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Asymptotic behavior of the two-dimensional

Vlasov-Poisson-Fokker-Planck equation with a strong external

magnetic field

Mihäı BOSTAN ∗, Anh-Tuan VU †

(March 24, 2023)

Abstract

The subject matter of the paper concerns the Vlasov-Poisson-Fokker-Planck (VPFP)
equations in the context of magnetic confinement. We study the long-time behavior of the
VPFP system with an intense external magnetic field, when neglecting the curvature of
the magnetic lines. When the intensity of the magnetic field tends to infinity, the long-time
behavior of the particle concentration is described by a first-order nonlinear hyperbolic
equation of the Euler type for fluid mechanics. More exactly, when the magnetic field
is uniform, we find the vorticity formulation of the incompressible Euler equations in
two-dimensional space. Our proofs rely on the modulated energy method.

Keywords: Vlasov-Poisson-Fokker-Planck equations, Guiding center approximation, Mod-
ulated energy.

AMS classification: 35Q75, 78A35, 82D10

1 Introduction
?⟨Intro⟩?

We consider f = f(t, x, v) the density of a population of charged particles of mass m, charge
q depending on time t, position x and velocity v. We are interested in the Vlasov-Poisson
system, in the presence of an external magnetic field, taking into account the collisions
between charged particles. Neglecting the curvature of the magnetic lines, we assume that
the external magnetic field has a constant direction orthogonal to (Ox1, Ox2) but a variable
amplitude B(x). In dimension two, we set x = (x1, x2), v = (v1, v2). The Vlasov-Poisson-
Fokker-Planck equation is written in the form

∂tf + v · ∇xf +
q

m

{
E [f(t)] (x) +B (x) ⊥v

}
· ∇vf = QFP (f) , (t, x, v) ∈ R+ × R2 × R2

(1) VPFP2D-nonScale
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where the notation ⊥ (·) stands for the rotation of angle −π/2, i .e., ⊥v = (v2,−v1) and the
magnetic field B(x) = (0, 0, B(x)), x ∈ R2. The potential Φ[f ] satisfies the Poisson equation

−ε0∆xΦ [f (t)] (x) = q

(∫
R2

f (t, x, v) dv −D(x)

)
, (t, x) ∈ R+ × R2.

whose fundamental solution is z → − 1
2π ln |z|, z ∈ R2\ {0}. Here, the function D = D(x)

is the concentration of a background of positive charges and is assumed to be given. The
constant ϵ0 represents the electric permittivity of the vacuum. For any particle density
f = f(t, x, v), the notation E[f(t)](x) represents the Poisson electric field which derives from
the potential Φ[f(t)](x) given by

E [f(t)] (x) =
q

2πε0

∫
R2

(∫
R2

f
(
t, x′, v′

)
dv′ −D(x′)

)
x− x′

|x− x′|2
dx′ (2) ?ElecField-nonScale2D?

and n[f(t)], j[f(t)] stand for the concentration and the current density respectively

n [f(t)] =

∫
R2

f (t, ·, v) dv, j [f(t)] =

∫
R2

vf (t, ·, v) dv.

In the equation (1), the operator QFP is the linear Fokker-Planck operator acting on velocities

QFP (f) = divv (σ∇vf + vf) ,

where σ is the velocity diffusion, see [9] for the introduction of this operator, based on the
principle of Brownian motion. We complete the above system by the initial condition

f (0, x, v) = fin (x, v) , (x, v) ∈ R2 × R2. (3) ?Initial-nonScale2D?

In this work, we analyze the evolution of the distribution density f over a long time, in the
regime of an intense magnetic field (gyro-kinetic), in order to observe the drift phenomenon in
the directions orthogonal to the magnetic field. Indeed, it is well known that the velocities of
electric cross field drift and the magnetic gradient drift are proportional to 1

B and consequently
it is necessary to observe the drift movements over a large time proportional to B. In other
words, we consider

f (t, x, v) = f ε (t̄, x, v) , Bε(x) =
B(x)

ε
, t̄ = εt.

Here ε > 0 is a small parameter related to the ratio between the cyclotronic period and the
advection time scale. Hence ∂tf = ε∂t̄f

ε. Then in the equation (1), the term ∂t is to be
replaced by ε∂t̄ or by ε∂t to simplify our notation, and the Vlasov-Poisson-Fokker-Planck
system becomes

ε∂tf
ε + v · ∇xf

ε +
q

m
E [f ε(t)] · ∇vf

ε +
ωc(x)

ε
⊥v · ∇vf

ε = QFP (f ε), (4) VPFP2d-Scale

E [f ε] = −∇xΦ[f ε], −ε0∆xΦ[f ε] = q (nε −D) = q

(∫
R2

f ε (t, ·, v) dv −D

)
, (5) Poisson2D-Scale

where ωc(x) = qB(x)
m stands for the cyclotron frequency. We complete with an initial condition

f ε (0, x, v) = f εin (x, v) , (x, v) ∈ R2 × R2. (6) Initial2D-Scale

The existence theory of the weak and classical solution of the VPFP system is now well
developed and understood. Let us summarize the literature concerning existence results for
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this problem. In the absence of the external magnetic field i .e., B(x) = 0, several existence
results for the VPFP system are known. The classic solutions have been studied by Degond
in [11] which showed the global/local existence and the uniqueness of the strong solution in
one and two/three dimensions respectively, without friction term i .e., QFP = σ∆v. Victory
and O’Dwyer obtained in [10] the same result of existence of classical solution using the
fundamental solution of the operator ∂t + v · ∇x − ∇v · (σ∇v + v). In [32], G. Rein and J.
Weckler gave sufficient conditions to show the global existence of classical solutions in three
dimensions. Regarding weak solutions, we can mention the works of Victory in [14], J. A.
Carrillo and J. Soler in [12] with an initial data in the space Lp. With the magnetized VPFP
system, when the external magnetic field is uniform i .e., ∇xB(x) = 0, x ∈ R2, it seems
that the methods used in the articles above, also apply. We followed the method of [11] to
show the existence and uniqueness of the global classical solution in time. We present the
detailed proof in Section 6.3 of the Appendix B. In the case B(x) is general, we show the
global existence in time of weak solutions, in the sense of Definition 2.1. The detailed proof
is provided in Section 2.

We study the asymptotic behavior of the solutions (f ε)ε>0 of the problem (4), (5), (6)
when ε tends to 0. By investigating the balance of free energy associated with the VPFP sys-
tem, we show formally in Section 4 that the family (f ε)ε>0 converges to the limit distribution

function f (t, x, v) = n(t, x) 1
2πσe

−|v|2
2σ , where the limit concentration n verifies the first-order

nonlinear hyperbolic equation

∂tn+ divx

[
n

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0, (t, x) ∈ R+ × R2 (7) equ:LimMod2D

coupled to the Poisson equation

E[n] = −∇xΦ[n], −ε0∆xΦ[n] = q(n−D) (8) LimPoisson2D

with the initial condition

n(0, x) = nin(x) =

∫
R2

f(0, x, v) dv. (9) LimInit2D

Let us observe the limit equation (7), we see that the concentration n is advected along the

vector field
(

⊥E
B(x) − σ

⊥∇ωc
ω2
c (x)

)
which is the drift velocity respectively to the sum of the electric

cross field drift
⊥E
B and the magnetic gradient drift σ

⊥∇ωc(x)
ωc(x)2

. These drift velocities were

mentioned in the limit model of M. Herda, L.M. Rodrigues [21] and P. Degond, F. Filbet
[15]. In the case of the uniform magnetic field, the above model becomes

∂tn+
⊥E[n]

B
· ∇xn = 0, (t, x) ∈ R+ × R2

E[n] = −∇xΦ[n], −ϵ0∆xΦ[n] = q (n−D) , (t, x) ∈ R+ × R2

n (0, x) = nin(x), x ∈ R2

that is to say, the vorticity formulation of the two-dimensional incompressible Euler equations,
with the cross electric field drift velocity

⊥E
B and the vorticity rot⊥xE = − q

ε0
(n−D). Notice

that the same model was obtained by F. Golse, L. Saint-Raymond in [17], L. Saint-Raymond
[30] and E. Miot [25] from the two-dimensional Vlasov-Poisson system without collisions.
The authors justified rigorously the convergence towards the two-dimensional Euler equation
of incompressible fluids in the other approach. Concerning the collisions between charged
particles, we can mention the work of M. Herda and L.M. Rodrigues in [21]. In this paper,
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the authors are interested in the limit ε ↘ 0 of the VPFP system (4), (5), (6) in three-
dimensional version (t, x, v) ∈ R+ × T3 × R3 (where T = R/Z is a torus one-dimensional).
They formally show that the family (f ε)ε>0 converges to the limit distribution function f
and the limit electric potential ϕ which have reached an adiabatic regime along the magnetic
field

f(t, x, v) = n(t, x)
1

(2π)3/2
e−

|v|2
2 = N(t, x⊥)

e−qϕ(t,x)∫
T e

−qϕ(t,x⊥,x∥)dx∥
M(v), (t, x, v) ∈ R+ × T3 × R3

where x = (x⊥, x∥) ∈ T2 × T and the concentration n is the anisotropic Boltzmann-Gibbs
density. The limit model is derived by the reduced macroscopic density N : R+ × T2 → R+

in the perpendicular direction, satisfying

∂tN − divx⊥

(
N⊥

(
∇x⊥ ϕ̃

))
= 0

with the initial condition

N(0, x⊥) = Nin(x⊥) =

∫
T

∫
R2

f0(x⊥, x∥, v)dx∥ dv

where ϕ̃ : R+ × T2 → R is the average potential

ϕ̃(t, x⊥) = −q ln

(∫
T
e−qϕ(t,x⊥,x∥)dx∥

)
.

Their results of passing to the limit concerned a linear model where the electric field is given
i .e., E[f ε] = E = −∇xϕ, for a given potential ϕ. However, in the non-linear case of the
VPFP type, they do not completely justify the passage to the limit model from the kinetic
equation.

To the best of our knowledge, there has been no result on the asymptotic regime when
the magnetic field is non-uniform. In the current work, the asymptotic behavior will be
investigated by appealing to the relative entropy or modulated energy method, as introduced
in [33]. This relative entropy method relies on the smooth solution of the limit system. By
this technique, one gets strong convergences. Many asymptotic regimes were obtained using
this technique, see [7, 8, 18, 29] for quasineutral regimes in collisionless plasma physics, [31, 1]
for hydrodynamic limits in gaz dynamics, [19] for fluid-particle interaction, [5, 4, 20] for high
electric or magnetic field limits in plasma physics.

Before establishing our main result, we define the modulated energy E [nε(t)|n(t)] by

E [nε(t)|n(t)] = σ

∫
R2

n(t)h

(
nε(t)

n(t)

)
dx+

ε0
2m

∫
R2

|∇xΦ[nε] −∇xΦ[n]|2 dx

where h : R+ → R+ is the convex function defined by h(s) = s ln s − s + 1, s ∈ R+. This
quantity splits into the standard L2 norm of the electric field plus the relative entropy between
the particle density nε of (4), (5), (6) and the particle concentration n of the limit model (7),
(8), (9). The main result of this paper is the following

Theorem 1.1
Let T > 0. Let B ∈ C3

b (R2) be a smooth magnetic field, such that infx∈R2 B(x) = B0 > 0
⟨MainThm2D⟩ and D be a fixed background density verifying |x|D ∈ L1(R2), D ∈ W 1,1(R2) ∩W 2,∞(R2).

Assume that the initial particle densities (f εin)ε>0 satisfy the hypotheses H1, H2, H3 (see
Section 2 below) and Min := supε>0M

ε
in < +∞, Uin := supε>0 U

ε
in < +∞ where

M ε
in :=

∫
R2

∫
R2

f ε(x, v) dvdx, U εin :=

∫
R2

∫
R2

|v|2

2
f εin(x, v) dvdx+

ε0
2m

∫
R2

|∇xΦ[f εin]|2 dx.
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Let f ε be the weak solutions of the VPFP system (4), (5), (6) with initial data f εin provided by
Theorem 2.2. We also assume that the initial concentration nin verifies the hypotheses H4,
H5 (see Section 5 below) and let n be the unique smooth solution of the limit system (7), (8),
(9) with initial condition nin constructed in Proposition 5.1. We suppose that

lim
ε↘0

σ

∫
R2

∫
R2

nεinM(v)h

(
f εin
nεinM

)
dvdx = 0, lim

ε↘0
E [nεin|nin] = 0

where nεin =
∫
R2f

ε
in dv, ε > 0. Then we have

lim
ε↘0

sup
0≤t≤T

σ

∫
R2

∫
R2

nεM(v)h

(
f ε

nεM

)
dvdx = 0, lim

ε↘0
sup

0≤t≤T
E [nε(t)|n(t)] = 0

lim
ε↘0

1

ε

∫ T

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxdt = 0.

In particular we have the convergences limε↘0 f
ε = nM in L∞(]0, T [;L1(R2 × R2)) and

limε↘0∇xΦ[f ε] = ∇xΦ[n] in L∞(]0, T [;L2(R2)).

Remark 1.1
In two dimensional setting, the initial potential energy ε0

2m

∫
R2 |∇xΦ[f εin]|2 dx may not be

?⟨RemElecL22D⟩?finite (or the electric field E[f εin] cannot belong to L2(R2)) even if the initial datum f εin lies
in C∞

0 (R2 × R2). This is due to the fact that the kernel x/|x|d does not belong to L2(R2) at
infinity, see the Appendix C for a disscusion. For these reasons one needs to slightly modify
the Poisson equation adding a fixed background density D satisfying the global neutrality
relation H3, see Section 2 below.

The paper is structured as follows. Section 2 is devoted to establish the global existence of
weak solutions to the VPFP system with external magnetic field. In Section 3, we derive a
priori estimates with respect to the small parameter ε > 0 on the weak solutions from the
evolution of physical quantities associated to the VPFP system. Section 4 is devoted to the
formal derivation of the limit model. The well-posedness of the limit model is studied in
the next section. We establish existence and uniqueness results for the strong solution. The
convergence towards the limit model is justified rigorously in Section 5. We obtain strong
convergence for well prepared initial conditions.

2 Global existence of weak solutions of the VPFP equations

In this section we will study the global existence of weak solution for the VPFP equation in
the presence of an external magnetic field for fixed ε > 0. In order to simplify the proofs of
existence of the solution, as we do not want any uniform estimate with respect to ε, we will
take ε = 1 and omit all the subscripts. Thus we first consider the following problem

∂tf + v · ∇xf + E[f ] · ∇vf +B(x)⊥v · ∇vf = divv(σ∇vf + vf), (10) eq:VPFP-NonEps

E[f ] = −∇xΦ [f ] , −∆xΦ[f ] =

∫
R2

f (t, ·, v) dv −D (11) eq:Poi-NonEps

f(0, x, v) = fin (x, v) , (x, v) ∈ R2 × R2. (12) eq:Init-NonEps

The dependency on the small parameter ε > 0 will be taken into account when establishing
a priori estimates uniform in ε in the next section.
The idea of the proof is as follows: we will first linearize the VPFP system (10), (11), (12)
by an iterative method, based on the resolution of the linear Vlasov-Fokker-Planck equation
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with free transport thanks to the technique introduced by P. Degond in [11]. We adapt this
method, also taking into account the velocity transport, generated by the external magnetic
field. Then we will pass to the limit to obtain a weak solution by appealing to the velocity
averaging lemma, cf. [22]. We will suppose the initial data fin also satisfies the hypotheses

H1) fin ≥ 0, fin ∈ (L1 ∩ L∞)(R2 × R2), (|x| + |v|2 + | ln fin|)fin ∈ L1(R2 × R2)
?⟨Hypothesis1⟩?

H2) (1 + |v|2)fγ/2in ∈ L∞(R2 × R2), γ > 2
?⟨Hypothesis2⟩?

H3)
∫
R2

∫
R2fin dvdx =

∫
R2D(x) dx.

2.1 The linear Vlasov-Fokker-Planck (VFP) equation

We consider the Vlasov-Fokker-Planck equation with a given electric field E(x) = −∇xΦ(x){
∂tf + v · ∇xf + E · ∇vf + divv(B(x)⊥vf) = σ∆vf + divv(vf),
f(0, x, v) = fin(x, v).

(13) equ:VFP2D

We notice that the global existence and uniqueness of a weak solution in the distribution
sense of the VFP equation (13) is demonstrated following by the standard theory for linear
kinetic equations in [11]. We have the following result, see Appendix A for the main lines of
the proof.

Theorem 2.1
For a given T ∈]0,∞[. Let fin be an initial data verifying H1, H2 and E(x) be an external

⟨ExiVFP2D⟩ electric field belongs to (L∞(R2))2. Then there exists a unique positive weak solution of the
equation (13) on the interval [0, T ] in the sense of Definition 2.1 provided by Proposition 6.2
such that f ∈ L∞([0, T ];L∞∩L1(R2×R2)). Furthermore, f belongs to L2([0, T ]×R2

x;H1(R2
v))

and verifies the following estimates

∥f∥L∞([0,T ];Lp(R2×R2)) ≤ e
p−1
p
dT ∥fin∥Lp(R2×R2), p ∈]1,∞[ (14) ?InegLp?

∥f∥L∞(0,T ;L1(R2×R2)) = ∥fin∥L1(R2×R2), ∥f∥L∞([0,T ]×R2×R2) ≤ edT ∥fin∥L∞(R2×R2)

sup
[0,T ]

∫
R2

∫
R2

f(t, x, v)
|v|2

2
dvdx < C(∥E∥L∞ , T, σ)

∫
R2

∫
R2

fin(x, v)
|v|2

2
dvdx. (15) ?InegKinEner?

sup
[0,T ]

∫
R2

∫
R2

f(t, x, v)|x| dvdx < C(T )

∫
R2

∫
R2

fin(x, v)|x| dvdx. (16) ?InegPosition?

∥∇vf
1/2∥L2([0,T ];L2(R2×R2)) ≤ C(∥E∥L∞ , T, fin, σ) +

∫
R2

∫
R2

σfin| ln fin| dvdx. (17) ?InegDissipation?

We next provide an auxiliary lemma showing some relationship between the local density
n[f ] =

∫
R2f dv, the current j[f ] =

∫
R2vf dv and the kinetic energy

∫
R2

∫
R2 |v|2f dvdx.

⟨IneqDensity2D⟩Lemma 2.1
Assume that f ∈ L1 ∩ L∞(R2 × R2) and |v|2f ∈ L1(R2 × R2). Then there exists a constant
C > 0 such that

∥n[f ]∥Lp(R2) ≤ C, p ∈ [1, 2], ∥j[f ]∥Lp(R2) ≤ C, p ∈ [1, 4/3].
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Proof.
We first estimate the Lp norm for the density n[f ]. It is obvious when p = 1. Let p ∈]1, 2[
and q such that 1/p+ 1/q = 1. Observer that

n[f ](x) =

∫
R2

f(x, v) dv =

∫
Rd

(1 + |v|)2/pf1/p(x, v)
f(x, v)1/q

(1 + |v|)2/p
dv

we deduce that

n[f ](x) ≤
(∫

Rd

(1 + |v|)2f(v) dv

)1/p(∫
Rd

f(v)

(1 + |v|)2q/p
dv

)1/q

≤ ∥f∥1/q
L∞(R2×R2)

(∫
R2

1

(1 + |v|)2q/p
dv

)1/q (∫
Rd

(1 + |v|)2f(v) dv

)1/p

.

Since p ∈]1, 2[ we have 2q
p > 2 therefore

∫
R2

1
(1+|v|)2q/p dv = C < +∞. Then we obtain

∥n[f ]∥Lp(R2) ≤ C∥f∥1/q
L∞(R2×R2)

(∫
R2

∫
R2

(1 + |v|)2f(v) dvdx

)1/p

.

When p = 2, for any R > 0, we have

n[f ](x) =

∫
R2

f(x, v) dv =

∫
R2

f(x, v)1{|v|≤R} dv +

∫
R2

f(x, v)1{|v|>R} dv

≤ ∥f∥L∞(R2×R2)πR
2 +

1

R2

∫
R2

f(x, v)|v|2 dv.

We now take R =
( ∫

R2f |v|
2 dv

∥f∥L∞ (R2×R2)

)1/4
to obtain

n[f ](x) =

∫
R2

f(x, v) dv ≤ (1 + π) ∥f∥1/2
L∞(R2×R2)

(∫
R2

f |v|2 dv

)1/2

,

then raising each side of the inequality to the power 2 and integrating in the variable x gives
the result. By combining these estimates, we obtain the bound of the norm Lp, p ∈ [1, 2] for
the density particle n[f ]. For the current j[f ], we use the same argument as above to obtain
the desired estimate.

The next result will be useful in order to estimate the L∞ norm of the density particle
n[f ], so as to control electric field. However, we cannot obtain L∞ estimate for the such
hypothesis in Lemma 2.1. The key is the decay of the solution f when the velocity goes to
infinity.

Lemma 2.2
If (1 + |v|2)γf ∈ L∞(R2 × R2), with γ > 2 we have the bound of the L∞ norm

⟨LinftyDensity⟩

∥n[f ]∥L∞(R2) ≤ C(γ)∥f∥(γ−2)/γ
L∞(R2×R2)

∥(1 + |v|2)γ/2f∥2/γ
L∞(R2×R2)

.

In particular, if |v|2f ∈ L1(R2 × R2)) then the current j[f ] belongs to L2(R2) and satisfies

∥j[f ]∥L2(R2) ≤ ∥n[f ]∥L∞(R2)∥|v|2f∥L1(R2×R2).
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Proof.
For any R > 0, we have

n[f ](x) =

∫
R2

f(x, v) dv =

∫
R2

f1{|v|<R} dv +

∫
Rd

f1{|v|≥R} dv ≤ 2πR2∥f∥L∞(R2×R2)

+

∫
R2

1{|v|≥R}
1

(1 + |v|2)γ/2
dv∥(1 + |v|2)γ/2f∥L∞(R2×R2)

≤ 2πR2∥f∥L∞(R2×R2) +
2π

γ − 2
R2−γ |(1 + |v|2)γ/2f∥L∞(R2×R2).

We take R =

(
1

γ − 2

∥L∞(R2×R2)

∥f∥L∞(R2×R2)

)1/γ

, we complete the bound estimate of the L∞ norm

for n[f ]. As a consequence, we can give the estimate in L2 norm of j[f ]. Indeed, we have

j[f ](x) =

∫
R2

vf dv ≤
(∫

R2

|v|2f dv

)1/2(∫
Rd

f dv

)1/2

.

This implies that ∫
R2

|j[f ](x)|2 dx ≤
∫
R2

(∫
R2

|v|2f dv

)(∫
R2

f dv

)
dx

≤ ∥n[f ]∥L∞(R2)

∫
R2

∫
R2

|v|2f dvdx

which concludes the desired estimate of j[f ].

We then show the bound estimate on the electric energy in the lemma below.

