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Asymptotic behavior of the two-dimensional
Vlasov-Poisson-Fokker-Planck equation with a strong external
magnetic field

Mihai BOSTAN * Anh-Tuan VU T

(March 24, 2023)

Abstract

The subject matter of the paper concerns the Vlasov-Poisson-Fokker-Planck (VPFP)
equations in the context of magnetic confinement. We study the long-time behavior of the
VPFP system with an intense external magnetic field, when neglecting the curvature of
the magnetic lines. When the intensity of the magnetic field tends to infinity, the long-time
behavior of the particle concentration is described by a first-order nonlinear hyperbolic
equation of the Euler type for fluid mechanics. More exactly, when the magnetic field
is uniform, we find the vorticity formulation of the incompressible Euler equations in
two-dimensional space. Our proofs rely on the modulated energy method.

Keywords: Vlasov-Poisson-Fokker-Planck equations, Guiding center approximation, Mod-
ulated energy.

AMS classification: 35Q75, 78A35, 82D10

1 Introduction
?(Intro)? . . . .

We consider f = f(t,z,v) the density of a population of charged particles of mass m, charge
q depending on time ¢, position z and velocity v. We are interested in the Vlasov-Poisson
system, in the presence of an external magnetic field, taking into account the collisions
between charged particles. Neglecting the curvature of the magnetic lines, we assume that
the external magnetic field has a constant direction orthogonal to (Oz1,Ox2) but a variable
amplitude B(x). In dimension two, we set x = (x1,22), v = (vi,v2). The Vlasov-Poisson-
Fokker-Planck equation is written in the form

ouf +v-Vaf + LB (@] (@) + B@) “0} - Vof = Qrp (£), (t,2,0) € Ry x R x R?
(1) [VPFP2D-nonScal
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where the notation * (-) stands for the rotation of angle —7/2, i.e., v = (v, —v1) and the

magnetic field B(z) = (0,0, B(x)), * € R2. The potential ®[f] satisfies the Poisson equation

0P [f (V)] () =¢q ( ft,xz,v) dv— D(x)) , (t,z) € Ry x R2

RQ
whose fundamental solution is z — —5-In|z|,z € R*\ {0}. Here, the function D = D(z)
is the concentration of a background of positive charges and is assumed to be given. The
constant €y represents the electric permittivity of the vacuum. For any particle density
f = f(t,x,v), the notation E[f(t)](x) represents the Poisson electric field which derives from
the potential ®[f(¢)](z) given by

Bl (z) = -2 /R 2 < /R Tt ) v - D(x’)) ‘”‘””F dz’ (2) 7ELecFie1d-non

 2meg v —x

and n[f(t)], 7[f(t)] stand for the concentration and the current density respectively

nlf(O)] = | f(t-v) dv, j[f(2)] =/ of (t,-,v) dv.
R2 R2
In the equation (1), the operator Qpp is the linear Fokker-Planck operator acting on velocities

Qrp (f) = divy, (eV,f +vf),

where o is the velocity diffusion, see [9] for the introduction of this operator, based on the
principle of Brownian motion. We complete the above system by the initial condition

f (0, x, U) = fin (l‘, U) s ($, U) € R? x R2. (3) ?Initial-nonSc:

In this work, we analyze the evolution of the distribution density f over a long time, in the
regime of an intense magnetic field (gyro-kinetic), in order to observe the drift phenomenon in
the directions orthogonal to the magnetic field. Indeed, it is well known that the velocities of
electric cross field drift and the magnetic gradient drift are proportional to % and consequently
it is necessary to observe the drift movements over a large time proportional to B. In other
words, we consider

B(z)

ftzv)=f(z0), B(x)=——, t=et

Here € > 0 is a small parameter related to the ratio between the cyclotronic period and the
advection time scale. Hence 0yf = €0;f°. Then in the equation (1), the term J; is to be
replaced by ed; or by €0; to simplify our notation, and the Vlasov-Poisson-Fokker-Planck
system becomes

we(z)

0Lf v Vaf* + B[] Vof + ST 0 Vof* = Qrp(f), (4) [verpad-scale]

9
E[ff] = =V, @[f°], —e0l:®[f]=¢q(n* - D)=q (/RQf‘S (t,,v) dv _D> ) (5)[Poisson2D-Scal

9B(z)

where w.(z) = stands for the cyclotron frequency. We complete with an initial condition

(0, 2,0) = f£ (z,v), (z,v) € R? x R2 (6)[Initial2D-Scal

The existence theory of the weak and classical solution of the VPFP system is now well
developed and understood. Let us summarize the literature concerning existence results for



this problem. In the absence of the external magnetic field i.e., B(z) = 0, several existence
results for the VPFP system are known. The classic solutions have been studied by Degond
in [11] which showed the global/local existence and the uniqueness of the strong solution in
one and two/three dimensions respectively, without friction term i.e., Qpp = 0A,. Victory
and O’Dwyer obtained in [10] the same result of existence of classical solution using the
fundamental solution of the operator 0y +v -V, — V, - (6V, +v). In [32], G. Rein and J.
Weckler gave sufficient conditions to show the global existence of classical solutions in three
dimensions. Regarding weak solutions, we can mention the works of Victory in [14], J. A.
Carrillo and J. Soler in [12] with an initial data in the space LP. With the magnetized VPFP
system, when the external magnetic field is uniform i.e., V,B(x) = 0,z € R?, it seems
that the methods used in the articles above, also apply. We followed the method of [11] to
show the existence and uniqueness of the global classical solution in time. We present the
detailed proof in Section 6.3 of the Appendix B. In the case B(z) is general, we show the
global existence in time of weak solutions, in the sense of Definition 2.1. The detailed proof
is provided in Section 2.

We study the asymptotic behavior of the solutions (f¢).~o of the problem (4), (5), (6)
when ¢ tends to 0. By investigating the balance of free energy associated with the VPFP sys-
tem, we show formally in Section 4 that the family (f€).>o converges to the limit distribution

. =loi? . . .
function f (¢,x,v) = n(t,z)5i-e 2, where the limit concentration n verifies the first-order

nonlinear hyperbolic equation

L E[n] VW ()

i — = 2 u:Lim
Ogn + divy [n ( Blr) o 22(2) >} 0, (t,z) e Ry xR (7) [equ:LimMod2D]

coupled to the Poisson equation

Bln] = ~V.®[n], —20A,@[n] = g(n - D) (8) [LiaPoissonzD]

with the initial condition

n(0,2) = niw(z) = [ f(0,2,v) dv. (9) [LinTnitp]
R2

Let us observe the limit equation (7), we see that the concentration n is advected along the
vector field ( (x) U;L(‘;S) which is the drift velocity respectively to the sum of the electric

cross field drift ? and the magnetic gradient drift alwvc‘(‘);)(f ). These drift velocities were

mentioned in the limit model of M. Herda, L.M. Rodrigues [21] and P. Degond, F. Filbet
[15]. In the case of the uniform magnetic field, the above model becomes

1
on + l;[n] -Ven =0, (t,z) € R} x R?
E[Tl] = _VJ?(I)[n]? —EOAJ;(I)[W,] =4q (Tl - D), (t,ﬂ?) € R+ X R2
n(0,2) = nin(x), © € R®

that is to say, the vorticity formulation of the two-dimensional 1ncompr6881ble Euler equations,
with the cross electric field drift Velomty 5 L and the vorticity rot; E = — (n — D). Notice
that the same model was obtained by F. Golse, L. Saint-Raymond in [17], L Saint- Raymond
[30] and E. Miot [25] from the two-dimensional Vlasov-Poisson system without collisions.
The authors justified rigorously the convergence towards the two-dimensional Euler equation
of incompressible fluids in the other approach. Concerning the collisions between charged
particles, we can mention the work of M. Herda and L.M. Rodrigues in [21]. In this paper,



(MainThm2D)

the authors are interested in the limit e N\, 0 of the VPFP system (4), (5), (6) in three-
dimensional version (¢,z,v) € Ry x T3 x R? (where T = R/Z is a torus one-dimensional).
They formally show that the family (f¢).>o converges to the limit distribution function f

and the limit electric potential ¢ which have reached an adiabatic regime along the magnetic
field

t t L% _nu S YT Ry x T3 x R?
= _— 2 =
f( 7'%'71}) n( ,$> (271')3/26 ( 7xJ_)fT 6_q¢(t’$L’$”)d{B” (U)a ( ,.’E,U) € Ry X X

where z = (z, x”) € T? x T and the concentration n is the anisotropic Boltzmann-Gibbs
density. The limit model is derived by the reduced macroscopic density N : Ry, x T2 — R,
in the perpendicular direction, satisfying

ON = divy, (N* (Va.0)) =

with the initial condition
N(O7$L) = Nm xL // fO Ti,x), )dxH dv

where ¢ : R, x T? — R is the average potential

d;(t, x1)=—qln </T e_qu(t’“’wl)dx”) .

Their results of passing to the limit concerned a linear model where the electric field is given
i.e., E[f¢] = E = —Vy;¢, for a given potential ¢. However, in the non-linear case of the
VPFP type, they do not completely justify the passage to the limit model from the kinetic
equation.

To the best of our knowledge, there has been no result on the asymptotic regime when
the magnetic field is non-uniform. In the current work, the asymptotic behavior will be
investigated by appealing to the relative entropy or modulated energy method, as introduced
n [33]. This relative entropy method relies on the smooth solution of the limit system. By
this technique, one gets strong convergences. Many asymptotic regimes were obtained using
this technique, see [7, 8, 18, 29] for quasineutral regimes in collisionless plasma physics, [31, 1]
for hydrodynamic limits in gaz dynamics, [19] for fluid-particle interaction, [5, 4, 20] for high
electric or magnetic field limits in plasma physics.

Before establishing our main result, we define the modulated energy £[n(t)|n(t)] by

n(t) 2
) n(t)] = t)h de + — d V,® d
O] =o [ nn (")) dot 50 [ 9,80 - 9.0l ds
where h : Ry — R, is the convex function defined by h(s) = slns — s+ 1,s € Ry. This
quantity splits into the standard L? norm of the electric field plus the relative entropy between
the particle density n® of (4), (5), (6) and the particle concentration n of the limit model (7),
(8), (9). The main result of this paper is the following

Theorem 1.1

Let T > 0. Let B € C3(R?) be a smooth magnetic field, such that inf,cge B(z) = By > 0
and D be a fized background density verifying |z|D € L*(R?), D € WH1(R2?) n W2 (R?).
Assume that the initial particle densities (f5)e>0 satisfy the hypotheses H1, H2, H3 (see
Section 2 below) and My, = sup,~o M, < 400, Uiy := sup,~q U}, < +00 where

2
M, ::/ fe(z,v) dvdz, Us, ::/ [v] — fi(z,v) dvdx—i— / |V, P fm]|2 dz.
R2 JR2 Rr2 Jr2 2

4



Let f¢ be the weak solutions of the VPFP system (4), (5), (6) with initial data f5, provided by
Theorem 2.2. We also assume that the initial concentration ny, verifies the hypotheses H4,
H5 (see Section 5 below) and let n be the unique smooth solution of the limit system (7), (8),
(9) with initial condition ni, constructed in Proposition 5.1. We suppose that

lima/ /n M (v < )dvdm—O hmé’[ W|nin] =0
e\ RrR2 JR2 e\0

where nj, = fRfon dv, € > 0. Then we have

fe )
lim sup o n°M(v)h dvdx =0, lim sup & n(®)] =0
e\0 0<t£T /]RQ /]RQ ( ) <n€M N0 0<tET [ ( )| ( )]

5 €2
Jim — / / oVl +0F 4 ded = o,
e\o0 € R2 JR2 fe

In particular we have the convergences limen f¢ = nM in L°°(]0,T[; L'(R?* x R?)) and
hms\O Vo ®[f¢] = Vy®[n] in L>(]0,T; LQ(RQ))'

Remark 1.1

In two dimensional setting, the initial potential energy o~ fR2\V D[ ]]2 dxz may not be
?(RemE1ecL22D)? finjte (or the electric field E[f5] cannot belong to LQ(RQ)) even if the znitial datum f5 lies

in C°(R? x R?). This is due to the fact that the kernel z/|x|¢ does not belong to L*(R?) at

infinity, see the Appendixz C for a disscusion. For these reasons one needs to slightly modify

the Poisson equation adding a fized background density D satisfying the global neutrality

relation H3, see Section 2 below.

The paper is structured as follows. Section 2 is devoted to establish the global existence of
weak solutions to the VPFP system with external magnetic field. In Section 3, we derive a
priori estimates with respect to the small parameter € > 0 on the weak solutions from the
evolution of physical quantities associated to the VPFP system. Section 4 is devoted to the
formal derivation of the limit model. The well-posedness of the limit model is studied in
the next section. We establish existence and uniqueness results for the strong solution. The
convergence towards the limit model is justified rigorously in Section 5. We obtain strong
convergence for well prepared initial conditions.

2 Global existence of weak solutions of the VPFP equations

In this section we will study the global existence of weak solution for the VPFP equation in
the presence of an external magnetic field for fixed € > 0. In order to simplify the proofs of
existence of the solution, as we do not want any uniform estimate with respect to e, we will
take € = 1 and omit all the subscripts. Thus we first consider the following problem

Oif +v-Vof + E[f]- Vof + B(z)tv -V, f = divy,(6V,f + vf), (10)[eq: VPFP-NonEps
Elf] = ~V,®[f]. ~A,8[f / £ (t-v) dv— (1) [og:Poi-ontps|
f0,z,v) = fin (x,v), (z,v) € R? x R2. (12)[eq: Init-NonEps

The dependency on the small parameter € > 0 will be taken into account when establishing
a priori estimates uniform in € in the next section.

The idea of the proof is as follows: we will first linearize the VPFP system (10), (11), (12)
by an iterative method, based on the resolution of the linear Vlasov-Fokker-Planck equation



with free transport thanks to the technique introduced by P. Degond in [11]. We adapt this
method, also taking into account the velocity transport, generated by the external magnetic
field. Then we will pass to the limit to obtain a weak solution by appealing to the velocity
averaging lemma, cf. [22]. We will suppose the initial data fi, also satisfies the hypotheses
H1) fin >0, fin € (L' N L®)(R2 x R?), (|z| + |[v]? + | In fin]) fin € L} (R? x R?)
?(Hypothesis1)?
H2) (1+ o)) f)/? € L®(R? x R?), 7 > 2
?(Hypothesis2)?
H3) fRQ fszin dvdz = fRQD(x) dz.

2.1 The linear Vlasov-Fokker-Planck (VFP) equation
We consider the Vlasov-Fokker-Planck equation with a given electric field E(x) = —V,®(x)

Of+v-Vaof + E-Vyf +divy(B(z)tvf) = oA, f + div,(vf), '
{ f(0,z,v) = fin(z,v). (13)[equ: VFP2D]

We notice that the global existence and uniqueness of a weak solution in the distribution
sense of the VFP equation (13) is demonstrated following by the standard theory for linear
kinetic equations in [11]. We have the following result, see Appendix A for the main lines of
the proof.

Theorem 2.1
For a given T €)0,00[. Let fin be an initial data verifying H1, H2 and E(x) be an external
(EXiVFP2D) oloctpic field belongs to (L= (R?))2. Then there exists a unique positive weak solution of the
equation (13) on the interval [0, T in the sense of Definition 2.1 provided by Proposition 6.2
such that f € L>=([0,T]; L°NL(R?xR?)). Furthermore, f belongs to L*([0, T]xR2; H'(R2))
and verifies the following estimates
p—1

=14y
I fll oo o,y Lr@2xr2y)y <€ 7 || finll o2 xr2y, P €]1,00[  (14) ?InegLp?

£l 0,720 R2xR2)) = I finll L Rexr2)s 1]l (o,ryxr2x®2) < € || finll oo m2xR2)

2 2
sup/ f(t, au,v)ﬂ dvde < C(|| B e, T, U)/ / fin(av,v)ﬂ dvdz. (15) ?InegKinEner?
[0,T] JR2 JR2 2 R2 JR2 2

Sup/ f(t,z,v)|x| dvde < C(T)/ / fin(z,v)|z| dvdz. (16) ?InegPosition?
0,71 JR2 JR2 R2 JR?

”vyf1/2||L2([0,T};L2(]R2><R2)) < C(||E||gee, T, fin,0) + /R2 /IRszin| In fin| dvde. (17) ?Ineghissipatis

We next provide an auxiliary lemma showing some relationship between the local density
n[f] = [gef dv, the current j[f] = [pevf dv and the kinetic energy [po [pe|v]?f dvda.

(InegDensity2D) [,emnma 2.1

Assume that f € L' N L®(R? x R?) and |v|?f € L'(R? x R?). Then there exists a constant
C > 0 such that

In[fllLrrey < C, p€[1,2], [l7[f]llrme) < C, p € [1,4/3].



Proof.
We first estimate the LP norm for the density n[f]. It is obvious when p = 1. Let p €]1,2]
and ¢ such that 1/p+ 1/q = 1. Observer that

flz,v)"

n[f](x) = r,v) dv = o) 2P P (g )
@ = [ sy do= [ @ e f e

we deduce that

< HleL/oZ (R2xR2) (/R2(1+|11)|)2q“’ dv) v </Rd(1 + [v))2f (v) dv> 1/p.

Since p €]1,2[ we have % > 2 therefore [p» dv = C < +00. Then we obtain

__ 1
(+ol)277

1/p
nlf e < CIAIY gy (/ / (1+[o])? dvdx) |

When p = 2, for any R > 0, we have

= /sz(x,fu) dv = /sz(x,v)l{v<R} dv—l—/ f(z,v) >Ry dv

<l o oy TR + = / f(zv)o? do.

2 d 1/4 .
We now take R = (W{fﬁﬂ%) to obtain

1/2
@) = [ fle0) do < (04 m) 112 g ([ 0P 0)

then raising each side of the inequality to the power 2 and integrating in the variable x gives
the result. By combining these estimates, we obtain the bound of the norm LP,p € [1,2] for
the density particle n[f]. For the current j[f], we use the same argument as above to obtain
the desired estimate. |

The next result will be useful in order to estimate the L° norm of the density particle
n[f], so as to control electric field. However, we cannot obtain L> estimate for the such
hypothesis in Lemma 2.1. The key is the decay of the solution f when the velocity goes to
infinity.

