
A Quasi-Newton Primal-Dual Algorithm with
Line Search⋆

Shida Wang1[0000−0001−7521−8192], Jalal Fadili2[0000−0002−8165−7578], and Peter
Ochs1[0000−0002−4880−7511]

1 Department of Mathematics, University of Tübingen, Germany
2 Normandie Univ, ENSICAEN, CNRS, GREYC, France

Abstract. Quasi-Newton methods refer to a class of algorithms at the
interface between first and second order methods. They aim to progress
as substantially as second order methods per iteration, while maintaining
the computational complexity of first order methods. The approximation
of second order information by first order derivatives can be expressed
as adopting a variable metric, which for (limited memory) quasi-Newton
methods is of type “identity ± low rank”. This paper continues the ef-
fort to make these powerful methods available for non-smooth systems
occurring, for example, in large scale Machine Learning applications by
exploiting this special structure. We develop a line search variant of a
recently introduced quasi-Newton primal-dual algorithm, which adds sig-
nificant flexibility, admits larger steps per iteration, and circumvents the
complicated precalculation of a certain operator norm. We prove conver-
gence, including convergence rates, for our proposed method and outper-
form related algorithms in a large scale image deblurring application.

Keywords: quasi-Newton · primal-dual algorithm · line search · saddle-
point problems · large scale optimization

1 Introduction

In modern optimization, the datasets and dimensionality of the problems and pa-
rameters is vastly increasing. In the early stages of large scale optimization, the
shift from second order to first order optimization could cope with the increas-
ing dimensionality of the problems. Second order methods achieve a significant
progress per iteration at the cost of a high computational load, since the compu-
tation of the second derivative (Hessian) and oftentimes its inverse are required,
which is intractable in the large scale regime. In contrast, first order methods
have a low computational effort per iteration but also less information about the
objective. The gradient cannot capture curvature information and hence may
fail to provide directions that allow for large steps. Nevertheless, for the large
scale regime this exchange pays off.

⋆ We acknowledge funding by the ANR-DFG joint project TRINOM-DS under the
number DFG OC150/5-1.

However, the ever increasing dimensionality of the considered problems and
datasets asks for faster algorithms. Motivated by classical optimization and the
discussion above, algorithms at the interface of first and second order methods
are key to reach the next level. Tractability in the (nowadays extremely) large
scale regime requires methods that are as cheap as first order methods, while
progressing as substantially as second order algorithms: Quasi-Newton meth-
ods. While they are known for their outstanding performance in unconstrained
smooth optimization, their development for non-smooth (or constrained smooth)
problems is insufficiently understood. As we discuss in related work below, most
algorithmic development is either too simplistic, in the sense that only a diag-
onal metric is admitted, which can hardly capture second order information of
the objective, or too theoretical, in the sense that a good performance is proved
in theory while the implementation cost is on a par with that of second order
methods. Algorithmic subproblems (e.g. the evaluation of the proximal map-
ping) that are easy to solve with respect to the Euclidean metric may become
intractable with respect to another metric.

We pursue the line of research initiated in [2,3] that considers both aspects
as equally important. Key is the observation that quasi-Newton methods actu-
ally generate a metric of the specific type “identity ± low rank”, which allows
for an efficient proximal calculus (cf. Section 6) that unlocks the quasi-Newton
power—well-known from classical optimization—in the area of optimization for
Machine Learning. This idea was recently transferred to non-convex optimiza-
tion in [15,16] and to monotone inclusion problems in [28]. A special case of
the latter setting comprises the extremely broad class of convex–concave saddle
point problems, which has numerous applications in Machine Learning, Com-
puter Vision, Image Processing and Statistics [8,7,14,26,1].

In this paper, we restrict our interest to saddle-point problems only. This
focus allows us to design a quasi-Newton primal–dual algorithm that is tailored
to this setting and therefore highly efficient and adaptable thanks to an addi-
tional line search procedure. This has several advantages as compared to a fixed
step size: (i) the oftentimes expensive computation of the operator norm can
be avoided, (ii) the choice of metric need not obey any static spectral restric-
tions, and (iii) in many situations larger steps and thus a faster convergence is
observed.

Our main contribution is reduction of the gap between the outstanding per-
formance of quasi-Newton methods in classical optimization and quasi-Newton
methods for (non-smooth) convex–concave saddle point problems for modern
optimization in Machine Learning. In detail, our contribution is the following:

1. We extend the line-search based primal–dual algorithm in [20] (extension
of [6] by line search) to incorporate a quasi-Newton metric with efficiently
implementable proximal mapping; thereby aiming equally at theoretical con-
vergence guarantees (including convergence rates) as well as highly efficient
implementation.

2. We unlock the use of multi-memory quasi-Newton metrics (L-BFGS and SR1
method) via a compact representation for primal–dual algorithms, including
their efficient implementation via a semi-smooth Newton solver.

3. The proposed algorithm outperforms the line-search based primal–dual al-
gorithm (with identity metric) on a challenging image deblurring problem.

1.1 Related Work

Due to page limitations, for an extended discussion of quasi-Newton approaches
in non-smooth optimization and the vast literature on primal-dual algorithms,
we refer to [28].

Non-smooth quasi-Newton. For a class of non-smooth problems that are
given as a composition of a smooth function h and a non-smooth function g,
[21,25] combine quasi-Newton methods with forward–backward splitting via the
forward–backward envelope. If g is an indicator function, [23,24] proposed a
projected quasi-Newton method which requires either solving a complicated sub-
problem or is restricted to a diagonal metric. Later, their work was extended by
[18] to a more general setting. [17,2,3] developed algorithms with efficient evalu-
ation of the proximal operator with respect to a low-rank perturbed metric. It is
worth to mention that in [2,3] the subproblem is a low dimensional root finding
problem which can be solved efficiently. Inspired by [3], the work in [16] applied
the limited-memory quasi-Newton method on non-convex problems.

PDHG. Primal-Dual Hybrid Gradient (PDHG) is widely used to solve sad-
dle point problems [6,8]. However, in order to guarantee the convergence of
PDHG, the computation of the norm of a operator K is required. To avoid
this disadvantage, [20] combined line search with PDHG to get a new algorithm
PDAL. For faster convergence, variable metric is being used [14]. It shows the
potential of combining quasi-Newton methods and PDAL via a variable metric,
however suffers again from the need to solve more complicated subproblems,
which is remedied in [28] for the more general class of monotone inclusion prob-
lems and hence builds the grounding for our proposed line search variant.

2 Problem Setup: A class of saddle point problems

Let X and Y be finite dimensional real vector spaces with inner product ⟨·, ·⟩
and induced norm ∥ · ∥ =

√
⟨·, ·⟩. We consider saddle point problems

min
x∈X

max
y∈Y

⟨Kx, y⟩+ g(x) + h(x)− f∗(y) , (1)

where g, h : X → R are proper, lower semi-continuous (lsc), convex functions
with h, additionally, having an L-Lipschitz continuous gradient, f∗ : Y → R is a
proper, lsc, convex function; the convex conjugate (Legendre–Fenchel conjugate)
of a function f , and K : X → Y is a bounded linear operator with operator norm
LK := ∥K∥ and adjoint K∗. Moreover, throughout this paper we assume that

(1) has a saddle point. We remark that (1) is equivalent to the primal problem

min
x∈X

f(Kx) + g(x) + h(x) , (2)

and to the dual problem

max
y∈Y

−
(
f∗(y) + (g∗ ▽h∗)(−K∗y)

)
, (3)

where we use the fact that the conjugate of a sum of two function (g+h)∗ equals
the infimal convolution of the conjugate functions g∗ ▽h∗.