Lemma 2.3
Let ρ(x) =

∫
R2f(x, v) dv be a function which belongs to L1(R2) ∩ L∞(R2) and let E(x) be

⟨BoundElecEner2D⟩ such that

E(x) =
1

2π
∇x ln | · | ⋆ ρ.

Then we have

∥E∥L∞(R2) ≤
1

2π

(
∥f∥L1(R2×R2)

)1/2(∥f∥ γ−2
γ

L∞(R2×R2)
∥(1 + |v|2)γ/2f∥2/γ

L∞(R2×R2)

)1/2

.

Proof.
We first recall the classical inequality

∥E∥L∞(R2) ≤ C∥ρ∥1/2
L1(R2)

∥ρ∥1/2
L∞(R2)

for some constant C > 0. Together with the Lemma 2.2 yields the desired result.

2.2 The Vlasov-Poisson-Fokker-Planck equation

We first introduce the concept of weak solution to the problem (10), (11), (12).

Definition 2.1
For a given T ∈]0,∞[. We say that the pair (f,E[f ]) is a weak solution to the system (10),

⟨DefWeakSol⟩ (11), (12) if and only if the following conditions are satisfied
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(i)
f ≥ 0, f ∈ L∞([0, T [;L1 ∩ L∞(R2 × R2)), |E[f ]|f ∈ L1

loc([0, T [×R2 × R2).

(ii) For any φ ∈ C∞
0 ([0, T [×R2 × R2), we have∫ T

0

∫
R2

∫
R2

f
(
∂tφ+ v · ∇xφ+ (E[f ] +B(x)⊥v) · ∇vφ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

f (σ∆vφ− v · ∇vφ) dvdxdt+

∫
R2

∫
R2

fin(x, v)φ(0, x, v) dvdx = 0.

Now, we provide the global existence of the weak solution to the VPFP system (10), (11),
(12) based on a compactness argument. For this purpose, we need the following velocity
averaging lemma obtained in [22], see also [27]. The averaging lemma allows to pass to the
limit in the VPFP equation including the nonlinear term E[f ]f in the sense of distribution,
see [28].

Lemma 2.4
Let (gk)k be bounded in Lploc([0, T ] × R2 × R2) with 1 < p < ∞, and (Gk)k be bounded in

⟨VelAver⟩Lploc([0, T ] × R2 × R2). If for any k, gk and Gk satisfy the equation

∂tg
k + v · ∇xg

k = ∇vG
k, gk(t = 0) = g0 ∈ Lp(R2 × R2),

then for any ψ ∈ C1
c (R2×R2) we have

(∫
Rdf

kψ dv
)
k
is relatively compact in Lploc([0, T ]×R2).

We then use the previous lemma to show the following result, see Lemma 2.8 in [22]

Lemma 2.5
Let (gk)k and (Gk)k be as in the Lemma 2.4 and we assume that

⟨Compactness⟩
gk is bounded in Lp([0, T ] × R2 × R2),

(|v|2 + |x|)gk is bounded in L∞(0, T ;L1(R2 × R2)).

Then for any ψ(v) such that |ψ(v)| ≤ c|v| and 1 < q < 4
3 , the sequence

(∫
Rdg

kψ dv
)
k
is

compact in Lq([0, T ] × R2).

We state the following result

Theorem 2.2
Let T > 0. Let B ∈ C1

b (R2) be a smooth magnetic field and D be a fixed background density
⟨main_weak_sol⟩ verifying |x|D ∈ L1(R2), D ∈ L1(R2)∩L∞(R2). Assume that the initial condition fin satisfies

the hypotheses H1, H2 and H3. Then there exists a weak solution to the problem (10), (11),
(12) in the sense of Definition 2.1, satisfying

f ≥ 0, f ∈ L∞([0, T ];L1 ∩ L∞(R2 × R2)),
(
1 + |v|2

)γ/2
f ∈ L∞([0, T ] × R2 × R2)

(|x| + |v|2 + | ln f |)f ∈ L∞([0, T ];L1(R2 × R2))

E[f ] ∈ L∞([0, T ] × R2), E[f ] ∈ L∞([0, T ];L2(R2)). (18) PropWeakSol

Furthermore, we have f ∈ L2([0, T ] × R2
x, H

1(R2
v)).

The proof of Theorem 2.2 will be devided in 4 steps. The first is devoted to a construction
of an iterative sequence, the second to a convergence of the sequence, the third passes to the
limit and the last step studies the properties of the solution.
Step 1: Construction of an iterative sequence
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We first construct a sequence (fk)k≥0 as follows: we start with E0(t, x) = 0 and f0(t, x, v) =
fin(x, v). For a give electric field Ek(t, x) belongs to (L∞([0, T ] × R2))2, we consider fk+1

the unique weak solution of the following linear transport equation, cf. Theorem 2.1

∂tf
k+1 + v · ∇xf

k+1 + Ek · ∇vf
k+1 +B(x)⊥v · ∇vf

k+1 = σ∆vf
k+1 + divv(vf

k+1), (19) eq:VFP2DBis

fk+1(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2.

Then the density nk+1 and the electric field Ek+1 are defined by

nk+1(t, x) =

∫
R2

fk+1(t, x, v) dv, Ek+1(t, x) = − q

2πϵ0
∇x ln |·| ⋆

(
nk+1 −D

)
.

Thanks to Theorem 2.1, we obtain the following estimations

fk+1 ≥ 0, sup
[0,T ]

∥fk+1(t)∥Lp(R2×R2) ≤ C(T )∥fin∥Lp(R2×R2), p ∈ [1,∞] (20) IneqNormSequ

sup
[0,T ]

∫
R2

∫
R2

fk+1 |v|2

2
dvdx < C(T, ∥Ek∥L∞)

∫
R2

∫
R2

fin|v|2 dvdx (21) IneqKinEnerSequ

sup
[0,T ]

∫
R2

∫
R2

fk+1|x| dvdx < C(T )

∫
R2

∫
R2

fin|x| dvdx (22) IneqPosition

∥σ∇vf
k+1/

√
fk+1∥L2([0,T ];L2(R2×R2)) ≤ C(∥Ek∥L∞ , T, fin, σ)+

∫
R2

∫
R2

σfin| ln fin| dvdx. (23) IneqDissSequ

We will now establish the uniform estimates with respect to k of the electric field Ek, that
means sup[0,T ] ∥Ek∥L∞(R2) < C for some contant C > 0, not depending on k, which imply

clearly that the sequence (fk)k∈N is well-defined. Thanks to Lemma 2.2 and (20), it suffices
to show that for all k ∈ N, the following inequality

∥Y k(t)∥L∞(R2) < C

where we denote Y k(t) = (1 + |v|2)γ/2fk(t, x, v).

Lemma 2.6
Let fin be an initial data verifying the hypothesis

⟨LInftyNormVeloc⟩
∥Y 0∥L∞(R2×R2) = ∥(1 + |v|2)γ/2fin∥L∞(R2×R2) <∞, γ > 2.

Then there exists a function α(t) independent of k such that α ∈ L∞
loc([0,∞[), satisfying for

every k ∈ N

∥Y k+1(t)∥L∞(R2×R2) ≤ α(t).

Proof.
The proof relies on the maximum principle for the linear Vlasov-Fokker-Planck equation,
which is stated in Remark 6.1 of Appendix A. We apply it to the equations solved by Y k(t).
First, we multiply equation (19) by (1 + |v|2)γ/2 we easily get

∂tY
k+1 + v · ∇xY

k+1 + Ek · ∇vY
k+1 +B(x)⊥v · ∇vY

k+1 − σ∆vY
k+1 − divv(vY

k+1) (24) equaY

= γ(1 + |v|2)(γ−2)/2(v · Ek)fk+1 − 2σγ(1 + |v|2)(γ−2)/2v · ∇vf
k+1

−σγ(γ − 2)(1 + |v|2)(γ−4)/2|v|2fk+1 − 2σγ(1 + |v|2)(γ−2)/2fk+1

−γ(1 + |v|2)(γ−2)/2|v|2fk+1.
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But we have

−2σγ(1 + |v|2)(γ−2)/2v · ∇vf
k+1 = − 2σγ

1 + |v|2
(1 + |v|2)γ/2v · ∇vf

k+1

= − 2σγ

1 + |v|2
v · ∇vY

k+1 + 2σγ2
|v|2

1 + |v|2
(1 + |v|2)(γ−2)/2fk+1

so that the equation (24) can be rewritten

∂tY
k+1 + v · ∇xY

k+1 +

(
Ek + 2σγ

v

1 + |v|2

)
· ∇vY

k+1 +B(x)⊥v · ∇vY
k+1

−σ∆vY
k+1 − divv(vY

k+1) = R1 +R2 (25) equaYBis

with

R1 = γ(1 + |v|2)(γ−2)/2(v · Ek)fk+1

R2 =
σγ2|v|2

1 + |v|2
(1 + |v|2)(γ−2)/2fk+1 − 2σγ(1 + |v|2)(γ−2)/2fk+1 − γ(1 + |v|2)(γ−2)/2|v|2fk+1.

Now, thanks to the hypotheses on the initial data, we apply the L∞ estimate in the Remark
6.1 to (25), and therefore we obtain

∥Y k+1∥L∞(R2×R2) ≤ e2T ∥Y 0∥L∞(R2×R2) +

∫ t

0

(
∥R1(s)∥L∞(R2×R2) + ∥R2(s)∥L∞(R2×R2)

)
ds.

(26) InegInftyY

But

∥R2(s)∥L∞(R2×R2) ≤ (σγ2 + (2σ + 1)γ)∥Y k+1(s)∥L∞(R2×R2)

= C1(σ, γ)∥Y k+1(s)∥L∞(R2×R2),

and
∥R1(s)∥L∞(R2×R2) ≤ γ∥Ek(s)∥L∞(R2)∥(1 + |v|2)(γ−1)/2fk+1∥L∞(R2×R2).

Then we use the Lemma 2.3 for the electric field Ek and by combining with the bound of Lp

norm (20) we get

∥Ek(s)∥L∞(R2) ≤ C(D, fin)
(

1 + ∥(1 + |v|2)γ/2fk(s)∥1/γ
L∞(R2×R2)

)
= C(D, fin)

(
1 + ∥Y k(s)∥1/γ

L∞(R2×R2)

)
,

where C(D, fin) stands for the constant, depending only on D and fin. On the other hand,
thanks to the result of the elementary interpolation and (20) we have

∥(1 + |v|2)(γ−1)/2fk+1(s)∥L∞(R2×R2) ≤ C(γ)∥fk+1(s)∥1/γ
L∞(R2×R2)

∥Y k+1(s)∥1−1/γ
L∞(R2×R2)

≤ C(γ, fin)∥Y k+1(s)∥1−1/γ
L∞(R2×R2)

.

Therefore the previous bound estimate of R1 becomes

∥R1(s)∥L∞(R2×R2) ≤ C
(
∥Y k+1(s)∥L∞(R2×R2) + ∥Y k(s)∥1/γ

L∞(R2×R2)
∥Y k+1(s)∥1−1/γ

L∞(R2×R2)

)
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for some positive constant C depending only on D, fin, γ. Together the estimates of R1 and
R2, the inequality (26) becomes

∥Y k+1(t)∥L∞(R2×R2) ≤ e2T ∥Y 0∥L∞(R2×R2) + C1

∫ t

0
∥Y k+1(s)∥L∞(R2×R2)ds

+ C2

∫ t

0
∥Y k(s)∥1/γ

L∞(R2×R2)
∥Y k+1(s)∥1−1/γ

L∞(R2×R2)
ds. (27) InegInftyYBis

for some positive constants C1, C2, not depending on k.
Now, let α(t) be the solution of the linear equation which corresponds to the inequality (27)

α̇(t) = (C1 + C2)α(t), α(0) = e2T ∥Y 0∥L∞(R2×R2).

Then we prove by induction on k that we have

∥Y k(t)∥L∞(R2×R2) ≤ α(t), ∀t ∈ [0, T ], ∀k ∈ N. (28) BoundNormY

Indeed, denoting by Ψk+1 the right hand side of (28) then we shall prove that an upper bound
T for the set

T = sup
{
t ∈ R+|Ψk+1(s) ≤ α(s), ∀s ∈ [0, t[

}
does not exist. If the converse were true, there exists k0 ∈ N such that Ψk0+1(t) ≤ α(t), for
every t ∈ [0, T [ and Ψk0+1(T ) > α(T ). Since for any k ∈ N we have

Ψ̇k+1(t) = C1∥Y k+1(t)∥L∞(R2×R2) + C2∥Y k(t)∥1/γ
L∞(R2×R2)

∥Y k+1(t)∥1−1/γ
L∞(R2×R2)

≤ C1α(t) + C2α(t) = α̇(t), t ∈ [0, T [

thus this implies that Ψk+1(t) ≤ α(t), ∀t ∈ [0, T [ for any k ∈ N. As Ψk+1(t) is an increasing
function and α(t) is continuous hence one gets

Ψk+1(T ) = lim sup
t↗T

Ψk+1(t) ≤ lim sup
t↗T

α(t) = α(T )

which shows a contradiction. Therefore, (28) is the desired estimate for Y k+1.

By Lemma 2.6, we deduce that the constants in the inequalities (21), (23) respectively are
independent with respect to k. Together with the Lemma 2.2 and (20) yields the uniform
bound of the sequence (nk)k∈N in L∞([0, T ];Lp(R2)), for any p ∈ [1,∞].
Step 2: Compactness and convergence
It follows from the uniform bound of the sequences that there exist a limit (f, n,E) such that
up to extraction of a subsequence, it holds as k → ∞ that

fk+1 ⇀ f weak ⋆ in L∞([0, T ];Lp(R2 × R2)), p ∈]1,∞],

nk+1 ⇀ n weak ⋆ in L∞([0, T ];Lp(R2)), p ∈]1,∞],

Ek+1 ⇀ E weak ⋆ dans L∞([0, T ] × R2).

Furthermore, by using the Lemma 2.5 with ψ(v) = 1 we get the strong convergence

nk+1 → n in Lq([0, T ] × R2), q ∈]1, 4/3[. (29) ?strongconv?

Indeed, by uniform estimates (20), (21) and (22) the conditions in the Lemma 2.5 are verified.
Let us write

Gk+1 := σ∇vf
k+1 + vfk+1 − Ekfk+1 −B(x)⊥vfk+1.
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Then the equation (19) can be written as

∂tf
k+1 + v · ∇xf

k+1 = ∇vG
k+1.

We now claim that the sequence (Gk)k∈N is bounded in Lq([0, T ] × R2 × R2) to apply the
averaging lemma, Lemma 2.5. Hence, we need to prove the following lemma.

Lemma 2.7
For any q ∈ [1, 2], there exists a constant C independent of k such that for every n ∈ N we

⟨BoundGk⟩ have
∥Gk+1∥Lq([0,T ]×R2×R2) ≤ C, q ∈ [1, 2].

Proof.
As the sequence of electric fields Ek is bounded in L∞([0, T ] ×R2) and the magnetic field B
belongs to L∞(R2) we obtain

∥Gk+1∥Lq ≤ ∥σ∇vf
k+1∥Lq + (1 + ∥B∥L∞)∥vfk+1∥Lq([0,T ]×R2×R2) + C∥fk+1∥Lq

for some positive constant C not depending on k.
From (20) it is easily seen that ∥fk+1∥Lq([0,T ]×R2×R2) ≤ T 1/q∥fin∥Lq(R2×R2). On the other

hand, since ∥vfk+1∥Lq([0,T ]×R2×R2) ≤ T 1/q sup[0,T ] ∥vfk+1∥Lq(R2×R2) and thanks to Hölder’s
inquality for q ∈ [1, 2[ we have

∥vfk+1∥Lq(R2×R2) =

(∫
R2

∫
R2

f |v|q dvdx

)1/q

=

(∫
R2

∫
R2

|v|qf q/2f q/2 dvdx

)1/q

≤
(∫

R2

∫
R2

|v|2f dvdx

)1/2(∫
R2

∫
R2

f q/(2−q) dvdx

)(2−q)/2

≤
(∫

R2

∫
R2

|v|2f dvdx

)1/2

∥f∥q/2
Lq/(2−q)(R2×R2)

.

When q = 2 we also get

∥vfk+1∥L2(R2×R2) ≤ ∥f∥1/2
L∞(R2×R2)

(∫
R2

∫
R2

|v|2f dvdx

)1/2

.

Consequently, the sequence (vfk)k is bounded in Lq([0, T ]×R2×R2), for any q ∈ [1, 2]. It re-
mains to uniformly bound the sequence ∥σ∇vf

k+1∥Lq([0,T ]×R2×R2). Using Hölder’s inequality
again for q ∈ [1, 2[, we have∫ T

0

∫
R2

∫
R2

|∇vf
k+1|q dvdxdt =

∫ T

0

∫
R2

∫
R2

(
fk+1

) q
2 |∇vf

k+1|q

(fk+1)
q
2

dvdxdt

≤
∫ T

0
∥fk+1∥

q
2

L
q

2−q

(∫
R2

∫
R2

|∇vf
k+1|2

fk+1
dvdx

) q
2

dt

≤ C(T )∥fk+1∥
q
2

L∞[(0,T ];L
q

2−q )

(∫ T

0

∫
R2

∫
R2

|∇vf
k+1|2

fk+1
dvdxdt

) q
2

and when p = 2 we also get∫ T

0

∫
R2

∫
R2

|∇vf
k+1|2 dvdxdt =

∫ T

0

∫
R2

∫
R2

fk+1 |∇vf
k+1|2

fk+1
dvdxdt

≤ ∥fk+1∥L∞([0,T ]×R2×R2)

∫ T

0

∫
R2

∫
R2

|∇vf
k+1|2

fk+1
dvdxdt.

Thanks to Lemma 2.6 and (23), we deduce that the sequence (|∇vf
k|2/fk)k∈N is bounded in

L1([0, T ]×R2×R2). Therefore, the sequence (∇vf
k)k∈N is bounded in (Lq([0, T ]×R2×R2))2

with q ∈ [1, 2]. Altogether the above estimates we conclude the result of Lemma 2.7.
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Step 3: Passing to the limit
Thanks to the weak convergences obtained in Step 2, we see that to pass to the limit in
the weak formulation of equation (19) it suffices to show convergence towards 0 for any test
function φ ∈ C∞

c ([0, T ) × R2 × R2) of the non-linear contribution∫ T

0

∫
R2

∫
R2

[
(∇x ln(| · |) ⋆ nk)fk+1 − (∇x ln(| · |) ⋆ n)f

]
φ dvdxdt

=

∫ T

0

∫
R2

∫
R2

[
(∇x ln(| · |) ⋆ (nk − n))fk+1

]
φ dvdxdt

+

∫ T

0

∫
R2

∫
R2

(∇x ln(| · |) ⋆ n)φ(fk+1 − f) dvdxdt. (30) NonLinearEner

For the first term in (30) we write∫ T

0

∫
R2

∫
R2

[
(∇x ln(| · |) ⋆ (nk − n))fk+1

]
φ dvdxdt

=

∫ T

0

∫
R2

[
∇x ln(| · |)1{|·|≤1}

]
⋆ (nk − n))

(∫
Rd

fk+1φ dv

)
dxdt

+

∫ T

0

∫
R2

[
∇x ln(| · |)1{|·|>1}

]
∗ (nk − n))

(∫
Rd

fk+1φ dv

)
dxdt

=: I1 + I2.

Estimating now I1. Notice that ∇x ln(|x|)1{|·|≤1} ∈ L1(R2) we have

I1 ≤
∫ T

0
∥∇x ln(|x|)1{|·|≤1}∥L1(R2)∥nk − n∥Lq(R2)

∥∥∥∥∫
Rd

fk+1φ dv

∥∥∥∥
Lq′ (R2)

where q ∈]1, 4/3[ and q′ is the Hölder conjugate of q. Here we have used Young’s inequality
for the convolutions∫

R2

(f ∗ g)h dx ≤ ∥f∥Lp∥g∥Lq∥h∥Lr ,
1

p
+

1

q
+

1

r
= 2.

Then by the Hölder inequality in variable t we have

I1 ≤ ∥∇x ln(|x|)1{|·|≤1}∥L1(R2)∥nk − n∥Lq([0,T ]×R2)

∥∥∥∥∫
R2

fk+1φ dv

∥∥∥∥
Lq′ ([0,T ]×R2)

.

Notice that the sequence (fk)k∈N is bounded in L∞([0, T ] × R2 × R2) and φ ∈ C∞
0 ([0, T ) ×

R2 × R2) imply (fk+1φ)k∈N is bounded in Lq
′
([0, T ] × R2). Since nk converges strongly to n

in Lq([0, T ] × R2) therefore we get I1 → 0 as k → ∞.
Estimating now I2. Notice that ∇x ln(|x|)1{|·|≥1} ∈ Lp(R2) for any p ∈]2,∞[. Using Young’s
inequality again for the convolutions then we have

I2 ≤
∫ T

0
∥∇x ln(|x|)1{|·|≥1}∥Lp′ (R2)∥n

k − n∥Lp(R2)

∥∥∥∥∫
Rd

fk+1φ dv

∥∥∥∥
L1(R2)

,

where p ∈]1, 4/3[ and p′ is the Hölder conjugate of p (p′ > 4). Performing in the same way
as I1, we also have I2 → 0 as k → +∞. Combining the convergences of I1 and I2 we deduce
that the first term in (30) converges to 0, as k → +∞.
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For the second term in (30) we write∫ T

0

∫
R2

∫
R2

(∇x ln(| · |) ⋆ n)φ(fk+1 − f) dvdxdt

=

∫ T

0

∫
R2

∫
R2

[
∇x ln(| · |)1{|·|<1}

]
⋆ nφ(fk+1 − f) dvdxdt

+

∫ T

0

∫
R2

∫
R2

[
∇x ln(| · |)1{|·|≥1}

]
⋆ nφ(fk+1 − f) dvdxdt

=: K1 +K2.

Estimating now K1. Notice that ∇x ln(| · |)1{|·|<1} ⋆ nφ belongs to (L1([0, T ];Lp(R2 ×R2)))2

avec p ∈]1, 2]. Indeed, since∫ T

0

(∫
R2

([
∇x ln(| · |)1{|·|<1}

]
⋆ n
)p(∫

R2

|φ|p dv

)
dx

) 1
p

dt

≤
∫ T

0

∥∥∥∥∥
(∫

R2

|φ|p dv

)1/p
∥∥∥∥∥
L∞(R2)

dt sup
[0,T ]

(∫
R2

([
∇x ln(| · |)1{|·|<1}

]
⋆ n
)p

dx

)1/p

and

sup
[0,T ]

(∫
R2

([
∇x ln(| · |)1{|·|<1}

]
⋆ n
)p

dx

)1/p

≤ ∥∇x ln(| · |)1{|·|<1}∥L1(R2)∥n∥L∞(0,T ;Lp(R2))

where we have used the convolution inequality

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq ,
1

p
+

1

q
= 1 +

1

r

we deduce that ∇x ln(| · |)1{|·|<1}⋆nφ ∈ L1([0, T ];Lp(R2×R2)) with p ∈]1, 2]. As the sequence

(fk)k∈N converges weakly-⋆ to f in L∞([0, T ];Lq(R2×R2)) with q ∈]1,∞] thus K1 → 0 when
k → +∞.
Estimating now K2. Since ∇x ln(| · |)1{|·|≥1} ∈ Lp(R2) with p > 2, and n ∈ L∞([0, T ];Lq(R2))
with q ∈]1,∞] and by using the convolution inequality we get ∇x ln(| · |)1{|·|≥1} ⋆ n ∈
L∞([0, T ];Lr(R2)) with r > 2. This implies that ∇x ln(|·|)1{|·|≥1}⋆nφ lies in L1([0, T ];Lp(R2×
R2)) with p ∈]2,∞[. Thus we also have K2 → 0 as k → +∞.