Lemma 2.2

If (14 |v>)'f € L®(R? x R?), with v > 2 we have the bound of the L™= norm
(LinftyDensity)

[l oo ) < CONAN b gy I+ [0 72 FI 22 o ey

In particular, if |v|*f € LY(R? x R?)) then the current j[f] belongs to L?(R?) and satisfies

5L 222y < Nnlf]l oo oy 01 1l 21 2 xR2)-



Proof.
For any R > 0, we have

n[fl(z) = [ f(z,v)dv= / fl)<ry dv +/ SLozry dv < 27R?| |l oo (R2xR2)
R2 R2 Rd
1 2 2
+/Rzl{”>R}(1+!v!2)7/2 Avl|(1 + 0272 fl| oo (2 )

2 _
< 2w R?|| f|| Lo (2 xR2) + ﬁRQ (L + 0] £l oo (m2 xR2)-

1 |lz=(®exr?)
¥ =2 || fll oo (2 xR
for n[f]. As a consequence, we can give the estimate in L? norm of j[f]. Indeed, we have

iifa = [oravs ([ o2s dv)m ([ ) "

/U |2d56</R2<R2]v|2fdv) </szdv> dz
< Inlfllpegeey [ [ oBF duda

which concludes the desired estimate of j[f]. O

1/
) , we complete the bound estimate of the L* norm
)

We take R = (

This implies that

We then show the bound estimate on the electric energy in the lemma below.

Lemma 2.3
Let p(z) = [of(z,v) dv be a function which belongs to L'(R?*) N L>(R?) and let E(z) be
(BoundElecEner2D) g ¢/, that

1
E(z) = %Vxln] xp
Then we have

1 1/2 2 1/2
1B oo 2y < 5~ (11l @ xrey) / <”fHLoo Rr2xg2) (1 + [v| 22|12 szRz)) :

Proof.
We first recall the classical inequality

1/2 1/2

||E”L°° (R2) < CHPH R2)HPHL0<>(R2

for some constant C' > 0. Together with the Lemma 2.2 yields the desired result.

2.2 The Vlasov-Poisson-Fokker-Planck equation
We first introduce the concept of weak solution to the problem (10), (11), (12).

Definition 2.1
For a given T €]0,00[. We say that the pair (f, E[f]) is a weak solution to the system (10),
(DefWeakSol) (11), (12) if and only if the following conditions are satisfied



(i)
f>0, feL®(0,T[L N LP[R?* x R?)), [E[f]|f € Ligo([0, T[xR* x R?).

i) For any @ € C°([0, T[xR? x R?), we have
0
T
/ / / f (3tg0 +v - Vo + (BE[f] + B(z)*v) - vap) dvdzdt
0 Jr2 Jr2
T
+ / / f(oAvp —v - Vyp) dvdedt + / fin(z,v)p(0,z,v) dvdz = 0.
0 Jr2JRr2 R2 JR?

Now, we provide the global existence of the weak solution to the VPFP system (10), (11),
(12) based on a compactness argument. For this purpose, we need the following velocity
averaging lemma obtained in [22], see also [27]. The averaging lemma allows to pass to the
limit in the VPFP equation including the nonlinear term E[f]f in the sense of distribution,
see [28].

Lemma 2.4
Let (g%)i be bounded in LY ([0,T] x R? x R?) with 1 < p < oo, and (G¥); be bounded in

loc

(VelAver) LY ([0,T] x R? x R2). If for any k, g* and G* satisfy the equation
g" 4+ v Vag® = Vo,GF, gF(t =0) = go € LP(R? x R?),
then for any ¢ € CL(R% xR?) we have ( [paf*e dv)k is relatively compact in LY ([0, T] xR?).
We then use the previous lemma to show the following result, see Lemma 2.8 in [22]

Lemma 2.5

Let (g")i, and (G*) be as in the Lemma 2.4 and we assume that
(Compactness)

g" is bounded in LP([0,T] x R? x R?),
(Jv]? + |z|)g" is bounded in L>=(0,T; L*(R? x R?)).

Then for any 1 (v) such that |Y(v)] < clv| and 1 < ¢ < %, the sequence (f]Rdgkd} dv)k is
compact in L4([0,T] x R?).

We state the following result

Theorem 2.2

Let T > 0. Let B € C}(R?) be a smooth magnetic field and D be a fived background density
(main_veak_sol) yerifying |z|D € LY(R?), D € L'(R?*)NL>®(R?). Assume that the initial condition fi, satisfies

the hypotheses H1, H2 and H3. Then there exists a weak solution to the problem (10), (11),

(12) in the sense of Definition 2.1, satisfying

£>0, feL®(0,T); L' N L®(R? x R%), (1+[02)"? f € L2([0,T] x R? x R?)
(Jz| + [v? + I fI) f € L=([0, T); L'(R* x R?))
BIf] € 10, 7] x B2), B[f] € L=(0,T}; [(R?).  (18)[PropeaSol
Furthermore, we have f € L*([0,T] x R2, H'(R2)).

The proof of Theorem 2.2 will be devided in 4 steps. The first is devoted to a construction
of an iterative sequence, the second to a convergence of the sequence, the third passes to the
limit and the last step studies the properties of the solution.

Step 1: Construction of an iterative sequence



We first construct a sequence (f*)x>¢ as follows: we start with E°(t,x) = 0 and fO(¢,z,v) =
fin(z,v). For a give electric field E¥*(¢,z) belongs to (L>([0,7] x R?))2, we consider f++!
the unique weak solution of the following linear transport equation, cf. Theorem 2.1

Of* ™ v Vo M+ BF -V, T 4 B(a) o Vo T = oA M 4 divy (uf*T), (19) [eq: vFP2DBIS|
0, 2,0) = finlz,v), (z,0) € R? x R2

Then the density n**! and the electric field E**! are defined by
nk+1(t,x) = / fk+1(t,x,v) dv7 Ek+1(t,$) — _va In H * (nk—i-l . D) '
R2 27eq

Thanks to Theorem 2.1, we obtain the following estimations

>, [SUP} 1A O] g2 xr2y < C(D)| finll Lo o xr2)s P € [1, 0] (20) [IneqNornSequ]

)

2
sup/ / karlﬁ dvdz < C(T, HEkHLoo)/ / f1n|v‘2 dvdx (21) InegKinEnersSeq
R2 JR2 2 R2 JR2

(0,7]

oup [, fo el dods <) [ [ fulel dud (22) [Tneqposition]

(0,77

Hvafk-‘rl/ /fk-i—lHLQ([&T];LQ(R2XR2)) < C(HEkHLoo7T7 fin,U)—i-/Rz /Rzafin‘lnfin dvdz. (23)

We will now establish the uniform estimates with respect to k of the electric field E¥, that
means supjg | E*|| reo(r?) < C for some contant C' > 0, not depending on k, which imply
clearly that the sequence (f¥)ren is well-defined. Thanks to Lemma 2.2 and (20), it suffices
to show that for all k € N, the following inequality

VA (8) | ey < C
where we denote Y*(t) = (1 + |[v|>)Y/2fk(t, z,v).
Lemma 2.6

Let fi, be an initial data verifying the hypothesis
(LInftyNormVeloc)

”YOHLOO(R2><]R2) = [|(1+ ‘U’2)’Y/2finHL°°(]R2><R2) <00, ¥ > 2.

Then there exists a function a(t) independent of k such that o € LS ([0, 00[), satisfying for
every k € N

[YFHL @) || oo (e xmey < a(t).
Proof.

The proof relies on the maximum principle for the linear Vlasov-Fokker-Planck equation,
which is stated in Remark 6.1 of Appendix A. We apply it to the equations solved by Y*(t).
First, we multiply equation (19) by (1 + |v]?)/? we easily get
HYH 4.V YH 4 EF .V, YR 4 Ba)te - VYR — 6 A YR — div, (0Y L) (24)
= (1 + [T B fE = 205(1 + o]0 - v, 1
—3(y = 2)(1+ )T 20y (14 [of?) 022
(L + o) 7D 2 o] 1,

10



But we have
207y
1+ |u?

207 kil 2
— SV, Y 492
TrpE’ o T T

(1+ |v]2)7/2v . vvfk+1

o]

~207(1+ o) 0722 VT =

(1+ [of?) /2 i1

so that the equation (24) can be rewritten
QYFH 4. v, YR 4 (Ek + 2077 ”| |2) -V, Y 4 B(z)te - v, YR

—o A Y — div,(vY* ) =Ry + Ry (25)
with

Ry = (1 + [v])072/2(y . gFy phrl
oy?|v]?

T+ o2 (1+ [v[2) D251 _ 951 4 |v[2) D2 1 _ (1 4 |0]2)O0=2/2)y 2 4L

92 =

Now, thanks to the hypotheses on the initial data, we apply the L°° estimate in the Remark
6.1 to (25), and therefore we obtain

t
V5| oo rexre) < €TV oo (roxr) +/o (I1R1(s)l| oo (m2 xR2) + [[R2(8) || oo (R2 xR2) ) dis.
(26) Taegmaeey
But
| Ra() || oo m2xm2) < (072 + (20 + DN Y (8) || oo m2 cR2)

= Ci(o, ’Y)||Yk+1(3)\|Loo(R2xR2),

and
IR1(5) | oo (m2 2y < VIEF(8)]| ooy l(1 4 [0[2) D2 FFHY| L oc oy

Then we use the Lemma 2.3 for the electric field E¥ and by combining with the bound of L?
norm (20) we get

1B (5)ll oo mz) < CD fin) (14 10+ o2V 2 I o))
=D, fin) (14 IV5 ) o cp ) -

where C(D, fi,) stands for the constant, depending only on D and fi,. On the other hand,
thanks to the result of the elementary interpolation and (20) we have

11+ [ 4 () | o arzy < COI ()1 oy 1Y 54 () | o e cmy
< OO F Y ) ey

Therefore the previous bound estimate of R; becomes

1 1-1
1R () 22y < C (1Y) poe iy + 1Y H (R ooy 1Y) 2 o))

11



for some positive constant C' depending only on D, fi,,y. Together the estimates of R; and
Ry, the inequality (26) becomes

t
[YFF () || oo (moxre) < €271V 0 oo (moxm2) + 01/0 [YEF ()| oo (m2xm2)ds

e / ¥ gy Y5 (o ey s (27) [TnogTageyvoss]

for some positive constants C1, Cs, not depending on k.
Now, let «(t) be the solution of the linear equation which corresponds to the inequality (27)

a(t) = (C1 + Ca)a(t),  a(0) = |V oo r2 xr2)-
Then we prove by induction on k that we have
IYR(0)l| e (2 pzy < @(t), V€ [0,T), ¥k € N. (28) [BoundiiozaY]

Indeed, denoting by ¥**+! the right hand side of (28) then we shall prove that an upper bound
T for the set
T = sup {t € R, |TH+(s) < afs), Vs € [O,t[}

does not exist. If the converse were true, there exists kg € N such that W*o+1(¢) < a(t), for
every t € [0, T[ and T*oT1(T) > o(T). Since for any k € N we have

(1) = CollY (0 o o) + Coll YO gy 1V (O e
< Cra(t) + Caal(t) = a(t), t € [0,T]

thus this implies that U**1(¢) < a(t), Vt € [0, T[ for any k € N. As U*+1(¢) is an increasing
function and «(t) is continuous hence one gets

UFY(T) = limsup U*FL(¢) < limsup a(t) = a(T)
t T t T
which shows a contradiction. Therefore, (28) is the desired estimate for Y**1, O

By Lemma 2.6, we deduce that the constants in the inequalities (21), (23) respectively are
independent with respect to k. Together with the Lemma 2.2 and (20) yields the uniform
bound of the sequence (n*)en in L([0, T; LP(R?)), for any p € [1, o).

Step 2: Compactness and convergence

It follows from the uniform bound of the sequences that there exist a limit (f, n, E') such that
up to extraction of a subsequence, it holds as k — oo that

fHY~ f weak x in L°([0,T); LP(R? x R?)), p €]1, o],
nFtl <~ n weak % in L*([0, T]; LP(R?)), p €]1, 0],
E* B weak « dans L>®([0,T] x R?).

Furthermore, by using the Lemma 2.5 with ¢(v) = 1 we get the strong convergence
1 S nin L9([0,T] x RQ), q €]1,4/3[. (29) ?strongconv?

Indeed, by uniform estimates (20), (21) and (22) the conditions in the Lemma 2.5 are verified.
Let us write
Gk—‘rl — vafk’-i-l + ,Ufk—i-l _ Ekfk+1 _ B(x)vak—i-l.

12



Then the equation (19) can be written as
OfHH 4 v Vo f* T = v, G

We now claim that the sequence (G*)ren is bounded in L4([0,T] x R? x R?) to apply the
averaging lemma, Lemma 2.5. Hence, we need to prove the following lemma.

Lemma 2.7
For any q € [1,2], there exists a constant C independent of k such that for every n € N we

(BoundGk) 1, 1.0

IG* M oo,y xr2xr2) < C, q € [1,2].

Proof.
As the sequence of electric fields E* is bounded in L ([0, T] x R?) and the magnetic field B
belongs to L>(R?) we obtain

IG** e < MoV pa + (L4 1Bz ) ISl ao,ryxr2 w2y + ClLFH | o

for some positive constant C' not depending on k.

From (20) it is easily seen that ||fk+1HLq([O’T]XR2XR2) < Tl/quinHLq(RZXRZ). On the other
hand, since [|v | pq(o 71xRr2xR2) < T4 SUpo 7] [0 /54 | La(r2xr2) and thanks to Holder’s
inquality for g € [1, 2] we have

1/q 1/q
Jor ey = ([ [ sl avae) "= ([ ] piegogor ava)
Rr2 JR2 R2 JR2
) 1/2 omg) (2—q)/2
< (/ lv|* f dvdx) (/ / futea dvdx)
]RQ RQ RQ RQ

1/2
2 q/2
< ([, [Jes ) A ey
When ¢ = 2 we also get

1/2
1/2
o ooy < W12 sy ([, [ 07 dvtz)
R2 JR2
Consequently, the sequence (v f*) is bounded in LI([0, T] x R? x R?), for any ¢ € [1,2]. It re-

mains to uniformly bound the sequence ||oV, f**1|] La([0,7]xR?xR2)- Using Holder’s inequality
again for ¢ € [1,2[, we have

k+1|q
/ / / Vo fE4H? dodadt = / / / ’f“ 2 [Vl ‘ dvdzdt
R2 JR2 R2 JR2 fk‘-i—l)
T 4 k412 3
g/ P12 o (/ N dvdx) dt
0 L7 \Jpe2 Jrz  fFH

q
i1 |V fk+1|2 2
ST (/ [T qvdoar

and when p = 2 we also get

/ / / ’ ’ 12dvdxdt / / / k 1| : 1|2 dvdzdt
vJ fk+1
R2 JR2 R2 JRR2

|V fk+1|2
< | 5 ||Loo (o, T]szsz)/ /R2 e R dvdzdt.
Thanks to Lemma 2.6 and (23), we deduce that the sequence (|V,f*|2/f*)ren is bounded in

LY([0,T] x R? x R?). Therefore, the sequence (V,f*)ren is bounded in (L9(]0, T] x R? x R?))?
with ¢ € [1,2]. Altogether the above estimates we conclude the result of Lemma 2.7. O
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Step 3: Passing to the limit

Thanks to the weak convergences obtained in Step 2, we see that to pass to the limit in
the weak formulation of equation (19) it suffices to show convergence towards 0 for any test
function ¢ € C°([0,T) x R? x R?) of the non-linear contribution

T
/0 /]R2 - [(Vm In(| - ) *nk)fk-H — (Vg In(] - |)*n)f} o dvdadt

T
= [ [ LTt i =y o dodaar
0 R2 JR2
T
+ / / (Vx 1n(| ) |) * n)(p(fk+l - f) dvdzdt. (30) __NonLinearEner
0 R2 JR2

For the first term in (30) we write

[ Ll et -] e

:/0 - [VaIn(] - N1g<ny] * (0" —n)) < IRdkarlc,o dv) dzdt
T

# [ L D] - ([ 40 an) anat

=: Iy + I>.

Estimating now I;. Notice that V. In(|z|)1{. <1y € L'(R?) we have

’/Rdfk—’—lgp dv

where ¢ €]1,4/3[ and ¢ is the Holder conjugate of q. Here we have used Young’s inequality
for the convolutions

T
hSAHWmWWHQMmMM—Wmm

Lo (%2)

1 1 1
‘/U*whwéHmehﬂwn,++—2
R2 p q r
Then by the Holder inequality in variable ¢ we have
hsHvumuwuwgwymawﬁ—nmﬂmﬂﬂ@]/fﬁﬂwdv .
R? L4 ([0,T] xR2)

Notice that the sequence (f¥)gen is bounded in L>([0,7] x R? x R?) and ¢ € C$°([0,T) x
R? x R?) imply (f*t1¢)ren is bounded in L7 ([0, 7] x R2). Since n* converges strongly to n
in L4([0, T] x R?) therefore we get I — 0 as k — oo.
Estimating now I5. Notice that V. In(|z])1.;>1y € LP(R?) for any p €]2, 00[. Using Young’s
inequality again for the convolutions then we have
/ fk+1‘~,0 dw
Rd

where p €]1,4/3[ and p’ is the Holder conjugate of p (p’ > 4). Performing in the same way
as I, we also have I — 0 as kK — +o00. Combining the convergences of I; and I we deduce
that the first term in (30) converges to 0, as k — +o0.

Y

T
ES/\WNMWMPQWWMM—MWM
0 L1 (R2)
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For the second term in (30) we write

T
[ ], [t mpts 1 - ) dvsar
0 R2 JR2
T
N / /Rg VeIl Digian] £ne(f* = f) dodadt

T
+/ / (VoIn(| - N1 sny] *ne(f* = f) dudadt
RQ ]R2
=: Ki + Ks.

