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Asymptotic behavior of the two-dimensional

Vlasov-Poisson-Fokker-Planck equation with a strong external

magnetic field

Mihäı BOSTAN ∗, Anh-Tuan VU †

(December 26, 2023)

Abstract

The subject matter of the paper concerns the Vlasov-Poisson-Fokker-Planck (VPFP)
equations in the context of magnetic confinement. We study the long-time behavior of
the VPFP system with an intense external magnetic field, neglecting the curvature of the
magnetic lines. When the intensity of the magnetic field tends to infinity, the long-time
behavior of the particle concentration is described by a first-order nonlinear hyperbolic
equation of the Euler type for fluid mechanics. More exactly, when the magnetic field
is uniform, we find the vorticity formulation of the incompressible Euler equations in
two-dimensional space. Our proofs rely on the modulated energy method.

Keywords: Vlasov-Poisson-Fokker-Planck equations, Guiding center approximation, Mod-
ulated energy.

AMS classification: 35Q75, 78A35, 82D10

1 Introduction
?⟨Intro⟩?

We consider f = f(t, x, v) the density of a population of charged particles of mass m, charge
q depending on time t, position x and velocity v. We are interested in the Vlasov-Poisson
system, in the presence of an external magnetic field, taking into account the collisions
between charged particles. Neglecting the curvature direction of magnetic field lines, we
assume that the external magnetic field has a constant direction orthogonal to Ox1, Ox2
but a variable amplitude. In the two-dimensional setting x = (x1, x2), v = (v1, v2), the
Vlasov-Fokker-Planck equation is written

∂tf + v · ∇xf +
q

m

{
E [f(t)] (x) +B (x)⊥v

}
· ∇vf = QFP (f) , (t, x, v) ∈ R+ × R2 × R2.

(1) VPFP2D-nonScale
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Here the notation ⊥ (·) stands for the rotation of angle −π/2, i .e., ⊥v = (v2,−v1), v = (v1, v2)
and the magnetic field is written B(x) = (0, 0, B(x)), where B(x) is a given function. The
electric field E[f(t)] = −∇xΦ[f(t)] derives from the potential

Φ[f(t)](x) = − q

2πϵ0

∫
R2

ln |x− x′|
(∫

R2

f(t, x′, v′) dv′ −D(x′)

)
dx′,

which satisfies the Poisson equation

−ϵ0∆xΦ [f (t)] (x) = q

(∫
R2

f (t, x, v) dv −D(x)

)
, (t, x) ∈ R+ × R2,

whose fundamental solution is z → − 1
2π ln |z|, z ∈ R2\ {0}. Here, the function D = D(x)

is the concentration of a background of positive charges and is assumed to be given. The
constant ϵ0 represents the electric permittivity of the vacuum. For any particle density
f = f(t, x, v), the notation E[f(t)](x) represents the Poisson electric field

E [f(t)] (x) =
q

2πϵ0

∫
R2

(∫
R2

f
(
t, x′, v′

)
dv′ −D(x′)

)
x− x′

|x− x′|2
dx′, (2) ElecField-nonScale2D

and n[f(t)], j[f(t)] stand for the concentration and the current density respectively

n [f(t)] =

∫
R2

f (t, ·, v) dv, j [f(t)] = q

∫
R2

vf (t, ·, v) dv.

In the equation (1), the operator QFP is the linear Fokker-Planck operator acting on velocities

QFP (f) =
1

τ
divv (σ∇vf + vf) ,

where τ is the relaxation time and σ is the velocity diffusion, see [9] for the introduction of
this operator, based on the principle of Brownian motion. We complete the above system by
the initial condition

f (0, x, v) = fin (x, v) , (x, v) ∈ R2 × R2. (3) ?Initial-nonScale2D?

In this work, we analyze the evolution of the distribution density f over a long time, in the
regime of an intense magnetic field (gyro-kinetic), in order to observe the drift phenomenon in
the directions orthogonal to the magnetic field. Indeed, it is well known that the velocities of
electric cross field drift and the magnetic gradient drift are proportional to 1

B and consequently
it is necessary to observe the drift movements over a large time proportional to B. Namely,
we consider

f (t, x, v) = f ε (t̄, x, v) , Bε(x) =
B(x)

ε
, t̄ = εt.