3 Our quasi-Newton Primal-Dual Algorithm with Line
Search

The primal–dual algorithm that we develop in this paper is an extension of
[20] to incorporate a variable metric of quasi-Newton type, which itself adds
an efficient line search procedure to the primal–dual hybrid gradient (PDHG)
algorithm [6] (aka Chambolle–Pock algorithm) and the extension in [19]. The
handling of (a possibly) non-smooth functions essentially relies on evaluating
the proximal mapping, which we define here for a function g and parameter τ
with respect to an arbitrary metric M ∈ Sα(X), α > 0. Here, Sα is the set
of bounded self-adjoint linear operators from Hilbert space X to X such that
M −αI is positive semi-definite for each M ∈ Sα. For simplicity, some notations
are introduced:

∥x∥2M = ⟨Mx, x⟩ , x ∈ X .

proxMτg(x̄) := argmin
x∈X

g(x) +
1

2τ
∥x− x̄∥2M , and set proxτg := proxIτg ,

where I is the identity (Euclidean) metric.
Algorithm 1 presents the proposed algorithm. The algorithm alternates be-

tween updates of the dual variable (4) and the primal variable (5), where the line
search is only implemented in the primal update. Let us discuss the algorithm
for a fixed iteration k, i.e., we are given xk, yk−1, σk−1, θk−1 and a monotone de-
creasing sequence of βk. The discussion of the quasi-Newton type variable metric
in Step (i) is deferred to Section 5. Step (ii) is a standard dual update step. In
Step (iii), we perform the line search. We select a basic step size σ̄k and, in the ith
loop of the line search, we perform a trial step (5) with the current σk = σ̄k · µi

and check if the breaking condition (6) is satisfied. If ‘yes’, the current iteration
k is completed. If ‘no’, the new trial step size is reduced to σk = σ̄k · µi+1 (in
the subsequent (i+ 1)th line search step). Here, Mk ∈ Sα(X) is symmetric pos-
itive definite and α ∈ (0, 1).If Mk is chosen as an identity, then we recover the
breaking (stopping) criterion used in [20]. However, in this paper, we adopt a
variable metric Mk which is generated by quasi-Newton methods to exploit the
local geometry of the function h. As a result, it is more likely to obtain a larger
step size σk and fewer inner loops for the line search procedure as compared to

Algorithm 1 Quasi-Newton PDHG with Line Search

Require: [initial data] x1 ∈ X, [initial data] y0 ∈ Y , [maximal iteration count] N ≥ 0,
[scaling of line search parameter] µ ∈ (0, 1), [extrapolation parameter] θ0, [initial dual
step size] σ0, [tolerance weight] δ ∈ (0, 1), [primal-dual step ratio] +∞ > β ≥ βk+1 ≥
βk > 0, ∀k ∈ N.
Update for k = 1, . . . , N :
(i) Compute Mk according to a quasi-Newton framework (cf. Section 5).
(ii) Compute dual update step:

yk = proxσk−1f
∗(y

k−1 + σk−1Kxk) . (4)

(iii) Select σ̄k ∈ [
βk−1

βk
σk−1,

√
(1 + θk−1)

βk−1

βk
σk−1]

and compute the quasi-Newton primal update step by:
Line search: Find the smallest power i = 0, 1, 2, . . . such that

ȳk = yk + θk(y
k − yk−1) ,

xk+1 = proxMk
τkg

(
xk − τkM

−1
k K∗ȳk − τkM

−1
k ∇h(xk)

) (5)

with
σk = σ̄k · µi , θk =

σk

σk−1
, and τk = βkσk

satisfy

τkσk∥Kxk+1 −Kxk∥2 + 2τk
(
h(xk+1)− h(xk)−

〈
∇h(xk), xk+1 − xk

〉)
≤ δ∥xk+1 − xk∥2Mk

. (6)

End of for-loop

the Euclidean version (Mk = I). The employed metric is of type “identity ± low
rank” for which the proximal mapping can be computed efficiently as shown in
Section 6.

Remark 1. While the line search procedure is formulated for the primal prob-
lem, by duality, the primal problem can be interpreted as the dual of the dual
problem and, thus, the dual problem as the primal problem. As a consequence,
an equivalent algorithm with line search on the dual can be easily stated.

Discussion of computational cost for line search. In general, every loop
of the line search procedure requires recomputing several quantities, including
(5) and Kxk+1, h(xk+1) and ∥xk+1 − xk∥2Mk

in (6). While this seems to be
expensive at first glance, often (6) is satisfied after 1–3 trial steps and hence
large steps are taken with a low cost, as we underline in our experiments in
Section 7. Nevertheless, the cost can be further reduced significantly in certain
special cases, observed in [20] and generalized here to our setting, whenever
proxMk

τkg
is a linear or affine operator.

1. If g(x) = ⟨c, x⟩, then proxMk
τkg

(u) = u− τkM
−1
k c and therefore, we obtain

xk+1 = proxMk
τkg

(xk − τkM
−1
k K∗ȳk − τkM

−1
k ∇h(xk))

= xk − τk[M
−1
k K∗ȳk +M−1

k ∇h(xk) +M−1
k c] .

Kxk+1 = Kxk − τk[KM−1
k K∗ȳk + τkKM−1

k ∇h(xk) + τkKM−1
k c] .

2. If g(x) = 1
2∥x − b∥2, then proxMk

τkg
(u) = (I + τkM

−1
k)−1[u + τkM

−1
k b] and

therefore, we obtain

xk+1 = proxMk
τkg

(xk − τkM
−1
k K∗ȳk − τkM

−1
k ∇h(xk))

= (I + τkM
−1
k)−1[xk − τkM

−1
k K∗ȳk − τkM

−1
k ∇h(xk) + τkM

−1
k b] ,

Kxk+1 = K(I + τkM
−1
k)−1[xk − τk(M

−1
k K∗ȳk +M−1

k ∇h(xk)−M−1
k b)] .

3. Let g(x) = δH(x), where H refers to the hyperplane H := {u : ⟨u, a⟩ = b}.
Then proxMk

τkg
(u) = u+ b−⟨u,a⟩

∥a∥2

M
−1
k

M−1
k a and therefore, we obtain

xk+1 = proxMk
τkg

(xk − τkM
−1
k K∗ȳk − τkM

−1
k ∇h(xk))

= xk − τk[M
−1
k K∗ȳk +M−1

k ∇h(xk)]

+
b−

〈
xk − τk[M

−1
k K∗ȳk +M−1

k ∇h(xk)], a
〉

∥a∥2
M−1

k

M−1
k a ,

Kxk+1 = Kxk − τk[KM−1
k K∗ȳk +KM−1

k ∇h(xk)]

+
b−

〈
xk − τk[M

−1
k K∗ȳk + τkM

−1
k ∇h(xk)], a

〉
∥a∥2

M−1
k

KM−1
k a .

4 Convergence Analysis of Algorithm 1

Let us now analyze the convergence of Algorithm 1. As for most variable metric
primal–dual algorithms (cf. [12,11,10,28]), we require the following restriction for
the change of the metric from one iteration to the next. Under this condition,
we can generalize all convergence results from [20] by adapting their proofs.

Assumption 1. Let α ∈ (0,+∞). (Mk)k∈N is a sequence in Sα(X) such that{
∃CM ∈ R, s.t.supk∈N||Mk|| ≤ CM < ∞ ,

(∃(ηk)k∈N ∈ ℓ1+(N))(∀k ∈ N) : (1 + ηk)Mk ⪰ Mk+1 .
(7)

Lemma 1. (i) There exists some σ > 0 such that σk ≥ σ for any k ∈ N.
(ii) The line search terminates.
(iii) If βk ≡ β, θk is bounded from above by some θ for any k ∈ N.

The proof is provided in Section B.1.