Estimating now K. Notice that V In(| - [)1.j<1} * ng belongs to (L*([0,T]; LP(R* x R?)))?
avec p €]1,2]. Indeed, since

/OT </ ([Valn( - )1 cry] % )" (/ de) d$>ldt
<L)z (L5 o)

(0,7

L (R2)

and

1/p
[SOUJI?] (/2([Vx In(| - )1 <13] * n)” dﬂ?) < |IVeIn(] - D1 <yl w2y 17l oo (0,700 (2))

where we have used the convolution inequality

1 1 1
1f*gller < flleellglle, —+ = =1+~
P q r

we deduce that V In(|-) 1<y *ne € L'([0, T]; LP(R? x R?)) with p €]1,2]. As the sequence
(f¥)zen converges weakly-x to f in L>([0,T]; L9(R? x R?)) with ¢ €]1, 0c] thus K7 — 0 when
k — 4o0.
Estimating now K. Since V In(|-[)1{.>1} € LP(R?) with p > 2, and n € L*°([0, T]; L4(R?))
with ¢ €]1,00] and by using the convolution inequality we get ViIn(| - [)1. 1} xn €
L>([0,T]; L (R?)) with r > 2. This implies that V. In(|- )11y *ne lies in L' ([0, T']; L (R* x
R?)) with p €]2, oo[. Thus we also have Ko — 0 as k — +oo0.
Finally, the contribution (30) converges to 0 as k& — +oo. Therefore we obtain f is

the weak solution of VPFP system (10), (11), (12) with the electric field E satisfying £ =

—5=VeIn| - [x (n — D). Furthermore, since the sequence (f®)ren belongs to L2([0,T] x
R2, H'(R2?)) it is easily check that f € L?([0,T] x R2, H!(R?)) by using the Theorem 6.1.
Step 4: Properties (18) of solutions
The nonegative limit function f is a direct consequence of the weak-* convergence of the
nonegative sequence (f*)ren in L°([0, T] x R? x R?). In particular, f € L>([0,T] x R x R?).
Moreover, we also have (1 + [v]|2)/2f € L®([0,T] x R? x R?) since the sequence ((1 +
|v[2)7/2 fF).en is bounded in L°([0, 7] x R? x R?). Now, let ¢ be any nonnegative function
in C§°([0,T[) and R > 0 be a constant. To prove f € L>([0,T]; L'(R? x R?)) we use the
function ¢g(t, z,v) = ©(t)1{jz)<r,jo|<r}y- Hence by the weak-x convergence of (fF)ren to f
we deduce that

T
/ / / [, 2,0) L z1<Rr o<y dvdzdt < hmsup/ cp(t)/ f(t, z,v) dvdadt.
R2 k—o00 R2 JR2
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Taking now the limit R — oo and apply the dominated convergence theorem to get f €
L>=([0,T); L*(R? x R?)). Similarly, if we choose the test function ¥g(t,z,v) = ¢(t)(|z| +
|v|2)1{‘x|§37|v|§3} then we can show that (|z|+[v|?)f € L>([0,T]; L' (R? x R?)). We complete
the property of the solution by showing that fln f € L°°([0,T]; L'(R? x R?)). Indeed, we
have the identity

Il fl = fIn fxgr=1y — fIn fxpo<r<n

Since fln fx(s>1y < f? and fln Fxqo<p<1y < Ce~ I+l 4 (|z| + |v|?)f, for some constant
C > 0 together with f € L°°(0,T; L*(R? x R?)) and (|z| + |v|*)f € L*(0,T; L}(R? x R?)),
we deduce that fIn f € L>(0,T; L*(R? x R?)).

The following lemma provides the property on the potential ®[f] and the electric field
E[f] = —V.®[f] of the Poisson equation on R?, so as to control the potential energy. We
refer to Lemma 3 in [20].

Lemma 2.8
Let p € LP(R?) with any p € [1,00] be such that
(PropSolPoi)

L+ lablot)] do < +o0, [ pa) da <o

Consider the potential ® given by ®(z) = —% JgeIn|z —ylp(y)dy. Then, ® is a continuous
and bounded function such that lim, o ®(x) = 0. Furthermore, we also have ® € L*(R?)
and V¢ € (L*(R?))2.

Proof.
Since —5- In |z| is the fundamental solution of —A, on R?, we have £]2D(€) = p(€) by using
the Fourier transform. Then the integral of p vanishes so p(0) = 0 which implies that

5(€) — p(0
SLOES.LIP.

Lijgl>1y-

B(e)] = \j’gf)

p&)
€17

On the other hand, |5(€) — p(0)] < |&][|V4l| o (r2y < IE]IVAll L1 m2) = [€ll@p]l 1 (g2). Hence

ng Lo (31) [EstaFourier|

- 1
(8] < ||poL1(R2)m1{|§\§1} +

Since 1/|¢] € LL.(R?) and p € L*(R?), it is easily obtain from (31) that ® € L'(R?). It
follows that = +— ®(x) is a continuous and bounded function which tends to 0 at infinity.
Hence, ® € L>(R?). Furthermore, we can show that ® € L4(R?) with any ¢ €]1,2[ such that
q is the Holder conjugate of p. Indeed, first we observer that 1/|¢| € L (R?) with 1 < ¢ < 2.
Then since p € LP(R?), 1 < p < 2 we deduce that p € LY(R?) with 1/p +1/q = 1. Applying
the inequality (a + b)" < 2"(a" 4 b"), for a,b,r > 0 we conclude that ® € L(R?),q €]1,2[.

Together with ® € L™ (R?), we get ® € L?(R?). Similar to the derivative of ®, we have

Lijgi>1y-

T = |1 20| < hovlusg e + | 2

It is easily deduce that V® € (L?(R?))? by p € L*(R?) and the Plancherel theorem. Therefore,
the potential energy is finite and we have the the identity

/ p® dz :/ Vo|? d.
R2 R2

via standard approximation and truncation arguments. O
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3 A priori estimates

The aim of this section is the derivation of a priori estimates, uniform with respect to €, on
the weak solution f¢ provided by Theorem 2.2. These estimates are deduced from the con-
servation properties of the system and from the dissipation mechanism due to the collisions.
We recall that (f¢, E[f¢]) is a weak solution to the problem (4), (5), (6) on [0, 7] with any
T > 0, if for any the test function ¢ € C§°([0, T[xR? x R?) we have

/ [ | <eatgo+v Voot L)+ P g, )dvdxdt (32) [FoakSoLSeator®
R2 JR2

/ / [ (oAyp —v - Vi) dvdmdt+/ / € ©(0,z,v) dvdz = 0.
R2 JR? R2

Let us define the free energy of the VPFP system (4), (5), (6) as

€1 € € 6‘”’2 €0 €712
€[f}—/R?/RQ(af In f + f 2)dvdx+2m/R2|E[f]| de.

Proposition 3.1
Let (f¢, E[f¢]) be a weak solution of the system (4), (5), (6) provided by Theorem 2.2. Then,
we have the mass conservation and the balance of the free energy

d c c B |0'vvf€+vf€|2
T f()da:—() 6— ElfF)] = /R2 - I dvdz.

The mass conservation follows formally by integrating (4) in v, which gives the continuity
equation for the mass density, and then integrating in . On the other hand, the law for the
balance of the total energy is derived formally by summing up these relations below. First,

(WeakFreeEnergy2D)

2
multiplying the equation (4) by % to obtain the balance of kinetic energy

/ fadvdsv—/ / E[f?]- vfadvdw—/ / (oVuf*+vf%)-vdude.
R2 JR2 2 R2 JR2MTM R2 JR2

Then, thanks to the continuty equation dyn[f¢] + div, [pevf® dv = 0, we multiply this
equation by ®[f¢] and use the Poisson equation to find the balance of potential energy

goe d

“Ue M €112 :_i €] . €
5 a0t /RQ\E[fH dz m Jos IRQE[f] vf® dvde.

Finally, multiplying the equation (4) by o(1 + In f¢) to get the balance of entropy

d/ / offln f¢ dvdx:—/ /(UVUfE—l—va)-vaf dvdz.
dt Jgr2 Jr2 R2 JR2 fe

As for weak solutions, we shall follow the same scheme. We find relations analogous to
previous relations in the Lemmas below. The difficulty is in overcoming the lack of regularity
and the need to justify operations that are taken for granted when the solutions are smooth.
We will prove these properties of solutions by combining the formal arguments above with
the choice of an appropriate sequence of test functions in (32) for every studied property. A
similar rigorous approach that the one given in Refs. [2] and [6] can be easily adapted for
the properties studied in our weak solution.
We start with the balance of kinetic energy.
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Lemma 3.1
Let f¢ be the weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

(BalanceKin2D) 7, .0

/ fsdvd // E[f?] - vfsdvda:—/ / (oVuff+vf®)-vdude.
R2 JR2 2 R2 JR2MTM R2

Proof.
Let x be a nonegative function of class C§°(R) such that

x(s) =1, on|s| <1, x(s) =0 on|s| >2,

2

we define the function xr as xr(z) = x (ﬁ) Then xr(2) =1 on |z| < R, xgr(z) =0 on

|z| > 2R and ||V.xRl|lLe < %'

By using the test functions (¢, z,v) = ¢(t)xr(x)xr(v )w with ¢ € C§°([0,T) in the defi-
nition of weak solution (32), we obtain

\I2

T
/ / [ ledip(t)xr(z) +v - Vaxr(x)o(t)] xr(v) —— dvdedt
0o Jr2JRr2

[ L (pr+ 200 v (e >2'2)¢<t>xR<x> dodadt

/ /R2 R2f€ (0B —v-Vy) <XR( )| |2) o(t)xr(x) dvdzdt

2
+ [ [ csalano0xa@ixnw - dur =0
R2 JR2
A simple computation shows that
Ry _ v (Tl 0P
v ()’ = g () 5+ oo
o[ , vl P
A, = div, [ X (= div,
(et ) =aiv. (v () 5 ) + v oxae)
1 [l (ol ol o (101 [0l? (1o ]
R[X<R><2 ®) T\ R ) r| TP\ R ) R
For each £ > 0, using the Theorem 2.2 on the solution, we have (1+v|?)f¢ € L>([0,T]; L' (R? x

R?)) and E[f¢] € L>([0,T] x R?). Letting R — 0o, one gets, by the dominated convergence
theorem, the following relation for any ¢ € C5°(]0, 1)

/ 9p9(t) /R2 /R2 “(t,z,v) dvda:dt—i—/T o(t) /R2 RQE[fE} v fe dvdzdt
/ / / 2a—yv )fE(t, x,v) d”dxdtJr/RQ/Rffmfvvqb(O)dvdx:O.

On the other hand, by Proposition 6.2, our weak solution f¢ belongs to L2([0, 7] xR2, H'(R2))
and tends to 0 at infinity since (1 + \v[ )7/2f¢ € L™, thus by the divergence theorem we have

/]Rz /]1{2(2‘7 — [o[*) f*(t 2, v) dvde = — /RQ /RQ(UVUF +ufe) - v duda.

Substituting into the previous relation, we easily deduce the assertions on the lemma. O
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In the following lemma we obtain the balance of the potential energy.

Lemma 3.2
Let f¢ be the weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

(BalancePot2D) j, ;00

goe d

2m dt
Proof.
First, we show that ®[f¢], E[f¢] and 9;E[f¢] belong to L>([0, T]; L?>(R?)). We will apply the
Lemma 2.8. The conditions in Lemma 2.8 are fulfilled by the properties on the solution f¢
and the background densities D(x) by assumption H3. Hence one gets ®[f¢] and E[f¢] lie in
L>=([0,T]; L*(R?)). It remains to prove that 9, E[f¢] belong to L>([0,T]; L?(R?))%. Thanks

to the continuity equation on [0, T[xR? in the sense of distributions

S5 _ q 5 € _ q 5 - pLE
LEARar =2 [ [ pipop dvae = =2 [ B i a.

on[f°] + divz/ vffdv=0
RQ

see Lemma 4.1 below, together with the Poisson equation (5), we deduce that

1 o
OEL(O)(@) = 5 L Vnl - | B0l ~ D) = 5 Vln] - | x (divs{f])
In order to estimate O; E[f¢(t)], we will use the Calderon-Zygmund inequality, see Lemma 6.7
below in the Appendix D, but in the dual version. Let 7 be a test function in C§°([0, T[xR?).

We have

< ! Vlnl-!*(divmj[fg]),n>=/RqD?ln'l*n(x)J[fa] d.

27T€0 2 27T60

By Lemma 2.2 one gets j[f¢] € L°°([0, T]; L>(R? x R?)). Therefore we deduce that

1 . e q 9 e
y : < —||D .
‘<27T€0 I |- (divejlf D’n>' = 27T€0H In |- [*nll 2|71l 2

< Clinlle2 5151l 2
It allows to conclude that 9, E[f¢] belongs to L>([0,T]; L?(R?)).

Now let v > 0 and let x € C$°(R?) be a standard mollifier. Define the regularization kernel
Ky = k(ZL). Convoluting with , in the equation div, (9 E[f¢] + -Lj[f¢]) = 0 we obtain

£0€
diva (OB ([ + Z3"[f]) = 0
N3
where EY[f¢] = E|[f¢] * kv, JY[f¢] = j[f¢] * k. Multiplying the previous equation by
®¥[f¢]xr(x) and integrate by parts to find that

/ OB E'[fIxn(x) de + L [ B[] 5 1fTxn(@) do
R2 E0€ JRr2

+ [ @B+ L) 1)V de =0,
R2 E0€

where ®V[f¢] = ®[f¢]x kK, and x g stands for the family of smooth cut-off functions, defined in
Lemma 3.1. Let v — 0. The terms on the left side converge as a consequence of the theorem
of smooth approximations from the first arguments on ®[f¢], E[f¢], 0;E[f¢]. Then we obtain

/@E[fa]'E[fE]XR(x) do+ -2 [ Bf] - jlfIxr(x) do
R2 E0€ JR2

*/ (DB + ~L 7)) - ®[f]Vxr dz = 0,
R2 NS
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Letting R — o0, the dominated convergence theorem yields

LLaElr Bl de+ L [ Bl i de =0

€0€ JRr2
which gives the result in the lemma. O

Finally, let us deduce the balance of entropy.

Lemma 3.3
Let f¢ be a weak solution of the problem (4), (5), (6) provided by Theorem 2.2. Then we

have d V. €
/ /afslnfgdvdx——/ /(UVUfE—i—va)-U of dvdz.
dt Jgr2 Jgr2 R2 JR2 fe
Proof.

First, we will show that for any ¥ € C?(R) such that ¥” € L>®(R) and ¥(0) = 0, ¥(f) solves
the following equation in the sense of distribution on [0, T[xR? x R?

(BalanceEntropy)

eONU(f%) +v- Vol (f) + LE[f]- Vo U(f7) + = Bi@iv VLU (f)

0 VyU(f7) = oAU(f5) = 25U () — oW'(f) Vo . (33) Nonlinearsay]

Let us consider a sequence of mollifiers k,, := k5" = K, (£)* Ky () * K, (v) which approximates

the Dirac delta function, and k,(t) is supposed to have its support in the negative real axis.
Then we define f& = f©x; 4, Ky It is well known that f¢ belongs to L2([0, 7] x R2; H!(R?))
then f&% € C°°(0,T; H™(R? x R?)), for every v > 0, m > 1. Moreover, by the theorem of
smooth approximations, we also have

fo = f¢in L2([0,T]; L*(R?* x R?)), Vuf*" — V, f¢ in L*([0, T]; L*(R* x R?)).
We convolute with x, in the equation (4), we obtain

4
B

€O fT +v- Vi f5 + gE[fs] Vo U + Z (@) Ly Vo fo =divy (v fY) — oAy f7 = Z h;—’V

m m &

=1

(34) equ:ConvolVPFP

where the functions ;" are defined by
R =v-Vy(kyx [5) — (v- Vi f®) x Ky

05" = LBVl 1)~ (EL] - o) x

q B(z)

hyY = = Lo Volky * f€) — (B(z) v - Vo f) % Ky,

3

€
Ry = —[v - Vy(ky * f5) — (v Vo f?) x k).

For each ¢ > 0, it is obviously that k5" tends to 0 in L2([0, T]; L*(R? x R?)) as v \, 0, since
Vo fS = Vi (K, % f€) converges to V, f¢ in L2([0, T]; L>(R? x R?)) and E[f¢] € (L°°(]0,T] x
R?))? hence E[f] - Vy(ky, * f€) tends to E[f¢] - V,f¢ and (E[f¢] - V,f¢) * k, also tends to
E[f€]) - Vuf in L2([0, T); L*(R? x R?)). For other terms h{"”, we also obtain that h;"” — 0
in L1([0,T); L (R? x R2)). Here, we have used the following property, see [16] Lemma II.1:

loc

Let W e LY(0,T; (W.2*(R%))4), g € L=(0,T; LP (R%)), then we have

loc loc

(W -Vg)*x6. —W -V(gd.) =0 in L'(0,T; L°(R?)),
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1 1 1
where — = — 4+ — if a or p < o0, B < o0 is arbitrary if & = p = oco.
« p
Now we establish the equation (33). Since ¥ € C%(R) then ¥(f**) € C?(R). Multiplying

U/(fe") in (34), one gets

LoV U(fe,v) —v- VU ()

V() o VaU() + B[] V() +
_O-AU\II(](‘&,V) — 2f€,V\Ij/(f6,I/) O_\Il//(fs l/)|v f&‘ V’2+Zh€y f& l/)
=1

Since ¥ € C%(R?) with U” € L°°(R?) thus ¥ is at the most quadratic at infinity, we have
W(fer) — W(fe) in Li,, W(f5") — W/(f°) in L . Passing to the limit we obtain the

loc>
equation (33) in the sense of distribution.

Now we are ready to establish the balance of the entropy identity. We shall apply (33)
for the following function

Gs(fF) = 6+ F9)In (1 fs) g, 6> 0.

A simple computations show that

Y5(f) =In (1+ f;) +Ind+1, Y§(f) = v <

Thus, the function 5 belongs to C*(R) and satisfies v] € L™ With Ps5(0 ) = 0 Moreover,
s € L2([0,T]; LY (R? x R?)), since (§ 4+ f¢)In (1 + %) < (6—|—f5) = fe+ . Therefore,
Ys(f¢) satisfies the following equation in the sense of distribution
B(z
D0t 1%) - Vo (1) + L BL - uis(72) + LB by (7
—v- vag(f‘f) - O’Avwg(fa) = 2f8¢(/5(f5) — Jwg(f‘g”vvf‘EP. (35) equ:NonlinearV

We consider the test function (¢, z,v) = ¢(t)xr(x)xr(v), where the function x g was defined
in the Lemma 3.1. For each £ > 0, we have 95(f¢) € L>([0,T]; L(R? x R?)) and E[f¢] €
L>=([0,T] x R?). Passing to the limit as R — oo, we easily deduce from (35) the following
relation

d . J’vas‘Q )
dt/RQ R2¢6(f (t)) d’Ude’—*—/R2 /]R2é—|-fs dde—f-Q/R2 RQwé(f )d’UdJ)dT

:2/ /f€<ln<1+f>+ln6+1) dvdz
RrR2 JR2 )
which is equivalent to

;t/RQ RQ%(F@))dvdx+/RQ/RQ”LV+§i|2 dvda:—Q/RQ/IW(fE §1n <1+f5>) dvdz

(36) equ:LimNonLine

Next we will study the limit of (36) as § — 0. Let us recall that the solution f¢ satisfies the
properties: f¢ € L>([0,T]; L' N L>®), f¢In f¢ € L>=([0,T]; L'(R? x R?)). Since

¢5(f€)_fslnfe:51n(1 J;E>+fs ( ;E)

21



we deduce that this term tends to 0 a.e in R? as 6 — 0 and it is uniform bounded with respect
to § by

[Ua(f%) — £ f7] < 85 4 im0 4177 g

< fE+ffIn(1 4 f5) + | ffIn f7
<4 ()P + | In fe

which belongs to L'(R?). Therefore, by the dominated convergece theorem, we get

//‘¢6(f€)—f€1nf€|dvd:c—>0, I\ 0.