Here ε > 0 is a small parameter related to the ratio between the cyclotronic period and the
advection time scale. Hence ∂tf = ε∂t̄f

ε. Then in the equation (1), the term ∂t is to be
replaced by ε∂t̄ or by ε∂t to simplify our notation, and the Vlasov-Poisson-Fokker-Planck
system (1), (2) becomes

ε∂tf
ε + v · ∇xf

ε +
q

m
E [f ε(t)] · ∇vf

ε +
ωc(x)

ε
⊥v · ∇vf

ε = QFP (f
ε), (4) VPFP2d-Scale

E [f ε] = −∇xΦ[f
ε], −ϵ0∆xΦ[f

ε] = q (nε −D) = q

(∫
R2

f ε (t, ·, v) dv −D

)
, (5) Poisson2D-Scale

2



where ωc(x) =
qB(x)
m stands for the cyclotron frequency. We complete with an initial condition

f ε (0, x, v) = f εin (x, v) , (x, v) ∈ R2 × R2. (6) Initial2D-Scale

The existence theory of the weak and classical solution of the VPFP system is now well
developed and understood. Let us summarize the literature concerning existence results for
this problem. In the absence of the external magnetic field i .e., B(x) = 0, several existence
results for the VPFP system are known. The classic solutions have been studied by Degond
in [11] which showed the global/local existence and the uniqueness of the strong solution in
one and two/three dimensions respectively, without friction term i .e., QFP = σ∆v. Victory
and O’Dwyer obtained in [10] the same result of existence of classical solution using the
fundamental solution of the operator ∂t + v · ∇x − ∇v · (σ∇v + v). In [33], G. Rein and J.
Weckler gave sufficient conditions to show the global existence of classical solutions in three
dimensions. Regarding weak solutions, we can mention the works of Victory in [15], J. A.
Carrillo and J. Soler in [12] with an initial data in the space Lp. With the magnetized VPFP
system, we show the global existence in time of weak solutions, in the sense of Definition 2.1.

We study the asymptotic behavior of the solutions (f ε)ε>0 of the problem (4), (5), and
(6) when ε tends to 0. By investigating the balance of free energy associated with the
VPFP system, we formally show in Section 4 that the family (f ε)ε>0 converges to the limit

distribution function f (t, x, v) = n(t, x)M(v) = n(t, x) 1
2πσe

−|v|2
2σ , (t, x, v) ∈ R+ × R2 × R2,

where the limit concentration n verifies the first-order nonlinear hyperbolic equation

∂tn+ divx

[
n

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0, (t, x) ∈ R+ × R2, (7) equ:LimMod2D

coupled to the Poisson equation

E[n] = −∇xΦ[n], −ϵ0∆xΦ[n] = q(n−D), (8) LimPoisson2D

with the initial condition

n(0, x) = nin(x) =

∫
R2

f(0, x, v) dv. (9) LimInit2D

Let us observe the limit equation (7), we see that the concentration n is advected along

the vector field
(

⊥E
B(x) − σ

⊥∇ωc
ω2
c (x)

)
which is the drift velocity respectively to the sum of the

electric cross field drift
⊥E
B and the magnetic gradient drift σ

⊥∇ωc
ω2
c (x)

. These drift velocities

were mentioned in [21, 16]. In the case of the uniform magnetic field i .e., B(x) = B, the
system (7), (8), and (9) becomes

∂tn+
⊥E[n]

B
· ∇xn = 0, (t, x) ∈ R+ × R2,

E[n] = −∇xΦ[n], −ϵ0∆xΦ[n] = q (n−D) , (t, x) ∈ R+ × R2,
n (0, x) = nin(x), x ∈ R2,

that is to say, the vorticity formulation of the two-dimensional incompressible Euler equations,
with the cross electric field drift velocity