Theorem 1. Consider Problem (1) and let the sequence (xk, yk)k∈N be gener-
ated by Algorithm 1 with βk ≡ β where Assumption 1 holds. Then (xk, yk)k∈N is
a bounded sequence and its cluster points are solutions of (1). Furthermore, if
f∗|domf∗ is continuous and σk is bounded from above, then the whole sequence
(xk, yk)k∈N converges to a solution of (1).

The proof is provided in Section B.2.

We obtain the same ergodic convergence rate as in [20], with respect to the
primal–dual gap Gx̂,ŷ which is the difference (gap) between the optimal primal
objective value in (2) and the optimal dual objective value (3).

Theorem 2. Let the sequence (xk, yk)k∈N be generated by Algorithm 1 with βk ≡
β where Assumption 1 holds and (x̂, ŷ) be some saddle point of (1). Then it holds
for a constant D = Πk∈N(1 + ηk) < +∞ that

Gx̂,ŷ(X̄
N , Ȳ N) ≤ D

sN

(1

2β
∥x1 − x̂∥2M1

+
1

2
∥y1 − ŷ∥2 + σ1θ1Dx̂,ŷ(y

0)
)
= O

(1

N

)
,

(8)
where sN :=

∑N
k=1 σk, X̄N :=

∑N
k=1 σkx

k+1

sN
and Ȳ N :=

σ1θ1y
0+

∑N
k=1 σkȳ

k

σ1θ1+sN
. The

last equality in (8) provides a simplified rate in terms of the big-O notation.

The proof is provided in Section B.3.
Under the additional assumption that g is strongly convex, improved conver-

gence rates can be derived when (βk)k∈N is varied appropriately.

Theorem 3. Assume g is γ-strongly convex and (xk, yk)k∈N is generated by
Algorithm 1 with

βk =
βk−1

min{1 + γ
CM

βk−1σk−1, Cθ}
, ∀k ∈ N , and β0 > 0 , (9)

where Cθ ∈ R+ is a constant, Assumption 1 holds and (x̂, ŷ) be some saddle
point of (1). Then, we have (θk)k∈N is bounded from above. Furthermore, we
obtain

∥xN − x̂∥ = O(1/N) and Gx̂,ŷ(X̄
N , Ȳ N) = O(1/N2) ,

where (X̄N , Ȳ N) are the ergodic sequences defined in Theorem 2.

The proof is provided in Section B.4.

Remark 2. For the result in Theorem 3, δ = 1 is also admitted.

5 Computing and Representing the quasi-Newton Metric

In this section, we abuse notation in order to follow the conventions of quasi-
Newton methods3. The metric Mk is expected to be an approximation of the
3 For example, the variable yk defined in (12) is not the dual variable in Algorithm 1.

Hessian ∇2h(xk) at xk for the k-th iteration. The most popular quasi-Newton
methods are the SR1 and BFGS methods (and their low-memory variants), which
update Mk by adding a rank-one modification (SR1 method)

Mk+1 := MSR1
k+1 = Mk +

(yk −Mks
k)(yk −Mks

k)⊤

(yk −Mksk)⊤sk
, (10)

or a rank-two modification (BFGS method)

Mk+1 := MBFGS
k+1 = Mk +

yk(yk)⊤

(sk)⊤yk
− Mks

k(sk)⊤Mk

(sk)⊤Mksk
, (11)

respectively, where

sk := xk+1 − xk and yk := ∇h(xk+1)−∇h(xk) . (12)

In order to apply quasi-Newton methods on large-scale problems, m-limited
memory quasi-Newton methods are adopted [16], with the most popular ver-
sion being L-BFGS [29]. It means that instead of generating Mk via all previous
si and yi for i = 1, . . . , k and M0, for each k, the metric Mk is re-computed
based on Mk,0 and the most recent m vectors si and yi for i = k−m+1, . . . , k,
if k ≥ m. Usually, m is very small, such that only a small storage will be re-
quired. As pointed out by [5], the matrices of the m-limited memory version of
quasi-Newton methods have a compact representation of the form

Mk = Mk,0 +AkQ
−1
k A⊤

k , (13)

where Mk,0 ∈ Rn×n, n = dim(X), is a symmetric positive definite matrix,
Ak ∈ Rn×m, and a symmetric and non-singular matrix Qk ∈ Rm×m (m ≪ n).
For limited memory BFGS (known as L-BFGS), we have the following block-
matrix representation

Ak =
[
Mk,0Sk Yk

]
∈ Rn×2m and Qk =

[
−S∗

kMk,0Sk −Lk

−L∗
k Dk

]
∈ R2m×2m ,

(14)
where Sk and Yk are matrices collecting the m most recent vectors in (12) as
columns, Dk := D(S⊤

k Yk) and Lk := L(S⊤
k Yk) refer to the diagonal D(·) and

the strict lower triangular L(·) part of the matrix S⊤
k Yk, respectively. By using

a spectral decomposition Q−1 = V ΛV ⊤ with orthogonal V ∈ Rs×s and diagonal
Λ ∈ Rs×s, for some s ∈ N, (13) is transformed into the compact representation

Mk = Mk,0 + U1U
⊤
1 − U2U

⊤
2 , (15)

for some U1 ∈ Rn×m and U2 ∈ Rn×m. In detail, since Λ is a diagonal matrix with
eigenvalues λi, i = 1, 2, . . . , s of Q−1

k on the diagonal, we decompose Λ = Λ1−Λ2

where Λ1, given by (Λ1)i,i = max(λi, 0), i = 1, 2, . . . , s, corresponds to the
positive eigenvalues and Λ2, given by (Λ2)i,i = max(−λi, 0), i = 1, 2, . . . , s,
corresponds to the negative eigenvalues. In this way, we obtain

U1 := (AkV)Λ
1/2
1 and U2 := (AkV)Λ

1/2
2 . (16)

Theoretically, it is guaranteed that Mk = Mk,0 + U1U
⊤
1 − U2U

⊤
2 is positive

definite [13] if skyk > 0 for any k ∈ N. However, in order to account for numerical
rounding errors and the assumption that Mk ∈ Sα is bounded from above by
some CM , we adopt a scaling version:

M̃k = Mk,0 + γ1U1U
⊤
1 − γ2U2U

⊤
2 ,

Mk = min{CM − α

∥M̃k∥2
, 1}M̃k + αI ,

(17)

where ∥M̃k∥2 denotes the l2 norm of matrix M̃k and we set α = 0.01,γ1 = 1,
γ2 = 1, CM = 50 in practice. There is an easy way to make sure that Assump-
tion 1 is satisfied by setting γ1 = ηk

∥U1∥2 and γ2 = ηk

∥U2∥2 with arbitrary ηk ∈ ℓ1+.

6 Proximal Calculus and Efficient Implementation

The transformation in Section 5 enables us to compute the proximal mapping
with respect to the metric in the form of (15) via the proximal calculus developed
in [3], which we state here for completeness.

Theorem 4. Let B = B0 + U1U
⊤
1 − U2U

⊤
2 ∈ Sσ(Rn) with σ > 0, B0 ∈ Sσ(Rn)

and Ui ∈ Rn×ri with rank ri (i = 1, 2). Set B1 = B0+U1U
⊤
1 . Then, the following

holds:
proxBg (x) = proxB0

g (x+B−1
1 U2α

∗
2 −B−1

0 U1α
∗
1) , (18)

where α∗
i , i = 1, 2, are the unique zeros of the coupled system L(α) = L(α1, α2) =

0, where α = (α1, α2) ∈ Rr1+r2 and L = (L1,L2) is defined by

L1(α1, α2) = U⊤
1 (x+B−1

1 U2α2 − proxB0
g (x+B−1

1 U2α2 −B−1
0 U1α1)) + α1 ,

L2(α1, α2) = U⊤
2 (x− proxB0

g (x+B−1
1 U2α2 −B−1

0 U1α1)) + α2 .

(19)

Here, L : Rr1+r2 → Rr1+r2 is Lipschitz continuous.