Using the same arguments for the integral in the right hand side of (36), we also have

2/RZ/RQ<fE—5ln<1 fs)) dvdx—)Q/Rz sz‘sdvdx, as d \ 0.

On the other hand, integrating (36) between 0 and 7" yields

/ /]R2 /]R? U(ISV—FL;?Q dvdzds
/R2 sz () ’0 dvdx+2/ /]R2 /}R2 <f€ 5ln( {:)) .

which shows that the sequence (|V,f%|2/(d + f%))s>o is bounded in L'([0,T] x R? x R?).
Thanks to Fatou’s lemma, one gets V,v/f¢ € L*([0,T] x R? x R?). By using the dominated
convergence theorem together with the previous arguments, we obtain

€2 T
//falnfﬂo dvdﬂH—/ / / U‘vf’ dvdxds:Q/ / ¢ dodads
R2 R2 JR2 0 R2 JR2

which can be rewritten as

€2
/ Fo1n f€ dods = — / / o[V /7 f' dvda — / /v V, f¢ dvdz
R2 JR2 R2 JR2 R2 JR2

since f€ € L2([0,T] x R2; H(R?)). So we complete the proof of lemma. O

Proof. (of Proposition 3.1)

The mass conservation can be deduced by testing the test function (¢, x,v) = ¢(t)xr(|z|)xr(|v])
in (32). On the other hand, using the Lemmas 3.1, 3.2 and 3.3, we imply the desired result
for the balance of energy E[f¢]. O

We establish now uniform bounds for the kinetic energy.

Lemma 3.4
€

Assume that the initial particle densities (f5)) satisfy fo, > 0, Mi, := sup,~o M, < +o0,
(BoundKinEner2D) ry. - = sup.~q U, < 400, where for any e > 0

2
s [ [ o dds o= [ B dvae s 22 9,0l
Rr2 JR2 r2 Jr2 2
We assume that (f€)e>0 are smooth solutions of (4), (5), (6). Then we have
2
£ sup {/ id — fe(t,x,v) dvdx—i—/ V. ®[f])? dx} < eUiy + 20T M;y
o<t< (Jr2 Jr2 2

and

T
/ /2 ) w2 fe(t, z,v) dvdzdt < eUy, + 20T M,.
0 R2 JR
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Proof.
Using the Lemmas 3.1 and 3.2 yields

A [ L e i+ 22 [ vt ant =aon - [ s v
dt R2 JR2 2 R2 JR2

and therefore we obtain
2
5{/ |U| —fe(t,x,v) dvdx—i— / |V ®[f°]]? dx} / / lv|?f¢ dvdaxds
R2 JR? R2
= 5Uisn + QO-tle’l

which yields the results. O

4 Formal derivation of the limit model

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (4) when € becomes
small comes from the balance of the free energy functional £[f¢]. Thanks to the Proposition
3.1, we deduce that

eE[fE(t)] + /Ot /R2 - ’vafsfj ol dvdxds = €[ f¢(0)].

Since the dissipation term can rewrite as

/t/ |O’Mvv({€/M)|2 dvdxds
R? JR? /

where M stands for the Maxwellian equilibrium M (v) = (270) ! exp (—|2—|> v € R2. There-

fore, at least formally, we deduce that f¢ = f 4 O(e), as € \( 0, where the leading order
distribution function f satisfies

MV, 2
/ oMV (f/M)) dvda =0, t € Ry
R2 JR2 f

Hence, we obtain f(t,x,v) = n(t,x)M(v), (t,r,v) € Ry x R? x R2. Then, the question is to
determine the evolution equation satisfied by the concentration n(t,z) = [p. f(t, z,v) dv.
We are looking the model for the concentration n[f¢] = [p. ¢ dv. First, by integrating the
equation (4) with 1 and v, we straightforwardly get the local conservation laws satisfied by
the first two moments.

Lemma 4.1
Let € > 0. Let f¢ be a weak solution of the system (4), (5), (6) provided by Theorem 2.2.

(Conservationlaw) Thep the following conservation laws hold in the distributional sense

on[f] + %divxj[fg] =0. (37)

4B(x) jlfe) _
m g

€017 + divg /R w@uf dv— LE[fIn[f] - —jlf). (38)[Momentiaw)
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Proof.

For each € > 0, (f¢, E[f¢]) solves (4) in the sense of distribution given by equation (32) and
satisfies (1+|v|?)f¢ € L>=([0, T]; LY (R? xR?)), E[f¢] € L>=([0,T] x R?). Then, we test (32) on
the test functions of the form ¢(t,z,v) = ¢(t)xr(x)xr(v) and p(t,z,v) = ¢(t)xr(x) xR (V)v,
where the function yp was defined in Lemma 3.1, and ¢ € C§°([0,T). Letting R — oo,
one gets, by dominated convergence theorem, the relations (37) and (38) which hold in the
distribution sense on R’ x R? and are respectively the continuity equation and the momentum
equation. O

Then, we apply the rotation v — v to the equation (38) and eliminating % J1f¢] between
the resulting equation and (37) leads to the new equation for the concentration n[f¢].

Corollary 4.1
Let € > 0. Let f¢ be a weak solution of the system (4), (5), (6) provided by Theorem 2.2.
Then the concentration n|f¢] satisfies the following equation

Oin[f] + div, [n[ I (lg ([;:f ; l_ O—LZ:(‘“;(f)” = div, F*

?(NewConcen)?

(39)

where we denote

F€

_ €0l + il Lo c
= @) (@) div, /RQ(’U Qv —oly)f° dv.

Proof.
The proof of the result is obviously by observing that the momentum flux tensor can be
decomposed as

/v®vf€dvz/(U®v—afg)f€dv+afgn[f5].
R2 R2

Passing formal to the limit in (39), as € \, 0, we get

-5

o)+ e o)

where we have used that f¢ tends to f = n(t,z)M (v) leading to n[f¢] — n[f], [f¢] = 7[f] =0
and [po(v @ v — 0l2) f* dv — [po(v ® v — 0I3) f dv = 0. Therefore the limit model is

L n 1 WelT
ayn + divy {n ( B]?:E;)} 0 Z?(;() )ﬂ —0, (t,z) € Ry x R? (40) [Linithodzn]
E[n] = —V:L,(I)[n], _50qu)[n] = Q(n - D) (41)

with the initial condition
n(0,z) = nin(z), = € R2. (42)[LimitInitial2D

We have the following balances for the previous limit model

Proposition 4.1
Any smooth solution of the limit model (40), (41), (42) verifies the mass and free energy

(ConserveEnerLim) ... corvations

d

. d 60 2 -
T R2n(t,x) dz =0, /RZ{Un Inn + 2m]Vx<I>[nH } dz = 0.

dt
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Proof.
Clearly we have the total mass conservation. For the energy conservation, a straightforward
computation, the evolution in time of the energy for the limit model can be written as

/ o0mn(l+1nn) dx —i—/ iOE[n] - O E[n] dz.
R2

RrR2MM

Using the equation (40) for the first integral in the previous equality, we have

/R208tn(1+lnn) dxz/RQa <;E(E§] _ULZ;;()HCU 'v”dx:”@wd%

Thanks to Poisson’s equation (41), then using again (40) for the second integral, we get

/R %0 Bln) - &, Eln] da :/R L oo dv = -1 [ Eln] -n (LEW —ULWC(‘@)> d

am am m Jr2 B(x) w?(x)
LEn]-VB
=—0 / n% dzx.
R2 B?(z)
Combining these equalities we obtain the balance of the energy. O

5 Well-posedness of the limit model

In this section we focus on the existence, uniqueness and the properties of the solution for the
limit model (40), (41), (42). We will construct smooth solution on any time interval [0, T,
T € R, following the same arguments as in the well posedness proof for the Vlasov—Poisson
problem with external magnetic field, cf. [3]. We assume that the initial condition ni, satisfies
the hypotheses

H4) nin > 0, |z|nim € LY(R?), ni, € WHH{(R?) N W0 (R?)
H5) [penin(z) dz = [poD(z) da.
and the external magnetic field B(x) verifies

B € C}(R?), inf |B(z)| = By > 0.
zeR?2

Solution integrated along the characteristics
First, a standard computation, the equation (40) can be rewritten for the unknown n/B as

, (%) N (u_gn] _UlVoJc(x)> VY, <%) -0 (43) [EquivLinto20]

wz ()

For any smooth field E € L>([0, T]; W1>°(R?))2, we consider the associated characteristics
flow of (43) given by

d . L E@ X (ts,2)) IVw. (X (t;5,7))
X6 = X)) O W (X(sa) ts el 1]

X (S; S, l’) =z, ENS [O,T], z € R? (44) equ:CharLimMo2

where X (t;s,x) is the solution of the equation (44), ¢ represents the time variable, s is the
initial time and z is the initial position. X (s;s,z) = x is our initial condition. Notice that by
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the hypothesis on the magnetic field B(x), the vector field a:y(;’i is also smooth with respect

to x and we have

1
H V“C < C(0, B, By).

wi, OO(R2)
Therefore, thanks to Cauchy—Llpschltz theorem, the characteristics in (44) are well defined
for any (s,z) € [0,T] x R? and X (t;s,2) € WH> ([0, T] x [0,T] x RQ)Q. Then the equation

(43) can be written as
A [nX (Esa)]
dt | B(X(t;s,2)) |
which yields the solution of the transport equation (43) given by

n(t,) = B "Gt — o) e ) e o7 (45) So1CharasaD

Conservation law on a volume
We have the following result

In(t,z)| de = / nin(z) dz, t € [0,T). (46) [ConserLaw|
R2 R2
Indeed, we denote J(t;s,x) is the Jacobian matrix of X (¢; s, z) with respect to = at (¢;s, ).
Then the evolution of determinant for the Jacobian matrix J(¢; s, ) is given by

LE LVw,
— -0
B w?(x)

d
adet,](t; s,x) = divy (

detJ(s;s,z) =1

> (X (t;8,2))detJ(t; s, x)

which is equivalent to

d ' B LE(t, X(t;s,7) - VB(X (t;5,7)) '
adet.](t, S,x) = — B(X(ts.0) detJ(t; s, ). (47)[JacobDeter2D]
On the other hand, using the equation (44) we deduce that
S B (X (t:5,2))
_ B(X(t;s,z)) VB(X (t;,2)) (LE (t, X (sz) V. (X (t;s,x)))
[B(X(t;s,2))[ [B(X (t;s,2))] \ B(X(ts,2)) we(X (t;5,2))?
_ VB(X (t;s,2)) - “E(t, X (t;5,2)) :
- B(X (t:5,2)) | O aredec
Combining (47) and (48) yields
d

adetJ(t; s,x) = —%ln |B (X (t;s,z))|detJ(t; s, x)

together with detJ(s;s,z) = 1 one gets |B (X (t;s,2))|detJ(t;s,2) = |B(x)|. Therefore,
integrating the equality (45) with respect to x and then changing the variable x to X (¢;0, z),

we obtain
‘nm (0;t,7))]
/\ntm|dx—/|B )| (Otx))\ dz
)

Nin (x
|B (2)]

B (X (50,2))| 1
RQ

= /Rznin(zv) dz
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which completes the proof of the inequality (46).

A priori estimates

We establish here a priori estimates on the solution n(¢,z) provided by (45).
The bound in L>®([0, T]; W (R?))

Lemma 5.1
Let n(t,x) be a solution of (43) given by (45). Then we have

sup_[[n(t)l|poe(rz) < C(B, Bo)llminll oo 2, (49) [TnfyNorm2

t€[0,T]

(BoInftyLimMod2D)

t
sup ||V7’L(t) HLOO(R2) < C(q, m, Nin, T, B, BQ)(l + exp </ HE(S, -)HWl,oo(Rz)dS) ) (50) InftyNormGrad2
t€[0,T] 0

Proof.

The bound (49) is obviouly from the formula (45) and the hypothesis of the magnetic field.

For the estimate (50), taking the derivative with respecr to x in (45), we have

) =+ 0,30 01,0 [ LD 1 (X0 L2 ID OOt
B ) (51)
which implies that
Va(t, )| < Clnin, B, Bo)(1 + | (8,X) (054,2) | (52) TueqGradsoichs

where C(niy, B, By) is the constant depending on nj,, B, By. Then we have to estimate the
derivative of (0;X)(0;t,z). Taking the derivative with respect to x in (44), we deduce that

4 axy ) = CLE) (X (0)0.X (0) 1Bt X (1) € (VB(X (1) %X (1)
dt \ B (X (t)) B(X (1))
L Ve (X (1) @ (Vwe (X (1) 02X (1)) (91 Ver) (X (1) X (#)
we(X (1)) we(X (1))’

and after integrating in time between s and ¢t we find

@01 < 1+ [ (1B wrosqa + Clasm, B, Bo))| (0 X)()ldr

S

where we have written X (¢) instead of X (¢; s, x) for simplicity, and C(q, m, B, By) stands for
the constant depending only on ¢, m, B, By. Thanks to Gronwall’s inequality we deduce that

t
|(896X)(t7 57$)| < C(Qﬂ m’TvaBO) exp </ HE(Tv ')HWL‘X’URQ)dT) : (53)

Therefore, substituting (53) into (52) we get

t
[Vn(t, z)| < C(g,m,nin, T, B, Bo)(1 + exp (/ 1E(s, ')||W1v°°(R2)d5>)
0

which yields the desired estimate. ]
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The bound in L ([0, T]; WH1(R?))

Lemma 5.2
Let n(t,x) be a solution of (43) given by (45). Then we have

(BoL1LimMod2D)
()21 r2) = [IninllL1(r2), t € [0,T] (54) [LiNorm2D]
S[%P,}] ||vn(t)||L1(R2) g C(qa m, T7 B7 BO)(l + ||E||L°°([O,T];W17°°(R2)))||ninHW171(R2)- (55)
telo,
Proof.

(54) is clearly. For the estimate (55), taking the absolute value on both sides in (51) then
integrating with respect to = and changing the variable = to X (¢;0,z), we get

(o TB@L Y
Livatalas< [ j@x0009 (190 + S g ) a

[VB(X(t;0,2))|
Rz B(X(t;0,2))

nin(x) dz
which implies that
/ (Vn(t,z)| de < ( sup 9. X(0;t,-)| + C(B, Bo))l|ninllw.1 (r2)-
R2 t€[0,T]
Using the inequality (53) we get the estimate (55). O

Global existence of smooth solutions
We define the following set of electric vector field

Y= {E e L=([0, T); W' (R?)*: [E(t)]| e < M, [0.B ()]0 < (1), L€ [o,T]}

where the constant M > 0 and the function «(t) : [0, 7] — R4 will be determined later. Given
an electric field E in 3. Considering the charecteristic solution of (43) on R2, corresponding
to the electric field F, denoted by n” which is given by the formula (45). We then construct
the following map F on ¥, whose fixed point gives the solution of the system (43), (41), (42)

E— F(E)(z) = —27‘350 (VIn|-|) s (n® = D) (x). (56) ?MapFixed2D?

We will show that the map F is left invariant on the set X for a convenient choice of the
positive constant M and the function «(t), then we want to establish an estimate like

T
||]:(E) — F(E)(t)”Loo(RQ) < CT/O H(E — E)(t)HLoo(RQ)dt, YVt € [0, T] (57) Mapconstract2D

for some constant Cp, not depending on F, E. After that, the existence of the solution of the
system (43), (41), (42) immediately, based on the construction of an iterative method for F.
Before starting, let us recall the following classical inequality

Lemma 5.3
Let p(x) be a function which belongs to L*(R?) N W1°(R?) and let E(x) such that

(ClassIneq)
r—y
E(z —/ dy.
(2) - \:c—pr(y) Y

Then we have the following estimates

Il o w2) < Clloll iige) 10112 goy: (58) [Lemnak|
V2 Ell oo g2y < C(1+ [Ipll poor2) (1 4+ In™ | Vapll poo(mey) + lloll L1 (R2)) (59) [LemmaGradE]

here the notation In™ stands for the positive part of In.
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Lemma 5.4

There exists a positive constant M and a function a(t) such that F(X) C X
?(ClosedSet2D)?