⊥E
B and the vorticity rot⊥xE = − q

ϵ0
(n−D). Notice

that when the background of positive charges D = 0, the same model was obtained by F.
Golse, L. Saint-Raymond in [17], L. Saint-Raymond [31] and E. Miot [25] from the two-
dimensional Vlasov-Poisson system without collisions. The authors justified rigorously the
convergence towards the two-dimensional Euler equation of incompressible fluids in another
approach. Concerning the collisions between charged particles, we can mention the work
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of M. Herda and L.M. Rodrigues in [21]. In this paper, the authors are interested in the
limit ε ↘ 0 of the VPFP system (4), (5), and (6) in three-dimensional version (t, x, v) ∈
R+ × T3 × R3 (where T = R/Z is a torus one-dimensional). They formally show that the
family (f ε,Φε := Φ[f ε])ε>0 converges to the limit distribution function f and the limit electric
potential ϕ which have reached an adiabatic regime along the magnetic field

f(t, x, v) = n(t, x)
1

(2π)3/2
e−

|v|2
2 , (t, x, v) ∈ R+ × T3 × R3,

where the concentration n is the anisotropic Boltzmann-Gibbs density

n(t, x) = N(t, x⊥)
e−qϕ(t,x)∫

T e
−qϕ(t,x⊥,x∥)dx∥

, x = (x⊥, x∥) ∈ T2 × T.

The limit model is derived by the reduced macroscopic density N : R+ × T2 → R+ in the
perpendicular direction, satisfying

∂tN − divx⊥

(
N⊥

(
∇x⊥ ϕ̃

))
= 0,

where ϕ̃ : R+ × T2 → R is the average potential

ϕ̃(t, x⊥) = −q ln
(∫

T
e−qϕ(t,x⊥,x∥)dx∥

)
,

with the initial condition

N(0, x⊥) = Nin(x⊥) =

∫
T

∫
R2

f0(x⊥, x∥, v)dx∥ dv.

Their results of passing to the limit concerned a linear model where the electric field is given
i .e., E[f ε] = E = −∇xϕ, for a given potential ϕ. However, in the non-linear case of the
VPFP type, they do not completely justify the passage to the limit model from the kinetic
equation.

To the best of our knowledge, there has been no result on the asymptotic regime when
the magnetic field is non-uniform. In the current work, the asymptotic behavior will be
investigated by appealing to the relative entropy or modulated energy method, as introduced
in [34]. This relative entropy method relies on the smooth solution of the limit system. By
this technique, one gets strong convergences. Many asymptotic regimes were obtained using
this technique, see [7, 8, 18, 30] for quasineutral regimes in collisionless plasma physics, [32, 1]
for hydrodynamic limits in gaz dynamics, [19] for fluid-particle interaction, [5, 4, 20] for high
electric or magnetic field limits in plasma physics.

Before establishing our main result, we define the modulated energy E [nε(t)|n(t)] by

E [nε(t)|n(t)] = σ

∫
R2

n(t)h

(
nε(t)

n(t)

)
dx+

ϵ0
2m

∫
R2

|∇xΦ[n
ε]−∇xΦ[n]|2 dx,

where h : R+ → R+ is the convex function defined by h(s) = s ln s − s + 1, s ∈ R+. This
quantity splits into the standard L2 norm of the electric field plus the relative entropy between
the particle density nε of (4), (5), and (6) and the particle concentration n of the limit model
(7), (8), and (9). For any nonnegative integer k and p ∈ [1,∞], W k,p = W k,p(Rd) stands for
the k-th order Lp Sobolev space. Ck

b stands for k times continuously differentiable functions,
whose partial derivatives, up to order k, are all bounded and Ck([0, T ];E) is the set of k-
times continuously differentiable functions from an interval [0, T ] ⊂ R into a Banach space
E. Lp(0, T ;E) is the set of measurable functions from an interval (0, T ) to a Banach space
E, whose p-th power of the E-norm is Lebesgue measurable. The main result of this paper
is the following
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Theorem 1.1
Let T > 0. Let B ∈ C3

b (R2) be a smooth magnetic field, such that infx∈R2 B(x) = B0 > 0
⟨MainThm2D⟩ and D be a fixed background density verifying |x|D ∈ L1(R2), D ∈ W 1,1(R2) ∩W 2,∞(R2).

Assume that the initial particle densities (f εin)ε>0 satisfy the hypotheses H1, H2, and H3 (see
Section 2 below) and Min := supε>0M

ε
in < +∞, Uin := supε>0 U

ε
in < +∞ where

M ε
in :=

∫
R2

∫
R2

f ε(x, v) dvdx, U ε
in :=

∫
R2

∫
R2

|v|2

2
f εin(x, v) dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε
in]|2 dx.