The computation of a possibly complicated proximal mapping proxBg (x) is
reduced to a simple (by assumption) proximal mapping proxB0

g and a low dimen-
sional root finding problem in (19), which we tackle by the semi-smooth Newton
solver proposed in [3], formulated in Algorithm 2. It requires to solve Newton-
like equations where the classic Jacobian at the current iterate αk is replaced by
the Clarke Jacobian ∂cL(αk) (see [9]), where we account for inexact solutions of
these subproblems in terms of an error ek. For completeness, we also state the
convergence result of [3] for Algorithm 2.

Theorem 5. If g is in addition a tame function, then the Lipschitz continuous
function L is semi-smooth [4] and all elements of ∂CL(α∗) are non-singular[3].
Therefore, if ρk ≤ ρ̄, ∀k ∈ N, for some sufficiently small ρ̄ and α0 sufficiently
close to α∗, then the sequence generated by the Algorithm 2 is well-defined and
converges to α∗ linearly. Additionally, if ρk → 0, the convergence is superlinear.

Algorithm 2 Semi-smooth Newton method to solve L(α) = 0 in (19)
Require: [initial data] α0 ∈ Rr, [maximum iterations] N

Update for k = 0, · · · , N :
(i) Select Gk ∈ ∂cL(αk), compute αk+1 such that

L(αk) +Gk(αk+1 − αk) = ek ,

and ek ∈ Rr is an error term satisfying ∥ek∥ ≤ ρk∥Gk∥ and ρk ≥ 0.
(ii) if L(αk) = 0 then terminate.
End of for-loop

The tameness assumption is extremely mild, as it includes basically any func-
tion that occurs in practical applications, by excluding pathological special cases.
For example this class of functions comprises all semi-algebraic functions [4].

7 Numerical Experiment

We apply our proposed algorithm for solving a challenging non-smooth image
deblurring problem under a Poisson noise assumption [27]. Given the observation
b ∈ Rnx×ny as nx × ny-sized image, the task is the following popular problem:

min
x∈Rnx×ny

+

DKL(b, Ax) + γ∥Dx∥2,1 , (20)

which involves the Kullback–Leibler divergence as data fidelity measure h(x) :=
DKL(b, Ax) :=

∑
i,j(Ax)i,j − bi,j log((Ax)i,j) with respect to the blurred recon-

struction Ax with known blur operator and a discrete total variation regulariza-
tion term f(x) = γ∥Dx∥2,1 that is steered by a weight γ > 0 where D implements
discrete spatial finite differences. We recast (20) into the saddle point problem:

min
x∈Rnx×ny

max
y∈R2×nx×ny

⟨Dx, y⟩+ δRnx×ny
+

(x) +DKL(b, Ax)− δ∥·∥2,∞≤γ(y) (21)

and set g(x) := δRnx×ny
+

(x) and K = D in (1). Figure 1 compares several methods

including PDHG with fixed stepsize (PDHG), PDHG with line search (PDAL),
PDHG with fixed stepsize and variable metric (VarPDHG), PDHG with variable
metric and line search (VarPDAL). The variable metric is generated by the limited
memory BFGS method in Section 5. Figure 1 shows the primal gap where the
optimal primal value was computed for 10000 iterations by running PDHG. For
the update of the variable metric (17), we set γ1 = 1.0 and γ2 = 0.99. However,
the Assumption 1 is not satisfied since it is not guaranteed by the construction of
the metric that there is a sequence (ηk)k ∈ ℓ1+(N) such that Mk+1 ⪯ (1+ηk)Mk.
Fortunately, we still observe convergence of PDHG with this variable metric.
Figure 1 shows that a variable metric (VarPDHG) improves the convergence vs
only using line search. However, our algorithm VarPDAL that combines both
features is even faster, with the best performance when m = 9.

100 101 102 103

iterations

10 4

10 3

10 2

10 1

100

101

102

103

Pr
im

al
 g

ap

deblurring image under Poisson noise
VarPDAL memory=1
VarPDAL memory=3
VarPDAL memory=5
VarPDAL memory=7
VarPDAL memory=9

100 101 102

time

10 4

10 3

10 2

10 1

100

101

102

103

Pr
im

al
 g

ap

deblurring image under Poisson noise
VarPDAL memory=1
VarPDAL memory=3
VarPDAL memory=5
VarPDAL memory=7
VarPDAL memory=9

100 101 102 103

iterations

10 3

10 1

101

103

Pr
im

al
 g

ap

deblurring image under Poisson noise
PDHG
PDAL
VarPDHG memory=1
VarPDHG memory=5
VarPDAL memory=9

10 1 100 101 102

time

10 3

10 1

101

103
Pr

im
al

 g
ap

deblurring image under Poisson noise
PDHG
PDAL
VarPDHG memory=1
VarPDHG memory=5
VarPDAL memory=9

Fig. 1: Performance evaluation for the experiment in (21). Algorithms are de-
scribed in the text. Our algorithms, which combine a quasi-Newton variable
metric with line search, outperform all other algorithms (that either use a vari-
able metric VarPDHG or line search PDAL; or none of the two PDHG).

As a second experiment to test out accelerated version, we consider A = I and
a constraint set C := {x|xij ∈ [ϵ, 255]} since the grey value of each pixel should
be less than 255 and be positive; We set ϵ = 0.1. In this case DKL(b, x) restricted
on C is a strongly convex function. We apply the accelerated version of Algorithm
1 in Theorem 3, and we use the notation VarAPDAL. Similary, APDAL denotes the
accelerated version of PDAL. The dashed line in 2 corresponds to O(1/N2). We
can observe that VarPDAL, APDAL can converge faster than O(1/N2) as predicted
by the convergence theorem.

In order to record the exact algorithmic details for our experiments, all
code for experiments from this paper is available at https://github.com/
wsdxiaohao/VarPDAL.git.

https://github.com/wsdxiaohao/VarPDAL.git
https://github.com/wsdxiaohao/VarPDAL.git

100 101 102

iterations

100

101

102

103

104

Pr
im

al
 g

ap

denoising

PDHG
APDAL
VarPDHG memory=1
VarPDHG memory=5
VarAPDAL memory=1
VarAPDAL memory=3
VarAPDAL memory=5
VarAPDAL memory=7
VarAPDAL memory=9

10 2 10 1 100 101

time

100

101

102

103

104

Pr
im

al
 g

ap

denoising

PDHG
APDAL
VarPDHG memory=1
VarPDHG memory=5
VarAPDAL memory=1
VarAPDAL memory=3
VarAPDAL memory=5
VarAPDAL memory=7
VarAPDAL memory=9

Fig. 2: Performance evaluation for the experiment for a strongly convex case.
This figure reflects that our algorithms can retrieve O(1/N2) convergence rate
as PDAL, which is theoretically guaranteed by Theorem 3.

8 Conclusion

In this paper, we introduced a line search variant of a recently introduced quasi-
Newton primal-dual algorithm. In contrast to related work, the employed quasi-
Newton metric is of type “identity ± low rank”, which captures significantly more
second order information than a commonly used diagonal metric. We equally
care for both, theoretical convergence guarantees including convergence rates as
well as efficient practical implementation. The additional line search procedure
usually leads to larger steps at a computational cost that pays off, which is
confirmed by our numerical experiments.

References

1. D. Applegate, M. Díaz, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and
W. Schudy. Practical large-scale linear programming using primal-dual hybrid
gradient. Advances in Neural Information Processing Systems, 34, 2021.

2. S. Becker and J. Fadili. A quasi-Newton proximal splitting method. Advances in
Neural Information Processing Systems, 25, 2012.

3. S. Becker, J. Fadili, and P. Ochs. On quasi-Newton forward-backward splitting:
proximal calculus and convergence. SIAM Journal on Optimization, 29(4):2445–
2481, 2019.

