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The drapability of a textile composite reinforcement is its capability to be formed on a double curved shape without wrinkling. This is an important property of a textile reinforcement when it is used to manufacture a preform in liquid composite molding processes. The analysis of the deformation modes and the form of the internal virtual works during draping of a fibrous reinforcement leads to define a physics-based Drapability Ratio determined by the in-plane shear stiffness and the bending stiffness of the textile reinforcement. This Drapability Ratio can be used to identify the reinforcement that can be draped for a given geometry. Square box forming and cylindrical forming carried out for a set of textile reinforcements under the same conditions show the relevance of this Drapability Ratio.

Introduction

Liquid Composites Molding (LCM) process [START_REF] Witten | The Market for Glass Fibre Reinforced Plastics (GRP) in 2019[END_REF][START_REF] Schmidt | A combined experimental-numerical approach for permeability characterization of engineering textiles[END_REF] is a technology used to manufacture composite parts in the aeronautical and automotive industries [START_REF] Ruiz | 19 -Flow modeling in composite reinforcements[END_REF][START_REF] Deléglise | Modeling of high speed RTM injection with highly reactive resin with on-line mixing[END_REF][START_REF] Sozer | 9 -Resin transfer molding (RTM) in polymer matrix composites[END_REF][START_REF] Sauer | Composites Market Report 2019-The Global CF-und CC-Market 2019: Market Developments, Trends, Outlook and Challenges[END_REF]. In these processes, the first step is a forming of a textile reinforcement. It is followed by an injection of the resin on the obtained preform. The present study considers continuous fiber textile reinforcements that provide the best mechanical properties to composites. This forming process, often called draping, is delicate when the geometry of the part is complex. Many studies have had, and currently have, the objective of analyzing this stage [START_REF] Gereke | Experimental and computational composite textile reinforcement forming: A review[END_REF][START_REF] Bussetta | Numerical forming of continuous fibre reinforced composite material: A review[END_REF][START_REF] Liang | A review of numerical analyses and experimental characterization methods for forming of textile reinforcements[END_REF]. Numerical simulation codes for this draping step have been developed and are making steady progress [START_REF] Thije | Large deformation simulation of anisotropic material using an updated Lagrangian finite element method[END_REF][START_REF] Hamila | A semi-discrete shell finite element for textile composite reinforcement forming simulation[END_REF][START_REF] Jauffrès | Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming[END_REF][START_REF] Haanappel | Formability analyses of unidirectional and textile reinforced thermoplastics[END_REF][START_REF] Daelemans | Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[END_REF][START_REF] El Said | Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation[END_REF][START_REF] Döbrich | Modeling the mechanical properties of textile-reinforced composites with a near micro-scale approach[END_REF][START_REF] Kärger | Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components[END_REF][START_REF] Yu | A macroscale finite element approach for simulating the bending behaviour of biaxial fabrics[END_REF][START_REF] Bai | The fibrous shell approach for the simulation of composite draping with a relevant orientation of the normals[END_REF].

When manufacturing a composite, it is necessary that the draping of the textile reinforcement is carried out without defect [20 -23]. In particular, wrinkling, which is a major flaw during draping, should be avoided [START_REF] Lightfoot | A new mechanism for the formation of ply wrinkles due to shear between plies[END_REF][START_REF] Hallander | Forming induced wrinkling of composite laminates with mixed ply material properties; an experimental study[END_REF][START_REF] Boisse | Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[END_REF][START_REF] Döbrich | Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation[END_REF][START_REF] Dangora | Predictive model for the detection of out of-plane defects formed during textile-composite manufacture[END_REF][START_REF] Thompson | Modelling defect formation in textiles during the double diaphragm forming process[END_REF]. There are several factors that can contribute to the development of wrinkles when forming a fabric. The geometry of the tools (mold, punch, die), the presence or absence of blank holders, the forming velocity, in particular play an important role. Wrinkles occur when draping over the surface of the tools leads to deformations where the minimum energy solutions contain folding. Besides these process parameters, the properties of the textile reinforcement, which are linked to its internal structure, have a major contribution to the development of wrinkles. This aptitude is a material property of the fabric called drapability.

In the field of composite manufacturing, the classical definition of the drapability of a textile reinforcement is its capability to be formed on a double curved shape without wrinkling [START_REF] Christ | Measurement and analysis of drapeability effects of warp-knit NCF with a standardised, automated testing device[END_REF].