Let f ε be the weak solutions of the VPFP system (4), (5), and (6) with initial data f εin provided
by Theorem 2.1. We also assume that the initial concentration nin verifies the hypotheses H4,
H5 (see Section 5 below) and let n be the unique smooth solution of the limit system (7), (8),
and (9) with initial condition nin constructed in Proposition 5.1. We suppose that

lim
ε↘0

σ

∫
R2

∫
R2

nεinM(v)h

(
f εin
nεinM

)
dvdx = 0, lim

ε↘0
E [nεin|nin] = 0,

where nεin =
∫
R2f

ε
in dv, ε > 0. Then we have

lim
ε↘0

sup
0≤t≤T

σ

∫
R2

∫
R2

nεM(v)h

(
f ε

nεM

)
dvdx = 0, lim

ε↘0
sup

0≤t≤T
E [nε(t)|n(t)] = 0,

lim
ε↘0

1

ε

∫ T

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxdt = 0.

In particular we have the convergences limε↘0 f
ε = nM in L∞(0, T ;L1(R2 × R2)) and

limε↘0∇xΦ[f
ε] = ∇xΦ[n] in L

∞(0, T ;L2(R2)).

Remark 1.1
In two dimensional setting, the initial potential energy ϵ0

2m

∫
R2 |∇xΦ[f

ε
in]|2 dx may not be

?⟨RemElecL22D⟩?finite (or the electric field E[f εin] cannot belong to L2(R2)) even if the initial datum f εin lies
in C∞

0 (R2 × R2). This is due to the fact that the kernel x/|x|d does not belong to L2(R2) at
infinity, see [20] for a disscusion. For these reasons one needs to slightly modify the Poisson
equation adding a fixed background density D satisfying the global neutrality relation H3, see
Section 2 below.

The paper is structured as follows. Section 2 is devoted to establish the global existence of
weak solutions to the VPFP system with external magnetic field. In Section 3, we derive a
priori estimates with respect to the small parameter ε > 0 on the weak solutions from the
evolution of physical quantities associated to the VPFP system. Section 4 is devoted to the
formal derivation of the limit model. The well-posedness of the limit model is studied in
the next section. We establish existence and uniqueness results for the strong solution. The
convergence towards the limit model is justified rigorously in Section 5. We obtain strong
convergence for well prepared initial conditions.

2 Global existence of weak solutions of the VPFP equations

In this section we will study the global existence of weak solution for the VPFP equation in
the presence of an external magnetic field for fixed ε > 0 under suitable assumptions on the
initial data. In order to simplify the proofs of existence of the solution, as we do not want
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any uniform estimate with respect to ε, we will take ε = 1 and omit all the subscripts. Thus
we first consider the following problem

∂tf + v · ∇xf + E[f ] · ∇vf +B(x)⊥v · ∇vf = divv(σ∇vf + vf), (10) eq:VPFP-NonEps

E[f ] = −∇xΦ [f ] , −∆xΦ[f ] =

∫
R2

f (t, ·, v) dv −D, (11) eq:Poi-NonEps

f(0, x, v) = fin (x, v) , (x, v) ∈ R2 × R2. (12) eq:Init-NonEps

The dependency on the small parameter ε > 0 will be taken into account when establishing a
priori estimates uniform in ε in the next section. We assume that the initial data fin satisfies
the hypotheses

H1) fin ≥ 0, fin ∈ (L1 ∩ L∞)(R2 × R2), (|x|+ |v|2 + | ln fin|)fin ∈ L1(R2 × R2),
?⟨Hypothesis1⟩?

H2) (1 + |v|2)γ/2fin ∈ L∞(R2 × R2), γ > 2,
?⟨Hypothesis2⟩?

H3)
∫
R2

∫
R2fin(x, v) dvdx =

∫
R2D(x) dx.

We first introduce a notion of weak solution to the problem (10), (11), and (12) and our
result on the global-in-time existence of weak solutions.