4. J. Bolte, A. Daniilidis, and A. Lewis. Tame functions are semismooth. Mathemat-
ical Programming, 117(1):5–19, 2009.

5. R.H. Byrd, J. Nocedal, and R.B. Schnabel. Representations of quasi-newton ma-
trices and their use in limited memory methods. Mathematical Programming,
63(1):129–156, 1994.

6. A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex prob-
lems with applications to imaging. Journal of mathematical imaging and vision,
40(1):120–145, 2011.

7. A. Chambolle and T. Pock. An introduction to continuous optimization for imag-
ing. Acta Numerica, 25:161–319, 2016.

8. A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, 159(1):253–287, 2016.

9. F. H. Clarke. Optimization and nonsmooth analysis. Society for Industrial and
Applied Mathematics, 1990.

10. P. Combettes, L. Condat, J.C. Pesquet, and B. Vu. A forward-backward view of
some primal-dual optimization methods in image recovery. IEEE International
Conference on Image Processing, 2014.

11. P. L. Combettes and B. C. Vũ. Variable metric forward–backward splitting with
applications to monotone inclusions in duality. Optimization, 63(9):1289–1318,
2014.

12. D. Davis. Convergence rate analysis of primal-dual splitting schemes. SIAM Jour-
nal on Optimization, 25(3):1912–1943, 2015.

13. R. Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.
14. T. Goldstein, M. Li, X. Yuan, E. Esser, and R. Baraniuk. Adaptive primal-dual

hybrid gradient methods for saddle-point problems. arXiv:1305.0546, 2013.
15. C. Kanzow and T. Lechner. Globalized inexact proximal newton-type methods for

nonconvex composite functions. Computational Optimization and Applications,
78:377–410, 2021.

16. C. Kanzow and T. Lechner. Efficient regularized proximal quasi-Newton meth-
ods for large-scale nonconvex composite optimization problems. Technical report,
University of Würzburg, Institute of Mathematics, January 2022.

17. S. Karimi and S. Vavasis. IMRO: A proximal quasi-Newton method for solving l1-
regularized least squares problems. SIAM Journal on Optimization, 27(2):583–615,
2017.

18. J.D. Lee, Y. Sun, and M.A. Saunders. Proximal Newton-type methods for min-
imizing composite functions. SIAM Journal on Optimization, 24(3):1420–1443,
2014.

19. D. A. Lorenz and T. Pock. An inertial forward-backward algorithm for monotone
inclusions. Journal of Mathematical Imaging and Vision, 51(2):311–325, 2015.

20. Y. Malitsky and T. Pock. A first-order primal-dual algorithm with linesearch.
SIAM Journal on Optimization, 28(1):411–432, 2018.

21. P. Patrinos, L. Stella, and A. Bemporad. Forward-backward truncated Newton
methods for convex composite optimization. arXiv:1402.6655, 2014.

22. B. Polyak. Introduction to optimization. Optimization Software, 1987.
23. M. Schmidt, D. Kim, and S. Sra. Projected Newton-type methods in machine

learning. Optimization for Machine Learning, (1), 2012.
24. M. Schmidt, D. Kim, and S. Sra. Projected newton-type methods in machine

learning. Optimization for Machine Learning, 2012.
25. L. Stella, A. Themelis, and P. Patrinos. Forward–backward quasi-Newton methods

for nonsmooth optimization problems. Computational Optimization and Applica-
tions, 67(3):443–487, 2017.

26. T. Valkonen. A primal–dual hybrid gradient method for nonlinear operators with
applications to MRI. Inverse Problems, 30(5):055012, 2014.

27. Y. Vardi, L.A. Shepp, and L. Kaufman. A statistical model for positron emission
tomography. Journal of the American statistical Association, 80(389):8–20, 1985.

28. S. Wang, J. Fadili, and P. Ochs. Inertial quasi-newton methods for monotone
inclusion: Efficient resolvent calculus and primal-dual methods. arXiv:2209.14019,
2022.

29. S. Wright and J. Nocedal. Numerical optimization. Springer Science, 1999.

A Preliminaries

There are several preliminaries we will use in the following section. The first
one is a convergence result from [22, Lemma 2.2.2] of a special sequence which
appears in B.2.

Lemma 2. Let ak ≥ 0 and let

ak+1 ≤ (1 + νk)ak + ζk, νk ≥ 0, ζk ≥ 0,∑
k∈N

νk < ∞,
∑
k∈N

ζk < ∞. (22)

Then, ak → A ≥ 0 for some A < +∞.

The following identity is called (cosine rule), which proves to be very useful.

2 ⟨a− b, c− a⟩ = ∥b− c∥2 − ∥a− b∥2 − ∥a− c∥2 ∀a, b, c ∈ X . (23)

Another inequality appears many times in B.2 is the characteristic property of
the proximal operator with respect to a symmetric positive definite matrix M :

x̂ = proxMg (x̄) ⇐⇒ ⟨x̂− x̄, y − x̂⟩M ≥ g(x̄)− g(y) ∀y ∈ X . (24)

If M = I is an identity matrix, then (24) is the characteristic property of the
standard proximal operator. Assume (x̂, ŷ) is a saddle point which solves (1).
Then we obtain

Px̂,ŷ(x) = g(x) + h(x)− g(x̂)− h(x̂) + ⟨K∗ŷ, x− x̂⟩ ≥ 0 ∀x ∈ X ,

Dx̂,ŷ(y) = f∗(y)− f∗(ŷ)− ⟨Kx̂, y − ŷ⟩ ≥ 0 ∀y ∈ Y ,
(25)

where Px̂,ŷ(x) and Dx̂,ŷ(y) are convex. Then Gx̂,ŷ(x, y) := Px̂,ŷ(x)+Dx̂,ŷ(y) is the
primal-dual gap. Without ambiguity, in the proofs, we may omit the subscript
in P and D.

B Collection of Proofs

B.1 Proof of Lemma 1

It is a similar argument with the one in [20].

(i)&(ii) σk is decreased by µ ∈ (0, 1) and the inequality (6) is satisfied as long

as σk < σk :=
−1+

√
(4δα)/βk+1

2L̂
where L̂ = max{L,LK}. We introduce a

notation σ :=
−1+

√
(4δα)/β+1

2L̂
. Since βk < β, we have σk ≥ σ. We argument

by induction. We assume σ0 > µσ0 and σk−1 > µσk−1 . For the case σk = σ̄k,
then σk ≥ (βk−1

βk
)σk−1 > µ(βk−1

βk
)σk−1 > µσk > µσ. For the case σk = µiσ̄k

, σ′
k = µi−1σ̄k does not satisfy (6). It follows σ′

k > σk. Thus, σk = µσ′
k >

µσk ≥ µσ.
(iii) By σk ≤ σk−1

√
1 + θk−1, we get θk ≤

√
1 + θk−1. Thus, θk is bounded from

above.