Proof.
Let £ € ¥. Thanks to (58), (49) and (54) we have

1/2 1/2
|F(E)(t, )l o2y < C(g, €0, B, Bo) (IIninll 11 w2y + |1 Dl 11 (r2)) / (I172in ]| Loo (m2) + | D] oo (m2) ) 2.
We choose here the constant M in the set ¥ by
1/2 1/2
M = C(q,20, B, Bo) ([ninll 2 ®2) + Dl w2)) "~ (17l oo r2) + 1Dl oo (r2))

hence we have sup;c(o 7] [|[F(E)(t, )| Lo (r2) < M, for any E € X.
We estimate now |[[0F(E)(t, -)|| oo (r2). Thanks to (59), (49) and (54) we obtain

I0F(E)(#, )l oo (r2) < Co(1 +In™([|Vn(t)l| oo (re) + VDIl oo (re)))

where Cy = C(nin, D, B, Bg) which leads to estimate In™ (|[Vn(t)|| oo g2y + | VD oo (r2)). By
inequality (50), we have

t
V()| Loo(r2) < C(g, m,nin, T, B, Bo)(1 + exp </0 102 E(s, ')HLOO(RQ)dS))
which yields
t
0" (| V()] Lo g2y + VDl oo (r2)) < Ci(1 +/0 10:E (s, ) || oo (r2)d5)

where C; = C(q, m, ni, D, T, B, By). Using the standard inequality 1 4 e* < e**! holds for
any x > 0, we deduce that

t
0" ([IVn(t)|| oo w2y + VDIl Lo (r2)) < (In" C1 +1) +/0 102 E (5, ) || oo (r2)ds
Finally, denoting by Co = In™ C; + 1 we have

t
J0F(E)(t, )| o qaz) < CoC + Co /0 102 E(s, ) o= gy ds

Denote by a(t) the solution on [0, 7] of the linear equation da/dt = Cyc(t) with the initial
condition «(0) = CyCs. We choose here the function a(t) = CoC2e“°? in the set ¥, then we
have [|0F (E)(t, )|l e r2) < a(t),t € [0,T] for any E € 3. O

Now we will establish the inequality (57). Let us consider E,E € % and denote by

n?, #E the characteristics solutions of (43) and (44) corresponding to the electric fields F, E

respectively. It is easily seen by (58) that

B t _
17 (B) = F(E)(®)l| = r2) < Cr /0 05 (5) = A7 ()||}/2 (g |07 (5) = 2 (5)[| 4 7gayds  (60) [Mapcontractis

where Cp is the positive constant, not depending on E,E. Then, the inequality (57) is
derived from the inequality (60) and the Lemmas 5.5 and 5.6 below.
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Lemma 5.5

We have
(DiffNormInfty2D)

N t ~
In® =i ey < Cr [ 1) = Bs. )i

for some constant Cp > 0, not depending on E, E.

Proof.

Let us denote X, X E the characteristic solutions of (44) corresponding to E, E respectively.
Thanks to the formula (45) we have

nin (XP(051,2)) — nin(XF(0; 2, 2))
B(XE(0;t,2))
3 1 1
+ ’B(J})|nm(XE(0,t,l‘)) B(XE(O,t,SL‘)) - B(XE(O,t,$))

n®(t, ) — 7P (t,2)| < |B(z)]

which implies that
n®(t,2) — 7 (t,2)| < C(nin, B, Bo)|XP(0; 1, 2) — XP(0;¢, )| (61)
On the other hand, from the characteristic equation (44) we deduce that

% (XE —XE> (t;s,2) =

LE (t, XF (t;s,2)) LE@#, XE (t;s,1))
B(XE(;s,2)  B(XE(t;s,x))
LVwe (XE (t;s,2)) lec(XE(t; s,x))

GEXF(tsa) WXt s )

(XE — XE(s;5,2) = 0.
The first term in the right hand side of the previous equality can be estimated by

LE(LXP (@) LB@ X)) ‘ -

B(XE () B(XE(t))

B(XE(t

~—

LE(t, XE () - “E(t, XP(1)) |

LEWXEW) — LE (t, xF (t))

~ 7 1 1
+ LB XE (1)) (B(XE(t)) - B(XE(t))>|

< NE® - ?{?”Lw(w) + (B, By, M) ‘XE(t) _XE@ ) ,

~—

since E € ¥ while the second term can be bounded by

Ly (XE @) we (XE ) _[ve (XE (1) — Ve (XE (1))

FXEO) T (xE@) | W2 (X (1))

+ Ve (XF (1)) W2 (XlE ) w2 (XlE )

2| Vewe | -
(102 + 220 e ) 2

3
lwells

IN
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where we denote (XE(t),XE(t) = XF(t; s,x),XE(t;s,a:). Integrating between s and ¢ to-
gether with previous estimates we find

X0 = X (0 < [ 181 (1) = B ()] 07 (0 B, B0, M) [ 131 (7) = X2 ()
Thanks to Gronwall’s inequality one gets

X (t5.0) = XF (t5,)] < OB / B () — B () s
which together with (61) yields the desired estimate of the lemma. O

Lemma 5.6

. We have
(DiffNormL12D)

N t ~
In® — 7| L g2y < CT/ [E(s, ) = E(s, )|l 1 (r2)ds
0
for some constant Cp > 0, not depending on E, E.

Proof.
Since n

8, (nE _ nE> +B Cf _ ULZ?) Y, (”Eé"E> n (LE— LE) Y, (f) _0,

(nE - nE> (0,z) = 0.

B #i? are solutions of (43) corresponding to F, E thus we deduce that

Multiplying this equation by sign(nf — nf ) and then integrating with respect to x we find
d B E LE  ‘Vuw, nf _nP
< )~ nf(t)|a B(— - Y d
a Jpo I" OO x+/Rz (B w2 B |

—l—/ sign (nE — nE> (LE — lE) Ve (%) dz =0.  (62)[DeriDiffNormLi
RQ

Thanks to Lemma 5.2 we have n?, #f € WHL(R?) a.et € [0,T] and since div, [B (%E - ﬂ)} =

wg
0 so by the divergence theorem, we obtain that

1E v,
B|l— — "V
/. (B 2 ) v

Then, from (62) we imply

n- —n

d _ N _
= nE @) = nP )] de < B BB ) = Bl ) I0E s -
Integrating between 0 and t of this inequality leads to
In® () = 2" ()| 11 2y < C(BaBO)tSLS% P () [y R2)/ I1E(s, (8, )l oo (m2)ds.
€

Finally, by estimate (55) we get

HnE (t) — nF (t

L CT/ |E (s (8[| oo 2y ds, Vt € [0,T]
for some constant C'r > 0, not depending on F, E. O
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Now, we shall prove that the sequence of iterative method by map F converges to a solu-
tion of the original problem. First, we consider Ey = 0, then we put £y = F(Ey), ..., Ex11 =
F(FE)) for each k € N. Applying (57) we have

ok
[Ek+1 (t) = E (O] oo m2) < (CT)kg”El () = Eo (1) oo (re)

which yields that there exists E € L®°([0, T] x R?) such that E}, tends to E in L>([0, T] x R?).
Moreover, since Ej € 3 hence we also have E' € 3. This allows us to define the action of the
map F on the vector field £ as F(E) = — || % (nf — D) where n¥ is the solution

of (43) associated with the electric field E. Using again (57) we find
[Err1 () = F(E) ()| oo w2y = IF(Ek) () = FE) D) || Loem2) < Cr 1Bk (8) = E ()| oo (m2)

which leads to E1q — F(E) in L>([0,T] x R?) as k — oco. Therefore we get F(F) = E and
n¥ is the solution of (40), (41), (42). Moreover, by Lemmas 5.1, 5.2 we conclude that n¥ €
L>=([0,T]); Whe(R?) N WHL(R?)). Hence, from (43), o;nf € L>2([0, T]; L*(R?) N L*°(R?)).
Thanks to Lemma 5.3, we have O;E € L>([0,T] x R?), thus E € W1°([0,T] x R?). Tt
remains to verify that the electric field E lies in L>([0,T]; L?(R?)). Applying Lemma 2.8,
we need to show that |z|n € L°°(]0,T]; L'(R?)). Indeed, by (45) and the change of variable
x +— X(t;0,2) we have

/yxuntxydx_/ X (0, 2)|nim(z) da

On the other hand, from (44) we deduce for any t € [0, 7] that
X(t:0,2)| < |a] + C(E. By, B)T

together with (1 + |z|)ni, € LY(R?) yields the desired result.
Uniqueness of smooth solutions
The uniquenness of smooth solution n(t, x) which belongs to L>([0, T], W (R nW 10 (R?))
is immediately derived from the inequality (57) and Gronwall’s inequality.
Based on the previous details of the arguments we establish the following result.

Proposition 5.1

Let T > 0. Let B € C(R?) be a smooth magnetic field, such that inf,cp2> B(x) = By > 0 and
(main_sol Lim) the fired background density D verifies |x|D € L'(R?), D € WH1(R2) N Wh(R?). Assume

that the initial condition ny, satisfies the hypotheses H4, H5. There is a unique smooth

solution n(t,z) on [0,T] x R? x R? of the limit model (40), (41), (42). The solution satisfies

n >0, / n(t,x) de = | D(x)dx, t€[0,T]
R2 R2
n€ Wh([0, T); L1 (R?) N WH([0,T] x R?), |z[n € L=([0,T]; L'(R?))
Bln] € Wh([0,T) x B2), B[n] € L([0, T 13(R2)).

Remark 5.1
From the estimates (50), (59), and (52) we realize that there is a relation in the L*>-norm

(RighOrder) potyyeen, the following quantities

Ven, 0, X, 0 F.
In the same way, we can extend this relation to the higher order
d%n, 92X, O°F
by noting that the inequality (59) can apply to estimate O2E given by
|02 o qaz) < C(1+ [ Vnl] o) (1 + 0+ 020 o) + 1V 1 ).
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By similar arguments we can prove further regularity results for the strong solution of
the limit model. The proof is standard and is left to the reader.

Proposition 5.2

Let T > 0. Let B € C3(R?) be a smooth magnetic field, such that inf ,cp2> B(x) = By > 0 and
(Regularity) yhe fized background density D verifies |x|D € L'(R?), D € WH1(R2) N W2 (R2). Assume

that the initial condition ny, belongs to W2 (R?) N W21(R?) and the background density D

lies in W2 (R?) N W21(R2). Then the global in time strong solution (n, E[n]) constructed

in Proposition 5.1 satisfies

820 € L=([0,T]; L=(R) N L) (R2)), Eln] € W2([0,T] x R?)
O Van € L°([0,T] x R?), 92n € L*([0,T] x R?).
In the rest of this section, we provide some estimates on || Inn||pe (o200 ®2)) if we

assume that Inn;, belongs to W2°°(R?). Let us start with the estimate of || Inn|| zoo (0,77 xR2)
in the lemma below.

Lemma 5.7
Assume that Inni, € L>([0,T] x R?) and B € Cy(R?) with inf,cge B(x) = By > 0. Then,
(BoundLoga) ypere erists a constant C' > 0 depends only on || In Nin|| Loo (j0,7]xR2): B, Bo and T' > 0 such that

sup || Innlzeo g2y < C.
te[0,T

Proof.
From the equation (43), we deduce that

LE 1 .
8t In (%) + <B — 0 Vw ) -Vin (%) = 0. (63) equ:Logal.imMod

2
we

Thanks to the formula of the characteristic solution (45), we get

In (%) (t.2) = (%) (0, X(0,t,2)) (64) [SolLogChar |

which gives the estimate in the lemma. O

We next provide higher-order estimates on Inn.

Lemma 5.8
Assume that Inni, € W2°°([0,T] x R?) and B € C3(R?) with inf,cg2 B(x) = By > 0. Then
(BoundLogHigh) 40 have
sup [|0; In 1| oo (r2) + sup [V Inn||peo(gey < C1
(0,7 [0,T7]
sup || V2 Inn| oo (r2y + sup [|0: Ve Inn|| oo m2y < Co
[0,T] [0,T7]

where the constants Cy, > 0, k = 1,2 depend only on Inng, B et By.

Proof.
From the equation (64) we have

VB

n

vm(B

By (53), the derivative in = of X (0;¢,x) is bounded in L°°([0,T] x R?), thus we get the L™
bound for the V Inn. Moreover, from (63) we deduce that d;Inn € L>([0,T] x R?), together
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with the above discussion gives the first assertion in the lemma.
We next estimate |02 Inn/| Loo(r2)- We denote by 0; = 0y, for i = 1,2. Taking the derivative
in x; in the equation (65) we get

0;V 1n (%) ="1[0;0,X](0;t,2) (VInngy) (X (0;t,2))
+ 10, X (05 t,2) { VA (In nin ) (X (03 2, 2))(9; X) (05 ¢, ) }

By Remark 5.1 it is well known that 02X (0;t,2) € L*([0, T] x R?). Hence we obtain the L>
bound for &2 Inn.
Finally we estimate [|0;Vy Inn| ;0 (r2). Taking the time derivative in (65) yields

iAY (m %) = (10,(8,X))(0: £, ) (V Innin) (X (0; 1, 7))

+ ("0, X)(0;t,2) (92 Innin) (X (05, 2))(3:X)(0; ¢, x)
— (t0,(0X)) (05, 2) (;f)) (X(0:,2))

- ()00 (0 (5 ) ) (KOt 00X 051.2),

The L bounds of 9, X (0;t,z) and 9,(9;) X (0;¢,x) is derived from the equation (44) and the

regularity of £ and B. Combining two of the above discussion yields the second estimate in
the lemma. O

6 Convergence results

We now concentrate on the asymptotic behavior as € \, 0 of the family of weak solutions
(f%, E[f¢])e>0 of the Vlasov-Poisson-Fokker-Planck system (4), (5), (6) and we establish rig-
orously the connection to the fluid model (7), (8), (9). We justify the convergence of the
solutions (n[f¢], E[f¢])e>0 of the system (39) towards the solution (n, E[n]) of the limit prob-
lem when € goes to zero by performing the balance of the relative entropy between n° and n.
The proof requires some regularity properties of the limit solutions as well as the convergence
of the initial data.

Let us recall the modulated energy between n® and n

Elnf(B)n(t)] = /RQanh <’;> do+ 22 /Rva@[nE] _ v, &[] da.

We intend to estimate the modulated energy E[n®(t)|n(t)], so we will write as
Enf|n] = 0/ nh (”) de + =2 | |V,®[nf] — V,@[n]? do
R2 n 2m R2

IRZ(anlnn + %|Vm@[n]]2) dz
- / {a(l +1Inn) + i<I>[n]} (n® —n) dx
R2 m

= E[nf] - E[n] — / k[n](n® —n) da (66) [oqu:EntropyDer

RQ

= / (on®lnn® + %|Vx<1)[n€]\2) dz — /
R2
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where we have been denoted by k[n] = o(1 4+ Inn) + g<I>[n]. We introduce as well the
m
modulated energy of f¢ with respect to n°M, given by

fE
a/ /nEMh(
R2 JR2 néM
€ &€ € 3 > €|/U‘2
=0 ffIn ¢ — fflnn® + f°In(2n0) + f*—— dodx
R2 JR2 20

2
:/ /afalnf“rffw dvda:—l—eo/ |V, ®[f°]|* dz
R2 JR2 2 2m R2

- / on®Inn® dz — &70/ |V, ®[nf]|? dz + aln(27rcr)/ e dvdz
R2 2m R2 R2 JR2

) dvda + —> |v P[f°] — V. @[n°M]|* dz
2m

= E[f°] — €[n°] + o In(270) / /¢ dvda.
R2 JR2

Thanks to the free energy balance and mass conservation of the equation (4) provided by
Proposition 3.1 one gets

S[na(t)]—é'[ne(O)]—l—a/W /Rzne(t)Mh< f(e() ) dvdz (67) [oqu BalanEnerd

oM
o [, L © ( (é@) dude

€ e|2
:—/ / [0V " + vf7] dvdaxds.
e Jo Jr2 Jr2 Ie

Thanks to Proposition 4.1 and together with (66), (67) leads to

En(t)[n(t)] -l-a/R2 /RQTLE(t)Mh( {(st()t&) dvdz + 1/t /11&2 /}R2 ’vafejvfg‘Q dvdxds
E[n®(0)|n(0) 4—0/]1%2/]R2 ( ((E )dd /ds/Rz J(n® —n) dzds.
(68)[BallodEnerDens

The next task is to evaluate the time derivative of —% Jrek[n)(n® —n) da. To start estab-
lishing, let us rewrite the model (39) for the concentration n® as following

On® + div, A[n%] = div, F? (69)

where the flux A[n°] is defined by A[n] = n® [lEe - JLZQ“E‘;()@}. Similarly, the limit model

B(x)
(7) for the limit concentration n can be rewritten as

dyn + divy Afn] = 0 (70)

with the flux A[n] =n [ 5(5) - ULZQ%;()JJ)]. By direct formal computations, we get

_% [ lnl(n = m) dx:—/RQ( m , 4 L9 }) (nf —n) dx—/R2k[n](atn6—atn) dz

n

/ atn< ”E;”+T‘i(q>[n€]q>[n])) dz

/ V., kn] (A[n] — Afn] + F¥) da.

We shall establish the previous equality for the weak solution of (69) and the strong solution
of (70).
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Lemma 6.1
With the notations in (69), (70) we have the equality

(EvoluFirstTerm)
% R20(1 +Inn)(n® —n)dx
=—0 /RQ(TLe —n)oInn dr — /RQ(A[nE] — A[n]) - [oV(1+1nn)] dx
—l—% £ ng) -Vio(1+1nn)] dx —/ € L‘(jg)(?,gV[cr(l +Inn)] dx
R2 Welx R2 Wl
o -Vl]o nn)| dz v@uv—oly)fdv|: “VioQl + Inn)] x
+/ch(x) Vie(1+1Inn)]d +/R?</RQ( ® I)f d)@{ ) ]d-
Proof.

From (69), (70), we find n° — n satisfying the following equation in the sense of distribution
Or(n® —n) 4+ divy (A[n°] — Aln]) = div, F*.

Then for any test function ¢ € C§ ([0, T[xR?) we have

T T T J_js
/ / (n® —n)oyp dadt + / / (A[n°] — Aln]) - Vy dzdt + / / e—>— - 0/Vyp dadt
0 JR2 0 JR2 0 Jr2 we(z)

T lje T Ly o
_/ / ~Vzg0dxdt—/ // (v®v—012)f5d11:8$( ad ) dxdt
0 Jrewe(T) 0 JR2JR? we()

1 e
+/ eIy 00, ) dx+/ (ng, — nin) (0, z) dz = 0. (71) [WeakDiffDensi2
r2 We(T)

]RQ

We test (¢, z) = 0(t)[o(1+Inn(t,z))]xr(|z]) where § € C3([0, T[), x was defined in Lemma
3.1. Notice that by the Lemmas 5.7, 5.8, and a standard computations, the following se-
quences are uniformly bounded with respect to R in L°°([0,T] x R?)

O = 00(1 + Inn)xr(|z|) + 00, Innxr(|z|)
Vo = 0(6)V Innxg(|z]) + 0(6) (1 + Inn)yg(ja]) —

]

Vo = 00V Innxr(|z|) + 00,V Innxgr(|z|)

+ o001 + 1nn>x'R<|x\>,§7 +0(t), 1nnx’R<|xr>%
0:(Vap) = 0(1)[02 Innx(|z]) + VInn@X’R(IxD%]
+0(t)[V 1nnx’R<|x|>|% +(1+ 1nn><x"R<|xr>,§7 ® ,% + X)) (2l — z @ 2) /|2 ).