Definition 2.1
For a given T ∈]0,∞[. We say that the pair (f,E[f ]) is a weak solution to the system (10),

⟨DefWeakSol⟩ (11), and (12) if and only if the following conditions are satisfied

(i) f ≥ 0, f ∈ L∞(0, T ;L1 ∩ L∞(R2 × R2)), E[f ] ∈ L∞((0, T )× R2),

(ii) for any φ ∈ C∞
0 ([0, T [×R2 × R2), we have∫ T

0

∫
R2

∫
R2

f
(
∂tφ+ v · ∇xφ+ (E[f ] +B(x)⊥v) · ∇vφ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

f (σ∆vφ− v · ∇vφ) dvdxdt+

∫
R2

∫
R2

fin(x, v)φ(0, x, v) dvdx = 0.

We will provide the global existence of the weak solution to the VPFP system (10), (11),
and (12) based on a compactness argument. For this purpose, we need the following velocity
averaging lemma obtained in [22], see also [28].

Lemma 2.1
Let (gk)k be bounded in Lp

loc((0, T ) × R2 × R2) with 1 < p < ∞, and (Gk)k be bounded in
⟨VelAver⟩Lp

loc((0, T )× R2 × R2). If for any k, gk and Gk satisfy the equation

∂tg
k + v · ∇xg

k = ∇l
vG

k, gk(t = 0) = g0 ∈ Lp(R2 × R2),

for some multi-index l, then for any ψ ∈ C1
c (R2 × R2) we have

(∫
Rdf

kψ dv
)
k
is relatively

compact in Lp
loc((0, T )× R2).

The averaging lemma allows to pass to the limit in the VPFP equation including the nonlinear
term E[f ]f in the sense of distribution, see [29]. The only difficult term is the Poisson
equation −∆xΦ[f ] = n[f ]−D, since the velocity averaging lemma cannot be directly applied
to conclude compactness of the density n[f ] (recall that only quantities of the type

∫
|v|≤R g

kdv,

R being finite, converge to
∫
|v|≤R gdv). In order to get such compactness, one uses the previous

lemma to show the following result, see Lemma 2.8 in [22].
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Lemma 2.2
Let (gk)k and (Gk)k be as in Lemma 2.1 and we assume that

⟨Compactness⟩
gk is bounded in Lp((0, T )× R2 × R2),

(|v|2 + |x|)gk is bounded in L∞(0, T ;L1(R2 × R2)).

Then for any ψ(v) such that |ψ(v)| ≤ c|v| and 1 < q < 4
3 , the sequence

(∫
Rdg

kψ dv
)
k
is

compact in Lq((0, T )× R2).

We now state the existence results for this type of solutions to the VPFP system.

Theorem 2.1
Let T > 0. Let B ∈ L∞(R2) be a smooth magnetic field and D be a fixed background

⟨main_weak_sol⟩ density verifying |x|D ∈ L1(R2), D ∈ L1(R2)∩L∞(R2). Assume that the initial condition fin
satisfies the hypotheses H1, H2 and H3. Then the problem (10), (11), and (12) has a global
weak solution f ≥ 0 in the sense of Definition 2.1, satisfying the following properties:

f ∈ L∞(0, T ;L1 ∩ L∞(R2 × R2)),
(
1 + |v|2

)γ/2
f ∈ L∞((0, T )× R2 × R2),

(|x|+ |v|2 + | ln f |)f ∈ L∞(0, T ;L1(R2 × R2)), (13) PropWeakSol

E[f ] ∈ L∞((0, T )× R2)2, E[f ] ∈ L∞(0, T ;L2(R2))2.

Furthermore, we have f ∈ L2([0, T ]× R2
x, H

1(R2
v)).

The proof of Theorem 2.1 will be devided in 5 steps. The first is devoted to regularize the
VPFP system by introducing regularization parameter η, the second stablishs some uniform-
in-η estimates, the third to a convergence of the sequence, the fourth passes to the limit
using the velocity averaging lemma, Lemma 2.2 and the last step studies the properties of
the solution.