Finally, the contribution (30) converges to 0 as k → +∞. Therefore we obtain f is
the weak solution of VPFP system (10), (11), (12) with the electric field E satisfying E =
− q

2πϵ0
∇x ln | · | ⋆ (n − D). Furthermore, since the sequence (fk)k∈N belongs to L2([0, T ] ×

R2
x, H

1(R2
v)) it is easily check that f ∈ L2([0, T ] × R2

x, H
1(R2

v)) by using the Theorem 6.1.
Step 4: Properties (18) of solutions
The nonegative limit function f is a direct consequence of the weak-⋆ convergence of the
nonegative sequence (fk)k∈N in L∞([0, T ]×R2×R2). In particular, f ∈ L∞([0, T ]×R2×R2).
Moreover, we also have (1 + |v|2)γ/2f ∈ L∞([0, T ] × R2 × R2) since the sequence ((1 +
|v|2)γ/2fk)k∈N is bounded in L∞([0, T ] × R2 × R2). Now, let φ be any nonnegative function
in C∞

0 ([0, T [) and R > 0 be a constant. To prove f ∈ L∞([0, T ];L1(R2 × R2)) we use the
function ψR(t, x, v) = φ(t)1{|x|≤R,|v|≤R}. Hence by the weak-⋆ convergence of (fk)k∈N to f
we deduce that∫ T

0
φ(t)

∫
R2

∫
R2

f(t, x, v)1{|x|≤R,|v|≤R} dvdxdt ≤ lim sup
k→∞

∫ T

0
φ(t)

∫
R2

∫
R2

f(t, x, v) dvdxdt.
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Taking now the limit R → ∞ and apply the dominated convergence theorem to get f ∈
L∞([0, T ];L1(R2 × R2)). Similarly, if we choose the test function ψR(t, x, v) = φ(t)(|x| +
|v|2)1{|x|≤R,|v|≤R} then we can show that (|x|+ |v|2)f ∈ L∞([0, T ];L1(R2×R2)). We complete
the property of the solution by showing that f ln f ∈ L∞([0, T ];L1(R2 × R2)). Indeed, we
have the identity

f | ln f | = f ln fχ{f≥1} − f ln fχ{0≤f≤1}.

Since f ln fχ{f≥1} ≤ f2 and f ln fχ{0≤f≤1} ≤ Ce−(|x|+|v|2) + (|x| + |v|2)f , for some constant
C > 0 together with f ∈ L∞(0, T ;L2(R2 × R2)) and (|x| + |v|2)f ∈ L∞(0, T ;L1(R2 × R2)),
we deduce that f ln f ∈ L∞(0, T ;L1(R2 × R2)).

The following lemma provides the property on the potential Φ[f ] and the electric field
E[f ] = −∇xΦ[f ] of the Poisson equation on R2, so as to control the potential energy. We
refer to Lemma 3 in [20].

Lemma 2.8
Let ρ ∈ Lp(R2) with any p ∈ [1,∞] be such that

⟨PropSolPoi⟩ ∫
R2

(1 + |x|)|ρ(x)| dx < +∞,

∫
R2

ρ(x) dx = 0.

Consider the potential Φ given by Φ(x) = − 1
2π

∫
R2 ln |x− y|ρ(y)dy. Then, Φ is a continuous

and bounded function such that lim|x|→∞ Φ(x) = 0. Furthermore, we also have Φ ∈ L2(R2)
and ∇ϕ ∈ (L2(R2))2.

Proof.
Since − 1

2π ln |x| is the fundamental solution of −∆x on R2, we have |ξ|2Φ̂(ξ) = ρ̂(ξ) by using
the Fourier transform. Then the integral of ρ vanishes so ρ̂(0) = 0 which implies that

|Φ̂(ξ)| =

∣∣∣∣ ρ̂(ξ)

|ξ|2

∣∣∣∣ ≤ ∣∣∣∣ ρ̂(ξ) − ρ̂(0)

|ξ|2

∣∣∣∣ 1{|ξ|≤1} +

∣∣∣∣ ρ̂(ξ)

|ξ|2

∣∣∣∣ 1{|ξ|>1}.

On the other hand, |ρ̂(ξ) − ρ̂(0)| ≤ |ξ|∥∇ρ̂∥L∞(R2) ≤ |ξ|∥∇̂ρ̂∥L1(R2) = |ξ∥xρ∥L1(R2). Hence

|Φ̂(ξ)| ≤ ∥xρ∥L1(R2)
1

|ξ|
1{|ξ|≤1} +

∣∣∣∣ ρ̂(ξ)

|ξ|2

∣∣∣∣ 1{|ξ|>1}. (31) EstmFourier

Since 1/|ξ| ∈ L1
loc(R2) and ρ̂ ∈ L2(R2), it is easily obtain from (31) that Φ̂ ∈ L1(R2). It

follows that x 7→ Φ(x) is a continuous and bounded function which tends to 0 at infinity.
Hence, Φ ∈ L∞(R2). Furthermore, we can show that Φ ∈ Lq(R2) with any q ∈]1, 2[ such that
q is the Hölder conjugate of p. Indeed, first we observer that 1/|ξ| ∈ Lqloc(R

2) with 1 < q < 2.
Then since ρ ∈ Lp(R2), 1 < p < 2 we deduce that ρ̂ ∈ Lq(R2) with 1/p+ 1/q = 1. Applying
the inequality (a + b)r ≤ 2r(ar + br), for a, b, r ≥ 0 we conclude that Φ ∈  Lq(R2), q ∈]1, 2[.
Together with Φ ∈ L∞(R2), we get Φ ∈ L2(R2). Similar to the derivative of Φ, we have

|∇̂Φ(ξ)| =

∣∣∣∣ ξ|ξ|2 ρ̂(ξ)

∣∣∣∣ ≤ ∥xρ∥L1(R2)1{|ξ|≤1} +

∣∣∣∣ ρ̂(ξ)

|ξ|2

∣∣∣∣ 1{|ξ|>1}.

It is easily deduce that ∇Φ ∈ (L2(R2))2 by ρ ∈ L2(R2) and the Plancherel theorem. Therefore,
the potential energy is finite and we have the the identity∫

R2

ρΦ dx =

∫
R2

|∇Φ|2 dx.

via standard approximation and truncation arguments.
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3 A priori estimates

The aim of this section is the derivation of a priori estimates, uniform with respect to ε, on
the weak solution f ε provided by Theorem 2.2. These estimates are deduced from the con-
servation properties of the system and from the dissipation mechanism due to the collisions.
We recall that (f ε, E[f ε]) is a weak solution to the problem (4), (5), (6) on [0, T ] with any
T > 0, if for any the test function φ ∈ C∞

0 ([0, T [×R2 × R2) we have∫ T

0

∫
R2

∫
R2

f ε
(
ε∂tφ+ v · ∇xφ+

q

m
(E[f ε] +

B(x)

ε
⊥v) · ∇vφ

)
dvdxdt (32) WeakSolScaleVPFP

+

∫ T

0

∫
R2

∫
R2

f ε (σ∆vφ− v · ∇vφ) dvdxdt+

∫
R2

∫
R2

εf εin(x, v)φ(0, x, v) dvdx = 0.

Let us define the free energy of the VPFP system (4), (5), (6) as

E [f ε] =

∫
R2

∫
R2

(σfε ln f ε + f ε
|v|2

2
) dvdx+

ε0
2m

∫
R2

|E[f ε]|2 dx.

Proposition 3.1
Let (f ε, E[f ε]) be a weak solution of the system (4), (5), (6) provided by Theorem 2.2. Then,

⟨WeakFreeEnergy2D⟩we have the mass conservation and the balance of the free energy

d

dt

∫
R2

f ε(t) dx = 0, ε
d

dt
E [f ε(t)] = −

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdx.

The mass conservation follows formally by integrating (4) in v, which gives the continuity
equation for the mass density, and then integrating in x. On the other hand, the law for the
balance of the total energy is derived formally by summing up these relations below. First,

multiplying the equation (4) by |v|2
2 to obtain the balance of kinetic energy

d

dt

∫
R2

∫
R2

|v|2

2
f ε dvdx =

∫
R2

∫
R2

q

m
E[f ε] · vfε dvdx−

∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Then, thanks to the continuty equation ∂tn[f ε] + divx
∫
R2vf

ε dv = 0, we multiply this
equation by Φ[f ε] and use the Poisson equation to find the balance of potential energy

ε0ε

2m

d

dt

∫
R2

|E[f ε]|2 dx = − q

m

∫
R2

∫
R2

E[f ε] · vfε dvdx.

Finally, multiplying the equation (4) by σ(1 + ln f ε) to get the balance of entropy

d

dt

∫
R2

∫
R2

σfε ln f ε dvdx = −
∫
R2

∫
R2

(σ∇vf
ε + vfε) · σ∇vf

ε

f ε
dvdx.

As for weak solutions, we shall follow the same scheme. We find relations analogous to
previous relations in the Lemmas below. The difficulty is in overcoming the lack of regularity
and the need to justify operations that are taken for granted when the solutions are smooth.
We will prove these properties of solutions by combining the formal arguments above with
the choice of an appropriate sequence of test functions in (32) for every studied property. A
similar rigorous approach that the one given in Refs. [2] and [6] can be easily adapted for
the properties studied in our weak solution.

We start with the balance of kinetic energy.
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Lemma 3.1
Let f ε be the weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

⟨BalanceKin2D⟩ have

d

dt

∫
R2

∫
R2

|v|2

2
f ε dvdx =

∫
R2

∫
R2

q

m
E[f ε] · vfε dvdx−

∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Proof.
Let χ be a nonegative function of class C∞

0 (R) such that

χ(s) = 1, on |s| ≤ 1, χ(s) = 0 on |s| ≥ 2,

we define the function χR as χR(z) = χ
(
|z|
R

)
. Then χR(z) = 1 on |z| ≤ R, χR(z) = 0 on

|z| ≥ 2R and ∥∇zχR∥L∞ ≤ ∥χ′∥∞
R .

By using the test functions φ(t, x, v) = ϕ(t)χR(x)χR(v) |v|
2

2 with ϕ ∈ C∞
0 ([0, T [) in the defi-

nition of weak solution (32), we obtain∫ T

0

∫
R2

∫
R2

f ε [ε∂tϕ(t)χR(x) + v · ∇xχR(x)ϕ(t)]χR(v)
|v|2

2
dvdxdt

+

∫ T

0

∫
R2

∫
R2

f ε
(
E[f ε] +

B(x)

ε
⊥v

)
· ∇v

(
χR(v)

|v|2

2

)
ϕ(t)χR(x) dvdxdt

+

∫ T

0

∫
R2

∫
R2

f ε (σ∆v − v · ∇v)

(
χR(v)

|v|2

2

)
ϕ(t)χR(x) dvdxdt

+

∫
R2

∫
R2

εf εin(x, v)ϕ(0)χR(x)χR(v)
|v|2

2
dvdx = 0.

A simple computation shows that

∇v

(
χR(v)

|v|2

2

)
=

v

R|v|
χ′
(
|v|
R

)
|v|2

2
+ vχR(v),

∆v

(
χR(v)

|v|2

2

)
= divv

(
v

R|v|
χ′
(
|v|
R

)
|v|2

2

)
+ divv (vχR(v))

=
1

R

[
χ′
(
|v|
R

)(
|v|
2

+
|v|
R

)
+ χ′′

(
|v|
R

)
|v|2

2R

]
+ 2χR(v) + χ′

(
|v|
R

)
|v|
R
.

For each ε > 0, using the Theorem 2.2 on the solution, we have (1+|v|2)f ε ∈ L∞([0, T ];L1(R2×
R2)) and E[f ε] ∈ L∞([0, T ] × R2). Letting R→ ∞, one gets, by the dominated convergence
theorem, the following relation for any ϕ ∈ C∞

0 ([0, T [)∫ T

0
∂tϕ(t)

∫
R2

∫
R2

ε
|v|2

2
f ε(t, x, v) dvdxdt+

∫ T

0
ϕ(t)

∫
R2

∫
R2

E[f ε] · vfε dvdxdt

+

∫ T

0
ϕ(t)

∫
R2

∫
R2

(2σ − |v|2)f ε(t, x, v) dvdxdt+

∫
R2

∫
R2

ε
|v|2

2
f εin(x, v)ϕ(0) dvdx = 0.

On the other hand, by Proposition 6.2, our weak solution f ε belongs to L2([0, T ]×R2
x, H

1(R2
v))

and tends to 0 at infinity since (1 + |v|2)γ/2f ε ∈ L∞, thus by the divergence theorem we have∫
R2

∫
R2

(2σ − |v|2)f ε(t, x, v) dvdx = −
∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Substituting into the previous relation, we easily deduce the assertions on the lemma.
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In the following lemma we obtain the balance of the potential energy.

Lemma 3.2
Let f ε be the weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

⟨BalancePot2D⟩ have
ε0ε

2m

d

dt

∫
R2

|E[f ε]|2 dx = − q

m

∫
R2

∫
R2

E[f ε] · vfε dvdx = − q

m

∫
R2

E[f ε] · j[f ε] dx.

Proof.
First, we show that Φ[f ε], E[f ε] and ∂tE[f ε] belong to L∞([0, T ];L2(R2)). We will apply the
Lemma 2.8. The conditions in Lemma 2.8 are fulfilled by the properties on the solution f ε

and the background densities D(x) by assumption H3. Hence one gets Φ[f ε] and E[f ε] lie in
L∞([0, T ];L2(R2)). It remains to prove that ∂tE[f ε] belong to L∞([0, T ];L2(R2))2. Thanks
to the continuity equation on [0, T [×R2 in the sense of distributions

∂tn[f ε] + divx

∫
R2

vfε dv = 0

see Lemma 4.1 below, together with the Poisson equation (5), we deduce that

∂tE[f ε(t)](x) = − q

2πε0
∇ ln | · | ⋆ ∂t(n[f ε] −D) =

1

2πε0
∇ ln | · | ⋆ (divxj[f

ε]).

In order to estimate ∂tE[f ε(t)], we will use the Calderon-Zygmund inequality, see Lemma 6.7
below in the Appendix D, but in the dual version. Let η be a test function in C∞

0 ([0, T [×R2).
We have 〈

1

2πε0
∇ ln | · | ⋆ (divxj[f

ε]), η

〉
=

∫
R2

q

2πε0
D2 ln | · | ⋆ η(x) · j[f ε] dx.

By Lemma 2.2 one gets j[f ε] ∈ L∞([0, T ];L2(R2 × R2)). Therefore we deduce that∣∣∣∣〈 1

2πε0
∇ ln | · | ⋆ (divxj[f

ε]), η

〉∣∣∣∣ ≤ q

2πε0
∥D2 ln | · | ⋆ η∥L2∥j[f ε]∥L2

≤ C∥η∥L2∥j[f ε]∥L2 .

It allows to conclude that ∂tE[f ε] belongs to L∞([0, T ];L2(R2)).
Now let ν > 0 and let κ ∈ C∞

0 (R2) be a standard mollifier. Define the regularization kernel
κν := 1

ν2
κ(xν ). Convoluting with κν in the equation divx(∂tE[f ε] + q

ε0ε
j[f ε]) = 0 we obtain

divx(∂tE
ν [f ε] +

q

ε0ε
jν [f ε]) = 0

where Eν [f ε] = E[f ε] ⋆ κν , jν [f ε] = j[f ε] ⋆ κν . Multiplying the previous equation by
Φν [f ε]χR(x) and integrate by parts to find that∫

R2

∂tE
ν [f ε] · Eν [f ε]χR(x) dx+

q

ε0ε

∫
R2

Eν [f ε] · jν [f ε]χR(x) dx

+

∫
R2

(∂tE
ν [f ε] +

q

ε0ε
jν [f ε]) · Φν [f ε]∇χR dx = 0.

where Φν [f ε] = Φ[f ε]⋆κν and χR stands for the family of smooth cut-off functions, defined in
Lemma 3.1. Let ν → 0. The terms on the left side converge as a consequence of the theorem
of smooth approximations from the first arguments on Φ[f ε], E[f ε], ∂tE[f ε]. Then we obtain∫

R2

∂tE[f ε] · E[f ε]χR(x) dx+
q

ε0ε

∫
R2

E[f ε] · j[f ε]χR(x) dx

+

∫
R2

(∂tE[f ε] +
q

ε0ε
j[f ε]) · Φ[f ε]∇χR dx = 0.
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Letting R→ ∞, the dominated convergence theorem yields∫
R2

∂tE[f ε] · E[f ε] dx+
q

ε0ε

∫
R2

E[f ε] · j[f ε] dx = 0

which gives the result in the lemma.

Finally, let us deduce the balance of entropy.

Lemma 3.3
Let f ε be a weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

⟨BalanceEntropy⟩ have
d

dt

∫
R2

∫
R2

σfε ln f ε dvdx = −
∫
R2

∫
R2

(σ∇vf
ε + vfε) · σ∇vf

ε

f ε
dvdx.

Proof.
First, we will show that for any Ψ ∈ C2(R) such that Ψ′′ ∈ L∞(R) and Ψ(0) = 0, Ψ(f) solves
the following equation in the sense of distribution on [0, T [×R2 × R2

ε∂tΨ(f ε) + v · ∇xΨ(f ε) +
q

m
E[f ε] · ∇vΨ(f ε) +

q

m

B(x)

ε
⊥v · ∇vΨ(f ε)

−v · ∇vΨ(f ε) − σ∆vΨ(f ε) = 2f εΨ′(f ε) − σΨ′′(f ε) |∇vf
ε|2 . (33) NonlinearEqu

Let us consider a sequence of mollifiers κν := κt,x,vν = κν(t)⋆κν(x)⋆κν(v) which approximates
the Dirac delta function, and κν(t) is supposed to have its support in the negative real axis.
Then we define f ε,ν = f ε ⋆t,x,v κν . It is well known that f ε belongs to L2([0, T ]×R2

x;H1(R2
v))

then f ε,κ ∈ C∞(0, T ;Hm(R2 × R2)), for every ν > 0, m ≥ 1. Moreover, by the theorem of
smooth approximations, we also have

f ε,ν → f ε in L2([0, T ];L2(R2 × R2)), ∇vf
ε,ν → ∇vf

ε in L2([0, T ];L2(R2 × R2)).

We convolute with κν in the equation (4), we obtain

ε∂tf
ε,ν +v ·∇xf

ε,ν +
q

m
E[f ε] ·∇vf

ε,ν +
q

m

B(x)

ε
⊥v ·∇vf

ε,ν −divv(vf
ε,ν)−σ∆vf

ε,ν =

4∑
i=1

hε,νi

(34) equ:ConvolVPFP2D

where the functions hε,νi are defined by

hε,ν1 = v · ∇x(κν ⋆ f
ε) − (v · ∇xf

ε) ⋆ κν

hε,ν2 =
q

m
E[f ε] · ∇v(κν ⋆ f

ε) − (E[f ε] · ∇vf
ε) ⋆ κν

hε,ν3 =
q

m

B(x)

ε
⊥v · ∇v(κν ⋆ f

ε) − (B(x)⊥v · ∇vf
ε) ⋆ κν

hε,ν4 = −[v · ∇v(κν ⋆ f
ε) − (v · ∇vf

ε) ⋆ κν ].

For each ε > 0, it is obviously that hε,ν2 tends to 0 in L2([0, T ];L2(R2 × R2)) as ν ↘ 0, since
∇vf

ε,ν = ∇v(κν ⋆ f
ε) converges to ∇vf

ε in L2([0, T ];L2(R2 ×R2)) and E[f ε] ∈ (L∞([0, T ] ×
R2))2 hence E[f ε] · ∇v(κν ⋆ f

ε) tends to E[f ε] · ∇vf
ε and (E[f ε] · ∇vf

ε) ⋆ κν also tends to
E[f ε]) · ∇vf

ε in L2([0, T ];L2(R2 × R2)). For other terms hε,νi , we also obtain that hε,νi → 0

in L1([0, T ];Lβloc(R
2 × R2)). Here, we have used the following property, see [16] Lemma II.1:

Let W ∈ L1(0, T ; (W 1,α
loc (Rd))d), g ∈ L∞(0, T ;Lploc(R

d)), then we have

(W · ∇g) ⋆ δε −W · ∇(g ⋆ δε) → 0 in L1(0, T ;Lβ(Rd)),
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where
1

β
=

1

α
+

1

p
if α or p <∞, β <∞ is arbitrary if α = p = ∞.

Now we establish the equation (33). Since Ψ ∈ C2(R) then Ψ(f ε,ν) ∈ C2(R). Multiplying
by Ψ′(f ε,ν) in (34), one gets

∂tΨ(f ε,ν) + v · ∇xΨ(f ε,ν) +
q

m
E[f ε] · ∇vΨ(f ε,ν) +

q

m

B(x)

ε
⊥v · ∇vΨ(fε, ν) − v · ∇vΨ(f ε,ν)

−σ∆vΨ(f ε,ν) = 2f ε,νΨ′(f ε,ν) − σΨ′′(f ε,ν)|∇vf
ε,ν |2 +

4∑
i=1

hε,νi Ψ′(f ε,ν).

Since Ψ ∈ C2(R2) with Ψ′′ ∈ L∞(R2) thus Ψ is at the most quadratic at infinity, we have
Ψ(f ε,ν) → Ψ(f ε) in L1

loc, Ψ′(f ε,ν) → Ψ′(f ε) in L2
loc. Passing to the limit we obtain the

equation (33) in the sense of distribution.
Now we are ready to establish the balance of the entropy identity. We shall apply (33)

for the following function

ψδ(f
ε) = (δ + f ε) ln

(
1 +

f ε

δ

)
+ f ε ln δ, δ > 0.

A simple computations show that

ψ′
δ(f) = ln

(
1 +

f

δ

)
+ ln δ + 1, ψ′′

δ (f) =
1

δ + f
≤ 1

δ
.

