
Wn+1 −Wn

)
+mKβ(un+1

K ), ∀K ∈ T .

(4)

4 Main Result

Proposition 1 (Existence of a discrete solution). Assume that hypotheses
H1 to H5 hold. Let T be an admissible finite-volume mesh of Λ in the sense
of Definition 2 with a mesh size h and N ∈ N∗. Then, there exists a unique
solution (un

h)1≤n≤N ∈ (Rdh)N to Problem (3) associated with the initial vector
u0
h defined by (2). Additionally, for any n ∈ {0, . . . , N}, un

h is a Ftn-measurable
random vector.

Proof. We fix n ∈ {0, . . . , N−1} and choose an arbitrary vector un
h = (un

K)K∈T ∈
Rdh . Firstly, we will show that there exists at least one random vector un+1

h =
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(un+1
K )K∈T ∈ Rdh such that (4) holds true P-a.s in Ω. To this end, we define the

mapping Pn : Rdh → Rdh , Pn = (Pn
1 , . . . , P

n
dh
) such that for any i ∈ {1, . . . , dh}

Pn
i (wK1 , . . . , wKdh

) =
mKi

∆t
wKi −mKiβ(wKi)

+
∑

σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)−(f(wKi)− f(wKj ))

+
∑

σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

(wKi
− wKj

)− mKi

∆t
ξni

where ξni := un
Ki

+ g(un
Ki

)(Wn+1 −Wn).
Obviously, Pn is a continuous mapping. Next, we show that there exists ϱ > 0

such that for all wh = (wKi
)1≤i≤dh

∈ Rdh such that |wh| = ϱ,

(Pn(wh), wh)Rdh :=

dh∑
i=1

Pn
i (wh)wKi ≥ 0.

In this case, from [3, Lemma 4.3] it follows that there exists at least one wh ∈ Rdh

such that |wh| ≤ ϱ and Pn(wh) = 0. We have

dh∑
i=1

Pn
i (wh)wKi

=

dh∑
i=1

mKi

∆t
w2

Ki
−

dh∑
i=1

mKi
β(wKi

)wKi
−

dh∑
i=1

mKi

∆t
ξni wKi

+

dh∑
i=1

∑
σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)−(f(wKi
)− f(wKj

))wKi

+

dh∑
i=1

∑
σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

(wKi
− wKj

)wKi

=: I1 + I2 + I3 + I4 + I5.

Since β is Lipschitz continuous, the term I2 satisfies

I2 ≥ −Lβ∥wh∥2L2(Λ). (5)

Moreover, by discrete partial integration,

I5 =
∑

σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

|wKi − wKj |2 ≥ 0. (6)

Now, we focus on the term I4. Since f is Lipschitz continuous and nondecreasing,
thanks to [1, Lemma 18.5], for any r ∈ R, using the notation Φ(r) =

∫ r

0
f ′(s)s ds,

for any a, b ∈ R, one has

b(f(b)− f(a)) =

∫ b

a

(sf(s))′ds− (b− a)f(a) =

∫ b

a

Φ′(s)ds+

∫ b

a

(f(s)− f(a))ds

≥ (Φ(b)− Φ(a)) +
1

2Lf
(f(b)− f(a))2.
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Thus, since divv = 0 in [0, T ]× Λ and vn+1
Ki,σ

= −vn+1
Kj ,σ

, we obtain

I4 ≥
dh∑
i=1

∑
σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)−(Φ(wKi
)− Φ(wKj

))

=

dh∑
i=1

Φ(wKi
)

∑
σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

) = 0.

(7)

For the term I3, since −ab ≥ − 1
2 (a

2 + b2) one has

I3 ≥ − 1

2∆t

(
∥wh∥2L2(Λ) + ∥ξnh∥2L2(Λ)

)
. (8)

From (5), (6), (7) and (8) for some α > 0, choosing ∆t ≤ 1
2(α+Lβ)

we now get

dh∑
i=1

Pn
i (wh)wKi ≥

1

2∆t
∥wh∥2L2(Λ) − Lβ∥wh∥2L2(Λ) −

1

2∆t
∥ξnh∥2L2(Λ)

≥ α(min
K∈T

mK)|wh|2 −
1

2∆t
∥ξnh∥2L2(Λ).

(9)

Then, setting

ϱ :=

√
1

2α(minK∈T mK)∆t
∥ξnh∥L2(Λ) > 0

we get (Pn(wh), wh)Rdh ≥ 0 from (9) for all wh ∈ Rdh such that |wh| = ϱ. Hence,
there exists at least one element wh such that Pn(wh) = 0. Thus, un+1

h := wh ∈
Rdh is solution to the numerical scheme (4).