Step 1: Regularized VPFP system. For the existence of weak solutions to (10)-(12),
we first regularize this system with respect to regularization parameters η > 0 as follows: we
mollify the singular interaction potential ln |x| by parameter η and consider a solution fη to
that regularized system

∂tf
η + v · ∇xf

η + Eη · ∇vf
η +B(x)⊥v · ∇vf

η = σ∆vf
η + divv(vf

η), (14) eq:VFP2DBis

subject to the initial data fη0 = fη(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2, where the electric
field Eη is given as

Eη = − 1

4π
∇xW

η ⋆ (nη −D) = − 1

4π
∇x

[
ln(|x|2 + η)

]
⋆ (nη −D), nη =

∫
R2

fη dv.

We note that ∇xW
η is bounded and Lipschitz continuous. Thus, the global-in-time existence

of weak solutions to (14) follows by the standard existence theory for kinetic equations, more
exactly a fixed point argument in the following sense: for any Ē ∈ L∞(0, T ;L∞(R2))2, let f
be the solution of{

∂tf + v · ∇xf + Ē(t, x) · ∇vf +B(x)⊥v · ∇vf = σ∆vf + divv(vf),
f(0, x, v) = fin(x, v).

We then define a map T by

T : L∞(0, T ;L∞(R2))2 → L∞(0, T ;L∞(R2))2

Ē 7→ T (Ē) = Eη = − 1

4π
∇W η ⋆ (n−D), n =

∫
R2

f dv.

Thanks to Theorem 6.1 in Appendix A, the operator T is well-defined. The existence of a
fixed point for the mapping T comes from almost the same argument in [22], Theorem 6.3.
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Step 2: Uniform-in-η estimates. Thanks to Theorem 6.1, the solution fη satisfies the
following estimations:

fη ≥ 0, ∥fη(t)∥Lp(R2×R2) ≤ C(T )∥fin∥Lp(R2×R2), p ∈ [1,∞], t ∈ [0, T ]. (15) IneqNormSequ∫
R2

∫
R2

fη
|v|2

2
dvdx < C(T, ∥Eη∥L∞)

∫
R2

∫
R2

fin|v|2 dvdx, t ∈ [0, T ]. (16) IneqKinEnerSequ∫
R2

∫
R2

fη|x| dvdx < C(T )

∫
R2

∫
R2

fin|x| dvdx, t ∈ [0, T ]. (17) IneqPosition

∥σ∇vf
η/
√
fη∥L2(0,T ;L2(R2×R2)) ≤ C(∥Eη∥L∞ , T, fin, σ) +

∫
R2

∫
R2

σfin| ln fin| dvdx. (18) IneqDissSequ

We will now establish the uniform estimates with respect to η of the electric field Eη, that
means sup[0,T ] ∥Eη∥L∞(R2) < C for some constant C > 0, not depending on η. Thanks to
Lemma B.1 in [11], Lemma 5.3 in Section 5, and the estimate (15), it suffices to show that
for all η > 0, the following inequality

∥Y η(t)∥L∞(R2) < C, t ∈ [0, T ],

where we denote Y η(t) = (1 + |v|2)γ/2fη(t, x, v).

Lemma 2.3
Let fin be an initial data verifying the hypothesis H2, that means

⟨LInftyNormVeloc⟩
∥Y 0∥L∞(R2×R2) = ∥(1 + |v|2)γ/2fin∥L∞(R2×R2) <∞, γ > 2.

Then there exists a constant C > 0 independent of η satisfying for all η > 0

∥Y η(t)∥L∞(R2×R2) ≤ C, t ∈ [0, T ].

Proof. Since the proof can be easily obtained similarly as in [11], Lemma 3.1, so we left this
lemma to the reader.

By Lemma 2.3, we deduce that the constants in the inequalities (16), (18) respectively are
independent with respect to η. Moreover, together this Lemma with Lemma B.1 in [11] and
(15) gives the uniform bound of the sequence (nη)η>0 in L∞(0, T ;Lp(R2)), for any p ∈ [1,∞].

Step 3: Compactness and convergence. It follows from the uniform bound of the
sequences that there exist a limit (f, n,E) such that up to extraction of a subsequence, it
holds as η → 0 that

fη ⇀ f weak ⋆ in L∞(0, T ;Lp(R2 × R2)), p ∈]1,∞],

nη ⇀ n weak ⋆ in L∞(0, T ;Lp(R2)), p ∈]1,∞],

Eη ⇀ E weak ⋆ dans L∞((0, T )× R2).