Other points are important for a successful forming, in particular the adequate direction of the fibers, the fiber volume fraction in the final composite part. Only the ability to be draped without wrinkling is considered in this study. A textile reinforcement can or cannot be used to make complex double-curvature geometries depending on its drapability which is an important property for a textile composite reinforcement. However, this drapability of the fabric is not sufficient to rule on the possibility of wrinkle-free draping of a given forming process because factors external to the textile reinforcements have roles of primary importance. To determine the possibility of a draping without wrinkles, a numerical simulation relevant to the description of the wrinkles should be performed. Nevertheless, drapability is an essential property for the producer of a textile composite reinforcement and for the manufacturer of textile preforms to know if strongly double curved geometries can be considered for a given fabric.

The study of drapability has mainly been carried out by using an experimental device called Drape Meter [START_REF] Chu | Mechanics of elastic performance of textile materials: Part V: a study of the factors affecting the drape of fabrics-the development of a drape meter[END_REF][START_REF] Cusick | 46-The dependence of fabric drape on bending and shear stiffness[END_REF][START_REF] Collier | Measurement of fabric drape and its relation to fabric mechanical properties and subjective evaluation[END_REF][START_REF] Stylios | An investigation into the engineering of the drapability of fabric[END_REF][START_REF] Lo | Modeling a fabric drape profile[END_REF][START_REF] Lojen | Some aspects of fabric drape[END_REF][START_REF] Al-Gaadi | A new method in fabric drape measurement and analysis of the drape formation process[END_REF][START_REF] Matusiak | Influence of the structural parameters of woven fabrics on their drapeability[END_REF][START_REF] Morooka | Relation between drape coefficients and mechanical properties of fabrics[END_REF]. In a classical Drape Meter, a circular sample of radius R2 is draped under its own weight onto a support plate of smaller radius R1. (Fig. 1). The vertical projection of the contour of the draped sample defines an area Ar (Fig. 1b). By noting A1 the area of the support disk and A2 the area of the disk of the initial textile sample, the Drape Coefficient DC is obtained by DC=(Ar-A1)/(A2-A1).

The lower the DC value, the greater the drapability of the fabric studied. This method allows to estimate the drapability of textiles or at least to compare them. However, this approach has several drawbacks. The method does not measure a physical quantity and the drape coefficient DC is dependent on the test device. The test lacks repeatability may be unstable, and the draped geometry can evolve over time [START_REF] Stylios | An investigation into the engineering of the drapability of fabric[END_REF][START_REF] Lojen | Some aspects of fabric drape[END_REF][START_REF] Matusiak | Influence of the structural parameters of woven fabrics on their drapeability[END_REF]. Some alternative devices dedicated to drapability measurement have been developed. In particular, the Drapetest drapability tester is presented in [START_REF] Christ | Measurement and analysis of drapeability effects of warp-knit NCF with a standardised, automated testing device[END_REF] that uses the principle of pushing a hemispherical reference body against a clamped textile sample to forcibly drape the textile into that shape.

The objective of this paper is to propose a simple method to evaluate the drapability of a textile composite reinforcement from its mechanical characteristics, without using a drape meter. For this purpose, an analysis of the different energies of deformation during a draping process is made. The square box forming test, known to be a complex shape to drape, was chosen to demonstrate the relevance of the approach. 2. Deformation modes and stiffnesses of a textile reinforcement during draping.

Shell approach for textile composite reinforcement

The virtual work theorem is considered for a textile reinforcement during a forming process. For any virtual displacement equal to zero on the boundary with prescribed displacements, it can be written 0

ext int acc W W W δ δ δ - - = (1) 
Here,

ext int acc W , W , W , δ δ δ
are the virtual works of external, internal and acceleration quantities.

A shell approach can be used because the thickness of the fabric is small compared to its inplane dimensions (Fig. 2) and the internal virtual work is the sum of the virtual works of tension , , M M M are the stress moments (or stress couples) with:
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The indices , α β belong to the set (1, 2), αβ σ are the components of the Cauchy stress, A is the midsurface of the shell, h is its thickness. The development of wrinkles during draping depends on the solutions given by the virtual work theorem (Eq. 1) taking into account the specific forms of the internal forces in the case of a textile reinforcement (Eq. 2 to 5), the material properties of the fabric, and the boundary conditions [START_REF] Boisse | Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[END_REF].

The study and modeling of the mechanical behavior linking the interior loads (α, β equal to 1 or 2, no sum). This assumption is adopted in the proposed approach. In addition, the mechanical behavior is assumed to be elastic. It has been shown that elastic behavior is satisfactory for modeling forming processes as long as the loading is monotonic (no unloading) which is generally the case [START_REF] Ghafour | The importance of taking into account behavior irreversibilities when simulating the forming of textile composite reinforcements[END_REF]. As a consequence the tensile behavior is given by : 

where S C is the in-plane shear stiffness. The bending behavior is given by:

11 B1 11 M C χ = 22 B2 22 M C χ = (9) 
where B1 C and 2

B

C are the bending stiffnesses of the fabric in the warp and weft directions.