Next, we will prove the uniqueness of the solution. Therefore, we assume
that there exist wh = (wKi)1≤i≤dh

∈ Rdh and zh = (zKi)1≤i≤dh
∈ Rdh satis-

fying Pn(wh) = Pn(zh) = 0. Taking Pn
i (wh) − Pn

i (zh), and using the initial
formulation of the scheme (3), for any i = 1, . . . , dh we obtain

mKi

∆t
(wKi

− zKi
)−mKi

(β(wKi
)− β(zKi

))

+
∑

σ=Ki|Kj∈EKi,int

mσv
n+1
Ki,σ

(f(wσ)− f(zσ))

+
∑

σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

(
(wKi

− wKj
)− (zKi

− zKj
)
)
= 0,

where wσ and zσ are the upstream value with respect to σ.

Now, we adjust the method developed in the proof of [1, Proposition 26.1]:
Using the monotonicity of f , the fact that vn+1

Ki,σ
= (vn+1

Ki,σ
)+ − (vn+1

Ki,σ
)− and
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taking the absolute value, one has

mKi

∆t
|wKi

− zKi
|+

∑
σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

|wKi
− zKi

|

+
∑

σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)+|f(wKi)− f(zKi)|

≤mKi
|β(wKi

)− β(zKi
)|+

∑
σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

|wKj
− zKj

|

+
∑

σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)−|f(wKj )− f(zKj )|.

(10)

For η > 0, x ∈ R2 we define φ(x) = exp(−η|x|) and for Ki ∈ T , i = 1, . . . , dh let

φKi :=
1

mKi

∫
Ki

φ(x) dx.

Multiplying (10) by φKi , taking the sum over i = 1, . . . , dh and rearranging the
sums on the right-hand side by fixing j and varying over i we obtain

dh∑
i=1

mKi

∆t
φKi |wKi − zKi |+

dh∑
i=1

φKi

∑
σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

|wKi − zKi |

+

dh∑
i=1

φKi

∑
σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)+|f(wKi
)− f(zKi

)| ≤ I1 + I2 + I3

(11)

where

I2 ≤
dh∑
i=1

|wKi
− zKi

|
∑

σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

|φKi
− φKj

|

+

dh∑
i=1

|wKi
− zKi

|
∑

σ=Ki|Kj∈EKi,int

mσ

dKi|Kj

φKi

(12)

and similarly, since (vn+1
Kj ,σ

)− = (−vn+1
Ki,σ

)− = (vn+1
Ki,σ

)+ for σ = Ki|Kj , using the
Lipschitz continuity of f

I3 ≤
dh∑
i=1

Lf |wKi
− zKi

|
∑

σ=Ki|Kj∈EKi,int

mσ(v
n+1
Kj ,σ

)−|φKi
− φKj

|

+

dh∑
i=1

|f(wKi)− f(zKi)|
∑

σ=Ki|Kj∈EKi,int

mσ(v
n+1
Ki,σ

)+φKi .

(13)
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Now, plugging (12) and (13) into (11) and using the Lipschitz continuity of β
we obtain for all i = 1, . . . , dh

dh∑
i=1

ai|wKi − zKi | ≤
dh∑
i=1

bi|wKi − zKi | (14)

with

ai := mKi

(
1

∆t
− Lβ

)
φKi

bi :=
∑

σ=Ki|Kj∈EKi,int

(
mσ

dKi|Kj

+mσ(v
n+1
Kj ,σ

)−
)
|φKi

− φKj
|.

Now, taking ∆t ≤ 1
2Lβ

using the same arguments as in the proof of [1, Propo-

sition 26.1], we may choose η > 0 small enough such that ai > bi for all
i = 1, . . . dh. Thus wKi = zKi then follows from (14) for all i = 1, . . . , dh. Since
the initial vector u0

h is given, the existence of a unique solution (un
h)1≤n≤N ∈ Rdh

follows by iteration.
It is left to prove that un

h is a Ftn -measurable random vector for all n =
1, . . . , N . We have already shown that for any given ξh ∈ Rdh there exists a
unique wh = (wKi)1≤i≤dh

∈ Rdh such that Q(wh) = ξh where Q : Rdh → Rdh ,
Q(wh) = (Q1, . . . , Qdh

)(wh) is defined by Qi(wh) = Pi(wh) −
mKi

∆t ξni for all

i = 1, . . . , dh. Thus, u
n+1
h = Q−1(ξnh ) P-a.s. in Ω, where ξnh = (ξn1 , . . . , ξ

n
dh
).

Since Q−1 is continuous, if ξnh is Ftn+1
-measurable the same holds true for un+1

h .
Indeed, let (ζk)k ⊂ Rdh be a sequence such that ζk → ζ for some ζ ∈ Rdh

for k → ∞. Then, for wk := Q−1(ζk) from (9) and from the theorem of
Bolzano-Weierstrass it follows that there exists w ∈ Rdh such that, passing
to an unlabelled subsequence if necessary, wk → w for k → ∞. This strong
convergence is enough to pass to the limit in Q(wk), and therefore Q(w) = ζ.
Thanks to uniqueness, we get convergence of the whole sequence (wk)k, hence
limk→∞ Q−1(ζk) = Q−1(ζ) and Q−1 is continuous. ⊓⊔
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