Thus, the function ψδ belongs to C2(R) and satisfies ψ′′
δ ∈ L∞ with ψδ(0) = 0. Moreover,

ψδ ∈ L∞([0, T ];L1(R2×R2)), since (δ + f ε) ln
(

1 + fε

δ

)
≤ (δ+f ε)f

ε

δ = f ε+ (fε)2
δ . Therefore,

ψδ(f
ε) satisfies the following equation in the sense of distribution

∂tψδ(f
ε) + v · ∇xψδ(f

ε) +
q

m
E[f ε] · ∇vψδ(f

ε) +
q

m

B(x)

ε
⊥v · ∇vψδ(f

ε)

−v · ∇vψδ(f
ε) − σ∆vψδ(f

ε) = 2f εψ′
δ(f

ε) − σψ′′
δ (f ε)|∇vf

ε|2. (35) equ:NonlinearVPFPBis

We consider the test function φ(t, x, v) = ϕ(t)χR(x)χR(v), where the function χR was defined
in the Lemma 3.1. For each ε > 0, we have ψδ(f

ε) ∈ L∞([0, T ];L1(R2 × R2)) and E[f ε] ∈
L∞([0, T ] × R2). Passing to the limit as R → ∞, we easily deduce from (35) the following
relation

d

dt

∫
R2

∫
R2

ψδ(f
ε(t)) dvdx+

∫
R2

∫
R2

σ|∇vf
ε|2

δ + f ε
dvdx+ 2

∫
R2

∫
R2

ψδ(f
ε) dvdxdτ

= 2

∫
R2

∫
R2

f ε
(

ln

(
1 +

f ε

δ

)
+ ln δ + 1

)
dvdx

which is equivalent to

d

dt

∫
R2

∫
R2

ψδ(f
ε(t)) dvdx+

∫
R2

∫
R2

σ|∇vf
ε|2

δ + f ε
dvdx = 2

∫
R2

∫
R2

(
f ε − δ ln

(
1 +

f ε

δ

))
dvdx

(36) equ:LimNonLinear

Next we will study the limit of (36) as δ → 0. Let us recall that the solution f ε satisfies the
properties: f ε ∈ L∞([0, T ];L1 ∩ L∞), f ε ln f ε ∈ L∞([0, T ];L1(R2 × R2)). Since

ψδ(f
ε) − f ε ln f ε = δ ln

(
1 +

f ε

δ

)
+ f ε ln

(
1 +

δ

f ε

)
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we deduce that this term tends to 0 a.e in R2 as δ → 0 and it is uniform bounded with respect
to δ by

|ψδ(f ε) − f ε ln f ε| ≤ δ
f ε

δ
+ f ε| ln(δ + f ε)| + |f ε ln f ε|

≤ f ε + f ε ln(1 + f ε) + |f ε ln f ε|
≤ f ε + (f ε)2 + |f ε ln f ε|

which belongs to L1(R2). Therefore, by the dominated convergece theorem, we get∫
R2

∫
R2

|ψδ(f ε) − f ε ln f ε| dvdx→ 0, δ ↘ 0.

Using the same arguments for the integral in the right hand side of (36), we also have

2

∫
R2

∫
R2

(
f ε − δ ln

(
1 +

f ε

δ

))
dvdx→ 2

∫
R2

∫
R2

f ε dvdx, as δ ↘ 0.

On the other hand, integrating (36) between 0 and T yields∫ T

0

∫
R2

∫
R2

σ|∇vf
ε|2

δ + f ε
dvdxds

= −
∫
R2

∫
R2

ψ(f ε)|T0 dvdx+ 2

∫ T

0

∫
R2

∫
R2

(
f ε − δ ln

(
1 +

f ε

δ

))
dvdxds

which shows that the sequence (|∇vf
ε|2/(δ + f ε))δ>0 is bounded in L1([0, T ] × R2 × R2).

Thanks to Fatou’s lemma, one gets ∇v
√
f ε ∈ L2([0, T ] × R2 × R2). By using the dominated

convergence theorem together with the previous arguments, we obtain∫
R2

∫
R2

f ε ln f ε|T0 dvdx+

∫ T

0

∫
R2

∫
R2

σ|∇vf
ε|2

f ε
dvdxds = 2

∫ T

0

∫
R2

∫
R2

f ε dvdxds

which can be rewritten as

d

dt

∫
R2

∫
R2

f ε ln f ε dvdx = −
∫
R2

∫
R2

σ|∇vf
ε|2

f ε
dvdx−

∫
R2

∫
R2

v · ∇vf
ε dvdx

since f ε ∈ L2([0, T ] × R2
x;H1(R2

v)). So we complete the proof of lemma.

Proof. (of Proposition 3.1)
The mass conservation can be deduced by testing the test function φ(t, x, v) = ϕ(t)χR(|x|)χR(|v|)
in (32). On the other hand, using the Lemmas 3.1, 3.2 and 3.3, we imply the desired result
for the balance of energy E [f ε].

We establish now uniform bounds for the kinetic energy.

Lemma 3.4
Assume that the initial particle densities (f εin) satisfy f εin ≥ 0, Min := supε>0M

ε
in < +∞,

⟨BoundKinEner2D⟩Uin := supε>0 U
ε
in < +∞, where for any ε > 0

M ε
in :=

∫
R2

∫
R2

f εin(x, v) dvdx, U εin :=

∫
R2

∫
R2

|v|2

2
f εin(x, v) dvdx+

ε0
2m

∫
R2

|∇xΦ[f εin]|2 dx.

We assume that (f ε)ε>0 are smooth solutions of (4), (5), (6). Then we have

ε sup
0≤t≤T

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ε0
2m

∫
R2

|∇xΦ[f ε]|2 dx

}
≤ εUin + 2σTMin

and ∫ T

0

∫
R2

∫
R2

|v|2f ε(t, x, v) dvdxdt ≤ εUin + 2σTMin.

22



Proof.
Using the Lemmas 3.1 and 3.2 yields

ε
d

dt

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ε0
2m

∫
R2

|∇xΦ[f ε]|2 dx

}
= 2σM ε

in −
∫
R2

∫
R2

|v|2f ε dvdx

and therefore we obtain

ε

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ε0
2m

∫
R2

|∇xΦ[f ε]|2 dx

}
+

∫ t

0

∫
R2

∫
R2

|v|2f ε dvdxds

= εU εin + 2σtM ε
in

which yields the results.

4 Formal derivation of the limit model

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (4) when ε becomes
small comes from the balance of the free energy functional E [f ε]. Thanks to the Proposition
3.1, we deduce that

εE [f ε(t)] +

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds = εE [f ε(0)].

Since the dissipation term can rewrite as∫ t

0

∫
R2

∫
R2

|σM∇v(f
ε/M)|2

f ε
dvdxds

where M stands for the Maxwellian equilibrium M(v) = (2πσ)−1 exp
(
− |v|2

2σ

)
, v ∈ R2. There-

fore, at least formally, we deduce that f ε = f + O(ε), as ε ↘ 0, where the leading order
distribution function f satisfies∫

R2

∫
R2

|σM∇v(f/M)|2

f
dvdx = 0, t ∈ R+.

Hence, we obtain f(t, x, v) = n(t, x)M(v), (t, x, v) ∈ R+ × R2 × R2. Then, the question is to
determine the evolution equation satisfied by the concentration n(t, x) =

∫
R2f(t, x, v) dv.

We are looking the model for the concentration n[f ε] =
∫
R2f

ε dv. First, by integrating the
equation (4) with 1 and v, we straightforwardly get the local conservation laws satisfied by
the first two moments.

Lemma 4.1
Let ε > 0. Let f ε be a weak solution of the system (4), (5), (6) provided by Theorem 2.2.

⟨ConservationLaw⟩Then the following conservation laws hold in the distributional sense

∂tn[f ε] +
1

ε
divxj[f

ε] = 0. (37) ContinuLaw

ε∂tj[f
ε] + divx

∫
R2

v ⊗ vfε dv − q

m
E[f ε]n[f ε] − qB(x)

m

⊥j[f ε]

ε
= −j[f ε]. (38) MomentLaw
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Proof.
For each ε > 0, (f ε, E[f ε]) solves (4) in the sense of distribution given by equation (32) and
satisfies (1+|v|2)f ε ∈ L∞([0, T ];L1(R2×R2)), E[f ε] ∈ L∞([0, T ]×R2). Then, we test (32) on
the test functions of the form φ(t, x, v) = ϕ(t)χR(x)χR(v) and φ(t, x, v) = ϕ(t)χR(x)χR(v)v,
where the function χR was defined in Lemma 3.1, and ϕ ∈ C∞

0 ([0, T [). Letting R → ∞,
one gets, by dominated convergence theorem, the relations (37) and (38) which hold in the
distribution sense on R⋆+×R2 and are respectively the continuity equation and the momentum
equation.

Then, we apply the rotation v 7→ ⊥v to the equation (38) and eliminating 1
ε j[f

ε] between
the resulting equation and (37) leads to the new equation for the concentration n[f ε].

Corollary 4.1
Let ε > 0. Let f ε be a weak solution of the system (4), (5), (6) provided by Theorem 2.2.

?⟨NewConcen⟩?Then the concentration n[f ε] satisfies the following equation

∂tn[f ε] + divx

[
n[f ε]

(⊥E[f ε]

B(x)
− σ

⊥∇xωc(x)

ωc(x)2

)]
= divxF

ε (39) ModConcen2D

where we denote

F ε =
ε∂t

⊥j[f ε] + ⊥j[f ε]

ωc(x)
+

1

ωc(x)
⊥divx

∫
R2

(v ⊗ v − σI2)f
ε dv.

Proof.
The proof of the result is obviously by observing that the momentum flux tensor can be
decomposed as ∫

R2

v ⊗ vfε dv =

∫
R2

(v ⊗ v − σI2)f
ε dv + σI2n[f ε].

Passing formal to the limit in (39), as ε↘ 0, we get

∂tn[f ] + divx

[
n[f ]

(⊥E[f ]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0,

where we have used that f ε tends to f = n(t, x)M(v) leading to n[f ε] → n[f ], j[f ε] → j[f ] = 0
and

∫
R2(v ⊗ v − σI2)f

ε dv →
∫
R2(v ⊗ v − σI2)f dv = 0. Therefore the limit model is

∂tn+ divx

[
n

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0, (t, x) ∈ R+ × R2 (40) LimitMod2D

E[n] = −∇xΦ[n], −ε0∆xΦ[n] = q(n−D) (41) PoissonLim2D

with the initial condition
n(0, x) = nin(x), x ∈ R2. (42) LimitInitial2D

We have the following balances for the previous limit model

Proposition 4.1
Any smooth solution of the limit model (40), (41), (42) verifies the mass and free energy

⟨ConserveEnerLim⟩ conservations

d

dt

∫
R2

n(t, x) dx = 0,
d

dt

∫
R2

{
σn lnn+

ε0
2m

|∇xΦ[n]|2
}

dx = 0.
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Proof.
Clearly we have the total mass conservation. For the energy conservation, a straightforward
computation, the evolution in time of the energy for the limit model can be written as∫

R2

σ∂tn(1 + lnn) dx+

∫
R2

ε0
m
E[n] · ∂tE[n] dx.

Using the equation (40) for the first integral in the previous equality, we have∫
R2

σ∂tn(1 + lnn) dx =

∫
R2

σ

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)
· ∇n dx = σ

∫
R2

⊥E[n] · ∇B
B2(x)

dx.

Thanks to Poisson’s equation (41), then using again (40) for the second integral, we get∫
R2

ε0
m
E[n] · ∂tE[n] dx =

∫
R2

q

m
Φ[n]∂tn dx = − q

m

∫
R2

E[n] · n
(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)
dx

= −σ
∫
R2

n
⊥E[n] · ∇B
B2(x)

dx.

Combining these equalities we obtain the balance of the energy.

5 Well-posedness of the limit model

In this section we focus on the existence, uniqueness and the properties of the solution for the
limit model (40), (41), (42). We will construct smooth solution on any time interval [0, T ],
T ∈ R+, following the same arguments as in the well posedness proof for the Vlasov–Poisson
problem with external magnetic field, cf. [3]. We assume that the initial condition nin satisfies
the hypotheses

H4) nin ≥ 0, |x|nin ∈ L1(R2), nin ∈W 1,1(R2) ∩W 1,∞(R2)

H5)
∫
R2nin(x) dx =

∫
R2D(x) dx.

and the external magnetic field B(x) verifies

B ∈ C2
b (R2), inf

x∈R2
|B(x)| = B0 > 0.

Solution integrated along the characteristics
First, a standard computation, the equation (40) can be rewritten for the unknown n/B as

∂t

( n
B

)
+

(⊥E[n]

B
− σ

⊥∇ωc(x)

ω2
c (x)

)
· ∇x

( n
B

)
= 0. (43) EquivLimMo2D

For any smooth field E ∈ L∞([0, T ];W 1,∞(R2))2, we consider the associated characteristics
flow of (43) given by

d

dt
X (t; s, x) =

⊥ E (t,X (t; s, x))

B (X (t; s, x))
− σ

⊥∇ωc (X (t; s, x))

ω2
c (X (t; s, x))

, t, s ∈ [0, T ]

X (s; s, x) = x, s ∈ [0, T ], x ∈ R2 (44) equ:CharLimMo2D

where X(t; s, x) is the solution of the equation (44), t represents the time variable, s is the
initial time and x is the initial position. X(s; s, x) = x is our initial condition. Notice that by
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the hypothesis on the magnetic field B(x), the vector field σ
⊥∇ωc
ω2
c (x)

is also smooth with respect

to x and we have ∥∥∥∥σ⊥∇ωc
ω2
c (x)

∥∥∥∥
W 1,∞(R2)

≤ C(σ,B,B0).

Therefore, thanks to Cauchy-Lipschitz theorem, the characteristics in (44) are well defined

for any (s, x) ∈ [0, T ] × R2 and X(t; s, x) ∈ W 1,∞ ([0, T ] × [0, T ] × R2
)2

. Then the equation
(43) can be written as

d

dt

[
n (t,X (t; s, x))

B(X(t; s, x))

]
= 0

which yields the solution of the transport equation (43) given by

n (t, x) = B(x)
n (0, X (0; t, x))

B(X(0; t, x))
= B(x)

nin (X (0; t, x))

B (X (0; t, x))
, t ∈ [0, T ]. (45) SolCharac2D

Conservation law on a volume
We have the following result∫

R2

|n(t, x)| dx =

∫
R2

nin(x) dx, t ∈ [0, T ]. (46) ConserLaw

Indeed, we denote J(t; s, x) is the Jacobian matrix of X(t; s, x) with respect to x at (t; s, x).
Then the evolution of determinant for the Jacobian matrix J(t; s, x) is given by

d

dt
detJ(t; s, x) = divx

(⊥E

B
− σ

⊥∇ωc
ω2
c (x)

)
(X(t; s, x))detJ(t; s, x)

detJ(s; s, x) = 1

which is equivalent to

d

dt
detJ(t; s, x) = −

⊥E(t,X(t; s, x) · ∇B(X(t; s, x))

B2(X(t; s, x))
detJ(t; s, x). (47) JacobDeter2D

On the other hand, using the equation (44) we deduce that

d

dt
ln |B (X (t; s, x))|

=
B(X(t; s, x))

|B(X(t; s, x))|
∇B (X (t; , x))

|B (X (t; s, x))|
·
(⊥E (t,X (t; s, x))

B (X (t; s, x))
−

⊥∇ωc (X (t; s, x))

ωc(X (t; s, x))2

)
=

∇B (X (t; s, x)) · ⊥E (t,X (t; s, x))

B(X (t; s, x))2
. (48) LnBTrajec

Combining (47) and (48) yields

d

dt
detJ(t; s, x) = − d

dt
ln |B (X (t; s, x))| detJ(t; s, x)

together with detJ(s; s, x) = 1 one gets |B (X (t; s, x))| detJ(t; s, x) = |B(x)|. Therefore,
integrating the equality (45) with respect to x and then changing the variable x to X(t; 0, x),
we obtain ∫

R2

|n(t, x)| dx =

∫
R2

|B (x)| |nin (X (0; t, x))|
|B (X (0; t, x))|

dx

=

∫
R2

|B (X (t; 0, x))| nin (x)

|B (x)|
detJ (t; 0, x) dx

=

∫
R2

nin(x) dx
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which completes the proof of the inequality (46).
A priori estimates
We establish here a priori estimates on the solution n(t, x) provided by (45).
The bound in L∞([0, T ];W 1,∞(R2))

Lemma 5.1
Let n(t, x) be a solution of (43) given by (45). Then we have

⟨BoInftyLimMod2D⟩
sup
t∈[0,T ]

∥n(t)∥L∞(R2) ≤ C(B,B0)∥nin∥L∞(R2) (49) InftyNorm2D

sup
t∈[0,T ]

∥∇n(t)∥L∞(R2) ≤ C(q,m, nin, T, B,B0)(1 + exp

(∫ t

0
∥E(s, ·)∥W 1,∞(R2)ds

)
). (50) InftyNormGrad2D

Proof.
The bound (49) is obviouly from the formula (45) and the hypothesis of the magnetic field.
For the estimate (50), taking the derivative with respecr to x in (45), we have

∇xn(t, x) = t (∂xX) (0; t, x)

[
∇nin (X (0; t, x))

B (X (0; t, x))
− nin (X (0; t, x))∇B (X (0; t, x))

B2(X (0; t, x))

]
B (x)

+ ∇B(x)
nin (X (0; t, x))

B (X (0; t, x))
(51) GradSolChar

which implies that

|∇n(t, x)| ≤ C(nin, B,B0)(1 + | (∂xX) (0; t, x) |) (52) IneqGradSolChar

where C(nin, B,B0) is the constant depending on nin, B,B0. Then we have to estimate the
derivative of (∂xX)(0; t, x). Taking the derivative with respect to x in (44), we deduce that

d

dt
(∂xX) (t) =

(
∂x

⊥E
)

(t,X (t)) ∂xX (t)

B (X (t))
−

⊥E (t,X (t)) ⊗ (∇B (X (t)) ∂xX (t))

B(X (t))2

+
⊥∇ωc (X (t)) ⊗ (∇ωc (X (t)) ∂xX (t))

ωc(X (t))3
−
(
∂x

⊥∇ωc
)

(X (t)) ∂xX (t)

ωc(X (t))2

and after integrating in time between s and t we find

|(∂xX)(t)| ≤ 1 +

∫ t

s
(∥E(τ, ·)∥W 1,∞(R2) + C(q,m,B,B0))|(∂xX)(τ)|dτ

where we have written X(t) instead of X(t; s, x) for simplicity, and C(q,m,B,B0) stands for
the constant depending only on q,m,B,B0. Thanks to Gronwall’s inequality we deduce that

|(∂xX)(t; s, x)| ≤ C(q,m, T,B,B0) exp

(∫ t

s
∥E(τ, ·)∥W 1,∞(R2)dτ

)
. (53) EstGradCharac

Therefore, substituting (53) into (52) we get

|∇n(t, x)| ≤ C(q,m, nin, T, B,B0)(1 + exp

(∫ t

0
∥E(s, ·)∥W 1,∞(R2)ds

)
)

which yields the desired estimate.
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The bound in L∞([0, T ];W 1,1(R2))

Lemma 5.2
Let n(t, x) be a solution of (43) given by (45). Then we have

⟨BoL1LimMod2D⟩
∥n(t)∥L1(R2) = ∥nin∥L1(R2), t ∈ [0, T ] (54) L1Norm2D

sup
t∈[0,T ]

∥∇n(t)∥L1(R2) ≤ C(q,m, T,B,B0)(1 + ∥E∥L∞([0,T ];W 1,∞(R2)))∥nin∥W 1,1(R2). (55) L1NormGrad2D

Proof.
(54) is clearly. For the estimate (55), taking the absolute value on both sides in (51) then
integrating with respect to x and changing the variable x to X(t; 0, x), we get∫

R2

|∇n(t, x)| dx ≤
∫
R2

|(∂xX)(0; t, ·)|
(
|∇nin(x)| +

|∇B(x)|
B(x)

nin(x)

)
dx

+

∫
R2

|∇B(X(t; 0, x))|
B(X(t; 0, x))

nin(x) dx

which implies that∫
R2

|∇n(t, x)| dx ≤ ( sup
t∈[0,T ]

|∂xX(0; t, ·)| + C(B,B0))∥nin∥W 1,1(R2).

Using the inequality (53) we get the estimate (55).

Global existence of smooth solutions
We define the following set of electric vector field

Σ =
{
E ∈ L∞([0, T ];W 1,∞ (R2

))2
: ∥E(t)∥L∞

t,x
≤M, ∥∂xE (t)∥L∞

x
≤ α (t) , t ∈ [0, T ]

}
where the constant M > 0 and the function α(t) : [0, T ] → R+ will be determined later. Given
an electric field E in Σ. Considering the charecteristic solution of (43) on R2, corresponding
to the electric field E, denoted by nE which is given by the formula (45). We then construct
the following map F on Σ, whose fixed point gives the solution of the system (43), (41), (42)

E → F (E) (x) = − q

2πε0
(∇ ln | · |) ∗x

(
nE −D

)
(x). (56) ?MapFixed2D?

We will show that the map F is left invariant on the set Σ for a convenient choice of the
positive constant M and the function α(t), then we want to establish an estimate like

∥F (E) −F(Ẽ)(t)∥L∞(R2) ≤ CT

∫ T

0
∥(E − Ẽ)(t)∥L∞(R2)dt, ∀t ∈ [0, T ] (57) Mapconstract2D

for some constant CT , not depending on E, Ẽ. After that, the existence of the solution of the
system (43), (41), (42) immediately, based on the construction of an iterative method for F .
Before starting, let us recall the following classical inequality

Lemma 5.3
Let ρ(x) be a function which belongs to L1(R2) ∩W 1,∞(R2) and let E(x) such that

⟨ClassIneq⟩

E(x) =

∫
R2

x− y

|x− y|2
ρ(y)dy.

Then we have the following estimates

∥E∥L∞(R2) ≤ C∥ρ∥1/2
L1(R2)

∥ρ∥1/2
L∞(R2)

, (58) LemmaE

∥∇xE∥L∞(R2) ≤ C(1 + ∥ρ∥L∞(R2)(1 + ln+ ∥∇xρ∥L∞(R2)) + ∥ρ∥L1(R2)) (59) LemmaGradE

here the notation ln+ stands for the positive part of ln.
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Lemma 5.4
There exists a positive constant M and a function α(t) such that F(Σ) ⊂ Σ.

?⟨ClosedSet2D⟩?

Proof.
Let E ∈ Σ. Thanks to (58), (49) and (54) we have

∥F(E)(t, ·)∥L∞(R2) ≤ C(q, ε0, B,B0)
(
∥nin∥L1(R2) + ∥D∥L1(R2)

)1/2 (∥nin∥L∞(R2) + ∥D∥L∞(R2)

)1/2
.