The internal virtual work χ 12 12 M δ coming from twisting curvature (Eq. 5) is neglected because the total bending stiffness of the reinforcement is mainly due to the warp and weft yarns bending stiffness.

The above equations are based on the warp and weft directions of continuous fiber woven reinforcements or the two yarn directions of Non-Crimp Fabric (NCF). These are the materials considered in this work. A triaxial NCF and an isotropic sheet are also analyzed for information.

They require another form of the virtual work equations. These two materials are not intended to be draped.

Influence of the different stiffnesses on wrinkling 2.2.1. Tensions

When forming some materials, especially metals, the strains can be large [START_REF] Danckert | Experimental investigation of a square-cup deep-drawing process[END_REF][START_REF] Yoon | A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming[END_REF]. The present study focuses on textile composite reinforcements consisting of continuous yarns in the warp and weft directions which are very stiff and quasi-inextensible. The warp and weft yarns govern the deformation of the textile reinforcement, but the draping on a double curved shape is not achieved by extension of the yarns. Tension loads in the yarns (Eq. 3) can prevent the formation of wrinkles especially by the use of blank holders. However, these are devices and forces external to the material.

In-plane shear

Because the yarns of textile composite reinforcements are almost inextensible, forming on a double-curved surface is achieved by in-plane shear deformations (or shear angles) as shown in Fig. 2 for a hemispherical surface. These in-plane shear angles are therefore an important mode of deformation for the draping of textile reinforcements. Measuring and modeling of in-plane shear behavior has given rise to numerous studies [START_REF] Potter | Bias extension measurements on cross-plied unidirectional prepreg[END_REF][START_REF] Lebrun | Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[END_REF][START_REF] Sharma | Characterisation of material properties for draping of dry woven composite material[END_REF][START_REF] Lomov | Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements[END_REF][START_REF] Cao | Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[END_REF][START_REF] Zhu | Theoretical modeling of large shear deformation and wrinkling of plain woven composite[END_REF][START_REF] Boisse | The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[END_REF][START_REF] Hosseini | Identifying the distinct shear wrinkling behavior of woven composite preforms under bias extension and picture frame tests[END_REF]. The in-plane shear stiffness should be as low as possible to enable shear angles as large as needed to drape a given shape. If this stiffness is higher, it can lead to wrinkling during draping. These wrinkles have out-of-plane geometries that decrease the shear angles and thus the corresponding deformation energy. All other properties being equal, the higher the in-plane shear stiffness, the lower the drapability of the textile reinforcement. Apart from the drapability, the shear stiffness can bring some advantages, e.g. ease of handling.

Bending

The bending behavior of textile reinforcements is strongly influenced by their fibrous composition. The possible relative slippage of the fibers leads to a bending stiffness much lower than that of a continuous material. The relations resulting from the classical plate theories which provide the bending stiffness from the tension stiffness and the thickness are not valid. Due to the low bending stiffness, membrane type models (neglecting the bending stiffness) have been proposed [START_REF] Boisse | Experimental study and finite element simulation of a glass fiber fabric shaping process[END_REF][START_REF] Cherouat | Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics[END_REF][START_REF] Cao | An approach in modeling the temperature effect in thermostamping of woven composites[END_REF][START_REF] Yu | Analysis of flexible bending behavior of woven preform using non-orthogonal constitutive equation[END_REF][START_REF] Skordos | A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites[END_REF][START_REF] Lin | Predictive modelling for optimization of textile composite forming[END_REF][START_REF] Chen | Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints[END_REF]. Nevertheless, it has been shown that the bending stiffness, although low, conditions the onset and development of wrinkles [START_REF] Boisse | Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[END_REF][START_REF] Dangora | Predictive model for the detection of out of-plane defects formed during textile-composite manufacture[END_REF][START_REF] Thompson | Modelling defect formation in textiles during the double diaphragm forming process[END_REF] and thus plays an important role in the drapability of textile reinforcements. The formation of wrinkles causes curvatures and provides bending deformation energy. The bending stiffness counteracts the wrinkle formation and therefore favors draping without wrinkles. All other properties being equal, the higher the bending stiffness, the higher the drapability of the textile reinforcement. The increase in bending stiffness can have disadvantages such as increased forces during forming. For a given manufacturing process, this aspect should be analyzed.