On the other hand, for each € > 0, using the properties on the solution i.e., taking into
account that (1 + [v|?)fe € L*([0,T]; L*(R?)), E° € L*=([0,T] x R?), we can easily apply
the dominated convergence as R — co. Passing to the limit as R — oo, we get for any test

36



function 6 € C} ([0, T[) that

/ / n® —n)oflo(1+ 1Inn)) dxdt—i—a/ / n® —n)0(t)0; Inn dzdt
]R2 R2

; /RQ(AW]—A[ ])-0(t)V[o(1+Inn)] d:rdt+/ /RQ e 0()V[o(1+ Inn)] dadt
+/0T/11§2€wc ()0, V[o(1 + Inn)] da:dt—/ /RQWC V[o(1 + Inn)] dedt
[ [ oo

'_

+/RQE%(I;>  0(0)Va(1 + Inni) d:):—l—/R2( — n)0(0)(1 + In i) dz = 0

which implies the desired equality in the Lemma. O

Lemma 6.2

With the notations in (69), (70) we have the equality
(EvoluSecdTerm)

d g@[n](n‘E —n)dr=— /Rz(n8 —n)- gﬁgb[n] dz — /RQ(A[na] — Aln]) - %meb[n] dz

_a RrR2MTM m
1 e q

J J° q g
— - =V, - - Op—V, P + =V,
T st (@) [n] dx /Rf (@) Oy [n] dz /R? (@) [n] dz

+/R2</Rz(v®v—alg)f5 dv> : Oy (W) dx.
Proof.

We test ¢(t,z) = L6(t)®[n]xr(|z]) in (71). Notice that by Proposition 5.2 we have E[n] €
W?2°°([0,T] x R?), which proves that E[n] is continuously differential with respect to (¢, z).
So we have ®[n] € C2([0,T] x R?). Then we use the same argument as Lemma 6.1 which
yields the result of the lemma. ]

Now we combine the Lemmas 6.1, 6.2 and futher computations, we get

Proposition 6.1

With the notations in (69), (70), we have the evolution of the following equality
(TimeEvolution2D)

‘—fi n Tf.—»n T = i§Z§£iﬁl. 7f'_,n e n T T
dt/ng[ I )d —/RQ B) ( )(Ef — E[n]) dz + K (¢, z)

where we denote by

K(t,z) = d/st Vok{n] d —/eLf@Vk:[]d
ST g2 we(z) ner R we(z) " e

+/thg; Vok[n) dx—i—/Rz (/Rz(fu@v—afg)fg dv> . 0, [W] dz.
Proof.

First thanks to Lemma 2.8 and Poisson’s equation, the first term on the right hand side in
the equality of Lemma 6.2 can be written as

—/ (nf —n) - L8,0[n] dz = —/ L (®[nf] — ®[n))dyn da.
R2 m
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Then we together this equality with the first term on the right hand side in the equation of
Lemma 6.1 to obtain

_ /Rzatn <g”n‘ "9 (@] — @[n])> dz

m

_ /RQdiva[n] <a”n_ "9 (] — q»[n])> do

m

_ /R odiv, <;E(L’;]> (n° —n) do

+a/ @-Vlnn(ne—n) dz + A[n]-i(EE—E) dz
R2 N R2 m

~ vk A ey de s [ ) LB - B da
R2 n R2 m
Observer that
Aln LE= LV we(x LEn LV we(x
A = ) E8 ) = | 5 =2 | - | T -

B J-E[n]_ULchc(a:) o —n
) oo
EL(EE_E)

B(x)

and we can write the divergence of the flux A[n] in (70) as

n vak[n])

divy Aln] = —div, <w(x)

Therefore we get

- /Rz&gn <a”n_ "y 4 (@] - @[n])> do

1 nél —
AL -n€W dz + /R2A[n] L (Blnf) - B) da
(E[n°] - E) (En°] — E)

= /R2LVII<:[7’L] -naw dx — /R2Lvmk[n] nw dx

= vak[n]' n® —n nf] — E[n]) dz
= [ a0 = n)(Epn] - Bl d.

So, Proposition 6.1 is proved. O

Coming back to (68), the modulated energy balance becomes

. . fe(t) 1 [t oV, f€ +vfel?
Eln (t)\n(t)]—i—a/RQ /Rn (1) Mh (m(t)M) dvdm—l—g/o /R [ dvdzds

— £ (0)[n(0)] + /]R 2 /R (M (nf (é)0])w> dvdz

t J—ka[n]‘ nf —n 1 Bl s t o
fééggm (n —n) (B[] ﬂDdd+AKX,M (72) [BallodEnexDens
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where

/OtK(S,w)dsz’:/ti/Rzgwtf V. k[n] dzds
/ /Rz wela )] dds + / /R wc‘(; k[n] dzds
+/0 /Rz</RQ(v®v—ab)fa dv) 2 O [W] dads

=K1+ Ko+ K3+ Ky.

In order to apply Gronwall’s lemma, we will estimate the integrals in the last line of (72).
Thanks to the formula

(n = m)(B[n] = Elp]) = JHdive( Eln] - B[r](Eln] - Eln)
= Zaivy ((Ble) - Bln) & (817}~ Bl - ELEE )

we obtain
L n
[ ) () - Bl o
R2
0

B(z)
_ ? ( )@ (E[nf] — Eln]) — WE[””Q@) . 0, <w> de
\/é

~Vak[n]
J‘Vx — nfl — En||? dz
8x< we(z) ) Lo (R2) <1+ 2 ) ]R2|E[ J= Elnl[7d

where for any matrix P € Mao(R), the notation || P|| stands for (P : P)}/2. Next we shall
estmate the integrals K, for i = 1,...,4. For K7, we have

K :E/RQW-ka[n(t)] dx—a/ 07) G in(0)] da

wc(a:) R2 Wc(m)
€ e w HVk[n]HLOO vdx
<\/§/R2/R2(f (t,x,v)+f(0,x,v))<6 5 —1—72 > dvdz.

For K5, an elementary estimate yields

2
K> < —||8 Vk[n]|| poo (r2)e / / / <|U| >f5(s x,v) dvdzds.
R2 JR?
For K3, since j© = [po(0V, f€ +0vf¢) dv we have
// / (oV,fe+ fa) Vzkln ]dvdxds
R? JR? we(x)

€ €2 t
< / / oV f© + v fe| dvdxds+m!V7€[n]HLw€/ / f¢ dvdads.
4e 0 JRrR2 JR2 f& qBO 0 JR2 JR2

For K4, since

/Rd(z;@)v—ab)fs dvz/ﬂ@d(vfa—Favaa)@Udv:/RdW®v\/sf5 dv
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we have

€ €2
Ky < / / oV f —H)f | dvdxds
R2 JR2

T 4e
il

830( Vakln > // lv|? ¢ dvdads.
wc(a? oo RQ R2 JR2

Plugging the above computations in the equality (72), the modulated energy balance becomes
for0<t<T

E[HE(t)‘n(t)]—l-a/RQ /Rzng(t)Mh (g;g%) dvdz +/ /R RQ’”V fjf I Godads

—5[n€(0)|n(0)]+0/RQ /RQns(O)Mh< f(é?])w) dvdz

l

I
+‘ax<W€[n]> 2+\[ /|E [n]|? dz
wc(«T) LOO(RQ)
i
+ ﬁHf?swc[n]IILoo(Rz)+ D <W> s/ / |2 f¢ dvdadt
qBo we(®) /|lpeomey) Jo Jr2 Jre
+ /e sup 6/ lv|2f¢ dvdz
tefo,1] JR2 JR2
T m
+VE (IVklAllioe + 5 e (10T kTl + 29Kl ) [ [ 770,20 dvd,
R2 JR2

Thanks to the Lemma 3.4 and (66) for some constant Cr, 0 <t < T, 0 < e < 1 we obtain

5[n5(t)!n(t)}+a/R2 /Rzna(t)Mh <n{(6t()t])\4> dvda +/ /RQ RZ‘UV f?f T Godads

5[n5(0)|n(0)]+0/Rz /RQnE(O)Mh (nfm(;’])W) dvdx—i—CT/ £n?(s)|n(s)]ds + Crv/z.

Applying Gronwall’s lemma, we deduce that for 0 <t < T, 0<e <1

b o) +o [ [ o (L0) s L[] VSR g
< [5[715(0)171(0)]Jrcf/]R2 /RQnE(O)Mh< f;é)) > dvderCT\/g} Ot

The above inequality says that the particle density f° remains close to the Maxwellian with
the same concentration, i.e., n°(t)M, and n°(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)

We justify the convergence of £ toward nM in L>(]0, T'[; L*(R?xR?)), the other convergences
being obvious. We use the Csisar -Kullback inequality in order to control the L' norm by
the relative entropy, cf. [13, 23]

st {( )" (o) (Lo () )
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for any non negative integrable functions gg,g : R — R. Applying two times the Csisar
-Kullback inequality we obtain

/ |f5(t, 2, v) — n(t,x)M (v)| dvdzs
R2 JR2

: /R /W’fs(t’“"’”) —n*(t,a)M(v) dvdw+/ﬂ§2\n€(t,x) — n(t,z)| d

<2/, (ne(t)M(v)h <nf :t()t])\4>>1/2

c 1/2
—|—2max{\/Min, |HniHHL1(R2)} (/Rzn(t)h (” (t)> d:c) — 0, ase \, 0.

Appendix

A The linear Vlasov-Fokker-Planck equation with external magnetic field

This appendix is devoted to provide a rigorous proof of the Theorem 2.1. The results on the
existence and uniqueness of solutions are deeply inspired by those given by Degond in [11].
We recall the linear VFP system in dimension d = 2 with the external magnetic field B(x)

Of+v-Vof + E(x) - Vof + B(x) v -V,f =divy(oVof +vf), (t,z,v) € [0,T] x R? x R?
f((),x,v) = fin(x, U). (73) equ:LiVFPAppen
Let us introduce the Hilbert space
H=L*[0,T] x RZ, H'(R2)) = {u € L*([0,T] x R* x R?) | V,u € L*([0,T] x R* x R?)}

with norm || - |3 and scalar product (-, -),, defined by

T T
lul2, = / / / fuf? dvdzdt + / / Voul? dodedt, u e |,
0 JR2JR? 0 JR2 JR2

T T
(u, w)y = / / / uw dvdzdt +/ / Vot - Vyw dodadt, u,w € H.
0 JRr2JRr2 0 Jr2JRr2

We also denote H' is the dual space of H which is given by H' = L?([0,T] x R2, H~}(R2)).
The symbole (-, ), 5, represents the dual relation between H and its dual.

We first state a result on the existence and uniqueness of a weak solution of equation (73) in
an L? setting, which can be rewritten in the following form

Of +TF+E(x) Vof —2f —0Ayf =0.

where T denotes the transport operator given by 7 = v -V, + (B(z)*v — v) - V,. Then we
have the following result

Proposition 6.2
_ Under the hypothesis of Theorem 2.1, there exists a unique weak solution f of equation (73)
(PropExiUniq) jn the class of functions Y defined by

0
Y = {u (S 7‘[| 871: +Tue 7‘[,} (74) ?ClassWeakSol?
and satisfying the initial condition in the sense of distribution.
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We first recall the theorem of Lions [24], already used in [11].

Theorem 6.1
Let E be a Hilbert space, provided with a norm || - ||g and scalar product (,). Let V be a
(LionsThm) oy hopace of E with a prehilbertian norm || - ||y such that the injection V < H. is continuous.

We consider a bilinear form &

E:ExV—=R
(u, ¢) = E(u, ),

such that E(-, @) is continuous on E, for any fized ¢ € V, and such that

1E(p,0)| > allol|}, ¢ €V, a>0.

Then given a linear form L in V', there exists a solution u in E of problem

E(u, ¢) = L(¢), for any ¢ € V.

Proof. (of Proposition 6.2) .
We follow exactly the proof in [11]. First make the change of unknown function f(t,z,v) =
e~ ML f(t 2 e~ty), with any X > 0 so that f satisfies the equation

% +etu-Vuf + B(z)tv- Vof + e'E(x) - Vof + Af — e Ay f =0,
F(0,2,0) = fin(x,0) = fin(x,v). (75) [equ:NewVFP2D|

Now, let E be equal to the space H and let V be the space C§°([0,7) x R? x R?). V is
equipped with a prehilbertian norm defined by

1
o =5 [ [ 60.00) dudo+ 0l 0 € v,
R2 JR2

A weak solution of equation (75) in the distribution sense is a function f € H such that
T ~
/ / / 7 (—8t<z5 eV — B(x) v Ve + )\gb) dvdzdt
0o JRr2JR?
T
+/ / va . (etE($)¢ + U@Qtvvgf)) dvdzdt = / fin(.fc, U)(Z)(O, x, v) dvdz (76) equ:WeakFormNV
0 JRr2JR?

R2 JR2

for any ¢ € V. We consider the following bilinear form £ as the left-hand side of the variational
equation (76) defined by

E(f. ) —/OT /]1%2 /sz<—3t¢—e_tv-vz¢—3(:r)Lv-VU¢+>\¢> dvdxdt

T
+ / / Vi~ (e"E(z)¢ + antVUd)) dvdaxdt
o Jr2 Jr2

and the linear form

L(¢) = /R2 R2fin(a:,v)¢(0,x,v) dvdz.

Now, let us check £ satisfies the properties stated in Theorem 6.2. It is easily seen that £(-, ¢)
est continue sur H since £ € (L*°(R?))2. It remains to show that £ is coercivity on V x V.
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Indeed, for any ¢ € V we have
T
E(p,9) = /0 /]R2 /R2¢ (—5t¢ —e - Vep— B(z)tv- Ve + )\tﬁ) dvdzdt

T
+/ / Vo (etE(:I:)gb—i— athVngS) dvdadt
R2? JR2

= 1/ 60, ,v)|* dvdz + A/ / 9| dvdzdt
R2 R2 RrR2 JR2
+o0o / / e? |V, o|* dvdzdt + = / / / e'V,lo? - E(x) dvdzdt
R2 JR2 RrR2 JR2
- / [ 160,20 duds + o / [ [ 190 avasar
2 Jr2 Jre o Jr2 JRr2

T
- )\/ / |p|? dvdazdt > min (1,0, \) [|¢?]|y.
R2 JR2

Then Lion’s Theorem 6.1 applies and we get that variational equation &( f,®) = L(¢), for any
¢ €V admits a solution f € H. Moreover, f satisfies the equation (76) for any ¢ € V, hence
by using the function test ¢ = e D (¢, z, elv) we deduce that f(t,z,v) = e()‘+2)tf(t, z,elv)
is a weak solution of (73) in the sense of distribution. This gives that

of

ot
so that f belongs to Y.
We shall call the following Lemma to give a meaning to the initial condition, and also, to

show the uniqueness. The proof is very close to the one of Lemma A.1 in [11] and we have
been left behind.

+Tf=-E(x) -Vof +2f + oAy f € H

Lemma 6.3

1. Foru € Y, u admits continuous trace values u(0, x,v) and u(T,z,v) in L*(R% x R?). This
(GreenFormulas) 0o that the linear map u — (u(0,-,-),u(T,-,-)) is continuous from Y to L2(R% x R2).

2. For f and f in'Y we have

(o +711),,  +(af+TF 1), _2/ /R [ 1F dvazas
—l—/ / F(T, 2,0) f(T, z,v) dvdx—/ / £(0,2,0)f(0,z,v) dvdz (77)InteGreen|
R2 JRR? R2 JR2

where T =v -V, + (B(iv)lv —v) - V.
3. Similary, for f and f in'Y we have

(of+T8 1), +(af+TFf),
~ [ [ s@a i@ e duo— [ [ f0.00)7(0.0.0) dods (78) [TnbsGroanbis|
R2 JR2

R? JR?
where T' = et -V, + B(z) v - V,.

Let us now end the proof of Proposition 6.2. Using formula (77) to the solution f of equation
(73) and test function ¢ in V we have

O +Tf, Oasn + (b +Tb, [arscn (79)[GreenBisi]

T
= dvd — .
2/0 /]1{2 R2f¢) vdzdt /]1@2 R2f(0,m,v)¢(0,x,v) dvdz
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As f is a solution of (73) in H' then we get
Of +TF, D) sy = (—E@) Vofo—(A=2)f +0Auf, d)qpn
/ / / Vofd+ (A—2)fé +0Vof - Vod) dudadt.
R2 JR2

Futhermore, f satisfies the variational equality £(f, ¢) = L(¢) thus

T
<at¢ + T¢a f>H’><’H = /0 /]R? RQ)\fgb + vvf ' (E($)¢ + va¢) dvdadt

_ /RZ /Rinn(az,v)qﬁ(O,a:,v) dvda.

Substituting into (79) which yields

/ / (f(0,2,v) — fin(z,v))d(0,2,v) dvde =0, V¢ € V.
Rr2 JR2

Therefore, the initial condition is satisfied in L?(R?). Now for uniqueness, we assume that
f is a solution of (73) with Jin = 0, which belongs to Y. Proceeding as in Proposition 6.2,
we define the function f as f(t,z,v) = e~ MDDt (¢ 2 e~tv) which verifies equation (75) with
zero initial data. We apply the formula (78) to the solution f of equation (75) which gives

0=(af+T'Ff),  +(cBl)-Vof+ A = 0e”Af. f)

H'XH

1
= / (T, z,v)|? dvda:+)\/ / ik dvdxdt—i—a/ / / |V, f|? dvdadt
R2 JR2 R2 JR2 R2 JR2

>>\/ //|f|2dvdxdt
R2 JR2

Therefore we get f = 0, which proves uniqueness. O

Proof. (of Lemma 6.3)

Let us consider set Y of C* functions of (x,¢) in [0,T] x R2 with values in H'(R?) which
are compactly supported in [0, 7] x R? x R%. Following the arguments in Lemma A.1 in [11],
we have that the set Y is dense on Y.

Let us take u € Y. Using a partition of unity we can assume, without of loss of generality, that
u vanishes on {(0,z,v) : (z,v) € R? x R?} or {(T,z,v) : (z,v) € R? x R?}. Assume that u
does not vanish on {(0,z,v) : (z,v) € R* x R*}. By Green’s identity we have

T
/ 1u(0, z,v)|* dvdz = —2/ / / u [8,5 +v- Vo4 (B(z)tv —v) - Vv] u dvdzdt
R2 JR? 0o Jr2 Jr2

T
+2/ / / lu? dvdxdt
0 R2 JR2

<2 (H [at Y-Vt (Blz) o — ) - vv] uHH + 2) ull < Cllully.