We choose here the constant M in the set Σ by

M = C(q, ε0, B,B0)
(
∥nin∥L1(R2) + ∥D∥L1(R2)

)1/2 (∥nin∥L∞(R2) + ∥D∥L∞(R2)

)1/2
hence we have supt∈[0,T ] ∥F(E)(t, ·)∥L∞(R2) ≤M , for any E ∈ Σ.
We estimate now ∥∂F(E)(t, ·)∥L∞(R2). Thanks to (59), (49) and (54) we obtain

∥∂F(E)(t, ·)∥L∞(R2) ≤ C0(1 + ln+(∥∇n(t)∥L∞(R2) + ∥∇D∥L∞(R2)))

where C0 = C(nin, D,B,B0) which leads to estimate ln+(∥∇n(t)∥L∞(R2) +∥∇D∥L∞(R2)). By
inequality (50), we have

∥∇n(t)∥L∞(R2) ≤ C(q,m, nin, T, B,B0)(1 + exp

(∫ t

0
∥∂xE(s, ·)∥L∞(R2)ds

)
)

which yields

ln+(∥∇n(t)∥L∞(R2) + ∥∇D∥L∞(R2)) ≤ C1(1 +

∫ t

0
∥∂xE(s, ·)∥L∞(R2)ds)

where C1 = C(q,m, nin, D, T,B,B0). Using the standard inequality 1 + ex ≤ ex+1 holds for
any x ≥ 0, we deduce that

ln+(∥∇n(t)∥L∞(R2) + ∥∇D∥L∞(R2)) ≤ (ln+C1 + 1) +

∫ t

0
∥∂xE(s, ·)∥L∞(R2)ds.

Finally, denoting by C2 = ln+C1 + 1 we have

∥∂F(E)(t, ·)∥L∞(R2) ≤ C0C2 + C0

∫ t

0
∥∂xE(s, ·)∥L∞(R2)ds.

Denote by α(t) the solution on [0, T ] of the linear equation dα/dt = C0α(t) with the initial
condition α(0) = C0C2. We choose here the function α(t) = C0C2e

C0t in the set Σ, then we
have ∥∂F(E)(t, ·)∥L∞(R2) ≤ α(t), t ∈ [0, T ] for any E ∈ Σ.

Now we will establish the inequality (57). Let us consider E, Ẽ ∈ Σ and denote by

nE , ñẼ the characteristics solutions of (43) and (44) corresponding to the electric fields E, Ẽ
respectively. It is easily seen by (58) that

∥F (E) −F(Ẽ)(t)∥L∞(R2) ≤ CT

∫ t

0
∥nE(s) − ñẼ(s)∥1/2

L∞(R2)
∥nE(s) − ñẼ(s)∥1/2

L1(R2)
ds (60) MapcontractBis

where CT is the positive constant, not depending on E, Ẽ. Then, the inequality (57) is
derived from the inequality (60) and the Lemmas 5.5 and 5.6 below.
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Lemma 5.5
We have

⟨DiffNormInfty2D⟩
∥nE − ñẼ∥L∞(R2) ≤ CT

∫ t

0
∥E(s, ·) − Ẽ(s, ·)∥L∞(R2)ds

for some constant CT > 0, not depending on E, Ẽ.

Proof.
Let us denote XE , XẼ the characteristic solutions of (44) corresponding to E, Ẽ respectively.
Thanks to the formula (45) we have

|nE(t, x) − ñẼ(t, x)| ≤ |B(x)|nin(XE(0; t, x)) − nin(XẼ(0; t, x))

B(XE(0; t, x))

+ |B(x)|nin(XẼ(0; t, x))

∣∣∣∣∣ 1

B(XE(0; t, x))
− 1

B(XẼ(0; t, x))

∣∣∣∣∣
which implies that

|nE(t, x) − ñẼ(t, x)| ≤ C(nin, B,B0)|XE(0; t, x) −XẼ(0; t, x)| (61) DiffDensity2D

On the other hand, from the characteristic equation (44) we deduce that

d

dt

(
XE −XẼ

)
(t; s, x) =

⊥E
(
t,XE (t; s, x)

)
B (XE (t; s, x))

−
⊥Ẽ(t,XẼ (t; s, x))

B(XẼ(t; s, x))

− σ
⊥∇ωc

(
XE (t; s, x)

)
ω2
c (XE (t; s, x))

+ σ
⊥∇ωc(XẼ(t; s, x))

ω2
c (X

Ẽ(t; s, x))
,

(XE −XẼ) (s; s, x) = 0.

The first term in the right hand side of the previous equality can be estimated by∣∣∣∣∣⊥E
(
t,XE (t)

)
B (XE (t))

−
⊥Ẽ(t,XẼ(t))

B(XẼ(t))

∣∣∣∣∣ ≤
∣∣∣∣∣⊥E(t,XE(t)) − ⊥Ẽ(t,XE(t))

B(XE(t))

∣∣∣∣∣
+

∣∣∣∣∣∣
⊥Ẽ(t,XE(t)) − ⊥Ẽ

(
t,XẼ (t)

)
B (XE (t))

∣∣∣∣∣∣
+

∣∣∣∣∣⊥Ẽ(t,XẼ(t))

(
1

B(XE(t))
− 1

B(XẼ(t))

)∣∣∣∣∣
≤

∥E(t) − Ẽ(t)∥L∞(R2)

B0
+ C(B,B0,M)

∣∣∣X̃E(t) − X̃Ẽ(t)
∣∣∣ ,

since Ẽ ∈ Σ while the second term can be bounded by∣∣∣∣∣∣
⊥∇ωc

(
XE (t)

)
ω2
c (XE (t))

−
⊥∇ωc

(
XẼ (t)

)
ω2
c

(
XẼ (t)

)
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∇ωc

(
XE (t)

)
−∇ωc

(
XẼ (t)

)
ω2
c (XE (t))

∣∣∣∣∣∣
+

∣∣∣∣∣∣∇ωc
(
XẼ (t)

) 1

ω2
c (XE (t))

− 1

ω2
c

(
XẼ (t)

)
∣∣∣∣∣∣

≤

(∥∥∂2xωc∥∥L∞(R2)
+

2∥∇ωc∥∞
∥ωc∥3∞

)∣∣∣XE (t) −XẼ (t)
∣∣∣

30



where we denote (XE(t), XẼ(t) = XE(t; s, x), XẼ(t; s, x). Integrating between s and t to-
gether with previous estimates we find

|X1 (t) −X2 (t)| ≤
∫ t

s

1

B0
∥E1 (τ) − E2 (τ)∥L∞(R2)dτ+C (σ,B,B0,M)

∫ t

s
|X1 (τ) −X2 (τ)|dτ.

Thanks to Gronwall’s inequality one gets∣∣∣XE (t; s, x) −XẼ (t; s, x)
∣∣∣ ≤ eC(σ,B,B0,M)|t−s| 1

B0

∫ t

s
∥E1 (τ) − E2 (τ)∥L∞dτ

which together with (61) yields the desired estimate of the lemma.

Lemma 5.6
We have

⟨DiffNormL12D⟩
∥nE − ñẼ∥L1(R2) ≤ CT

∫ t

0
∥E(s, ·) − Ẽ(s, ·)∥L1(R2)ds

for some constant CT > 0, not depending on E, Ẽ.

Proof.
Since nE , ñẼ are solutions of (43) corresponding to E, Ẽ thus we deduce that

∂t

(
nE − nẼ

)
+B

(⊥E

B
− σ

⊥∇ωc
ω2
c

)
· ∇x

(
nE − nẼ

B

)
+
(
⊥E − ⊥Ẽ

)
· ∇x

(
nẼ

B

)
= 0,(

nE − nẼ
)

(0, x) = 0.

Multiplying this equation by sign(nE − nẼ) and then integrating with respect to x we find

d

dt

∫
R2

∣∣∣nE(t) − nẼ(t)
∣∣∣dx+

∫
R2

B

(⊥E

B
−

⊥∇ωc
ω2
c

)
· ∇x

∣∣∣∣∣nE − nẼ

B

∣∣∣∣∣ dx
+

∫
R2

sign
(
nE − nẼ

)(
⊥E − ⊥Ẽ

)
· ∇x

(
nẼ

B

)
dx = 0. (62) DeriDiffNormL1

Thanks to Lemma 5.2 we have nE , ñẼ ∈W 1,1(R2) a.e t ∈ [0, T ] and since divx

[
B
(

⊥E
B − ⊥∇ωc

ω2
c

)]
=

0 so by the divergence theorem, we obtain that∫
R2

B

(⊥E

B
−

⊥∇ωc
ω2
c

)
· ∇x

∣∣∣∣∣nE − nẼ

B

∣∣∣∣∣ dx = 0.

Then, from (62) we imply

d

dt

∫
R2

∣∣∣nE(t) − nẼ(t)
∣∣∣ dx ≤ C(B,B0)∥E(t, ·) − Ẽ(t, ·)∥L∞(R2)∥nẼ(t, ·)∥W 1,1(R2).

Integrating between 0 and t of this inequality leads to

∥nE(t) − ñẼ(t)∥L1(R2) ≤ C(B,B0) sup
t∈[0,T ]

∥nẼ(t, ·)∥W 1,1(R2)

∫ t

0
∥E(s, ·) − Ẽ(s, ·)∥L∞(R2)ds.

Finally, by estimate (55) we get∥∥∥nE (t) − nẼ (t)
∥∥∥
L1(R2)

≤ CT

∫ t

0
∥E (s) − Ẽ (s)∥L∞(R2)ds, ∀t ∈ [0, T ]

for some constant CT > 0, not depending on E, Ẽ.

31



Now, we shall prove that the sequence of iterative method by map F converges to a solu-
tion of the original problem. First, we consider E0 = 0, then we put E1 = F(E0), ..., Ek+1 =
F(Ek) for each k ∈ N. Applying (57) we have

∥Ek+1 (t) − Ek (t)∥L∞(R2) ≤ (CT )k
tk

k!
∥E1 (t) − E0 (t)∥L∞(R2)

which yields that there exists E ∈ L∞([0, T ]×R2) such that Ek tends to E in L∞([0, T ]×R2).
Moreover, since Ek ∈ Σ hence we also have E ∈ Σ. This allows us to define the action of the

map F on the vector field E as F(E) = − q

2πϵ0
∇ ln | · | ∗

(
nE −D

)
where nE is the solution

of (43) associated with the electric field E. Using again (57) we find

∥Ek+1 (t) −F(E) (t)∥L∞(R2) = ∥F(Ek)(t) −F(E)(t)∥L∞(R2) ≤ CT ∥Ek (t) − E (t)∥L∞(R2)

which leads to Ek+1 → F(E) in L∞([0, T ]×R2) as k → ∞. Therefore we get F(E) = E and
nE is the solution of (40), (41), (42). Moreover, by Lemmas 5.1, 5.2 we conclude that nE ∈
L∞([0, T ];W 1,∞(R2) ∩W 1,1(R2)). Hence, from (43), ∂tn

E ∈ L∞([0, T ];L1(R2) ∩ L∞(R2)).
Thanks to Lemma 5.3, we have ∂tE ∈ L∞([0, T ] × R2), thus E ∈ W 1,∞([0, T ] × R2). It
remains to verify that the electric field E lies in L∞([0, T ];L2(R2)). Applying Lemma 2.8,
we need to show that |x|n ∈ L∞([0, T ];L1(R2)). Indeed, by (45) and the change of variable
x 7→ X(t; 0, x) we have ∫

R2

|x||n(t, x)| dx =

∫
R2

|X(t; 0, x)|nin(x) dx.

On the other hand, from (44) we deduce for any t ∈ [0, T ] that

|X(t; 0, x)| ≤ |x| + C(E,B0, B)T

together with (1 + |x|)nin ∈ L1(R2) yields the desired result.
Uniqueness of smooth solutions
The uniquenness of smooth solution n(t, x) which belongs to L∞([0, T ],W 1,1(R2)∩W 1,∞(R2))
is immediately derived from the inequality (57) and Gronwall’s inequality.

Based on the previous details of the arguments we establish the following result.

Proposition 5.1
Let T > 0. Let B ∈ C2

b (R2) be a smooth magnetic field, such that infx∈R2 B(x) = B0 > 0 and
⟨main_sol_Lim⟩ the fixed background density D verifies |x|D ∈ L1(R2), D ∈ W 1,1(R2) ∩W 1,∞(R2). Assume

that the initial condition nin satisfies the hypotheses H4, H5. There is a unique smooth
solution n(t, x) on [0, T ] ×R2 ×R2 of the limit model (40), (41), (42). The solution satisfies

n ≥ 0,

∫
R2

n(t, x) dx =

∫
R2

D(x) dx, t ∈ [0, T ]

n ∈W 1,∞([0, T ];L1(R2)) ∩W 1,∞([0, T ] × R2), |x|n ∈ L∞([0, T ];L1(R2))

E[n] ∈W 1,∞([0, T ] × R2), E[n] ∈ L∞([0, T ];L2(R2)).

Remark 5.1
From the estimates (50), (59), and (52) we realize that there is a relation in the L∞-norm

⟨HighOrder⟩ between the following quantities
∇xn, ∂xX, ∂xE.

In the same way, we can extend this relation to the higher order

∂2xn, ∂
2
xX, ∂

2
xE

by noting that the inequality (59) can apply to estimate ∂2xE given by

∥∂2xE∥L∞(R2) ≤ C(1 + ∥∇n∥L∞(R2)(1 + ln+ ∥∂2xn∥L∞(R2)) + ∥∇n∥L1(R2)).
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By similar arguments we can prove further regularity results for the strong solution of
the limit model. The proof is standard and is left to the reader.

Proposition 5.2
Let T > 0. Let B ∈ C3

b (R2) be a smooth magnetic field, such that infx∈R2 B(x) = B0 > 0 and
⟨Regularity⟩ the fixed background density D verifies |x|D ∈ L1(R2), D ∈ W 1,1(R2) ∩W 2,∞(R2). Assume

that the initial condition nin belongs to W 2,∞(R2) ∩W 2,1(R2) and the background density D
lies in W 2,∞(R2) ∩W 2,1(R2). Then the global in time strong solution (n,E[n]) constructed
in Proposition 5.1 satisfies

∂2xn ∈ L∞([0, T ];L∞(R2) ∩ L1(R2)), E[n] ∈W 2,∞([0, T ] × R2)

∂t∇xn ∈ L∞([0, T ] × R2), ∂2t n ∈ L∞([0, T ] × R2).

In the rest of this section, we provide some estimates on ∥ lnn∥L∞([0,T ];W 2,∞(R2)) if we
assume that lnnin belongs to W 2,∞(R2). Let us start with the estimate of ∥ lnn∥L∞([0,T ]×R2)

in the lemma below.

Lemma 5.7
Assume that lnnin ∈ L∞([0, T ] × R2) and B ∈ Cb(R2) with infx∈R2 B(x) = B0 > 0. Then,

⟨BoundLoga⟩ there exists a constant C > 0 depends only on ∥ lnnin∥L∞([0,T ]×R2), B,B0 and T > 0 such that

sup
t∈[0,T ]

∥ lnn∥L∞(R2) ≤ C.

Proof.
From the equation (43), we deduce that

∂t ln
( n
B

)
+

(⊥E

B
− σ

⊥∇ωc
ω2
c

)
· ∇ ln

( n
B

)
= 0. (63) equ:LogaLimMod2D

Thanks to the formula of the characteristic solution (45), we get

ln
( n
B

)
(t, x) = ln

( n
B

)
(0, X(0, t, x)) (64) SolLogChar

which gives the estimate in the lemma.

We next provide higher-order estimates on lnn.

Lemma 5.8
Assume that lnnin ∈W 2,∞([0, T ] ×R2) and B ∈ C3

b (R2) with infx∈R2 B(x) = B0 > 0. Then
⟨BoundLogHigh⟩we have

sup
[0,T ]

∥∂t lnn∥L∞(R2) + sup
[0,T ]

∥∇ lnn∥L∞(R2) ≤ C1

sup
[0,T ]

∥∇2 lnn∥L∞(R2) + sup
[0,T ]

∥∂t∇x lnn∥L∞(R2) ≤ C2

where the constants Ck > 0, k = 1, 2 depend only on lnn0, B et B0.

Proof.
From the equation (64) we have

∇ ln
( n
B

)
= (t∂xX)(0; t, x) (∇ lnnin) (X(0; t, x)) − (t∂xX)(0; t, x)

(
∇B
B(x)

)
(X(0; t, x)). (65) GradSolLogChar

By (53), the derivative in x of X(0; t, x) is bounded in L∞([0, T ] × R2), thus we get the L∞

bound for the ∇ lnn. Moreover, from (63) we deduce that ∂t lnn ∈ L∞([0, T ]×R2), together
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with the above discussion gives the first assertion in the lemma.
We next estimate ∥∂2x lnn∥L∞(R2). We denote by ∂i = ∂xi for i = 1, 2. Taking the derivative
in xi in the equation (65) we get

∂i∇ ln
( n
B

)
= t [∂i∂xX] (0; t, x) (∇ lnnin) (X(0; t, x))

+ t∂xX(0; t, x)
{
∇2(lnnin)(X(0; t, x))(∂iX)(0; t, x)

}
− t [∂i∂xX] (0; t, x)

(
∇B
B

)
(X(0; t, x))

+ t∂xX(0; t, x)

{
∂x

(
∇B
B

)
(X(0; t, x))(∂iX)(0; t, x)

}
.

By Remark 5.1 it is well known that ∂2xX(0; t, x) ∈ L∞([0, T ]×R2). Hence we obtain the L∞

bound for ∂2x lnn.
Finally we estimate ∥∂t∇x lnn∥L∞(R2). Taking the time derivative in (65) yields

∂t∇
(

ln
n

B

)
=(t∂x(∂tX))(0; t, x) (∇ lnnin) (X(0; t, x))

+ (t∂xX)(0; t, x)
(
∂2x lnnin

)
(X(0; t, x))(∂tX)(0; t, x)

− (t∂x(∂tX))(0; t, x)

(
∇B
B(x)

)
(X(0; t, x))

− (t∂xX)(0; t, x)

(
∂x

(
∇B
B(x)

))
(X(0; t, x))(∂tX)(0; t, x).

The L∞ bounds of ∂tX(0; t, x) and ∂x(∂t)X(0; t, x) is derived from the equation (44) and the
regularity of E and B. Combining two of the above discussion yields the second estimate in
the lemma.

6 Convergence results

We now concentrate on the asymptotic behavior as ε ↘ 0 of the family of weak solutions
(f ε, E[f ε])ε>0 of the Vlasov-Poisson-Fokker-Planck system (4), (5), (6) and we establish rig-
orously the connection to the fluid model (7), (8), (9). We justify the convergence of the
solutions (n[f ε], E[f ε])ε>0 of the system (39) towards the solution (n,E[n]) of the limit prob-
lem when ε goes to zero by performing the balance of the relative entropy between nε and n.
The proof requires some regularity properties of the limit solutions as well as the convergence
of the initial data.
Let us recall the modulated energy between nε and n

E [nε(t)|n(t)] =

∫
R2

σnh

(
nε

n

)
dx+

ε0
2m

∫
R2

|∇xΦ[nε] −∇xΦ[n]|2 dx.

We intend to estimate the modulated energy E [nε(t)|n(t)], so we will write as

E [nε|n] = σ

∫
R2

nh

(
nε

n

)
dx+

ε0
2m

∫
R2

|∇xΦ[nε] −∇xΦ[n]|2 dx

=

∫
R2

(σnε lnnε +
ε0
2m

|∇xΦ[nε]|2) dx−
∫
R2

(σn lnn+
ε0
2m

|∇xΦ[n]|2) dx

−
∫
R2

{
σ(1 + lnn) +

q

m
Φ[n]

}
(nε − n) dx

:= E [nε] − E [n] −
∫
R2

k[n](nε − n) dx (66) equ:EntropyDen2D
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where we have been denoted by k[n] = σ(1 + lnn) +
q

m
Φ[n]. We introduce as well the

modulated energy of f ε with respect to nεM , given by

σ

∫
R2

∫
R2

nεMh

(
f ε

nεM

)
dvdx+

ε0
2m

∫
R2

|∇xΦ[f ε] −∇xΦ[nεM ]|2︸ ︷︷ ︸
=0

dx

= σ

∫
R2

∫
R2

f ε ln f ε − f ε lnnε + f ε ln(2πσ) + f ε
|v|2

2σ
dvdx

=

∫
R2

∫
R2

σfε ln f ε + f ε
|v|2

2
dvdx+

ε0
2m

∫
R2

|∇xΦ[f ε]|2 dx

−
∫
R2

σnε lnnε dx− ε0
2m

∫
R2

|∇xΦ[nε]|2 dx+ σ ln(2πσ)

∫
R2

∫
R2

f ε dvdx

= E [f ε] − E [nε] + σ ln(2πσ)

∫
R2

∫
R2

f ε dvdx.

Thanks to the free energy balance and mass conservation of the equation (4) provided by
Proposition 3.1 one gets

E [nε(t)] − E [nε(0)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx (67) equ:BalanEnerDens2D

− σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

= −1

ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds.

Thanks to Proposition 4.1 and together with (66), (67) leads to

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx−

∫ t

0

d

ds

∫
R2

k[n](nε − n) dxds.

(68) BalModEnerDens2D

The next task is to evaluate the time derivative of − d
dt

∫
R2k[n](nε − n) dx. To start estab-

lishing, let us rewrite the model (39) for the concentration nε as following

∂tn
ε + divxA[nε] = divxF

ε (69) EquivModCon2D

where the flux A[nε] is defined by A[nε] = nε
[

⊥Eε

B(x) − σ
⊥∇ωc(x)
ω2
c (x)

]
. Similarly, the limit model

(7) for the limit concentration n can be rewritten as

∂tn+ divxA[n] = 0 (70) EquivLimMod2D

with the flux A[n] = n
[

⊥E
B(x) − σ

⊥∇ωc(x)
ω2
c (x)

]
. By direct formal computations, we get

− d

dt

∫
R2

k[n](nε − n) dx = −
∫
R2

(
σ
∂tn

n
+

q

m
∂tΦ[n]

)
(nε − n) dx−

∫
R2

k[n](∂tn
ε − ∂tn) dx

= −
∫
R2

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε] − Φ[n])

)
dx

−
∫
R2

∇xk[n] (A[nε] −A[n] + F ε) dx.

We shall establish the previous equality for the weak solution of (69) and the strong solution
of (70).
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Lemma 6.1
With the notations in (69), (70) we have the equality

⟨EvoluFirstTerm⟩

− d

dt

∫
R2

σ(1 + lnn)(nε − n) dx

= −σ
∫
R2

(nε − n)∂t lnn dx−
∫
R2

(A[nε] −A[n]) · [σ∇(1 + lnn)] dx

+
d

dt

∫
R2

ε
⊥jε

ωc(x)
· ∇[σ(1 + lnn)] dx−

∫
R2

ε
⊥jε

ωc(x)
∂t∇[σ(1 + lnn)] dx

+

∫
R2

⊥jε

ωc(x)
· ∇[σ(1 + lnn)] dx+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[⊥∇[σ(1 + lnn)]

ωc(x)

]
dx.

Proof.
From (69), (70), we find nε − n satisfying the following equation in the sense of distribution

∂t(n
ε − n) + divx (A[nε] −A[n]) = divxF

ε.