Drapability Ratio

In plane shear and bending stiffnesses influence the drapability of a textile reinforcement in opposite ways. On the one hand, the in-plane shear stiffness should be as low as possible to easily drape a given shape, on the other hand, the bending stiffness counteracts the wrinkle formation. The tensile characteristics do not influence the drapability because the yarns of composite reinforcements are almost inextensible. The proposed Drapability Ratio (DR) is defined from the in-plane shear and bending stiffness:

= S B C DR C (mm -2 ) (10) 
If the shear stiffness Cs is expressed in N mm -1 and the bending stiffness CB in N mm then the Drapability Ratio is given in mm -2 . A large part of the studied textile reinforcements is balanced and therefore have the same stiffnesses in the warp and weft direction. For unbalanced fabrics, CB is the average of the bending stiffnesses in the warp and weft direction.

Measurement of shear and bending stiffnesses and determination of Drapability Ratios

Materials

The textile reinforcements whose drapability is analyzed in this paper are shown in Table 1.

Their main properties are given in Table 2. In the case of interlocks G1151 and G1100, they are made up of 3 yarns in each direction linked by weaving. 

In-plane shear stiffness

The in-plane shear behavior of the textile reinforcement presented in Table . 1 is analyzed by bias extension tests [START_REF] Potter | Bias extension measurements on cross-plied unidirectional prepreg[END_REF][START_REF] Lebrun | Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[END_REF][START_REF] Sharma | Characterisation of material properties for draping of dry woven composite material[END_REF][START_REF] Lomov | Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements[END_REF][START_REF] Cao | Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[END_REF][START_REF] Zhu | Theoretical modeling of large shear deformation and wrinkling of plain woven composite[END_REF][START_REF] Boisse | The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review[END_REF][START_REF] Hosseini | Identifying the distinct shear wrinkling behavior of woven composite preforms under bias extension and picture frame tests[END_REF][START_REF] Wang | Experimental investigation of the draping properties of reinforcement fabrics[END_REF][START_REF] Harrison | Shear characterisation of viscous woven textile composites, a comparison between picture frame and bias-extension experiments[END_REF][START_REF] Peng | A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics[END_REF][START_REF] Syerko | Models for shear properties/behavior of dry fibrous materials at various scales: a review[END_REF]. The bias extension test and the picture frame test are the two main experiments developed for the analysis of the in-plane shear behavior of textile reinforcements. The bias extension test consists of a tensile test on a specimen whose yarns are initially oriented at 45° (Fig. 3). The displacement of the tensile machine grips leads to an inplane shearing of the specimen in the central area C, under the condition that the warp and weft yarns rotate without slippage (trellising). The shear angle in zone B is half that in zone C and zone A does not deform. The bias extension test is easy to implement. In addition, the yarns have at least one free end which avoids the parasitic tensions that can be present in the picture frame test [START_REF] Launay | Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements[END_REF]. On the other hand, the assumption of a relative non-slippage of the warp and weft yarns is generally verified only up to a limit angle depending on the material [START_REF] Zhu | Theoretical modeling of large shear deformation and wrinkling of plain woven composite[END_REF]. In this test the shear angle γ is measured either directly by an optical measurement or calculated from the elongation of the specimen. The tensile force F imposed by the machine on the specimen is related to the shear force N12 often noted Fsh [START_REF] Cao | Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results[END_REF][START_REF] Launay | Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements[END_REF]:
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The initial lengths L and D and the initial width l of the specimen are defined in Fig. 3a. The in-plane shear curve measured for fabric G1151 ® (manufactured by Hexcel) is displayed in Fig. 4. The shear stiffness increases with the shear angle. This is due to the progressive lateral contacts between the yarns [START_REF] Lomov | Full-field strain measurements in textile deformability studies[END_REF][START_REF] Launay | Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements[END_REF]. The in-plane shear curve is not linear. However, to make the Drapability Ratio simple and easy to determine, the in-plane shear stiffness Cs in Eq. ( 10) is obtained from the shear force for an angle of 40°. This angle is large but can be reached easily when forming. The values of the plane shear stiffness Cs for the textile reinforcements presented in Table 1 are given in Table 3. (The choice of the in-plane shear stiffness value for an angle of 40° is discussed in section 6.3) This value is obtained in the context of small strains and gives an order of magnitude in the present drapability study.

Bending stiffness

The bending stiffness of textile reinforcements can be determined by several experimental methods. The Kawabata bending test imposes a curvature to the specimen by rotation of the two ends [START_REF] Kawabata | The standardization and analysis of hand evaluation[END_REF][START_REF] Lomov | Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads[END_REF][START_REF] Sachs | Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt[END_REF]. In this paper, the bending stiffnesses are measured by a cantilever bending test.