The rest of the lemma follows from straightforward arguments involving the density of Y in
Y. O

The following Proposition is devoted to a maximum principle and an L estimate.
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Proposition 6.3
Assume that the initial condition fi, is positive and belongs to L>(R? x R?). Then the
(NormInfty2D) g1y tion f provided by Proposition 6.2 is positive and satisfying

sup || f ()| poo 2 xr2) < €7 || finll Lo (w2 xR2)-
(0,77

We start by giving the following Lemmas. The proof of these Lemmas are very close to those
given by in [11]. We leave it to the reader.

Lemma 6.4
Let f € Y then f* and f~ defined by f* = max(f,0) f~ = max(—f,0) belong to H and

(LemNormInftyBis1) v, ft = 14+ S;gn(f)vqu, V.= —1—|—s21gn(f)

Vo f. Futhermore, we have

<8tf +T'f, f_>H’xH
_1 (/ f(T,z,v)f(T,z,v) dvdx —/ f(0,z,v)f(0,z,v) dvdx) (80) [IntMaxMini]
2 R2 JR? R2 JR2

where T' = et -V, + B(z)*v - V,. Similarly, we also have

T
<atf + Tfﬂf >'H/><'H _\/O /I‘QQ ]Rfo dvdaxdt
+ ! </ f(Tz,0) (T, 2,v) dvdz — / f(0,2,v)f(0,z,v) dvda:) (81) [IntMaxMin2|
2 RQ RQ ]RQ R2

ot T =v-V,+ (B(x)tv —v) - V,.

Lemma 6.5

Let V.C H C V' be a canonical triple of Hilbert spaces. We suppose that the mapping
(LemNornInftyBis2) , _, = js o contraction on V. Let u belong to L2([0,T]; V) N C°([0, T); H) such that % €

L2([0,T); V'). Then

T/ du 1 9 9
/ <,u_> dt = = (Ju™(0)|g — v (T) ) - (82) ?IntTime?
0 dt VXV 2
Proof. (of Proposition 6.3) .
We will now show that f > 0 a.e. As above, we define f = e*()‘“)tf(t,x,e*tv) with any
A > 0 which solves (75) with the initial data fi,. It is well known that f € Y since f € Y and
thus 0, f + T'f € H'. Thanks to Lemma 6.4 we have f~ € H which implies from (75) that
<atf + T, f*> n <etE(a¢) Vo f AN — 0 AL T, f*> —0.

H xH H' xH

Then we apply the formula (80) for the function f to compute <c9t f+Tf.f _>H " There-
%
fore we obtain

<etE(x) . va—i- )\f— antAvf, fL>H/ 2

= —% </1R2 RQf(T,:):,v)f_(T,w,v) dvdz — /R2 R2f~(0,:n,v)f_(0,x,v) dvd:r) <0
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since f‘(O,azﬂ)) = f7(0,z,v) = 0. Moreover f = f+_f— and f € H we have <)\f, f_>H’xH =

—A f*, f*> - Thanks to Lemma 6.5 we deduce that

— )

<—ae2tAUf, f_>7-t’><7-t =—0 <e2tvvf—,vvf—>

L2x L2

and <E(x) - Vof, fﬁ>%’x% =— <E(£L’) Vof ™, f*>L2XL2 = 0. Therefore, we get
0< =X <f_,f_>L2 L2 which implies that f‘ =0 a.e and f >0a.eso f>0a.e.

X
Now we estimate the bound of L* norm. First, making the change of unknown function

w(t,z,v) = e 2 f(t,z,v) in the equation (73) we get
%’ + [v - Vaw + (B(z)tv — v) - Vow] + E(z) - Vyw — 0 Ayw = 0,
wo(z,v) = fin(x,v).

We will prove that ||w(t)||pe < ||wo||pe. Putting wy(t,z,v) = K(w(t,z,v) — ||Jwol|/p=)
where K is a function of class C? satisfying

K(s) =0, s <0, K is increasing,
|K'||L~ < C, K" >0.

We give an example on the function K as K(y) = [ g(s)ds with g(s) = e™s if s > 0 and
f(s) = 01if s < 0. By the construction of K and w € Y we deduce that wy € H and
Oywy + Twy = K'(w(t) — |Jwollo) (Orw + Tw) € H'. Multiplying the equation for w above by
K'(w(t,z,v) — ||wp||z=) then wy belongs to Y and satisfies the following equation

{ oy + Twy + E(z) - Vyw — o Aywy + o[ Vw2 K" (w — |Jwo|| =) = 0,
w1(0) = K(w(0,z,v) — ||lwo|[r=) = 0.

We then put ws(t,z,v) = e Ptwi (t,z,v), with any 8 > 0. The function ws belongs to Y and
satifies the equation

{ Oywy + Twe + E(x) - Vywy + fwe — o Ayws + 6_'8t0"VUw|2K”(w — |Jwol| ) = 0,
wg(()) =0.

Therefore, wo satisfies the variational equation

<8tw2 + Twa, w;_>7-[’><7-£

+ <E(33) - Vows + Bws — 0 Aywy + e 2o | Vw2 K" (w — |Jwo ||z ), w;>H = 0.
X

Using (81) we have

T
<8tw2 +Tw2,w§r>ﬂ,xﬂ :/ /R? /szng dvdxdt
</ / w (T, z,v)wy (T, z,v) dvdz —/ / ws (0, z, v)wy (0,2, v) dvdw)
R2 JR2 R2
:<2/ / / lwy |2 dvdxdt+/ / |wy (T, z,v |2dvda:—/ / lwy (0, 2,v ]2dvd$>
2 o Jr2 Jr2 R2
T
> / / lwy |? dvdzdt
0 Jr2JRr2
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car wy (0,z,v) = wz(0) = 0. For the other terms in the privious expression,
<Bw2a w;—>7'[’><'H = 5 <'UJ;_, w;>L2XL2 i <_0—Avw27w;>'HlX'H =0 <V’Uw;7 V’Uw;>L2><L2 )

and (E(z) - Vywa, w3 ) (E(z) - Vowy ,wy ) 2 = 0. Therefore we deduce that

HxH L2x

T
/ /2 Q\w;\Q dvdzdt + 5<w;,w;>L2xL2 + U<va;,vvw;>szL2 <0
o Jr2JR
This implies that wy = 0. Thus wy < 0 and wy < 0 which yields |w(t)|z~ < [|wollL=.

Remark 6.1

If we add the source term U(t,x,v) in the right hand side of (73), that means
(RemarkInfty)
of

E—FU-VIf—i—(B(Qz)J‘U—v)-va—l—E(:c)'va—Qf—aAUf: U, f(0,z,v) = fin(z,v)

and we assume that U € L*([0,T]; L>°(R? x R?)). Then we have

T
£ ()] o ey < €7 | Finll e g2y + /0 1U(s) | e ds.

The following estimates relate to the LP estimate, the kinetic energy and the entropy of
equation VFP (73). To establish these estimates, we make the change of unknown function
w(t,z,v) = e 2 f(t,z,e 'v). Then w is the solution of the following equation

%@U +e7'v- Vow + B(@) o - Vow + ' E(z) - Vow — o€ Ayw = 0

wo(z,v) = fin(x,v).

(83) [equ: NewVFP2DBi

The solution w satisfies w € H and dyw + T'w € H' since f € Y. The estimates of solutions
that we will study can be obtained by choosing of an appropriate sequence of functions in
the varational equation of w.

Proposition 6.4
Assume that the initial data fi, is positive and belongs to LP(R? x R?), with any p € [1, co].
Then solution f provided by Proposition 2.1 satisfies

p=lop
[ Lo oo r2xr2)) <€ 7 [ finll oo xr2), 1 < p < oo, (84) [LpNormAppen|

p _
vafp/2HL2(0,T;L2(R2><]R2)) < me(p UTHfin”LP(R?xR?), 1 <p<oo. (85) [LpGradNormAppe

Proof.
First we consider the case p = 2. Since w in H satisfies (83) , we deduce that

(Opw + T'w, w) —e'B(z) - Vow + oe* Ayw, w)

H xH :< HIXH

Since f € H the divergence theorem implies that the integral of —e!E(x) - V,w vanish on
R? x R?. Then we apply (78) for (Gyw + T'w,w)4, 4 to obtain

2<3tw+T'w,w>H,XH = /RZ R2|w(T,x,v)|2| dvdz — /R2 /RQ\w(O,:U,Uﬂ2 dvdz.
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Therefore we get for any 1" > 0 that

T
/ lw(T, z,v)|? dvdz + 20/ / / | Vyw|* dvdadt = / lw(0, z,v)|* dvdz
R2 JR? 0o Jr2JRr2 R2 JR?

which yields the bounds of (84) and (85) when p = 2.
Next, we consider the case 1 < p < oo and p # 2. We establish a class of function of
approximation C? of pzP~!, 2 > 0 (indeed, the function pwP~! does not belong to A hence

we can not define <8tw + T w, pwp_1>H, 4, SO we need to modify the function paP~1) verifies
(i) p=1:9(s) =01if s <0, 1(s) =1 if ¢ < s and ¥(s) is increasing in [0, £].

1
(i) 1<p<oo,p#2:9(s) =0if s <e, th(s)=psP! ifegsggandi/;é(s):Oon
[1/e,+00).

It is easily seen that 1. € C? with 1. € L>°(R) and 9-(0) = 0. Let ¢.(s) be a primitive of
Ve (s) defined by ¢.(t) = ffoo 1e(s)ds. Since w € ‘H we imply that 1. (w) and ¢-(w) belong
to H and V,pe(w) = ¢-(w)V,w. Moreover, the function w in H satisfies (83), we deduce
that

(8w + T'w, wg(w)>7_L/XH +("B(z) - Voyw — o Ayw, Q,Z)E(w)>7{/xﬂ =0. (86)
where T'w = e~'v - V,w + B(z)v - V,w. In the same way of Lemma 6.3 we also have
(T, = [, [ oetw@ao) dode— [ [ gutw(o,2,0)) dude,
HXH - Jp2 Jre R? JR?2

Since w € H the divergence theorem implies the integral of ¢! E(z) - V,w vanish on R? x R2.

If p =1, we apply again the divergence theorem to <—062tAvw, wa(w)>H,XH we have

T
<—0’62tAU’LU,w5(?U)>,H,XH = (7/0 /]Rz /RQ-Q%‘VU’U)Fw;(w) : 1{0§w§£} dvdadt.

Then the equation (86) gives

T
/ /cpa(w(T,x,v)) dvdx—i—a/ / /62t|vvw|2wé(w)1{ogw§€} dvdadt
R2 JRR2 0 R2 JRR2
:/ /ape(w(O,x,v)) dvdz.
R2 JR2

Since ¥, > 0 and by using Fatou’s Lemma and the dominated convergence theorem we get
for any T' > 0 that

o) pronee) = [ | [ 0,0 dvde < ol eoe

which yields (84) with p = 1.
If 1 < p < oo and p # 2, by the construction of 1. we have

T
<—062tAUw,wg(w)>H,XH = 0/0 /]R? /RQth\VUwF"L/J;(w) Me<w<i/ey dvdadt

T
=op(p—1) / / / e |VywPwP ™2 - 1ecyct ey dodadt
0 R2 JR2

4(p—1 T
_ 1), / / / |V * eyt ey dvdzdt.,
p 0 JR2 JR2
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Then the equation (86) becomes

4(p-1) g 2t /2|2
we(w(T, x,v)) dvde + —0¢ e | Vow? "1 e<ip<i /ey dvdadt
R2 JRR2 p o JRr2.JR2 ==

= /R? /R;pa(u(o,x,v)) dvdz.

Using Fatou’s Lemma and the dominated convergence theorem we get for any 1" > 0 that

4(p-1)
p

1011 0,77, (2 B2)) Vo™ oo 71,022 xmey) < 10N 0 17500 2 xR

which yields the estimates of (84) and (85) when 1 < p < oo and p # 2. ]

Next we provide the estimates of the kinetic energy and the entropy. First we consider
the truncation function x(s) € C§°(R) such that

x(s) = Lif [s| <1, x(s) = 0if [s| = 2, [Ix[lwroom) <1

(%') ,z € R2, R > 0. We then consider a function of class C*°(R) N
L>(R) satistying ¥-(s) = 0 if s <0, 1-(s) =1 if s > € and ). is increasing on [0,&]. Let o,

be a primitive of 1. as @.(t) = fjoo e (s)ds.

and we define yg(z) = x

Proposition 6.5
Assume that the initial data fi, is positive and (1 + |[v|?/2)fin € L'(R? x R?). Then the

(EsKinEnerVFP2D) ¢, 1y 470, of Proposition 6.2 satisfies
[v[? Jvf?
sup —f(t) dvdz < C; + Cy —— fin dodx
[O,T} R2 JR2 2 R2 JR2 2

for some constants C1 and Cso, depending only on | E|| e, fin, T,0.

Proof.
Since w(t) = e 2! f(t,r,e " 'v) in H satisfies the equation (83) we deduce for any function
h € H that

<8tw + T w, h>7—t/xH + <etE(:1:) - Vow — oe? Ayw, h>7—t/xH =0. (87)

where 7' = e~'v - Vyw + B(z)*v - V,,. Taking in (87) the function h = XR(]’UD@%(w). It
is easily seen that h € H since the function XR(\UD@ € L®(R) and ¢ (w) € H by w € H.
In the same way of Lemma 6.3, we have the following formula

/ ‘UP
a1th+Tw,><R(|U|)7 e (w) o
'U2
= [ [ leetw(Te,0) = eulw 0.z, 0)] xaloh 2 dvda
R2 JRR2 2

- /OT /Rz /RQB(”)L“' [(,Z,x’ (%) ’U}zlﬂww} + xR(Ivl)v> soa(w)] dvdzdt

,02
:/ / (e (T, 2, 0)) — e(w(0, 2, 0))] xa(o) 2
R2 JR2

— dvdz.
2
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Before estimating the other terms in (87) we need to observe that ¢.(w) = wd.(w) with
®.(w) = [ Ye(fw)df, which implies that

1
pe(w) = [pe(w)| < w/o 11 (Bw)|d < w, Ve > 0.

Moreover, the solution w belongs to L'([0,T] x R? x R?) beacause w € L*([0, T]; L' (R? x
R?)). On the orther hand, since w € H the divergence theorem implies that the term
(e'E(z) - Vyw, h>HX%, can be estimated as

<etE(x) - Vyw, h>?—£’><7—t

——/T/ /etE(m) (w) M W +xr(Jv))v | dvdzdt
0 r2 Jr2 806 X ‘ ’2R {|’U|<2R} XR
T
X[ wrre (2) HE!LOOGT/ / /w(t,a:,v)v|dvda:dt
C([|E[[Le, T </ / /wdvdxdt+/ / /w|v|2dvdxdt>
R2 JR2 RrR2 JR2

It remains to estimate the contribution of <—062tAvw, h>H><7—l’ in (87). Similarly, applying
the divergence theorem and by direct computations we get

T
2 _ 2 2
(o Ay = [ / TP -
—|—0’/T/ / AV w - M MQ + xRV | Ye(w)| dodzdt
0 r2 Jr2 (2 "U’ 2R {|v|<2R} R >
g vy, vl
> J/ /RQ /RQthva- [( (R) 2R1{|U|<23}+XRU> 1/15(w)] dvdzdt
v vl
— O'/ /]R2 /R2 2tVU(pE . ( <R 2R1{|v|<2R} + xgrv | dvdzdt
:_U/ / / e* pc(w) Ty Iv |21 <ory +2X' [l ‘ I ‘1 <2r}y T 2xg || dvdzdi
Iy R ) op2 {lI<2R} {lv|<2R}

T
— —20/ / / e?w dvdzdt, when e N0, R — o0,
0o Jr2JR?

IN

| /\

2
[v ’ dvdzdt

where we have used the dominated convergence theorem in the last integral. Finally, from
the equation (87) we obtain

v|? o2
/R? /R2<Ps(w(T,:n,v))XR(\v])|| dovdz §/ /R;pe(w((),x,v))XR(M)H dvdaz

C(|ElLe=,T </ / /wdvdxdt—i—/ / /w\uPdvdxdt>
R2 JR2 R2 JR2

+20/ / / 2w dvdadt.
0 R2 JR2

Since fOT Jr2 Jgew dvdzdt < fOT Jz2 Jgewo dvdzdt = T finll 1 (2 xm2) we deduce that

2 2
/ /Wa(w(T,mw))XRﬂUDM dvdxﬁ/ /(pa(w(O,x,v))XR(|v|)’U| dvdz
R2 JR2 R2 JR2
FO(IE 1, T, 0, fn) + C(IE ] 1, T / [ vz
R2 JR2
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Using Fatou’s Lemma and then the dominated convergence theorem when € \, 0, R — o
we get for any 1" > 0 that

|v]? Elk
w(T, z,v)—— dvdz < w(0, z,v)—— dvdx
R2 JR2 2 Rr2 JR2 2
’ [v]?
AC(|Bl= T, ) + CEN=T) [ [ [ T dvdaat.
o Jr2Jrz 2

By the Growall’s inquality we complete the proof. O

In the same way as for the proof of Proposition 6.5, if we take the function A in the equation
(87) given by h(t,z,v) = xr(|x|)|z|t)e(w), we can obtain the following Proposition

Proposition 6.6
Assume that the initial data fi, belongs to L'(R? x R?) and satifies (|z| + |v][?/2)fin €
?<B°undp°sn>?L1(R2 x R2). Then the solution f is given by Proposition 6.2 satisfies

sup/ || f(t) dvdx < Cy + 02/ / || fin dvdz
R2 JR? R? JR?

[0,7]

for somse constants C1 and Cs, depending only on fin,T.

Proposition 6.7
Assume that the initial function fi, is positve and verifies (1+|x|+v|?/2) fin € L*(R? x R2).
?(EntropyVEP2D)? Then the solution f of Proposition 6.2 satisfies

sup/ f(t)|lnf(t)|dvdx§0+/ / 0 fin|In fin| dvdz
R2 JR? R? JR?

[0,7]

2
sup/ m dodz < C—i—/ / 0 fin|In fin| dodz
o1 Jr2 Jr2  f(2) R2 JR2

for some constant C, depending only on ||E||p~, fin, T, 0.