B.2 Proof of Theorem 1

The following proof is adapted from [20]. Assume (x̂, ŷ) is a saddle point of
problem 1 and βk ≡ β. By using (24), we obtain the following two inequalities:〈

yk+1 − yk − σkKxk+1, ŷ − yk+1
〉
≥ σk(f

∗(yk+1)− f∗(ŷ)) (26)〈
xk+1 − xk + τkM

−1
k K∗ȳk + τkM

−1
k ∇h(xk), x̂− xk+1

〉
Mk

≥ τk(g(x
k+1)− g(x̂))

(27)
By using τk = βσk〈

1

β
(xk+1 − xk) + σkM

−1
k K∗ȳk + σkM

−1
k ∇h(xk), x̂− xk+1

〉
Mk

≥ σk(g(x
k+1)− g(x̂))

(28)

Similarly, we apply (24) on yk and obtain〈
yk − yk−1 − σk−1Kxk, y − yk

〉
≥ σk−1(f

∗(yk)− f∗(y)) ∀y ∈ Y . (29)

Setting y = yk+1 and y = yk−1 respectively, we obtain〈
yk − yk−1 − σk−1Kxk, yk+1 − yk

〉
≥ σk−1(f

∗(yk)− f∗(yk+1)) ∀y ∈ Y , (30)〈
yk − yk−1 − σk−1Kxk, yk−1 − yk

〉
≥ σk−1(f

∗(yk)− f∗(yk−1)) ∀y ∈ Y . (31)

We deduce from (30)× θk and θk = σk

σk−1
that:〈

θk(y
k − yk−1)− σkKxk, yk+1 − yk

〉
≥ σk(f

∗(yk)− f∗(yk+1)) . (32)

By (31)× θ2k, we also get:〈
θk(y

k − yk−1)− σkKxk, θk(y
k−1 − yk)

〉
≥ σk(θkf

∗(yk)− θkf
∗(yk−1)) . (33)

Summing (32) and (33) together, by using ȳk = yk + θk(y
k − yk−1), we obtain〈

ȳk − yk − σkKxk, yk+1 − ȳk
〉
≥ σk((1 + θk)f

∗(yk)− θkf
∗(yk−1)− f∗(yk+1)) .

(34)
To sum up inequalties (26), (28) and (34) , we obtain〈
yk+1 − yk − σkKxk+1, ŷ − yk+1

〉
+

〈
1

β
(xk+1 − xk) + σkM

−1
k K∗ȳk + σkM

−1
k ∇h(xk), x̂− xk+1

〉
Mk

+
〈
ȳk − yk − σkKxk, yk+1 − ȳk

〉
≥ σk(f

∗(yk+1)− f∗(ŷ)) + σk(g(x
k+1)− g(x̂)) + σk((1 + θk)f

∗(yk)− θkf
∗(yk−1)

− f∗(yk+1)) ,

(35)

Reorganizing the above inequality and using τk = βσk, we have

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
+
〈
−σkKxk, yk+1 − ȳk

〉
+
〈
−σkKxk+1, ŷ − yk+1

〉
+
〈
σkK

∗ȳk + σk∇h(xk), x̂− xk+1
〉

≥ σk(g(x
k+1)− g(x̂)) + σk((1 + θk)f

∗(yk)− θkf
∗(yk−1)− f∗(ŷ)) ,

(36)

As in [20], we still have:

〈
−σkKxk, yk+1 − ȳk

〉
+
〈
−σkKxk+1, ŷ − yk+1

〉
+
〈
σkK

∗ȳk, x̂− xk+1
〉

= σk

〈
Kxk −Kxk+1, ȳk − yk+1

〉
+ σk

〈
Kx̂, ȳk − ŷ

〉
− σk

〈
K∗ŷ, xk+1 − x̂

〉
(37)

Adding σkh(x
k+1)− σkh(x̂) on both sides of (36), we obtain:

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
+
〈
−σkKxk, yk+1 − ȳk

〉
+
〈
−σkKxk+1, ŷ − yk+1

〉
+
〈
σkK

∗ȳk + σk∇h(xk), x̂− xk+1
〉
+ σkh(x

k+1)− σkh(x̂)

≥ σk(g(x
k+1)− g(x̂) + (1 + θk)f

∗(yk)− θkf
∗(yk−1)− f∗(ŷ) + h(xk+1)− h(x̂)) .

(38)

Combining (37) and (38), we have

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
σk

〈
Kxk −Kxk+1, ȳk − yk+1

〉
+ σk

〈
Kx̂, ȳk − ŷ

〉
− σk

〈
K∗ŷ, xk+1 − x̂

〉
+
〈
σk∇h(xk), x̂− xk+1

〉
+ σkh(x

k+1)− σkh(x̂)

≥ σk(g(x
k+1)− g(x̂) + (1 + θk)f

∗(yk)− θkf
∗(yk−1)− f∗(ŷ) + h(xk+1)− h(x̂)) .

(39)

By the definition of D(y) (25) and ȳk = yk + θk(y
k − yk−1), we have

(1 + θk)f
∗(yk)− θkf

∗(yk−1)− f∗(ŷ)−
〈
Kx̂, ȳk − ŷ

〉
= (1 + θk)(f

∗(yk)− f∗(ŷ)−
〈
Kx̂, yk − ŷ

〉
)− θk(f

∗(yk−1)− f∗(ŷ)

−
〈
Kx̂, yk−1 − ŷ

〉
)

= (1 + θk)D(yk)− θkD(yk−1) .

(40)

Using (40) and the definition of P (x), we deduce from (39) that

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
+ σk

〈
Kxk −Kxk+1, ȳk − yk+1

〉
+
〈
σk∇h(xk), x̂− xk+1

〉
+ σkh(x

k+1)− σkh(x̂)

≥ σk(P (xk+1) + (1 + θk)D(yk)− θkD(yk−1)) .

(41)

From the line search condition (6), we have

σk(h(x
k+1)− h(xk)−

〈
∇h(xk), xk+1 − xk

〉
)

≤ δ

2β
∥xk+1 − xk∥2Mk

− 1

2
σ2
k∥Kxk+1 −Kxk∥2 .

(42)

Additionally, by the convexity of h(x), we also have

h(xk)− h(x̂) +
〈
∇h(xk), x̂− xk

〉
≤ 0 . (43)

Combining (42) and σk × (43), we get

σk(h(x
k+1)− h(x̂)−

〈
∇h(xk), xk+1 − x̂

〉
)

≤ δ

2β
∥xk+1 − xk∥2Mk

− 1

2
σ2
k∥Kxk+1 −Kxk∥2 .

(44)

Thus, it follows from (41) and (44) that

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
+ σk

〈
Kxk −Kxk+1, ȳk − yk+1

〉
+

δ

2β
∥xk+1 − xk∥2Mk

− 1

2
σ2
k∥Kxk+1 −Kxk∥2

≥ σk(P (xk+1) + (1 + θk)D(yk)− θkD(yk−1)) .

(45)

Using Cauchy-Schwarz inequality, we obtain

〈
yk+1 − yk, ŷ − yk+1

〉
+

1

β

〈
xk+1 − xk, x̂− xk+1

〉
Mk

+
〈
ȳk − yk, yk+1 − ȳk

〉
+

1

2
σ2
k∥Kxk −Kxk+1∥2 + 1

2
∥ȳk − yk+1∥2 + δ

2β
∥xk+1 − xk∥2Mk

− 1

2
σ2
k∥Kxk+1 −Kxk∥2

≥ σk(P (xk+1) + (1 + θk)D(yk)− θkD(yk−1)) .

(46)

Applying (23), we deduce from (46) that

(
1

2
∥yk − ŷ∥2 − 1

2
∥yk+1 − yk∥2 − 1

2
∥ŷ − yk+1∥2)

+ (
1

2β
∥xk − x̂∥2Mk

− 1

2β
∥xk+1 − xk∥2Mk

− 1

2β
∥x̂− xk+1∥2Mk

)

+ (
1

2
∥yk − yk+1∥2 − 1

2
∥ȳk − yk∥2 − 1

2
∥yk+1 − ȳk∥2)

+
1

2
∥ȳk − yk+1∥2 + δ

2β
∥xk+1 − xk∥2Mk

≥ σk(P (xk+1) + (1 + θk)D(yk)− θkD(yk−1)) .

(47)

Reorganizing the above inequalities, we obtain

1

2
∥yk − ŷ∥2 + 1

2β
∥xk − x̂∥2Mk

− 1− δ

2β
∥xk+1 − xk∥2Mk

+ σkθkD(yk−1)− 1

2
∥ȳk − yk∥2

≥ σk(P (xk+1) + (1 + θk)D(yk)) +
1

2
∥ŷ − yk+1∥2 + 1

2β
∥x̂− xk+1∥2Mk

.