The textile specimen is subjected to its own weight with one end clamped (Fig. 5). From the bending moment created by the gravity loads, the measurement of the curvature of the deformed midline determines the bending behavior M(χ) (M is the bending moment and χ is the

Bias extension test

curvature) for all curvatures between a zero value at the free end and the curvature at the clamped edge [START_REF] Liang | Curvature determination in the bending test of continuous fibre reinforcements[END_REF]. The obtained bending curve M(χ) is not always linear but the non-linearities are generally limited.

In the Pierce's test, the specimen is advanced progressively until its end comes into contact with a plane inclined at 41.5° (Fig. 5) [START_REF] Peirce | The "handle" of cloth as a measurable quantity[END_REF][START_REF]Standard test method for stiffness of fabrics[END_REF][START_REF] Bilbao | Experimental Study of Bending Behaviour of Reinforcements[END_REF][START_REF] Syerko | Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review[END_REF][START_REF] Lammens | Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)[END_REF]. Assuming that the bending behavior is linear and thus that M= Cbχ, the measurement of the length l of the bent part of the sample (Fig. 5) gives an approximation of the bending stiffness CB:

3 8 = l B w C ( 12 
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Here w is the weight of the fabric per unit area. The bending stiffnesses determined by this approach for the textile reinforcements shown Table 1 are given in Table 3. The Drapability Ratios of the different textile reinforcements obtained from Eq. ( 10) are given in Table 3 and Fig. 6.

The in-plane shear and bending stiffness of the various reinforcements and thus their Drapability Ratio depend on the internal structure of the textile reinforcements. Some weaves (satin, interlock) lead to lower (better) DR than others (plain weave). This point is discussed in section 6.3.

The Drapability Ratio of the triaxial NCF and of the isotropic sheet are respectively 1.75 mm -2 and 92.6 mm -2 . These two values are large. They correspond to materials that are not intended to be draped.

Forming tests

Square box forming

The objective of these forming experiments is to analyze the draping behavior of the tested textile reinforcements and to see if the proposed draping ratio is a relevant indicator for the development of wrinkles. The considered wrinkles are undulations out of the plane of the fabric.

Although the square box is a basic geometry, it is a shape that is quite difficult to drape with 7 shows a diagram of the square box forming experiments. The depth/width ratio is equal to 0.75 which is significant, and it is the same for all the tested textile reinforcements. Fig. 7b shows that the forming depth is 75 mm, of which 30 mm is the thickness of the transparent die and 45 mm corresponds to the visible part. Figures 8 and9 show the geometry achieved after forming of the different textile reinforcements. To measure the shear angles, pictures are captured with a camera in the resolution of 4827 x 3248 pixels. The images are zoomed in to measure the shear angle by manually tracking the warp and weft yarn. The Drapability Ratio allows to classify the textile reinforcements with regard to drapability. If a forming process has been done without wrinkles for a given textile reinforcement, this forming, under the same conditions, can be done without wrinkles for all the textile reinforcements whose Drapability Ratio is lower. On the other hand, if the forming process of a textile reinforcement leads to wrinkling, all textile reinforcements with a higher Drapability Ratio will lead to wrinkling and cannot be used for this process. In order to confirm the results obtained by forming on a square box, forming processes with a cylindrical punch are carried out (Fig. 11). This geometry is also strongly double curved and wrinkles can develop during forming. Forming on a revolution cylinder confirms the results obtained by draping on a square box.

Forming on a cylinder

Textile reinforcements with low Drapability Ratio can be draped without wrinkles while those with high Drapability Ratio lead to wrinkles. The relationship between Drapability Ratio (DR) and wrinkles formation given in Fig. 10 are valid for this second process. There is, however, a nuance. The draping of the plain weave glass 2 fabric (DR = 0.033) on the square box leads to moderate wrinkling (Fig. 8g), while the forming on a cylinder is done without wrinkling (Fig. 13a). In both cases the process is at the limit of wrinkle onset, but forming on a square box is somewhat more difficult than forming on a cylinder.