Then for any test function φ ∈ C1
0

(
[0, T [×R2

)
we have∫ T

0

∫
R2

(nε − n)∂tφ dxdt+

∫ T

0

∫
R2

(A[nε] −A[n]) · ∇xφ dxdt+

∫ T

0

∫
R2

ε
⊥jε

ωc(x)
· ∂t∇xφ dxdt

−
∫ T

0

∫
R2

⊥jε

ωc(x)
· ∇xφ dxdt−

∫ T

0

∫
R2

∫
R2

(v ⊗ v − σI2) f
ε dv : ∂x

(⊥∇xφ

ωc(x)

)
dxdt

+

∫
R2

ε
⊥jεin
ωc(x)

· ∇xφ(0, x) dx+

∫
R2

(nεin − nin)φ(0, x) dx = 0. (71) WeakDiffDensi2D

We test φ(t, x) = θ(t)[σ(1 + lnn(t, x))]χR(|x|) where θ ∈ C1
0 ([0, T [), χ was defined in Lemma

3.1. Notice that by the Lemmas 5.7, 5.8, and a standard computations, the following se-
quences are uniformly bounded with respect to R in L∞([0, T ] × R2)

∂tφ = ∂tθ(1 + lnn)χR(|x|) + θ∂t lnnχR(|x|)

∇xφ = θ(t)∇ lnnχR(|x|) + θ(t)(1 + lnn)χ′
R(|x|) x

|x|
∂t∇xφ = ∂tθ∇ lnnχR(|x|) + θ∂t∇ lnnχR(|x|)

+ ∂tθ(1 + lnn)χ′
R(|x|) x

|x|
+ θ(t)∂t lnnχ′

R(|x|) x
|x|

∂x(∇xφ) = θ(t)[∂2x lnnχR(|x|) + ∇ lnn⊗ χ′
R(|x|) x

|x|
]

+ θ(t)[∇ lnnχ′
R(|x|) x

|x|
+ (1 + lnn)(χ′′

R(|x|) x
|x|

⊗ x

|x|
+ χ′

R(|x|)(|x|I2 − x⊗ x)/|x|3)].

On the other hand, for each ε > 0, using the properties on the solution i .e., taking into
account that (1 + |v|2)f ε ∈ L∞([0, T ];L1(R2)), Eε ∈ L∞([0, T ] × R2), we can easily apply
the dominated convergence as R → ∞. Passing to the limit as R → ∞, we get for any test
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function θ ∈ C1
0 ([0, T [) that∫ T

0

∫
R2

(nε − n)∂tθ[σ(1 + lnn)] dxdt+ σ

∫ T

0

∫
R2

(nε − n)θ(t)∂t lnn dxdt

+

∫ T

0

∫
R2

(A[nε] −A[n]) · θ(t)∇[σ(1 + lnn)] dxdt+

∫ T

0

∫
R2

ε
⊥jε(t)

ωc(x)
· θ̇(t)∇[σ(1 + lnn)] dxdt

+

∫ T

0

∫
R2

ε
⊥jε

ωc(x)
θ(t)∂t∇[σ(1 + lnn)] dxdt−

∫ T

0

∫
R2

⊥jε

ωc(x)
· θ(t)∇[σ(1 + lnn)] dxdt

−
∫ T

0

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[
θ(t)

⊥∇[σ(1 + lnn)]

ωc(x)

]
dxdt

+

∫
R2

ε
⊥jεin
ωc(x)

· θ(0)∇x(1 + lnnin) dx+

∫
R2

(nεin − nin)θ(0)(1 + lnnin) dx = 0

which implies the desired equality in the Lemma.

Lemma 6.2
With the notations in (69), (70) we have the equality

⟨EvoluSecdTerm⟩

− d

dt

∫
R2

q

m
Φ[n](nε − n) dx = −

∫
R2

(nε − n) · q
m
∂tΦ[n] dx−

∫
R2

(A[nε] −A[n]) · q
m
∇xΦ[n] dx

+
d

dt

∫
R2

ε
⊥jε

ωc(x)
· q
m
∇xΦ[n] dx−

∫
R2

ε
⊥jε

ωc(x)
· ∂t

q

m
∇xΦ[n] dx+

∫
R2

⊥jε

ωc(x)
· q
m
∇xΦ[n] dx

+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

 q

m
⊥∇xΦ[n]

ωc(x)

 dx.

Proof.
We test φ(t, x) = q

mθ(t)Φ[n]χR(|x|) in (71). Notice that by Proposition 5.2 we have E[n] ∈
W 2,∞([0, T ] × R2), which proves that E[n] is continuously differential with respect to (t, x).
So we have Φ[n] ∈ C2([0, T ] × R2). Then we use the same argument as Lemma 6.1 which
yields the result of the lemma.

Now we combine the Lemmas 6.1, 6.2 and futher computations, we get

Proposition 6.1
With the notations in (69), (70), we have the evolution of the following equality

⟨TimeEvolution2D⟩

− d

dt

∫
R2

k[n](nε − n) dx =

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(Eε − E[n]) dx+K(t, x)

where we denote by

K(t, x) =
d

dt

∫
R2

ε
⊥jε

ωc(x)
· ∇xk[n] dx−

∫
R2

ε
⊥jε

ωc(x)
∂t∇xk[n] dx

+

∫
R2

⊥jε

ωc(x)
· ∇xk[n] dx+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[⊥∇xk[n]

ωc(x)

]
dx.

Proof.
First thanks to Lemma 2.8 and Poisson’s equation, the first term on the right hand side in
the equality of Lemma 6.2 can be written as

−
∫
R2

(nε − n) · q
m
∂tΦ[n] dx = −

∫
R2

q

m
(Φ[nε] − Φ[n])∂tn dx.
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Then we together this equality with the first term on the right hand side in the equation of
Lemma 6.1 to obtain

−
∫
R2

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε] − Φ[n])

)
dx

=

∫
R2

divxA[n]

(
σ
nε − n

n
+

q

m
(Φ[nε] − Φ[n])

)
dx

=

∫
R2

σdivx

(⊥E[n]

B(x)

)
(nε − n) dx

+ σ

∫
R2

A[n]

n
· ∇ lnn(nε − n) dx+

∫
R2

A[n] · q
m

(Eε − E) dx

=

∫
R2

∇xk[n] · A[n]

n
(nε − n) dx+

∫
R2

A[n] · q
m

(Eε − E) dx

Observer that

A[nε] −A[n] − A[n]

n
(nε − n) = nε

[ ⊥Eε

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
− n

[⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
−
[ ⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
(nε − n)

= nε
⊥(Eε − E)

B(x)

and we can write the divergence of the flux A[n] in (70) as

divxA[n] = −divx

(
n

ωc(x)
⊥∇xk[n]

)
Therefore we get

−
∫
R2

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε] − Φ[n])

)
dx

= −
∫
R2

∇xk[n] · nε
⊥(E[nε] − E)

B(x)
dx+

∫
R2

A[n] · q
m

(E[nε] − E) dx

=

∫
R2

⊥∇xk[n] · nε (E[nε] − E)

B(x)
dx−

∫
R2

⊥∇xk[n] · n(E[nε] − E)

B(x)
dx

=

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(E[nε] − E[n]) dx.

So, Proposition 6.1 is proved.

Coming back to (68), the modulated energy balance becomes

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

+

∫ t

0

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(E[nε] − E[n]) dxds+

∫ t

0
K(s, x)ds (72) BalModEnerDens2DBis
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where ∫ t

0
K(s, x)ds =

∫ t

0

d

ds

∫
R2

ε
⊥jε

ωc(x)
· ∇xk[n] dxds

−
∫ t

0

∫
R2

ε
⊥jε

ωc(x)
∂s∇xk[n(s)] dxds+

∫ t

0

∫
R2

⊥jε

ωc(x)
· ∇xk[n] dxds

+

∫ t

0

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[⊥∇xk[n]

ωc(x)

]
dxds

:= K1 +K2 +K3 +K4.

In order to apply Gronwall’s lemma, we will estimate the integrals in the last line of (72).
Thanks to the formula

(nε − n)(E[nε] − E[n]) =
ε0
q

[divx(E[nε] − E[n])](E[nε] − E[n])

=
ε0
q

divx

(
(E[nε] − E[n]) ⊗ (E[nε] − E[n]) − |E[nε] − E[n]|2

2
I2

)
we obtain∫

R2

⊥∇xk[n]

B(x)
· (nε − n)(E[nε] − E[n]) dx

=
ε0
q

∫
R2

(
(E[nε] − E[n]) ⊗ (E[nε] − E[n]) − |E[nε] − E[n]|2

2
I2

)
: ∂x

(⊥∇xk[n]

B(x)

)
dx

≤ ε0
m

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

(
1 +

√
2

2

)∫
R2

|E[nε] − E[n]|2 dx

where for any matrix P ∈ M2,2(R), the notation ∥P∥ stands for (P : P )1/2. Next we shall
estmate the integrals Ki, for i = 1, ..., 4. For K1, we have

K1 = ε

∫
R2

⊥jε(t, x)

ωc(x)
· ∇xk[n(t)] dx− ε

∫
R2

⊥jε(0, x)

ωc(x)
· ∇xk[n(0)] dx

≤
√
ε

∫
R2

∫
R2

(f ε(t, x, v) + f ε(0, x, v))

(
ε
|v|2

2
+

∥∇k[n]∥L∞

2

)
dvdx.

For K2, an elementary estimate yields

K2 ≤
m

qB0
∥∂s∇k[n]∥L∞(R2)ε

∫ t

0

∫
R2

∫
R2

(
|v|2

2
+

1

2

)
f ε(s, x, v) dvdxds.

For K3, since jε =
∫
R2(σ∇vf

ε + vfε) dv we have

K3 = −
∫ t

0

∫
R2

∫
R2

(σ∇vf
ε + vf ε) ·

⊥∇xk[n]

ωc(x)
dvdxds

≤ 1

4ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds+

m

qB0
∥∇k[n]∥L∞ε

∫ t

0

∫
R2

∫
R2

f ε dvdxds.

For K4, since∫
Rd

(v ⊗ v − σI2)f
ε dv =

∫
Rd

(vfε + σ∇vf
ε) ⊗ v dv =

∫
Rd

(vf ε + σ∇vf
ε)√

εf ε
⊗ v
√
εf ε dv
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we have

K4 ≤
1

4ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

+

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

ε

∫ t

0

∫
R2

∫
R2

|v|2f ε dvdxds.

Plugging the above computations in the equality (72), the modulated energy balance becomes
for 0 ≤ t ≤ T

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

+

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

(
2 +

√
2
) ε0

2m

∫
R2

|E[nε] − E[n]|2 dx

+

(
m

qB0
∥∂s∇k[n]∥L∞(R2) +

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

)
ε

∫ T

0

∫
R2

∫
R2

|v|2f ε dvdxdt

+
√
ε sup
t∈[0,T ]

ε

∫
R2

∫
R2

|v|2f ε dvdx

+
√
ε

(
∥∇k[n]∥L∞ +

T

2

m

qB0

(
∥∂s∇k[n]∥L∞(R2) + 2∥∇k[n]∥L∞(R2)

))∫
R2

∫
R2

f ε(0, x, v) dvdx.

Thanks to the Lemma 3.4 and (66) for some constant CT , 0 ≤ t ≤ T , 0 < ε < 1 we obtain

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤ E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

∫ t

0
E [nε(s)|n(s)]ds+ CT

√
ε.

Applying Gronwall’s lemma, we deduce that for 0 ≤ t ≤ T , 0 < ε < 1

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ε

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤
[
E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

√
ε

]
eCT t.

The above inequality says that the particle density f ε remains close to the Maxwellian with
the same concentration, i .e., nε(t)M , and nε(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)
We justify the convergence of f ε toward nM in L∞(]0, T [;L1(R2×R2)), the other convergences
being obvious. We use the Csisár -Kullback inequality in order to control the L1 norm by
the relative entropy, cf. [13, 23]∫

Rn

|g − g0|dx ≤ 2 max

{(∫
Rn

g0dx

)1/2

,

(∫
Rn

gdx

)1/2
}(∫

Rn

g0h

(
g

g0

)
dx

)1/2
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for any non negative integrable functions g0, g : Rn → R. Applying two times the Csisár
-Kullback inequality we obtain∫

R2

∫
R2

|f ε(t, x, v) − n(t, x)M(v)| dvdx

≤
∫
R2

∫
R2

|f ε(t, x, v) − nε(t, x)M(v)| dvdx+

∫
R2

|nε(t, x) − n(t, x)| dx

≤ 2
√
Min

(
nε(t)M(v)h

(
f ε(t)

nε(t)M

))1/2

+ 2 max
{√

Min,
√
|∥nin∥L1(R2)

}(∫
R2

n(t)h

(
nε(t)

n(t)

)
dx

)1/2

→ 0, as ε↘ 0.

Appendix

A The linear Vlasov-Fokker-Planck equation with external magnetic field

This appendix is devoted to provide a rigorous proof of the Theorem 2.1. The results on the
existence and uniqueness of solutions are deeply inspired by those given by Degond in [11].
We recall the linear VFP system in dimension d = 2 with the external magnetic field B(x)

∂tf + v · ∇xf + E(x) · ∇vf +B(x)⊥v · ∇vf = divv(σ∇vf + vf), (t, x, v) ∈ [0, T ] × R2 × R2

f(0, x, v) = fin(x, v). (73) equ:LiVFPAppen

Let us introduce the Hilbert space

H = L2([0, T ] × R2
x, H

1(R2
v)) =

{
u ∈ L2([0, T ] × R2 × R2) | ∇vu ∈ L2([0, T ] × R2 × R2)

}
with norm ∥ · ∥H and scalar product ⟨·, ·⟩H defined by

∥u∥2H =

∫ T

0

∫
R2

∫
R2

|u|2 dvdxdt+

∫ T

0

∫
R2

∫
R2

|∇vu|2 dvdxdt, u ∈ H,

⟨u,w⟩H =

∫ T

0

∫
R2

∫
R2

uw dvdxdt+

∫ T

0

∫
R2

∫
R2

∇vu · ∇vw dvdxdt, u, w ∈ H.

We also denote H′ is the dual space of H which is given by H′ = L2([0, T ] × R2
x, H

−1(R2
v)).

The symbole ⟨·, ·⟩H′,H represents the dual relation between H and its dual.
We first state a result on the existence and uniqueness of a weak solution of equation (73) in
an L2 setting, which can be rewritten in the following form

∂tf + T f + E(x) · ∇vf − 2f − σ∆vf = 0.

where T denotes the transport operator given by T = v · ∇x + (B(x)⊥v − v) · ∇v. Then we
have the following result

Proposition 6.2
Under the hypothesis of Theorem 2.1, there exists a unique weak solution f of equation (73)

⟨PropExiUniq⟩ in the class of functions Y defined by

Y =

{
u ∈ H| ∂u

∂t
+ T u ∈ H′

}
(74) ?ClassWeakSol?

and satisfying the initial condition in the sense of distribution.
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We first recall the theorem of Lions [24], already used in [11].

Theorem 6.1
Let E be a Hilbert space, provided with a norm ∥ · ∥E and scalar product (, ). Let V be a

⟨LionsThm⟩ subspace of E with a prehilbertian norm ∥ · ∥V such that the injection V ↪→ H is continuous.
We consider a bilinear form E

E : E × V → R
(u, ϕ) 7→ E(u, ϕ),

such that E(·, ϕ) is continuous on E, for any fixed ϕ ∈ V, and such that

|E(ϕ, ϕ)| ≥ α∥ϕ∥2V , ϕ ∈ V, α > 0.

Then given a linear form L in V ′, there exists a solution u in E of problem

E(u, ϕ) = L(ϕ), for any ϕ ∈ V.

Proof. (of Proposition 6.2)
We follow exactly the proof in [11]. First make the change of unknown function f̃(t, x, v) =
e−(λ+d)tf(t, x, e−tv), with any λ > 0 so that f̃ satisfies the equation

∂f̃

∂t
+ e−tv · ∇xf̃ +B(x)⊥v · ∇vf̃ + etE(x) · ∇vf̃ + λf̃ − σe2t∆vf̃ = 0,

f̃(0, x, v) = f̃in(x, v) = fin(x, v). (75) equ:NewVFP2D

Now, let E be equal to the space H and let V be the space C∞
0 ([0, T ) × R2 × R2). V is

equipped with a prehilbertian norm defined by

∥ϕ∥2V =
1

2

∫
R2

∫
R2

|ϕ(0, x, v)|2 dvdx+ ∥ϕ∥2H, ϕ ∈ V.

A weak solution of equation (75) in the distribution sense is a function f̃ ∈ H such that∫ T

0

∫
R2

∫
R2

f̃
(
−∂tϕ− e−tv · ∇xϕ−B(x)⊥v · ∇vϕ+ λϕ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

∇vf̃ ·
(
etE(x)ϕ+ σe2t∇vϕ

)
dvdxdt =

∫
R2

∫
R2

f̃in(x, v)ϕ(0, x, v) dvdx (76) equ:WeakFormNVFP

for any ϕ ∈ V. We consider the following bilinear form E as the left-hand side of the variational
equation (76) defined by

E(f̃ , ϕ) =

∫ T

0

∫
R2

∫
R2

f̃
(
−∂tϕ− e−tv · ∇xϕ−B(x)⊥v · ∇vϕ+ λϕ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

∇vũ ·
(
etE(x)ϕ+ σe2t∇vϕ

)
dvdxdt

and the linear form

L(ϕ) =

∫
R2

∫
R2

f̃in(x, v)ϕ(0, x, v) dvdx.

Now, let us check E satisfies the properties stated in Theorem 6.2. It is easily seen that E(·, ϕ)
est continue sur H since E ∈ (L∞(R2))2. It remains to show that E is coercivity on V × V.
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Indeed, for any ϕ ∈ V we have

E(ϕ, ϕ) =

∫ T

0

∫
R2

∫
R2

ϕ
(
−∂tϕ− e−tv · ∇xϕ−B(x)⊥v · ∇vϕ+ λϕ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

∇vϕ ·
(
etE(x)ϕ+ σe2t∇vϕ

)
dvdxdt

=
1

2

∫
R2

∫
R2

|ϕ(0, x, v)|2 dvdx+ λ

∫ T

0

∫
R2

∫
R2

|ϕ|2 dvdxdt

+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vϕ|2 dvdxdt+
1

2

∫ T

0

∫
R2

∫
R2

et∇v|ϕ|2 · E(x) dvdxdt

=
1

2

∫
R2

∫
R2

|ϕ(0, x, v|2 dvdx+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vϕ|2 dvdxdt

+ λ

∫ T

0

∫
R2

∫
R2

|ϕ|2 dvdxdt ≥ min (1, σ, λ) ∥ϕ2∥V .

Then Lion’s Theorem 6.1 applies and we get that variational equation E(f̃ , ϕ) = L(ϕ), for any
ϕ ∈ V admits a solution f̃ ∈ H. Moreover, f̃ satisfies the equation (76) for any ϕ ∈ V, hence
by using the function test ϕ̃ = e(λ+d)tϕ(t, x, etv) we deduce that f(t, x, v) = e(λ+2)tf̃(t, x, etv)
is a weak solution of (73) in the sense of distribution. This gives that

∂f

∂t
+ T f = −E(x) · ∇vf + 2f + σ∆vf ∈ H′

so that f belongs to Y.
We shall call the following Lemma to give a meaning to the initial condition, and also, to
show the uniqueness. The proof is very close to the one of Lemma A.1 in [11] and we have
been left behind.

Lemma 6.3
1. For u ∈ Y, u admits continuous trace values u(0, x, v) and u(T, x, v) in L2(Rd×Rd). This

⟨GreenFormulas⟩means that the linear map u→ (u(0, ·, ·), u(T, ·, ·)) is continuous from Y to L2(R2 × R2).
2. For f and f̃ in Y we have〈

∂tf + T f, f̃
〉
H′×H

+
〈
∂tf̃ + T f̃ , f

〉
H′×H

= 2

∫ T

0

∫
R2

∫
R2

ff̃ dvdxdt

+

∫
R2

∫
R2

f(T, x, v)f̃(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f̃(0, x, v) dvdx (77) InteGreen

where T = v · ∇x + (B(x)⊥v − v) · ∇v.
3. Similary, for f and f̃ in Y we have〈

∂tf + T ′f, f̃
〉
H′×H

+
〈
∂tf̃ + T ′f̃ , f

〉
H′×H

=

∫
R2

∫
R2

f(T, x, v)f̃(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f̃(0, x, v) dvdx (78) InteGreenBis

where T ′ = e−tv · ∇x +B(x)⊥v · ∇v.

Let us now end the proof of Proposition 6.2. Using formula (77) to the solution f of equation
(73) and test function ϕ in V we have

⟨∂tf + T f, ϕ⟩H′×H + ⟨∂tϕ+ T ϕ, f⟩H′×H (79) GreenBis1

= 2

∫ T

0

∫
R2

∫
R2

fϕ dvdxdt−
∫
R2

∫
R2

f(0, x, v)ϕ(0, x, v) dvdx.
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As f is a solution of (73) in H′ then we get

⟨∂tf + T f, ϕ⟩H′×H = ⟨−E(x) · ∇vfϕ− (λ− 2)f + σ∆vf, ϕ⟩H′×H

= −
∫ T

0

∫
R2

∫
R2

(E(x) · ∇vfϕ+ (λ− 2)fϕ+ σ∇vf · ∇vϕ) dvdxdt.

Futhermore, f satisfies the variational equality E(f, ϕ) = L(ϕ) thus

⟨∂tϕ+ T ϕ, f⟩H′×H =

∫ T

0

∫
R2

∫
R2

λfϕ+ ∇vf · (E(x)ϕ+ σ∇vϕ) dvdxdt

−
∫
R2

∫
R2

fin(x, v)ϕ(0, x, v) dvdx.

Substituting into (79) which yields∫
R2

∫
R2

(f(0, x, v) − fin(x, v))ϕ(0, x, v) dvdx = 0, ∀ϕ ∈ V.

Therefore, the initial condition is satisfied in L2(R2). Now for uniqueness, we assume that
f is a solution of (73) with fin = 0, which belongs to Y. Proceeding as in Proposition 6.2,
we define the function f̃ as f̃(t, x, v) = e−(λ+d)tf(t, x, e−tv) which verifies equation (75) with
zero initial data. We apply the formula (78) to the solution f̃ of equation (75) which gives

0 =
〈
∂tf̃ + T ′f̃ , f̃

〉
H′×H

+
〈
etE(x) · ∇vf̃ + λf̃ − σe2t∆vf̃ , f̃

〉
H′×H

=
1

2

∫
R2

∫
R2

|f̃(T, x, v)|2 dvdx+ λ

∫ T

0

∫
R2

∫
R2

|f̃ |2 dvdxdt+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vf̃ |2 dvdxdt

≥ λ

∫ T

0

∫
R2

∫
R2

|f̃ |2 dvdxdt.

Therefore we get f̃ = 0, which proves uniqueness.