(48)

It follows from σ̄k ≤
√
1 + θk−1σk−1 that σkθk ≤ σ2

k

σk−1
≤ σ̄2

k

σk−1
≤ (1+θk−1)σk−1.

Thus,

1

2
∥yk − ŷ∥2 + 1

2β
∥xk − x̂∥2Mk

− 1− δ

2β
∥xk+1 − xk∥2Mk

+ σk−1(1 + θk−1)D(yk−1)− 1

2
∥ȳk − yk∥2

≥ σk(1 + θk)D(yk) +
1

2
∥ŷ − yk+1∥2 + 1

2β
∥x̂− xk+1∥2Mk

.

(49)

Since (1 + ηk)Mk ⪰ Mk+1, we can obtain the following key inequality:

1

2
∥yk − ŷ∥2 + 1

2β
∥xk − x̂∥2Mk

− 1− δ

2β
∥xk+1 − xk∥2Mk

+ σk−1(1 + θk−1)D(yk−1)− 1

2
∥ȳk − yk∥2

≥ σk(1 + θk)D(yk) +
1

2
∥ŷ − yk+1∥2 + 1

2β(1 + ηk)
∥x̂− xk+1∥2Mk+1

.

(50)

Set Ak := 1
2∥y

k− ŷ∥2+σk−1(1+θk−1)D(yk−1)+ 1
2β ∥x

k− x̂∥2Mk
. Then, we deduce

from (50) that
Ak+1 ≤ (1 + ηk)Ak . (51)

By Lemma 2, Ak is bounded from above by some constant C. Thus, ∥yk − ŷ∥
and ∥xk − x̂∥Mk

are both bounded. By the assumption that Mk is uniformly

bounded, ∥xk − x̂∥ is also bounded. As a result, we deduce from (50) that∑
k

(1− δ

2β
∥xk+1 − xk∥2Mk

+
1

2
∥ȳk − yk∥2

)
≤

∑
k

(
(1 + ηk)Ak −Ak+1

)
≤ C

∑
k

ηk +A0 < +∞ .
(52)

It implies that ∥xk+1−xk∥Mk
→ 0 and ∥ȳk−yk∥ → 0. So does ∥xk+1−xk∥ → 0,

since (Mk)k∈N ⊂ Sα(X). Since σk > σ for some σ which is shown in Lemma 1
and β > 0 is fixed,

yk+1 − yk

σk
=

ȳk+1 − yk+1

σk+1
→ 0 as k → +∞ ,

∥xk+1 − xk∥2Mk

τk
→ 0 as k → +∞ .

(53)

Since (xk, yk)k∈N is bounded, we can extract a subsequence (xki , yki)i∈N con-
verging to some cluster point (x∗, y∗). As in [20], similarly, by using the lower
semi-continuity of functions g and f∗ and the continuity of function h, we can
pass the following two inequalities to the limit:〈

yki+1 − yki

σki

−Kxki+1, y − yki+1

〉
≥ (f∗(yki+1)− f∗(y)) ∀y ∈ Y ,〈

xki+1 − xki

τki

+M−1
ki

K∗ȳki +M−1
ki

∇h(xki), x− xki+1

〉
Mki

=

〈
Mki

(xki+1 − xki)

τki

, x− xki+1

〉
+
〈
K∗ȳki +∇h(xki), x− xki+1

〉
≥ (g(xki+1)− g(x)) ∀x ∈ X .

(54)

Thus, (x∗, y∗) is the saddle point of (1). If, additionally, f∗(y)|domf∗ is con-
tinuous, then f∗(yki) → f∗(y∗) and D(yki) → 0 as i → +∞. From (50), we
have 1

Πk
j=1(1+ηj)

Ak is monotone. Setting x̂ = x∗ and ŷ = y∗ in (50), by the
boundedness of σk and θk, it follows that

lim
k→∞

Ak

Π∞
i=1(1 + ηi)

≤ lim
k→∞

Ak

Πk
i=1(1 + ηi)

= lim
i→∞

Aki

Πki
j=1(1 + ηj)

≤ lim
i→∞

Aki = 0

(55)
Since Π∞

i=1(1+ ηi) < +∞, we have limk→+∞ Ak → 0 which means xk → x∗ and
yk → y∗ as k → +∞.

B.3 Proof of Theorem 2

We adapt the corresponding proof in [20]. Let ϵk := σk

(
P (xk+1)+(1+θk)D(yk)−

θkD(yk−1)
)
. Then we obtain the following inequality from (47),

1

2
∥yk−ŷ∥2− 1

2
∥yk+1−ŷ∥2+ 1

2β
∥xk−x̂∥2Mk

− 1

2β
∥xk+1−x̂∥2Mk

− 1

2
∥ȳk−yk∥2 ≥ ϵk .

(56)

By the assumption 1, we get

1

2
∥yk−ŷ∥2−1

2
∥yk+1−ŷ∥2+ 1

2β
∥xk−x̂∥2Mk

− 1

2β

∥xk+1 − x̂∥2Mk+1

(1 + ηk)
−1

2
∥ȳk−yk∥2 ≥ ϵk .

(57)
Since (1 + ηk) ≥ 1, it follows

1

2
∥yk − ŷ∥2− 1

2

∥yk+1 − ŷ∥2

(1 + ηk)
+

1

2β
∥xk − x̂∥2Mk

− 1

2β

∥xk+1 − x̂∥2Mk+1

(1 + ηk)
≥ ϵk . (58)

Let both sides of the above inequality be divided by Πk−1
i=1 (1 + ηi) and it is

common to assume that an empty product yields identity i.e. Π0
i=1(1 + ηi) = 1.

Thus,

1

2

∥yk − ŷ∥2

Πk−1
i=1 (1 + ηi)

− 1

2

∥yk+1 − ŷ∥2

Πk
i=1(1 + ηi)

+
1

2β

∥xk − x̂∥2Mk

Πk−1
i=1 (1 + ηi)

− 1

2β

∥xk+1 − x̂∥2Mk+1

Πk
i=1(1 + ηi)

≥ ϵk
Πk

i=1(1 + ηi)
.

(59)

Summing up (59) for k = 1, · · · , N , we obtain

1

2
∥y1 − ŷ∥2 + 1

2β
∥x1 − x̂∥2M1

≥
N∑

k=1

ϵk
Πk

i=1(1 + ηi)
≥

N∑
k=1

ϵk
C

. (60)

Here, we used the C =
∑

k∈N(1 + ηk) < +∞.
The following steps are similar with the ones in [20].

N∑
k=1

ϵk =σN (1 + θN)D(yk) +

N∑
k=2

[(1 + θk−1)σk−1 − θkσk]D(yk−1)

− θ1σ1D(y0) +

N∑
k=1

σkP (xk+1) .

(61)

Since D is convex,

σN (1 + θN)D(yN)+

N∑
k=2

[(1 + θk−1)σk−1 − θkσk]D(yk−1)

≥ (σ1θ1 + sN)D(
σ1(1 + θ1)y

1 +
∑N

k=2 σkȳ
k

σ1θ1 + sN
)

= (σkθ1 + sN)D(
σ1θ1y

0 +
∑N

k=1 σkȳ
k

σ1θ1 + sN
)

≥ sND(Ȳ N) ,

(62)

where sN =
∑N

k=1 σk. Similarly,

N∑
k=1

σkP (xk+1) ≥ sNP (

∑N
k=1 σkx

k+1

sN
) = sNP (X̄N) . (63)

As a result,

G(X̄N , Ȳ N) = P (X̄N)+D(Ȳ N) ≤ C

sN

(1

2β
∥x1−x̂∥2M1

+
1

2
∥y1−ŷ∥2+σ1θ1D(y0)

)
.