Forming simulations

Resultant stress shell finite elements were developed from the virtual membrane and bending works given in Eq. ( 3) to [START_REF] Sozer | 9 -Resin transfer molding (RTM) in polymer matrix composites[END_REF] [START_REF] Hamila | A semi-discrete shell finite element for textile composite reinforcement forming simulation[END_REF][START_REF] Chen | A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming[END_REF][START_REF] Dörr | A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites[END_REF]. In this approach, the virtual works of tension (Eq. 3) and bending (Eq. 5) are calculated independently (decoupled). In addition, in-plane shear and bending stiffnesses analyzed in this study are explicitly used. The objective of this section is to show that the forming simulation results are also consistent with the Drapability Ratios of the different textile reinforcements. The materials input parameters adopted for the forming simulations are given in Table 4. Fig. 15. shows the deformed geometries obtained by the simulation of a square box forming carried out under the same conditions as those of the tests of section 4.1. (depth/width ratio equal to 0.75). The forming simulation leads to wrinkling for the two reinforcements with a high Drapability Ratio (PW Carbon 1, DR = 0.16, PW Glass 1, DR =0.046) and no wrinkling for the textile reinforcements with a low Drapability Ratio (G1151, DR= 0.0091, G1100, DR = 0.0077). Other simulation results leading to wrinkles (PW Glass 3, DR = 0.26) and no wrinkles (SAT Carbon 1, DR = 0.020) can also be found in [START_REF] Huang | Experimental and numerical analysis of textile composite draping on a square box. Influence of the weave pattern[END_REF]. 

Discussion

Tensile deformations

The continuous fiber textile reinforcements that are used as composite reinforcements and that are the ones considered in the present study, are made of yarns very stiff in tension and close to inextensibility. For this reason, in-plane shear deformations are essential to achieve doublecurved geometry. In the case of lower tensile stiffness, e.g. for knitted reinforcements [START_REF] Dusserre | Elastic properties prediction of a knitted composite with inlaid yarns subjected to stretching: A coupled semi-analytical model[END_REF] or stretch-broken fibers [START_REF] Azzam | Compressive properties of stretch-broken carbon fibre (SBCF)/polyamide 12 commingled unidirectional composites[END_REF][START_REF] Taketa | Enhancement of strength and uniformity in unidirectionally arrayed chopped strands with angled slits[END_REF][START_REF] Wang | Thermo-mechanical behavior of stretch-broken carbon fiber and thermoplastic resin composites during manufacturing[END_REF], significant in-plane elongations are possible and shaping on a complex surface is greatly facilitated. In these cases, the Drapability Ratio as defined in Eq. ( 10)

is not relevant. It is restricted to the case of classical composite reinforcements with yarns in the warp and weft directions made of continuous fibers (in order to obtain better mechanical properties of the composite parts).

Shear locking angle

When a picture frame test is performed, wrinkles appear from a certain angle which has been called 'shear locking angle' [START_REF] Lebrun | Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics[END_REF][START_REF] Sharma | Characterisation of material properties for draping of dry woven composite material[END_REF][START_REF] Prodromou | On the relationship between shear angle and wrinkling of textile composite preforms[END_REF][START_REF] Rozant | Drapability of dry textile fabrics for stampable thermoplastic preforms[END_REF]. This shear locking angle has been used as a limit beyond which a draping process leads to wrinkling. In particular, kinematic models (also called fishnet algorithms) rely on this locking angle to predict or not the onset of wrinkles (which are not described by these methods) [START_REF] Van Der Ween | Algorithms for draping fabrics on doubly curved surfaces[END_REF][START_REF] Long | A simulation of reinforcement deformation during the production of preform for liquid moulding processes[END_REF][START_REF] Potluri | Comprehensive drape modelling for moulding 3D textile preforms[END_REF][START_REF] Hancock | The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements[END_REF]. It can be seen from the examples shown in Fig. 9 that the in-plane shear angles can reach very large values (70°), higher than the shear locking angle, without wrinkles occurring. This is possible thanks to the tensions induced in the textile reinforcement by the tools and the blank holder. The onset and development of wrinkles occur when the global equations of mechanics (Eq. 2 to 5) and the boundary conditions lead to an outof-plane solution. This wrinkling phenomenon concerns all mechanical properties. In this paper it was proposed to take into account the in-plane shear and bending stiffnesses (because the tensile stiffness is very large). Using the shear locking angle to rule on the occurrence of wrinkles means neglecting the bending stiffness which plays an important role in the occurrence and development of wrinkles. The forming processes analyzed in this article and in others show that it is necessary to take into account the bending stiffness.

Internal structure and weave pattern of the textile reinforcement

To achieve good drapability of a textile reinforcement, the shear stiffness must be low and the bending stiffness high. The internal geometry of the fabric plays a major role in determining the characteristics of a fabric that provide low shear stiffness and high bending stiffness. The weaving pattern is one element of fabric's internal geometry. Satin and interlock fabrics have good (low) Drapability Ratio. Plain Weave reinforcements, on the other hand, lead to more wrinkling. It is difficult to give a definitive rule on this point. On the other hand, it is quite easy, for a given textile reinforcement, to measure the in-plane shear and bending stiffness. The Drapability Ratio then gives a good indication of the drapability of the fabric.