Proof.
As before, we will work on w(t,x,v) = e 2! f(t,2,e tv) which is satisfied by equation (83)
and variational equation (87). For any € > 0, we define the function g.(w) such that

L+ Tecw<tzey e (w) = 1+ Liecw<izey Inw =1+ ge(w)

and it is obvious that it belongs to L>([0, T] x R? x R?). Observing that

0w (1 + 1iecy<i /ey Inpe(w)) = O (wge(w))

and
T'wl + Lic<w<i/e} Inpe(w) = T (wge (w))
Multiplying the equation (83) by o(1+1{.<\<1 /) In e (w)) and then passing to the variational
equation with h = 1. (w) € H we get
0 (Or(wge(w)) + T (wge (W), ¥e) 1
+o ([e"E(z) - Vyw — o Ayw](1 + g-(w)), wg(w)>%,xﬂ =0. (88)[equ:VariFormBi
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Since :(w) = 1 on ¢ < w < 1/e so in the same way of Lemma 6.3, we have the following
formula

0 (O (wge(w)) + T (wge (W), Ve ) 1yr 2y

:/ /aw(T,:c,v)lnw(T,x,v)1{€<w<1/€} dvdx

Rz JR2 -

—/ / ow(0,z,v) Inw(0, z,v)1{c<y<1 /) dvdz.
R2 JR2 -

We estimate now the other terms in (88). Since w € H so the divergence theorem implies
that
o (e'E(x) - Vow(l + ge(w)), Ye(w))yyr, 5 = 0 (" B(2) - Vo (wge (), e (W) )1, 5,

)
T
=0 / / e B(z) - Vo (wge(w)) 1 e<w<i /ey dvdadt = 0.
0 R2 JRR2 o

and

T
<*U262tAvw(1 + gs(w))v ¢s(w)>9{/x7_[ = 02/ / / 62tvvw : vvgs(w)l{s<w<1/5} dvdzdt
0 R2 JRR2 o

T 2
oVyw
B /0 /]R? /R262t‘u7jj’1{6§w§1/6} dvdzxdt.

Finally, from (88) we obtain for any 7' > 0 that

g ot [0V yw]?
ow(T,z,v) Inw(T, z,v)1c<w<1/e) dvde + e ———lfecw<i1/e) dvdzdt
R2 JR2 0 JR2 JR? w
§/ / ow(0,z,v) Inw(0, z,v)1{.<y<1 /) dvdz.
R2 JR2 -

By standard argument, there exists a constant C' > 0, (see [26], Lemma 2.3) such that

||+ |v]?
lulnu| = ulnu — 2ulnugpcy<iy <ulnu+ - (]:B\ + [v]?)u 4 Ce™ 3

therefore

\V4 2
/ / ow(T,z,v)|Inw(T, z,v)[1{c<w<i/e} d’ud:r—l—/ / / thwl{qu/g} dvdzdt
R2 JR2 R2 w - -
< / / ow(0,z,v)|Inw(0,z,v)| dvdz + / / (|| + [v]*)w dvdz 4+ C8x
RrR2 JR2 4 Jp2 JRr2
where we have used that fRZ fR2e lzbgel HIU dvdz = 8. Thanks to the hypothesis on the initial
1
data fi, we infer that 1 Jrz Jpe(|z] + [v*)w dvdz < C(||E||Ls, fin,T,0). Therefore, Fatou’s

Lemma implies that

2
/ / ow(T, z,v)|Inw(T, z,v)| dvdx+/ / / e2tM dvdzdt
R2 JR2 R2 w

</ /aw(O,x,v)Unw(O,az,v)\dvdx.
R2 JR2

Substitutively w = e~ 2! f(¢,x, e~tv) leads to the desired result. O
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B Classical solution of the VPFP system with uniform external magnetic field
In this part, we consider the system (10), (11), (12) for uniform magnetic field i.e., VB(z) =
0. In order to simplify, we take in the equation (10) with B = 1. We focus on the global
existence and uniqueness of the smooth solutions. The proof will be based on the approxima-
tion scheme (f*)pen constructed in Theorem 2.2. In order to prove that the system admits
a global regular solution, we show that the sequence (f¥)ren is actually bounded, as well as
its derivatives, by a function that does not blow up in finite time, if we further assume that
the electric field E¥ € L ([0, co; W1>°(R?)). We have the following regularity estimate

loc

Lemma 6.6

Let fi, be a non-negative function such that
(RegularEsti)

fin € WHHRE), (14 |02 (fin + | Vawfin]) < +00, v > 2.

Then, there exist two functions a(t), 5(t) in LiS.([0,00[) independent of k, such that for every
k and t, we have

1L+ [o) 72 £5 (8, 2, 0) | o mexmz) < @(t), 11+ [0?)2DFH(t, 2, 0) | Lo maxrz) < B(2)-

Proof.
We define

YEt,2,0) = (L+ [) 25 2, 0), 25 2,0) = (14 [oP)2D f* (2, 2,0).

For the L™ estimate of the sequence (Y*)cn, we use the same argument as in the Lemma
2.6. We will now focus on estimating Z*. Taking the derivative with respect to the variables
(x,v) in the linear VFP equation (19) for f**1, we get

615(ka+1) +v- Vm(ka+1) + Ek : vv<ka+1) +J_ v vv(ka+1)
— div, (va(ka-H) +v(ka+1)> — Dv-V, " — DEF. v, fFt
—D v -V, fF 4 Dy v, L

A standard computations, we have the following equalities

0 0 vx k+1
DoV, fRH = (12 0) ijjk“)

0 VEk fokJrl
(o %) (v )
L k+1 _ (0 0 Vo [t
—Dwv- VUf = <0 R (_TQF)> < vvfk+1 )
0 0 vx k+1
D'U . VUfk+1 = <O IZ) < vv;k—i_l >

where R (—g) is a rotation matrix of angle —m/2. Then, the previous equation can be
rewritten as

—DEk‘VUka _

815(ka+1) +v- vm(ka—H) -+ Ek ' Vv(ka—H) + J_'U ’ vv(ka+1)
= div, (Vo (DS + o(DfFHY)) + A5 DpE (89)[equiDerivative
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where A¥(t,z) € L®(R, x R?) denotes the following matrix

0 ~VE*
Ak(t,iﬁ) = (_12 I — R(—W/2)> '

Now, we multiply equation (89) by (1 + [v]?)?/? and get the following equation for Z*+1

AR IR VA Lo s Y 5 D POV I v L
1+ |v]?
+10- V28 — oA ZFT — div, (vZMY) = Ry + Ry + Rs (90)
where Ry and Ry are obtained from (25) by replacing f*+! by Df*+1 and
Sy = (14 [v|?)/2 Ak . D+
Thanks to the estimations on R; and Ro in Lemma 2.6, we get
oo @)1 (1 4 [) 02D A | oo o re

Il oo 2 1257 (8) | Lo (r2 0 R2)

| R1() || oo (r2xm2) < YIIEF (¢
<A E*(
<AC i) IV E (12 e | 25 ()] oo ey
< C1(7, fin) (YN ZFTH ) || oo (o ey

R (t) || Lo (2 x2) < Calo, MIZFH (1) poo (m2xr2)

1Rs(t) [l o (m2xcrzy < IIA* ()] oo r2) 1 27 (1) ] Lo (2 xR2)-

)
)

Since an<t)”Ll(R2) < | finllz1(r2) and by Lemma 2.2 and |Y*(t)|| o < at) we deduce that
[n* ()| oo 2y < C(, fin)(t)?/7. Moreover,

1
75 A2l ZF@)l| oo 2 w2y = CONNZ" ()] e (2 w2)-

Vet (Ol < [
IV Ollieieey < [ o

Combining the above bounds on the density n* and the inequality (59) in Lemma 5.3 give
an estimate for the derivatives of E¥. Therefore we obtain

JAR(E) o) < Cals fin) (14 10F 125 @) o ocin) ) 1257 ()] oo 2 ).

So, the maximum principle in Remark 6.1 applied to (90) and the privious estimates of R;, R
and Rg3 lead to

t
IZ¥Y ()| oo o xcrzy < €T 11 Zoll Lo 2 xm2) +01(%f0)/0 o)1 25 ()| oo 2 2y ds
t
1 Col0,7) /0 12541 (5) | e oy s

t
+ Cs(7, fin) /0 ()27 (14|25 ()| oo qmar) ) 1254 (5)]| oo g2 ey d.
(91) [Bstiarzi|

We denote here

P1(t) = CL(y, fim)a(®)Y + Ca(0,7), ha(t) = Cs(v, fin)a(t)?.
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Since a(t) € LS (Ry) then 1y (t),12(t) € LS. (R4). Now we introduce the function
(1) = max(L, | 25 (1) ] oo r2xr2) ).
We find that there exist a function 3(¢) such that
L+ 1 (t) + 92 (t) + 10 | Z8(0) ]| oo 2 xmzy < ¥3(1) In2(2).
Indeed,
L+ 1 (t) + 2(t) + Int [|Z7() || oo rexme) < In(2F(8)eh3(t)) < In(2F (¢)¥s®),

with 13(t) = exp(1 + 11 (t) + ¥a(t)) since 2¥(t) > 1. Then, from (91) the function z¢*1(¢)
satifies the inequality

t
() < e2T”ZOHLoo(R2XR2) +/ P3(s)In 2F (5) 271 (s)ds.
0
We denote ((t) the solution of the differential equation

Bt) = ¢s(t) In B(H)A(E), B(0) = || Zo]| oo (r2xr2)
whose solution is

50) = e (1m0 exp | t a(s)ds).

We see that 3 belongs to LS. (Ry) since 93 € LY (R1) and the same argument as function
a(t) in the Lemma 2.6 show that Z**+! satisfies

| Z5F1 ()] oo (m2 2y < B(E), Wt € Ry

So Lemma 6.6 is proved. O

Corollary 6.1
. With the same assumptions and notations as in Lemma 6.6, there exist a function n lies in
(CoroEstUniformk) f oo (R4) such that for all k € N and t > 0

loc

7 (Dlloo + 1V2n* (B)lloo + [ E* (D)oo + V2B (D)oo < n(?) (92) [EstLinteyK]
IDF* ()| 21 r2xr2) < n(E). (93) [EstGradLix]

Proof.
The estimate (92) is a direct consequence of Lemma 6.6. For the estimate (93), going back
to equation (89), and applying L' estimate, leads to

t
HkaH(t)HLl(WxW) < IDfoll L1 (r2 xr2) +/0 HAk(S)”Lw(WxR?)HkaH(S)HLl(WxR?)dS-

Since ||A¥(s)| p is bounded by n(t). It implies that D f*+1(¢)|| .1 satisfies a linear Gronwall
inequality whose coefficients are independent of k and gives (93). ]
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Global existence of the solution

Let T' > 0. We then prove the convergence of iterations towards a weak solution. Thanks to
Lemma 6.6 and (92) we obtain the following convergences, up to extraction of a subsequence,
in the weak star topology of L>([0,T] x R? x R?)

fE= g ) = (o),
(1 + |U|2)ka — (1 + |U|2)Df, (94) ?ConverWeak1?

and, in L>([0,T] x R?) weak star
EF —~ b, VE* ~ VE. (95) ?ConverWeak2?

To take limits in the nonlinear terms of (19), we need strong compactness and convergence of
the whole sequence. We will prove that f* converges to f in the norm of L>°([0, T]; L' (R?)).
Indeed, (f*+1 — f*) solves the equation

at(fk+1 . fk) +u- vx(fk+1 . fk) —f—Ek . vu(fk+1 o fk) + J_U . vv(fk+1 . fk)
— Qpp <(fk+1 _ fk)) — (B — EFY) v, fR

Now, thanks to the L! estimate, we obtain

t
L L= praee< [ ] @ 20,19 50 dudads

1 [t 1
/ / / / IV (s, 2,0) [0 (s,9) — " 1(s,)|dy dodads.  (96) [EsebizsLix]
0 R2 JR2JR2

<7
T 27 [z — |

Using the standard interpolation argument and (93) we get

) 1/2
Sup/ / 7|vak(s,x,v)\ dvdz S (/ / |V,Ufk(8,$,’0)| d’UdCL')
y Jr2 Jrz|z — Yl R? JR?

1/2
(sup [ 19us4 sz, 0) a0
x R2

< CNIDF* () 11wz xre)| 25 (5) | oo r2xme) < C (7, T).

Thus (96) leads to

C(y,T) [ -
I = POl < S [ [ ks, -t sl

C(v,T) [t
< (;)/ (fr1 = Fu)(8)]l 21 2 x2)ds.
n 0
Then H(fk+1 — f’f)(t)||L1(szR2) satisfies

C(v,T)
2

k 4k
141 = PO moxiey < (S0 ) GIA® = fillzmioaios ey,
which proves that f* converges in L>([0,7]; L'(R? x R?)) to a unique limit which coincides
with the function f found previously. It is then easy to prove that f is a weak solution of
equation (10).
Uniqueness of the solution
The uniqueness of the solution which belongs to L>([0, T]; WH1(R? x R?) N Whe°(R? x R?))
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ClassicalSolUnif)?

can be performed similarly as in the part of existence.
Regularity of the solution

f>0, feL>(0,T); L°° n L}(R?* x R?)),

(L+ [o)72(f + IDf]) € L=([0,T] x R? x R?)).
Corollary 6.1 shows that Df* is bounded in L>([0,T]; L'(R? x R?)). Then, for almost
every t € [0,T[, Df*(t) is a bounded measure, and since it is a function, we obtain Df €
L>(]0,T); L' (R?xR?))2. Then, thanks to a standard interpolation, we impliy that the density
n(t,z) = [po f(t, x,v) dv belongs to L>([0, T]; W1 (R? xR*)NW 1> (R?xR?)). So the electric
field solves the Poisson equation in a classical sense and we obtain E € L*([0, T]; W1 (R?)).

We deduce that f is a classical solution of system (10), (11), (12) on [0, T7.
We state the following result

Proposition 6.8
Let T > 0. Assume that the initial data fin(z,v) is nonegative and satisfies

fin € WHL(R? x R?), (1 + [2)?(fin + |Dfin]) € L(R? x R?) with v > 2.

Then, there exists a unique smooth solution of the VPFP system on the time interval [0, T].
This solution satisfies
f>0, feL®(0,T]; Wh(R? x R?))
(14 o]*)2(f +[Df]) € L=([0,T] x R?* x R?))
E € L™([0,T], WH°(R? x R?)).
Remark 6.2

When the magnetic field B is non-uniform, observing the derivative in the variable x;,i = 1,2
of the transport in velocity along the magnetic force

8331‘ [B(x)J"U ’ vvf] - 8riBJ_U ' vvf + B(:L’)J"U : V’U(a.’fzf)
and then multiplying this identity by (1 + |v|>)"/? we get

(14 \v[Q)V/QBEi [B(.CC)J'U Vo f] = 8%.BLUZ¢ + B(w)L’U -VoZ; — B(J?)J"U -V (1 + |v\2)w2 On. f
= 0, B*vZ; + B(z)*v -V, Z;

where we denote Z; = (1 + \UIQ)V/Q&CZ.f. We cannot apply the mazimum principle of Remark
6.1 as in the equation (90), beacause this term O,, B-vZ; is not bounded in L™ (R? x R?).

C Preliminary study on the Poisson equation

In this part, we consider the Poisson equation —A,® = p in R%, where p € (O (RY) with
d > 2 whose support suppp C {a: eR?: |z| < R}. The solution of this equation is given by
the convolution with the fundamental solution of the Laplace operator as ® = G4 p, where

1
—2—111 |z|, d=2
Gd(:c) = 7r|x‘2—d

@B 177

The purpose of this part is to justify the following identity by using the integral by parts

/p@dx:/ |V, ®|2dz.
R4 R4
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The formula requires that the vector field V,® decays rapidly at infinity. This is a reason-
able condition in the three-dimensional case but not in the two-dimensional one. In three
dimensions, the decay of the vector field V& is fast enough so that the integral ng |V, ®|%dx
is finite. In two dimensions, nevertheless, this vector field is not decreasing fast enough to
infinity to be in L2. This is a consequence of the decay property of the kernel V,G4. You can
see that, in two dimensions, VG2 decreases to infinity as 1/r, which is not square integral,
while in three dimensions, V,G3 decreases as 1/ r2.

Now we consider the case d = 3. Since we can write

1 r—y T —y
B(z) = i i A P :
V220 = (g (o et [ oot

So, thanks to the Young’s inequality for the convolution we get

1 1
Vol 2msy < —— ([ —o1q1, 1, < oo
1901w < 5757 et 1ol + | tasn | Mol ) < +o0

Another approach to show the vector field V,® € L?(R?) is to use the Hardy-Littlewood-
Sobolev inequality, see Lemma (6.8) below

[V ®@| 2 (rsy =

< [lpll o5 (ms)-
R3)

T
—
|z[?

Next, we consider the case d = 2. The solution ® and its gradiant write

1 1 T —y
d(z) = "o Joa In|z —ylp(y)dy, V.®(z)=—

— dy.
o7 Jos |$_y|2p(y) y

Observer for |z| # 0 that
Injz —y| =In|z|+1n (‘xf’yD ,
x

-2 -2 lyl? -
lx —y| ™ = |=|” <1—2||2+ |$|2> .
If ly| < R and |z| > 2R then for |z| large, we have
Info —y| = Infz[+O(z]), |o—y[* = ||+ O(|2|7?).
Since w(y) has support in |y| < R we see that for |z| large

<>=—1n|xr/ y)dy + O(la)),

1 =z 9
3 [, Py + O(fal )

V@ =
Combining with the fact that
/ (142> Pde <01 >d
R4

we deduce that V,® is not square integrable except that ng pdr =0. If ng p dx = 0, by
adding the decay at infinity of p as (1+ |z|)p € L*(R?) we can show that V,® € L*(R?) and

that
/ (—AD)® dz :/ |V, ®|? dz.
R2 R2

D Inequalities

o8



Lemma 6.7
Let p € LP(R?), with 2 < p < 0o, and let ® = Gg* p. Then

(Cal-Zyg)

HD2(I)”LP(]Rd) < CpHpHLP(Rd)7

where Gy is fundamental solution of the Laplace equation in R, D? denotes any second
derivative and C is a positive universal constant.

Lemma 6.8 1
Consider a kernel K, (x) = —— and convolution T f = fxKy. Ifp> 1 and a = d(l—l—l—%),

q

kg

(HardySob) then we have

1 Taflpamay < CIfll e wey

for some positive universal constant C.
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