Proof. (of Lemma 6.3)
Let us consider set Y of C∞ functions of (x, t) in [0, T ] × R2

x with values in H1(R2
v) which

are compactly supported in [0, T ]×R2 ×R2. Following the arguments in Lemma A.1 in [11],
we have that the set Y is dense on Y.
Let us take u ∈ Y . Using a partition of unity we can assume, without of loss of generality, that
u vanishes on

{
(0, x, v) : (x, v) ∈ R2 × R2

}
or
{

(T, x, v) : (x, v) ∈ R2 × R2
}

. Assume that u
does not vanish on

{
(0, x, v) : (x, v) ∈ R2 × R2

}
. By Green’s identity we have∫

R2

∫
R2

|u(0, x, v)|2 dvdx = −2

∫ T

0

∫
R2

∫
R2

u
[
∂t + v · ∇x + (B(x)⊥v − v) · ∇v

]
u dvdxdt

+ 2

∫ T

0

∫
R2

∫
R2

|u|2 dvdxdt

≤ 2
(∥∥∥[∂t + v · ∇x + (B(x)⊥v − v) · ∇v

]
u
∥∥∥
H′

+ 2
)
∥u∥H ≤ C∥u∥Y.

The rest of the lemma follows from straightforward arguments involving the density of Y in
Y.

The following Proposition is devoted to a maximum principle and an L∞ estimate.
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Proposition 6.3
Assume that the initial condition fin is positive and belongs to L∞(R2 × R2). Then the

⟨NormInfty2D⟩ solution f provided by Proposition 6.2 is positive and satisfying

sup
[0,T ]

∥f(t)∥L∞(R2×R2) ≤ e2T ∥fin∥L∞(R2×R2).

We start by giving the following Lemmas. The proof of these Lemmas are very close to those
given by in [11]. We leave it to the reader.

Lemma 6.4
Let f ∈ Y then f+ and f− defined by f+ = max(f, 0) f− = max(−f, 0) belong to H and

⟨LemNormInftyBis1⟩
∇vf

+ =
1 + sign(f)

2
∇vf, ∇vf

− =
−1 + sign(f)

2
∇vf . Futhermore, we have〈

∂tf + T ′f, f−
〉
H′×H

=
1

2

(∫
R2

∫
R2

f(T, x, v)f−(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f−(0, x, v) dvdx

)
(80) IntMaxMin1

where T ′ = e−tv · ∇x +B(x)⊥v · ∇v. Similarly, we also have

〈
∂tf + T f, f−

〉
H′×H =

∫ T

0

∫
R2

∫
R2

ff− dvdxdt

+
1

2

(∫
R2

∫
R2

f(T, x, v)f−(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f−(0, x, v) dvdx

)
(81) IntMaxMin2

où T = v · ∇x + (B(x)⊥v − v) · ∇v.

Lemma 6.5
Let V ⊂ H ⊂ V′ be a canonical triple of Hilbert spaces. We suppose that the mapping

⟨LemNormInftyBis2⟩u → u− is a contraction on V. Let u belong to L2([0, T ];V) ∩ C0([0, T ];H) such that du
dt ∈

L2([0, T ];V′). Then ∫ T

0

〈
du

dt
, u−

〉
V′×V

dt =
1

2

(
|u−(0)|2H − |u−(T )|2H

)
. (82) ?IntTime?

Proof. (of Proposition 6.3)
We will now show that f ≥ 0 a.e. As above, we define f̃ = e−(λ+2)tf(t, x, e−tv) with any
λ > 0 which solves (75) with the initial data fin. It is well known that f̃ ∈ Y since f ∈ Y and
thus ∂tf̃ + T ′f̃ ∈ H′. Thanks to Lemma 6.4 we have f̃− ∈ H which implies from (75) that〈

∂tf̃ + T ′f̃ , f̃−
〉
H′×H

+
〈
etE(x) · ∇vf̃ + λf̃ − σe2t∆vf̃ , f̃

−
〉
H′×H

= 0.

Then we apply the formula (80) for the function f̃ to compute
〈
∂tf̃ + T ′f̃ , f̃−

〉
H′×H

. There-

fore we obtain〈
etE(x) · ∇vf̃ + λf̃ − σe2t∆vf̃ , f̃

−
〉
H′×H

= −1

2

(∫
R2

∫
R2

f̃(T, x, v)f̃−(T, x, v) dvdx−
∫
R2

∫
R2

f̃(0, x, v)f̃−(0, x, v) dvdx

)
≤ 0
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since f̃−(0, x, v) = f−(0, x, v) = 0. Moreover f̃ = f̃+−f̃− and f̃ ∈ H we have
〈
λf̃ , f̃−

〉
H′×H

=

−λ
〈
f̃−, f̃−

〉
L2×L2

. Thanks to Lemma 6.5 we deduce that

〈
−σe2t∆vf̃ , f̃

−
〉
H′×H

= −σ
〈
e2t∇vf̃

−,∇vf̃
−
〉
L2×L2

≤ 0,

and
〈
E(x) · ∇vf̃ , f̃

−
〉
H′×H

= −
〈
E(x) · ∇vf̃

−, f̃−
〉
L2×L2

= 0. Therefore, we get

0 ≤ −λ
〈
f̃−, f̃−

〉
L2×L2

which implies that f̃− = 0 a.e and f̃ ≥ 0 a.e so f ≥ 0 a.e.

Now we estimate the bound of L∞ norm. First, making the change of unknown function
w(t, x, v) = e−2tf(t, x, v) in the equation (73) we get{

∂w
∂t +

[
v · ∇xw + (B(x)⊥v − v) · ∇vw

]
+ E(x) · ∇vw − σ∆vw = 0,

w0(x, v) = fin(x, v).

We will prove that ∥w(t)∥L∞ ≤ ∥w0∥L∞ . Putting w1(t, x, v) = K(w(t, x, v) − ∥w0∥L∞)
where K is a function of class C2 satisfying

K(s) = 0, s ≤ 0, K is increasing,

∥K ′∥L∞ ≤ C, K ′′ ≥ 0.

We give an example on the function K as K(y) =
∫ y
0 g(s)ds with g(s) = e−

1
s if s > 0 and

f(s) = 0 if s ≤ 0. By the construction of K and w ∈ Y we deduce that w1 ∈ H and
∂tw1 + T w1 = K ′(w(t) − ∥w0∥∞)(∂tw+ T w) ∈ H′. Multiplying the equation for w above by
K ′(w(t, x, v) − ∥w0∥L∞) then w1 belongs to Y and satisfies the following equation{

∂tw1 + T w1 + E(x) · ∇vw1 − σ∆vw1 + σ|∇vw|2K ′′(w − ∥w0∥L∞) = 0,
w1(0) = K(w(0, x, v) − ∥w0∥L∞) = 0.

We then put w2(t, x, v) = e−βtw1(t, x, v), with any β > 0. The function w2 belongs to Y and
satifies the equation{

∂tw2 + T w2 + E(x) · ∇vw2 + βw2 − σ∆vw2 + e−βtσ|∇vw|2K ′′(w − ∥w0∥L∞) = 0,
w2(0) = 0.

Therefore, w2 satisfies the variational equation〈
∂tw2 + T w2, w

+
2

〉
H′×H

+
〈
E(x) · ∇vw2 + βw2 − σ∆vw2 + e−βtσ|∇vw|2K ′′(w − ∥w0∥L∞), w+

2

〉
H′×H

= 0.

Using (81) we have

〈
∂tw2 + T w2, w

+
2

〉
H′×H =

∫ T

0

∫
R2

∫
R2

w2w
+
2 dvdxdt

+
1

2

(∫
R2

∫
R2

w2(T, x, v)w+
2 (T, x, v) dvdx−

∫
R2

∫
R2

w2(0, x, v)w+
2 (0, x, v) dvdx

)
=

1

2

(
2

∫ T

0

∫
R2

∫
R2

|w+
2 |

2 dvdxdt+

∫
R2

∫
R2

|w+
2 (T, x, v)|2 dvdx−

∫
R2

∫
R2

|w+
2 (0, x, v)|2 dvdx

)
≥
∫ T

0

∫
R2

∫
R2

|w+
2 |

2 dvdxdt
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car w+
2 (0, x, v) = w2(0) = 0. For the other terms in the privious expression,〈
βw2, w

+
2

〉
H′×H = β

〈
w+
2 , w

+
2

〉
L2×L2 ,

〈
−σ∆vw2, w

+
2

〉
H′×H = σ

〈
∇vw

+
2 ,∇vw

+
2

〉
L2×L2 ,

and
〈
E(x) · ∇vw2, w

+
2

〉
H′×H =

〈
E(x) · ∇vw

+
2 , w

+
2

〉
L2×L2 = 0. Therefore we deduce that∫ T

0

∫
R2

∫
R2

|w+
2 |

2 dvdxdt+ β
〈
w+
2 , w

+
2

〉
L2×L2 + σ

〈
∇vw

+
2 ,∇vw

+
2

〉
L2×L2 ≤ 0

This implies that w+
2 = 0. Thus w2 ≤ 0 and w1 ≤ 0 which yields ∥w(t)∥L∞ ≤ ∥w0∥L∞ .

Remark 6.1
If we add the source term U(t, x, v) in the right hand side of (73), that means

⟨RemarkInfty⟩
∂f

∂t
+ v · ∇xf + (B(x)⊥v − v) · ∇vf + E(x) · ∇vf − 2f − σ∆vf = U, f(0, x, v) = fin(x, v)

and we assume that U ∈ L1([0, T ];L∞(R2 × R2)). Then we have

∥f(t)∥L∞(R2×R2) ≤ e2T ∥fin∥L∞(R2×R2) +

∫ T

0
∥U(s)∥L∞ds.

The following estimates relate to the Lp estimate, the kinetic energy and the entropy of
equation VFP (73). To establish these estimates, we make the change of unknown function
w(t, x, v) = e−2tf(t, x, e−tv). Then w is the solution of the following equation

∂w

∂t
+ e−tv · ∇xw +B(x)⊥v · ∇vw + etE(x) · ∇vw − σe2t∆vw = 0

w0(x, v) = fin(x, v).
(83) equ:NewVFP2DBis

The solution w satisfies w ∈ H and ∂tw + T ′w ∈ H′ since f ∈ Y. The estimates of solutions
that we will study can be obtained by choosing of an appropriate sequence of functions in
the varational equation of w.

Proposition 6.4
Assume that the initial data fin is positive and belongs to Lp(R2 × R2), with any p ∈ [1,∞[.
Then solution f provided by Proposition 2.1 satisfies

∥f∥L∞(0,T ;Lp(R2×R2)) ≤ e
p−1
p

2T ∥fin∥Lp(R2×R2), 1 ≤ p <∞, (84) LpNormAppen

∥∇vf
p/2∥L2(0,T ;L2(R2×R2)) ≤

√
p

4(p− 1)σ
e(p−1)T ∥fin∥Lp(R2×R2), 1 < p <∞. (85) LpGradNormAppen

Proof.
First we consider the case p = 2. Since w in H satisfies (83) , we deduce that〈

∂tw + T ′w,w
〉
H′×H =

〈
−etE(x) · ∇vw + σe2t∆vw,w

〉
H′×H .

Since f ∈ H the divergence theorem implies that the integral of −etE(x) · ∇vw vanish on
R2 × R2. Then we apply (78) for ⟨∂tw + T ′w,w⟩H′×H to obtain

2
〈
∂tw + T ′w,w

〉
H′×H =

∫
R2

∫
R2

|w(T, x, v)|2| dvdx−
∫
R2

∫
R2

|w(0, x, v)|2 dvdx.
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Therefore we get for any T > 0 that∫
R2

∫
R2

|w(T, x, v)|2 dvdx+ 2σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2 dvdxdt =

∫
R2

∫
R2

|w(0, x, v)|2 dvdx

which yields the bounds of (84) and (85) when p = 2.
Next, we consider the case 1 ≤ p < ∞ and p ̸= 2. We establish a class of function of

approximation C2 of pxp−1, x ≥ 0 (indeed, the function pwp−1 does not belong to H hence
we can not define

〈
∂tw + T ′w, pwp−1

〉
H′,H so we need to modify the function pxp−1) verifies

(i) p = 1 : ψε(s) = 0 if s ≤ 0, ψε(s) = 1 if ε ≤ s and ψε(s) is increasing in [0, ε].

(ii) 1 < p < ∞, p ̸= 2 : ψε(s) = 0 if s ≤ ε, ψε(s) = psp−1 if ε ≤ s ≤ 1

ε
and ψ′

ε(s) = 0 on

[1/ε,+∞).

It is easily seen that ψε ∈ C2 with ψ′
ε ∈ L∞(R) and ψε(0) = 0. Let φε(s) be a primitive of

ψε(s) defined by φε(t) =
∫ t
−∞ ψε(s)ds. Since w ∈ H we imply that ψε(w) and φε(w) belong

to H and ∇vφε(w) = ψε(w)∇vw. Moreover, the function w in H satisfies (83), we deduce
that 〈

∂tw + T ′w,ψε(w)
〉
H′×H +

〈
etE(x) · ∇vw − σe2t∆vw,ψε(w)

〉
H′×H = 0. (86) equ:VarApprox

where T ′w = e−tv · ∇xw +B(x)⊥v · ∇vw. In the same way of Lemma 6.3 we also have〈
T ′w,ψε(w)

〉
H′×H =

∫
R2

∫
R2

φε(w(T, x, v)) dvdx−
∫
R2

∫
R2

φε(w(0, x, v)) dvdx.

Since w ∈ H the divergence theorem implies the integral of etE(x) · ∇vw vanish on R2 ×R2.
If p = 1, we apply again the divergence theorem to

〈
−σe2t∆vw,ψε(w)

〉
H′×H we have

〈
−σe2t∆vw,ψε(w)

〉
H′×H = σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w) · 1{0≤w≤ε} dvdxdt.

Then the equation (86) gives∫
R2

∫
R2

φε(w(T, x, v)) dvdx+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w)1{0≤w≤ε} dvdxdt

=

∫
R2

∫
R2

φε(w(0, x, v)) dvdx.

Since ψ′
ε ≥ 0 and by using Fatou’s Lemma and the dominated convergence theorem we get

for any T > 0 that

∥w(T )∥L1(R2×R2) =

∫
R2

∫
R2

w(T, x, v) dvdx ≤ ∥w0∥L1(R2×R2)

which yields (84) with p = 1.
If 1 < p <∞ and p ̸= 2, by the construction of ψε we have〈

−σe2t∆vw,ψε(w)
〉
H′×H = σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w) · 1{ε≤w≤1/ε} dvdxdt

= σp(p− 1)

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2wp−2 · 1{ε≤w≤1/ε} dvdxdt

=
4(p− 1)

p
σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw
p/2|21{ε≤w≤1/ε} dvdxdt.
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Then the equation (86) becomes∫
R2

∫
R2

φε(w(T, x, v)) dvdx+
4(p− 1)

p
σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw
p/2|21{ε≤w≤1/ε} dvdxdt

=

∫
R2

∫
R2

φε(u(0, x, v)) dvdx.

Using Fatou’s Lemma and the dominated convergence theorem we get for any T > 0 that

∥w∥p
L∞([0,T ];Lp(R2×R2))

+
4(p− 1)

p
σ∥∇vw

p/2∥2L2([0,T ];L2(R2×R2)) ≤ ∥w∥p
L∞([0,T ];Lp(R2×R2))

which yields the estimates of (84) and (85) when 1 < p <∞ and p ̸= 2.

Next we provide the estimates of the kinetic energy and the entropy. First we consider
the truncation function χ(s) ∈ C∞

0 (R) such that

χ(s) = 1 if |s| ≤ 1, χ(s) = 0 if |s| ≥ 2, ∥χ∥W 1,∞(R) ≤ 1

and we define χR(z) = χ
(
|z|
R

)
, z ∈ R2, R > 0. We then consider a function of class C∞(R)∩

L∞(R) satisfying ψε(s) = 0 if s ≤ 0, ψε(s) = 1 if s ≥ ε and ψε is increasing on [0, ε]. Let φε
be a primitive of ψε as φε(t) =

∫ t
−∞ ψε(s)ds.

Proposition 6.5
Assume that the initial data fin is positive and (1 + |v|2/2)fin ∈ L1(R2 × R2). Then the

⟨EsKinEnerVFP2D⟩ solution of Proposition 6.2 satisfies

sup
[0,T ]

∫
R2

∫
R2

|v|2

2
f(t) dvdx ≤ C1 + C2

∫
R2

∫
R2

|v|2

2
fin dvdx

for some constants C1 and C2, depending only on ∥E∥L∞ , fin, T, σ.

Proof.
Since w(t) = e−2tf(t, x, e−tv) in H satisfies the equation (83) we deduce for any function
h ∈ H that 〈

∂tw + T ′w, h
〉
H′×H +

〈
etE(x) · ∇vw − σe2t∆vw, h

〉
H′×H = 0. (87) equ:VariForm

where T ′ = e−tv · ∇xw + B(x)⊥v · ∇v. Taking in (87) the function h = χR(|v|) |v|
2

2 ψε(w). It

is easily seen that h ∈ H since the function χR(|v|) |v|
2

2 ∈ L∞(R) and ψ(w) ∈ H by w ∈ H.
In the same way of Lemma 6.3, we have the following formula〈

∂tw + T ′w,χR(|v|) |v|
2

2
ψε(w)

〉
H′×H

=

∫
R2

∫
R2

[φε(w(T, x, v)) − φε(w(0, x, v))]χR(|v|) |v|
2

2
dvdx

−
∫ T

0

∫
R2

∫
R2

B(x)⊥v ·
[(

v

|v|
χ′
( v
R

) |v|2

2R
1{|v|≤2R} + χR(|v|)v

)
φε(w)

]
dvdxdt

=

∫
R2

∫
R2

[φε(w(T, x, v)) − φε(w(0, x, v))]χR(|v|) |v|
2

2
dvdx.
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Before estimating the other terms in (87) we need to observe that φε(w) = wΦε(w) with
Φε(w) =

∫ 1
0 ψε(θw)dθ, which implies that

φε(w) = |φε(w)| ≤ w

∫ 1

0
|ψε(θw)|dθ ≤ w, ∀ε > 0.

Moreover, the solution w belongs to L1([0, T ] × R2 × R2) beacause w ∈ L∞([0, T ];L1(R2 ×
R2)). On the orther hand, since w ∈ H the divergence theorem implies that the term〈
etE(x) · ∇vw, h

〉
H×H′ can be estimated as〈

etE(x) · ∇vw, h
〉
H′×H

= −
∫ T

0

∫
R2

∫
R2

etE(x)φε(w) ·
(
χ′
(
|v|
R

)
v

|v|
|v|2

2R
1{|v|≤2R} + χR(|v|)v

)
dvdxdt

≤ ∥χ∥W 1,∞(R2)∥E∥L∞eT
∫ T

0

∫
R2

∫
R2

w(t, x, v)|v| dvdxdt

≤ 1

2
C(∥E∥L∞ , T )

(∫ T

0

∫
R2

∫
R2

w dvdxdt+

∫ T

0

∫
R2

∫
R2

w|v|2 dvdxdt

)
.

It remains to estimate the contribution of
〈
−σe2t∆vw, h

〉
H×H′ in (87). Similarly, applying

the divergence theorem and by direct computations we get〈
−σe2t∆vw, h

〉
H′×H = σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w)χR(|v|) |v|

2

2
dvdxdt

+ σ

∫ T

0

∫
R2

∫
R2

e2t∇vw ·
[(
χ′
(
|v|
R

)
v

|v|
|v|2

2R
1{|v|≤2R} + χRv

)
ψε(w)

]
dvdxdt

≥ σ

∫ T

0

∫
R2

∫
R2

e2t∇vw ·
[(
χ′
(
|v|
R

)
v
|v|
2R

1{|v|≤2R} + χRv

)
ψε(w)

]
dvdxdt

= σ

∫ T

0

∫
R2

∫
R2

e2t∇vφε(w) ·
(
χ′
(
|v|
R

)
v
|v|
2R

1{|v|≤2R} + χRv

)
dvdxdt

= −σ
∫ T

0

∫
R2

∫
R2

e2tφε(w)

[(
χ′′
(
|v|
R

)
|v|2

2R2
1{|v|≤2R} + 2χ′

(
|v|
R

)
|v|
R

1{|v|≤2R} + 2χR

)]
dvdxdt

→ −2σ

∫ T

0

∫
R2

∫
R2

e2tw dvdxdt, when ε↘ 0, R→ ∞,

where we have used the dominated convergence theorem in the last integral. Finally, from
the equation (87) we obtain∫

R2

∫
R2

φε(w(T, x, v))χR(|v|) |v|
2

2
dvdx ≤

∫
R2

∫
R2

φε(w(0, x, v))χR(|v|) |v|
2

2
dvdx

+
1

2
C(∥E∥L∞ , T )

(∫ T

0

∫
R2

∫
R2

w dvdxdt+

∫ T

0

∫
R2

∫
R2

w|v|2 dvdxdt

)
+2σ

∫ T

0

∫
R2

∫
R2

e2tw dvdxdt.

Since
∫ T
0

∫
R2

∫
R2w dvdxdt ≤

∫ T
0

∫
R2

∫
R2w0 dvdxdt = T∥fin∥L1(R2×R2) we deduce that∫

R2

∫
R2

φε(w(T, x, v))χR(|v|) |v|
2

2
dvdx ≤

∫
R2

∫
R2

φε(w(0, x, v))χR(|v|) |v|
2

2
dvdx

+C(∥E∥L∞ , T, σ, fin) + C(∥E∥L∞ , T )

∫ T

0

∫
R2

∫
R2

w
|v|2

2
dvdxdt.
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Using Fatou’s Lemma and then the dominated convergence theorem when ε ↘ 0, R → ∞
we get for any T > 0 that∫

R2

∫
R2

w(T, x, v)
|v|2

2
dvdx ≤

∫
R2

∫
R2

w(0, x, v)
|v|2

2
dvdx

+C(∥E∥L∞ , T, σ, fin) + C(∥E∥L∞ , T )

∫ T

0

∫
R2

∫
R2

w
|v|2

2
dvdxdt.

By the Growall’s inquality we complete the proof.

In the same way as for the proof of Proposition 6.5, if we take the function h in the equation
(87) given by h(t, x, v) = χR(|x|)|x|ψε(w), we can obtain the following Proposition

Proposition 6.6
Assume that the initial data fin belongs to L1(R2 × R2) and satifies (|x| + |v|2/2)fin ∈

?⟨BoundPosit⟩?L1(R2 × R2). Then the solution f is given by Proposition 6.2 satisfies

sup
[0,T ]

∫
R2

∫
R2

|x|f(t) dvdx ≤ C1 + C2

∫
R2

∫
R2

|x|fin dvdx

for somse constants C1 and C2, depending only on fin, T .

Proposition 6.7
Assume that the initial function fin is positve and verifies (1+ |x|+ |v|2/2)fin ∈ L1(R2×R2).

?⟨EntropyVFP2D⟩?Then the solution f of Proposition 6.2 satisfies

sup
[0,T ]

∫
R2

∫
R2

f(t)| ln f(t)| dvdx ≤ C +

∫
R2

∫
R2

σfin| ln fin| dvdx

sup
[0,T ]

∫
R2

∫
R2

|σ∇vf(t)|2

f(t)
dvdx ≤ C +

∫
R2

∫
R2

σfin| ln fin| dvdx

for some constant C, depending only on ∥E∥L∞ , fin, T, σ.