In the case of biaxial NCFs, the stitch plays an important role with respect to stiffnesses and therefore drapability. The biaxial NCF studied in this paper shows a good drapability. The triaxial NCF and the isotropic sheet have an internal structure that does not allow them to be used in a draping process.

Consideration of in-plane shear and bending non-linearities

The determination of the Drapability Ratio presented above is based on constant values CS and CB of the stiffnesses of in-plane shear and bending. However, the in-plane shear and bending behaviors are generally non-linear (e.g. Fig. 4 for the in-plane shear of an interlock fabric). By considering constant values of CS and CB (which corresponds to linear behaviors), it is possible to calculate the Drapability Ratio which is a constant. But several choices for the determination of constants CS and CB can be considered. In in-plane shear, CS is determined by the shear force for an angle of 40°. Different angles could be considered. The average of the stiffness for all the measured angles could also be used. In bending, Peirce's method assumes a linear behavior which allows to determine the constant CB. But the bending behavior M(χ) is not linear in general [START_REF] Wang | Experimental investigation of the draping properties of reinforcement fabrics[END_REF][START_REF] Syerko | Models for shear properties/behavior of dry fibrous materials at various scales: a review[END_REF]. The mean stiffness over the interval [0, χmax] where χmax is the maximum measured curvature, can be an alternative to the bending stiffness given by Peirce method.

A study will be conducted to establish the optimal way to determine the CS and CB constants. It is nevertheless likely that the results will differ only slightly from those obtained by the approach proposed in Section 2. For example, a calculation of the Drapability Ratios was made using a shear angle of 30° (instead of 40° in the previous sections) and the corresponding shear force to determine CS for all the reinforcements presented in this paper (Table 1). The Drapability Ratios were very slightly modified, and their relative order (Fig. 6 and 10) was not changed.

In this paper, the Drapability Ratio (DR) proposed to characterize the drapability of a textile reinforcement is a constant for the sake of simplicity. In order to differentiate between low and high curvature geometries, for each textile reinforcement, different DRs could be defined for forming leading to low shear angles by taking into account the shear stiffness for an angle of 20° (for example) and for forming requiring higher angles by taking into account the shear stiffness for an angle of 40° (as it was done in this paper). These two (or more) DR could be taken into account depending on the geometry of the part to be formed. This can be extended to the determination of a DR(γ) curve for a given reinforcement.

Conclusion

The Drapability Ratio proposed in this paper is a simple evaluation of the drapability of a given textile composite reinforcement. It requires only the measurement (or estimation) of in-plane shear stiffness and bending stiffness. Wrinkle-free drape is favored by low shear stiffness and high bending stiffness. The Drapability Ratio is the ratio of these two stiffnesses and quantifies the drapability of the textile reinforcement.

A set of square box forming and cylinder forming tests showed the good correlation between the Drapability Ratio and wrinkling occurrence. The Drapability Ratio quantifies the drapability of a textile reinforcement, but it is not sufficient to predict a wrinkle-free draping for a given process. In addition to the drapability of the textile reinforcement, the parameters of the draping process such as the geometry of the tools and the blank holder forces are also essential.

Nevertheless, the knowledge of the Drapability Ratio of a textile reinforcement is important to consider its use for draping on complex shapes. When a forming on a given shape has been done

without wrinkling, all textile reinforcements with a lower Drapability Ratio will be able to be draped under the same conditions on this geometry. On the other hand, if a forming process leads to wrinkling, there is no point in trying to drape fabrics with a higher Drapability Ratio on this shape. The choice of an alternative textile reinforcement must be made among fabrics with a smaller Drapability Ratio.

It will be interesting to carry out studies to highlight the ways to control the Drapability Ratio of textile reinforcements. It appears that weaving patterns satin and interlock lead to lower Drapability Ratios than plain weave. The internal geometry of the weave of satins and interlocks leads to high bending stiffnesses while preserving a sufficiently low in-plane shear stiffness.

When the reasons for these differences are well understood, it may be possible to manufacture reinforcements with a better drapability.
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 1 Fig. 1. (a) Drape meter. (b) Projection of the draped fabric sample[START_REF] Al-Gaadi | A new method in fabric drape measurement and analysis of the drape formation process[END_REF] 

Fig. 2 .