(64)

B.4 Proof of Theorem 3

The proof is also adapted from [20]. From the update formula of βk, it follows
that βk is decreasing. First, we are going to prove that θk is bounded from
above. It is not difficult but tedious. We know that if there exists a C ∈ R+ s.t
θk ≤ C

√
1 + θk−1 then θk is bounded. From this, it is sufficient to prove that

βk−1

βk
is uniformly bounded from above by some Cθ. According to

βk =
βk−1

min{1 + γ
CM

βk−1σk−1, Cθ}
, ∀k ∈ N , and β0 > 0 , (65)

we have that βk−1

βk
= min{1 + γ

CM
βk−1σk−1, Cθ} ≤ Cθ.

Second part, we are going to show the convergence rate. Since g is strongly
convex, we obtain:〈

xk+1 − xk

τk
+M−1

k K∗ȳk +M−1
k ∇h(xk), x̂− xk+1

〉
Mk

≥ (g(xk+1)− g(x̂)) +
γ

2
∥xk+1 − x̂∥2 .

(66)

From Assumption 1, it follows that for any k ∈ N,

γ

2
∥xk+1 − x̂∥2 ≥ γ

2CM
∥xk+1 − x̂∥2Mk+1

. (67)

Following the same way in which we got equation (48), by equation (66) and
the assumption that (1 + ηk)Mk ⪰ Mk+1, we obtain

1

2
∥yk − ŷ∥2 − 1

2
∥yk+1 − ŷ∥2 + 1

2βk
∥xk − x̂∥2Mk

− 1− δ

2βk
∥xk+1 − xk∥2Mk

− 1

2βk

∥xk+1 − x̂∥2Mk+1

(1 + ηk)
− 1

2
∥ȳk − yk∥2 ≥ ϵk +

γσk

2
∥xk+1 − x̂∥2 .

(68)

In order to obtain the following inequality, it is sufficient to assume δ ≤ 1.
Thus,

1

2
∥yk − ŷ∥2 − 1

2
∥yk+1 − ŷ∥2 + 1

2βk
∥xk − x̂∥2Mk

− 1

2βk

∥xk+1 − x̂∥2Mk+1

(1 + ηk)
− 1

2
∥ȳk − yk∥2 ≥ ϵk +

γσk

2
∥xk+1 − x̂∥2 .

(69)

Since δ ≤ 1, by dividing the above inequality with σk, we have

1

2σk
∥yk − ŷ∥2 − 1

2σk
∥yk+1 − ŷ∥2 + 1

2τk
∥xk − x̂∥2Mk

− 1

2τk

∥xk+1 − x̂∥2Mk+1

(1 + ηk)
− 1

2σk
∥ȳk − yk∥2 ≥ ϵk

σk
+

γ

2
∥xk+1 − x̂∥2 ,

(70)

where, we used τk = βkσk. By using (67), from the above inequality, we obtain
that

1

2σk
∥yk − ŷ∥2 − 1

2σk
∥yk+1 − ŷ∥2 + 1

2τk
∥xk − x̂∥2Mk

− 1

2τk

∥xk+1 − x̂∥2Mk+1

(1 + ηk)

− 1

2σk
∥ȳk − yk∥2 ≥ ϵk

σk
+

γ

2CM
∥xk+1 − x̂∥2Mk+1

.

(71)

It follows from the above inequality that

1

2σk
∥yk − ŷ∥2 − 1

2σk
∥yk+1 − ŷ∥2 + 1

2τk
∥xk − x̂∥2Mk

− 1

2σk
∥ȳk − yk∥2

≥ ϵk
σk

+
1 + (1 + ηk)τkγ/CM

2τk(1 + ηk)
∥xk+1 − x̂∥2Mk+1

,

1

2σk
∥yk − ŷ∥2 − 1

2σk
∥yk+1 − ŷ∥2 + 1

2τk
∥xk − x̂∥2Mk

− 1

2σk
∥ȳk − yk∥2

≥ ϵk
σk

+
τk+1(1 + τkγ/CM)

τk

∥xk+1 − x̂∥2Mk+1

2τk+1(1 + ηk)
,

(72)

For convenience, we set γ̃ = γ/CM . From the update step of βk, it follows that

τk+1(1 + γ̃τk)

τk
≥ τk+1 min{Cθ, (1 + γ̃τk)}

τk
=

σk+1

σk
(73)

Set Bk := 1
2τk

∥xk − x̂∥2Mk
+ 1

2σk
∥yk − ŷ∥2 and B̃k := Bk

Πk−1
i=1 (1+ηi)

. From (72),
we have:

σk+1

σk(1 + ηk)
Bk+1 +

ϵk
σk

≤ Bk − 1

2σk
∥ȳk − yk∥2 (74)

By dividing the above inequality by Πk−1
i=1 (1 + ηi) ≥ 1, we obtain

σk+1

σk
B̃k+1 +

ϵk

σkΠ
k−1
i=1 (1 + ηi)

≤ B̃k − 1

2σkΠ
k−1
i=1 (1 + ηi)

∥ȳk − yk∥2 (75)

By multiplying σk on both sides, we have

σk+1B̃k+1 +
ϵk

Πk−1
i=1 (1 + ηi)

≤ σkB̃k − 1

2Πk−1
i=1 (1 + ηi)

∥ȳk − yk∥2 . (76)

By Assumption 1, C = Πi∈N(1 + ηi) < +∞, we have

σk+1B̃k+1 +
ϵk
C

≤ σkB̃k − 1

2C
∥ȳk − yk∥2 . (77)

Summing up (77) from k = 1, · · · , N , we obtain

σN+1B̃N+1 +

N∑
k=1

ϵk
C

≤ σ1B̃1 −
1

2C

N∑
k=1

∥ȳk − yk∥2 . (78)

Since σk is bounded by some σ for any k ∈ N, B̃k is bounded from above. Since
C = Πi∈N(1+ηi) < +∞, Bk is also bounded from above. So, yk is also bounded
with limk→∞ ∥ȳk − yk∥2 = 0. Thus, using the similar argument and notations in
the proof B.2, we retrieve the same key inequality as the one in [20]:

G(X̄N , Ȳ N) ≤ C

sN
(σ1B1 + θ1σ1P (x0)),

∥xN+1 − x̂∥2MN+1
≤ CτN+1

σN+1
(σ1A1 + θ1τ1P (x0)) = CβN+1 ,

(79)

Using the same argument from [20], we know from B.1 that σk is bounded by

µσk = µ(
−1+

√
(4δα)/βk+1

2L̂
) where L̂ = max{L,LK}. We claim that there exists

a constant Cβ such that, βk = Cβ(1/k
2).

i If αδ/(βk) ≤ 1, by σk ≥ µσk ≥ µσ, we have

βk+1 =
βk

min{Cθ, 1 + γ̃βkσk}
≤ βk

min{Cθ, 1 + µσδαγ̃}
. (80)

In this case, βk decreases linearly. Thus, βk+1 ≤ Cβ/(k+1)2 for k sufficiently
large.

ii If αδ/(βk) ≥ 1, then σk > µσk > µ

2L̂

√
δα
βk

. Therefore, for k large enough, we
have

βk+1 =
βk

min{Cθ, 1 + γ̃βkσk}
≤ βk

min{Cθ, 1 +
µ
√
δαγ̃

2L̂

√
βk}

=
βk

1 + µ
√
δαγ̃

2L̂

√
βk

.

(81)
In this case, by induction βk ≤ Cβ

k2 for some constant Cβ > 0.

From σk > µσk > µσ, we have sN =
∑N

k=1 σk >
∑N

k=1 σk >
∑N

k=1 O(k) ∼ N2

since βk ≤ Cβ/k
2 for k sufficiently large. Then, we conclude the results.

	A Quasi-Newton Primal-Dual Algorithm with Line Search