Proof.
As before, we will work on w(t, x, v) = e−2tf(t, x, e−tv) which is satisfied by equation (83)
and variational equation (87). For any ε > 0, we define the function gε(w) such that

1 + 1{ε≤w≤1/ε} lnφε(w) = 1 + 1{ε≤w≤1/ε} lnw = 1 + gε(w)

and it is obvious that it belongs to L∞([0, T ] × R2 × R2). Observing that

∂tw(1 + 1{ε≤w≤1/ε} lnφε(w)) = ∂t(wgε(w))

and
T ′w1 + 1{ε≤w≤1/ε} lnφε(w) = T ′(wgε(w))

Multiplying the equation (83) by σ(1+1{ε≤w≤1/ε} lnφε(w)) and then passing to the variational
equation with h = ψε(w) ∈ H we get

σ
〈
∂t(wgε(w)) + T ′(wgε(w)), ψε

〉
H′×H

+σ
〈
[etE(x) · ∇vw − σe2t∆vw](1 + gε(w)), ψε(w)

〉
H′×H = 0. (88) equ:VariFormBis
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Since ψε(w) = 1 on ε ≤ w ≤ 1/ε so in the same way of Lemma 6.3, we have the following
formula

σ
〈
∂t(wgε(w)) + T ′(wgε(w)), ψε

〉
H′×H

=

∫
R2

∫
R2

σw(T, x, v) lnw(T, x, v)1{ε≤w≤1/ε} dvdx

−
∫
R2

∫
R2

σw(0, x, v) lnw(0, x, v)1{ε≤w≤1/ε} dvdx.

We estimate now the other terms in (88). Since w ∈ H so the divergence theorem implies
that

σ
〈
etE(x) · ∇vw(1 + gε(w)), ψε(w)

〉
H′×H = σ

〈
etE(x) · ∇v(wgε(w)), ψε(w)

〉
H′×H

= σ

∫ T

0

∫
R2

∫
R2

etE(x) · ∇v(wgε(w))1{ε≤w≤1/ε} dvdxdt = 0.

and〈
−σ2e2t∆vw(1 + gε(w)), ψε(w)

〉
H′×H = σ2

∫ T

0

∫
R2

∫
R2

e2t∇vw · ∇vgε(w)1{ε≤w≤1/ε} dvdxdt

=

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt.

Finally, from (88) we obtain for any T > 0 that∫
R2

∫
R2

σw(T, x, v) lnw(T, x, v)1{ε≤w≤1/ε} dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt

≤
∫
R2

∫
R2

σw(0, x, v) lnw(0, x, v)1{ε≤w≤1/ε} dvdx.

By standard argument, there exists a constant C > 0, (see [26], Lemma 2.3) such that

|u lnu| = u lnu− 2u lnu{0≤u≤1} ≤ u lnu+
1

4
(|x| + |v|2)u+ Ce−

|x|+|v|2
2

therefore∫
R2

∫
R2

σw(T, x, v)| lnw(T, x, v)|1{ε≤w≤1/ε} dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt

≤
∫
R2

∫
R2

σw(0, x, v)| lnw(0, x, v)| dvdx+
1

4

∫
R2

∫
R2

(|x| + |v|2)w dvdx+ C8π

where we have used that
∫
R2

∫
R2e

− |x|+|v|2
2 dvdx = 8π. Thanks to the hypothesis on the initial

data fin we infer that
1

4

∫
R2

∫
R2(|x| + |v|2)w dvdx ≤ C(∥E∥L∞ , fin, T, σ). Therefore, Fatou’s

Lemma implies that∫
R2

∫
R2

σw(T, x, v)| lnw(T, x, v)| dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
dvdxdt

≤
∫
R2

∫
R2

σw(0, x, v)| lnw(0, x, v)| dvdx.

Substitutively w = e−2tf(t, x, e−tv) leads to the desired result.
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B Classical solution of the VPFP system with uniform external magnetic field
In this part, we consider the system (10), (11), (12) for uniform magnetic field i .e., ∇B(x) =
0. In order to simplify, we take in the equation (10) with B = 1. We focus on the global
existence and uniqueness of the smooth solutions. The proof will be based on the approxima-
tion scheme (fk)k∈N constructed in Theorem 2.2. In order to prove that the system admits
a global regular solution, we show that the sequence (fk)k∈N is actually bounded, as well as
its derivatives, by a function that does not blow up in finite time, if we further assume that
the electric field Ek ∈ L∞

loc([0,∞[;W 1,∞(R2)). We have the following regularity estimate

Lemma 6.6
Let fin be a non-negative function such that

⟨RegularEsti⟩

fin ∈W 1,1(R2), (1 + |v|2)γ/2(fin + |∇x,vfin|) < +∞, γ > 2.

Then, there exist two functions α(t), β(t) in L∞
loc([0,∞[) independent of k, such that for every

k and t, we have

∥(1 + |v|2)γ/2fk(t, x, v)∥L∞(R2×R2) ≤ α(t), ∥(1 + |v|2)γ/2Dfk(t, x, v)∥L∞(R2×R2) ≤ β(t).

Proof.
We define

Y k(t, x, v) = (1 + |v|2)γ/2fk(t, x, v), Zk(t, x, v) = (1 + |v|2)γ/2Dfk(t, x, v).

For the L∞ estimate of the sequence (Y k)k∈N, we use the same argument as in the Lemma
2.6. We will now focus on estimating Zk. Taking the derivative with respect to the variables
(x, v) in the linear VFP equation (19) for fk+1, we get

∂t(Df
k+1) + v · ∇x(Dfk+1) + Ek · ∇v(Df

k+1) +⊥ v · ∇v(Df
k+1)

= divv

(
σ∇v(Df

k+1) + v(Dfk+1)
)
−Dv · ∇xf

k+1 −DEk · ∇vf
k+1

−D⊥v · ∇vf
k+1 +Dv · ∇vf

k+1.

A standard computations, we have the following equalities

−Dv · ∇xf
k+1 = −

(
0 0
I2 0

)(
∇xf

k+1

∇vf
k+1

)

−DEk · ∇vf
k+1 = −

(
0 ∇Ek
0 0

)(
∇xf

k+1

∇vf
k+1

)
−D⊥v · ∇vf

k+1 = −
(

0 0
0 R

(
−π

2

))( ∇xf
k+1

∇vf
k+1

)
Dv · ∇vf

k+1 =

(
0 0
0 I2

)(
∇xf

k+1

∇vf
k+1

)
where R

(
−π

2

)
is a rotation matrix of angle −π/2. Then, the previous equation can be

rewritten as

∂t(Df
k+1) + v · ∇x(Dfk+1) + Ek · ∇v(Df

k+1) + ⊥v · ∇v(Df
k+1)

= divv

(
σ∇v(Df

k+1) + v(Dfk+1)
)

+Ak ·Dfk+1 (89) equ:DerivativeZk
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where Ak(t, x) ∈ L∞(R+ × R2) denotes the following matrix

Ak(t, x) =

(
0 −∇Ek

−I2 I2 −R(−π/2)

)
.

Now, we multiply equation (89) by (1 + |v|2)γ/2 and get the following equation for Zk+1

∂tZ
k+1 + v · ∇xZ

k+1 +

(
Ek + 2σγ

v

1 + |v|2

)
· ∇vZ

k+1

+⊥v · ∇vZ
k+1 − σ∆vZ

k+1 − divv(vZ
k+1) = R1 +R2 +R3 (90) equ:EvoluZk

where R1 and R2 are obtained from (25) by replacing fk+1 by Dfk+1 and

S3 = (1 + |v|2)γ/2Ak ·Dfk+1.

Thanks to the estimations on R1 and R2 in Lemma 2.6, we get

∥R1(t)∥L∞(R2×R2) ≤ γ∥Ek(t)∥L∞(R2)∥(1 + |v|2)(γ−1)/2Dfk+1∥L∞(R2×R2)

≤ γ∥Ek(t)∥L∞(R2)∥Zk+1(t)∥L∞(R2×R2)

≤ γC(fin)∥Y k(t)∥1/γ
L∞(R2×R2)

∥Zk+1(t)∥L∞(R2×R2)

≤ C1(γ, fin)α(t)1/γ∥Zk+1(t)∥L∞(R2×R2)

∥R2(t)∥L∞(R2×R2) ≤ C2(σ, γ)∥Zk+1(t)∥L∞(R2×R2)

∥R3(t)∥L∞(R2×R2) ≤ ∥Ak(t)∥L∞(R2)∥Zk+1(t)∥L∞(R2×R2).

Since ∥nk(t)∥L1(R2) ≤ ∥fin∥L1(R2) and by Lemma 2.2 and ∥Y k(t)∥L∞ ≤ α(t) we deduce that

∥nk(t)∥L∞(R2) ≤ C(γ, fin)α(t)2/γ . Moreover,

∥∇xn
k(t)∥L∞(R2) ≤

∫
R2

1

(1 + |v|2)γ/2
dx∥Zk(t)∥L∞(R2×R2) = C(γ)∥Zk(t)∥L∞(R2×R2).

Combining the above bounds on the density nk and the inequality (59) in Lemma 5.3 give
an estimate for the derivatives of Ek. Therefore we obtain

∥Ak(t)∥L∞(R2) ≤ C3(γ, fin)
(

1 + ln+ ∥Zk(t)∥L∞(R2×R2)

)
∥Zk+1(t)∥L∞(R2×R2).

So, the maximum principle in Remark 6.1 applied to (90) and the privious estimates of R1, R2

and R3 lead to

∥Zk+1(t)∥L∞(R2×R2) ≤ e2T ∥Z0∥L∞(R2×R2) + C1(γ, f0)

∫ t

0
α(s)1/γ∥Zk+1(s)∥L∞(R2×R2)ds

+ C2(σ, γ)

∫ t

0
∥Zk+1(s)∥L∞(R2×R2)ds

+ C3(γ, fin)

∫ t

0
α(s)2/γ

(
1 + ln+ ∥Zk(s)∥L∞(R2×R2)

)
∥Zk+1(s)∥L∞(R2×R2)ds.

(91) EstMaxZk

We denote here

ψ1(t) = C1(γ, fin)α(t)1/γ + C2(σ, γ), ψ2(t) = C3(γ, fin)α(t)2/γ .
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Since α(t) ∈ L∞
loc(R+) then ψ1(t), ψ2(t) ∈ L∞

loc(R+). Now we introduce the function

zk(t) = max(1, ∥Zk+1(t)∥L∞(R2×R2)).

We find that there exist a function ψ3(t) such that

1 + ψ1(t) + ψ2(t) + ln+ ∥Zk(t)∥L∞(R2×R2) ≤ ψ3(t) ln zk(t).

Indeed,

1 + ψ1(t) + ψ2(t) + ln+ ∥Zk(t)∥L∞(R2×R2) ≤ ln(zk(t)ψ3(t)) ≤ ln(zk(t)ψ3(t)),

with ψ3(t) = exp(1 + ψ1(t) + ψ2(t)) since zk(t) ≥ 1. Then, from (91) the function zk+1(t)
satifies the inequality

zk+1(t) ≤ e2T ∥Z0∥L∞(R2×R2) +

∫ t

0
ψ3(s) ln zk(s)zk+1(s)ds.

We denote β(t) the solution of the differential equation

β̇(t) = ψ3(t) lnβ(t)β(t), β(0) = e2T ∥Z0∥L∞(R2×R2)

whose solution is

β(t) = exp

(
lnβ(0) exp

∫ t

0
ψ3(s)ds

)
.

We see that β belongs to L∞
loc(R+) since ψ3 ∈ L∞

loc(R+) and the same argument as function
α(t) in the Lemma 2.6 show that Zk+1 satisfies

∥Zk+1(t)∥L∞(R2×R2) ≤ β(t), ∀t ∈ R+.

So Lemma 6.6 is proved.

Corollary 6.1
With the same assumptions and notations as in Lemma 6.6, there exist a function η lies in

⟨CoroEstUniformk⟩L∞
loc(R+) such that for all k ∈ N and t > 0

∥nk(t)∥∞ + ∥∇xn
k(t)∥∞ + ∥Ek(t)∥∞ + ∥∇xE

k(t)∥∞ ≤ η(t) (92) EstLinftyK

∥Dfk(t)∥L1(R2×R2) ≤ η(t). (93) EstGradL1K

Proof.
The estimate (92) is a direct consequence of Lemma 6.6. For the estimate (93), going back
to equation (89), and applying L1 estimate, leads to

∥Dfk+1(t)∥L1(R2×R2) ≤ ∥Df0∥L1(R2×R2) +

∫ t

0
∥Ak(s)∥L∞(R2×R2)∥Dfk+1(s)∥L1(R2×R2)ds.

Since ∥Ak(s)∥L∞ is bounded by η(t). It implies that Dfk+1(t)∥L1 satisfies a linear Gronwall
inequality whose coefficients are independent of k and gives (93).
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Global existence of the solution
Let T > 0. We then prove the convergence of iterations towards a weak solution. Thanks to
Lemma 6.6 and (92) we obtain the following convergences, up to extraction of a subsequence,
in the weak star topology of L∞([0, T ] × R2 × R2)

fk ⇀ f ; (1 + |v|2)fk ⇀ (1 + |v|2)f,
(1 + |v|2)Dfk ⇀ (1 + |v|2)Df, (94) ?ConverWeak1?

and, in L∞([0, T ] × Rd) weak star

Ek ⇀ E, ∇Ek ⇀ ∇E. (95) ?ConverWeak2?

To take limits in the nonlinear terms of (19), we need strong compactness and convergence of
the whole sequence. We will prove that fk converges to f in the norm of L∞([0, T ];L1(R2)).
Indeed, (fk+1 − fk) solves the equation

∂t(f
k+1 − fk) + v · ∇x(fk+1 − fk) + Ek · ∇v(f

k+1 − fk) + ⊥v · ∇v(f
k+1 − fk)

= QFP

(
(fk+1 − fk)

)
− (Ek − Ek−1) · ∇vf

k.

Now, thanks to the L1 estimate, we obtain∫
R2

∫
R2

|fk+1 − fk| dvdx ≤
∫ t

0

∫
R2

∫
R2

|(Ek − Ek−1)(s, x)||∇vf
k(s, x, v)| dvdxds

≤ 1

2π

∫ t

0

∫
R2

∫
R2

∫
R2

1

|x− y|
|∇vf

k(s, x, v)||nk(s, y) − nk−1(s, y)|dy dvdxds. (96) EstDiffL1k

Using the standard interpolation argument and (93) we get

sup
y

∫
R2

∫
R2

1

|x− y|
|∇vf

k(s, x, v)| dvdx ≤
(∫

R2

∫
R2

|∇vf
k(s, x, v)| dvdx

)1/2

(
sup
x

∫
R2

|∇vf
k(s, x, v)| dv

)1/2

≤ C(γ)∥Dfk(s)∥L1(R2×R2)∥Zk(s)∥L∞(R2×R2) ≤ C(γ, T ).

Thus (96) leads to

∥(fk+1 − fk)(t)∥L1(R2×R2) ≤
C(γ, T )

2π

∫ t

0

∫
R2

|nk(s, y) − nk−1(s, y)|dyds

≤ C(γ, T )

2π

∫ t

0
∥(fn+1 − fn)(s)∥L1(R2×R2)ds.

Then ∥(fk+1 − fk)(t)∥L1(R2×R2) satisfies

∥(fk+1 − fk)(t)∥L1(R2×R2) ≤
(
C(γ, T )

2π

)k tk
k!
∥f1(t) − fin∥L∞(0,T ;L1(R2×R2)).

which proves that fk converges in L∞([0, T ];L1(R2 ×R2)) to a unique limit which coincides
with the function f found previously. It is then easy to prove that f is a weak solution of
equation (10).
Uniqueness of the solution
The uniqueness of the solution which belongs to L∞([0, T ];W 1,1(R2 ×R2)∩W 1,∞(R2 ×R2))
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can be performed similarly as in the part of existence.
Regularity of the solution

f ≥ 0, f ∈ L∞([0, T ];L∞ ∩ L1(R2 × R2)),

(1 + |v|2)γ/2(f + |Df |) ∈ L∞([0, T ] × R2 × R2)).

Corollary 6.1 shows that Dfk is bounded in L∞([0, T ];L1(R2 × R2)). Then, for almost
every t ∈ [0, T [, Dfk(t) is a bounded measure, and since it is a function, we obtain Df ∈
L∞([0, T ];L1(R2×R2))2. Then, thanks to a standard interpolation, we impliy that the density
n(t, x) =

∫
R2f(t, x, v) dv belongs to L∞([0, T ];W 1,1(R2×R2)∩W 1,∞(R2×R2)). So the electric

field solves the Poisson equation in a classical sense and we obtain E ∈ L∞([0, T ];W 1,∞(R2)).
We deduce that f is a classical solution of system (10), (11), (12) on [0, T [.
We state the following result

Proposition 6.8
Let T > 0. Assume that the initial data fin(x, v) is nonegative and satisfies

?⟨ClassicalSolUnif⟩?
fin ∈W 1,1(R2 × R2), (1 + |v|2)γ/2(fin + |Dfin|) ∈ L∞(R2 × R2) with γ > 2.

Then, there exists a unique smooth solution of the VPFP system on the time interval [0, T [.
This solution satisfies

f ≥ 0, f ∈ L∞([0, T ];W 1,1(R2 × R2))

(1 + |v|2)γ/2(f + |Df |) ∈ L∞([0, T ] × R2 × R2))

E ∈ L∞([0, T ],W 1,∞(R2 × R2)).

Remark 6.2
When the magnetic field B is non-uniform, observing the derivative in the variable xi, i = 1, 2
of the transport in velocity along the magnetic force

∂xi [B(x)⊥v · ∇vf ] = ∂xiB
⊥v · ∇vf +B(x)⊥v · ∇v(∂xif)

and then multiplying this identity by (1 + |v|2)γ/2 we get

(1 + |v|2)γ/2∂xi [B(x)⊥v · ∇vf ] = ∂xiB
⊥vZi +B(x)⊥v · ∇vZi −B(x)⊥v · ∇v

(
1 + |v|2

)γ/2
∂xif

= ∂xiB
⊥vZi +B(x)⊥v · ∇vZi

where we denote Zi = (1 + |v|2)γ/2∂xif . We cannot apply the maximum principle of Remark
6.1 as in the equation (90), beacause this term ∂xiB

⊥vZi is not bounded in L∞(R2 × R2).

C Preliminary study on the Poisson equation
In this part, we consider the Poisson equation −∆xΦ = ρ in Rd, where ρ ∈ C∞

0 (Rd) with
d ≥ 2 whose support suppρ ⊂

{
x ∈ Rd : |x| ≤ R

}
. The solution of this equation is given by

the convolution with the fundamental solution of the Laplace operator as Φ = Gd ⋆ ρ, where

Gd(x) =


− 1

2π
ln |x|, d = 2

|x|2−d

(d− 2)|B(0, 1)|
, d ≥ 3.

The purpose of this part is to justify the following identity by using the integral by parts∫
Rd

ρΦdx =

∫
Rd

|∇xΦ|2dx.
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The formula requires that the vector field ∇xΦ decays rapidly at infinity. This is a reason-
able condition in the three-dimensional case but not in the two-dimensional one. In three
dimensions, the decay of the vector field ∇Φ is fast enough so that the integral

∫
R3 |∇xΦ|2dx

is finite. In two dimensions, nevertheless, this vector field is not decreasing fast enough to
infinity to be in L2. This is a consequence of the decay property of the kernel ∇xGd. You can
see that, in two dimensions, ∇xG2 decreases to infinity as 1/r, which is not square integral,
while in three dimensions, ∇xG3 decreases as 1/r2.
Now we consider the case d = 3. Since we can write

∇xΦ(x) =
1

|B(0, 1)|

(∫
R3

x− y

|x− y|3
1{|x−y|≤1}ρ(y)dy +

∫
R3

x− y

|x− y|3
1{|x−y|≥1}ρ(y)dy

)
.

So, thanks to the Young’s inequality for the convolution we get

∥∇xΦ∥L2(R3) ≤
1

|B(0, 1)|

(∥∥∥∥ 1

|x|2
1{|x|≤1}

∥∥∥∥
L1

∥ρ∥L2 +

∥∥∥∥ 1

|x|2
1{|x|≥1}

∥∥∥∥
L2

∥ρ∥L1

)
< +∞.

Another approach to show the vector field ∇xΦ ∈ L2(R3) is to use the Hardy-Littlewood-
Sobolev inequality, see Lemma (6.8) below

∥∇xΦ∥L2(R3) =

∥∥∥∥ x

|x|3
⋆ ρ

∥∥∥∥
L2(R3)

≤ ∥ρ∥L6/5(R3).

Next, we consider the case d = 2. The solution Φ and its gradiant write

Φ(x) = − 1

2π

∫
R2

ln |x− y|ρ(y)dy, ∇xΦ(x) = − 1

2π

∫
R2

x− y

|x− y|2
ρ(y)dy.

Observer for |x| ≠ 0 that

ln |x− y| = ln |x| + ln

(∣∣∣∣x− y

|x|

∣∣∣∣) ,
|x− y|−2 = |x|−2

(
1 − 2

x · y
|x|2

+
|y|2

|x|2

)−1

.

If |y| ≤ R and |x| ≥ 2R then for |x| large, we have

ln |x− y| = ln |x| + O(|x|), |x− y|−2 = |x|−2 + O(|x|−3).

Since w(y) has support in |y| ≤ R we see that for |x| large

Φ(x) = − 1

2π
ln |x|

∫
R2

ρ(y)dy + O(|x|),

∇xΦ = − 1

2π

x

|x|2

∫
R2

ρ(y)dy + O(|x|−2).

Combining with the fact that∫
Rd

(1 + |x|2)−l/2dx <∞ ⇔ l > d

we deduce that ∇xΦ is not square integrable except that
∫
R2ρ dx = 0. If

∫
R2ρ dx = 0, by

adding the decay at infinity of ρ as (1 + |x|)ρ ∈ L1(R2) we can show that ∇xΦ ∈ L2(R2) and
that ∫

R2

(−∆Φ)Φ dx =

∫
R2

|∇xΦ|2 dx.

D Inequalities
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Lemma 6.7
Let ρ ∈ Lp(Rd), with 2 ≤ p <∞, and let Φ = Gd ⋆ ρ. Then

⟨Cal-Zyg⟩
∥D2Φ∥Lp(Rd) ≤ Cp∥ρ∥Lp(Rd),

where Gd is fundamental solution of the Laplace equation in Rd, D2 denotes any second
derivative and C is a positive universal constant.

Lemma 6.8

Consider a kernel Kα(x) =
1

|x|α
and convolution Tαf = f⋆Kα. If p > 1 and α = d(1− 1

q+ 1
p),

⟨HardySob⟩ then we have
∥Tαf∥Lq(Rd) ≤ C∥f∥Lp(Rd)

for some positive universal constant C.
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