 2 Fig. 2. Draping of a woven reinforcement on a double-curved surface.

  been the subject of numerous works in the case of textile composite reinforcements. Most of these works make the simplifying assumption that these mechanical behaviors are decoupled, i.e. that the tensile behavior is given by

and 2 TC

 2 are the tensile stiffnesses of the fabric in the warp and weft directions.By noting γ the shear angle, i.e. the change in angle between the warp and weft direction
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 34 Fig. 3. Bias extension test. (a) Initial geometry. (b) Deformed shape, (c) Experiments

Fig. 5 .

 5 Fig. 5. Peirce's Cantilever bending test[START_REF] Peirce | The "handle" of cloth as a measurable quantity[END_REF][START_REF] Lammens | Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)[END_REF] 
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 7 Fig. 7. Square box forming experiments (a) Geometry of the test. (b) Forming depth Fig. 7 shows a diagram of the square box forming experiments. The depth/width ratio is equal to
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 89 Fig. 8. Square box forming leading to wrinkling.

Fig. 10 .

 10 Fig. 10. Relationship between Drapability Ratio (DR) and wrinkles formation in the square box forming

Fig. 11 .

 11 Fig.11. Cylinder forming experiments (a) Geometry of the test. (b) Forming depth.

Fig. 12 .

 12 Fig.12. Cylinder forming leading to wrinkling.

Fig. 12 .

 12 Fig. 12. shows cylindrical forming that lead to wrinkling. The materials are those with the highest Drapability Ratios.

Fig. 13 .

 13 Fig.13. Cylinder forming with no wrinkle.

Fig. 13

 13 Fig. 13 shows draped fabrics obtained by cylindrical forming which do not show any wrinkle. The deformed fabrics do not exhibit any wrinkle although optical effects linked to the woven structure of the reinforcements could lead one to believe the contrary. Fig. 14 allows, by top view, to verify the absence of wrinkles for the reinforcements G1151 and G1100.

Fig. 14 .

 14 Fig. 14. Forming on a cylinder of revolution. Top view.

Fig. 15 .

 15 Fig. 15. Square box forming simulations

Table 1 .

 1 Studied textile reinforcements.

	Plain		
	weave		
	PW Glass 1	PW Glass 2 [47]	PW Glass 3 [62]

Table 2 .

 2 Properties of the studied materials

	Type of fabric		Plain weave		Twill weave
	Name of fabric	PW Glass 1	PW Glass 2	PW Glass 3	PW Carbon 1	TW Glass	TW Flax
	Thickness (mm)	0.34	1.2	0.12	0.8	0.3	1.1
	Fiber Type	Glass	Glass/PP	Glass	Carbon	Glass	Flax
	Areal density (g m -2 )	347	745	160	675	418	329
	Number of warp yarns per cm	4.1	1.93	11.8	5	6.6	3.6
	Number of weft yarns per cm	6.6	1.93	10.7	5	6.6	3.6
	Type of fabric	Satin weave	Interlock	NCF
	Name of fabric	SAT Carbon 1	SAT Carbon 2	Hexcel G1151 ®	Hexcel G1100 ®	NCF Biax	NCF Triax
	Thickness(mm)	0.3	0.4	1.3	1.04	0.5	1.1
	Fiber Type	Carbon	Carbon	Carbon	Carbon	Carbon	Glass
	Areal density (g m -2 )	290	234	630	600	312	1133
	Number of warp yarns per cm	6.5	5	7.5	7.5	5	+45°: 5 -45°: 5
	Number of weft yarns per cm	6.5	5	7.4	7.4	5	0°: 4 (yarns/cm)

Table 3 .

 3 In-plane shear stiffness, bending stiffness and Drapability Ratio of the analyzed textile reinforcements.

	Material	In-plane shear stiffness Cs (N mm -1 )	Bending stiffness CB (N mm)	Drapability Ratio DR (mm -2 )
	PW Glass 1	0.0097	0.21	0.046
	PW Glass 2	0.091	2.73	0.033
	PW Glass 3	0.026	0.10	0.26
	PW Carbon 1	0.22	1.38	0.16
	TW Glass	0.030	0.47	0.064
	TW Flax	0.056	2.57	0.022
	SAT Carbon 1	0.069	3.42	0.020
	SAT Carbon 2	0.040	3.05	0.013
	G1151	0.041	4.52	0.0091
	G1100	0.026	3.36	0.0077
	NCF Biax	0.010	0.95	0.011
	NCF Triax	3.8	2.17	1.75
	Polymer isotropic sheet	68	0.74	92.6

Table 4 .

 4 Input parameters adopted for the forming simulations

	Mechanical				
	properties	G1100	G1151	PW Glass 1	PW Carbon 1
	In plane shear				
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