Furthermore, by using Lemma 2.2 with ψ(v) = 1 we get the strong convergence

nη → n in Lq((0, T )× R2), q ∈]1, 4/3[. (19) ?strongconv?

Indeed, by uniform estimates (15), (16) and (17), the conditions in Lemma 2.2 are verified.
Let us write

Gη := σ∇vf
η + vfη − Eηfη −B(x)⊥vfη.

Then the equation (14) can be written as

∂tf
η + v · ∇xf

η = ∇vG
η.

We now claim that the sequence (Gη)η>0 is bounded in Lq((0, T ) × R2 × R2) to apply the
averaging lemma, Lemma 2.2. Hence, we need to prove the following lemma.
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Lemma 2.4
For any q ∈ [1, 2], there exists a constant C independent of η such that for every η > 0 we

⟨BoundGk⟩ have
∥Gη∥Lq((0,T )×R2×R2) ≤ C, q ∈ [1, 2].

Proof.
Since the proof is similar to [22], Lemma 3.5, we briefly give the idea of that. As the sequence
of electric fields Eη is bounded in L∞((0, T )×R2) and the magnetic field B belongs to L∞(R2)
we obtain

∥Gη∥Lq ≤ ∥σ∇vf
η∥Lq + (1 + ∥B∥L∞)∥vfη∥Lq((0,T )×R2×R2) + C∥fη∥Lq ,

for some positive constant C not depending on η.
From (15) it is easily seen that ∥fη∥Lq((0,T )×R2×R2) ≤ T 1/q∥fin∥Lq(R2×R2). On the other hand,

since ∥vfη∥Lq((0,T )×R2×R2) ≤ T 1/q sup[0,T ] ∥vfη∥Lq(R2×R2) and thanks to Hölder’s inquality for
q ∈ [1, 2[ we have

∥vfη∥Lq(R2×R2) ≤
(∫

R2

∫
R2

|v|2fη dvdx

)1/2

∥fη∥q/2
Lq/(2−q)(R2×R2)

.

When q = 2 we also get

∥vfη∥L2(R2×R2) ≤ ∥fη∥1/2
L∞(R2×R2)

(∫
R2

∫
R2

|v|2fη dvdx

)1/2

.

Consequently, the sequence (vfη)η is bounded in Lq((0, T )× R2 × R2), for any q ∈ [1, 2]. It
remains to uniformly bound the sequence ∥σ∇vf

η∥Lq((0,T )×R2×R2). Using Hölder’s inequality
again for q ∈ [1, 2[, we have∫ T

0

∫
R2

∫
R2

|∇vf
η|q dvdxdt ≤ C(T )∥fη∥

q
2

L∞(0,T ;L
q

2−q )

(∫ T

0

∫
R2

∫
R2

|∇vf
η|2

fη
dvdxdt

) q
2

,

and when p = 2 we also get∫ T

0

∫
R2

∫
R2

|∇vf
η|2 dvdxdt =

∫ T

0

∫
R2

∫
R2

fη
|∇vf

η|2

fη
dvdxdt

≤ ∥fη∥L∞((0,T )×R2×R2)

∫ T

0

∫
R2

∫
R2

|∇vf
η|2

fη
dvdxdt.

Thanks to Lemma 2.3 and (18), we deduce that the sequence (|∇vf
η|2/fη)η>0 is bounded in

L1((0, T )×R2×R2). Therefore, the sequence (∇vf
η)η>0 is bounded in (Lq((0, T )×R2×R2))2

with q ∈ [1, 2]. Altogether the above estimates we conclude the result of Lemma 2.4.

Step 4: Passing to the limit. Thanks to the weak convergences obtained in Step 3, we
see that to pass to the limit in the weak formulation of equation (14) it suffices to show
convergence towards 0 for any test function φ ∈ C∞

0 ([0, T [×R2 × R2) of the non-linear con-
tribution∫ T

0

∫
R2

∫
R2

[(∇W η ⋆ nη)fη − (∇W ⋆ n)f ]φ dvdxdt

=

∫ T

0

∫
R2

∫
R2

[(∇(W η −W ) ⋆ nη)fη]φ dvdxdt

+

∫ T

0

∫
R2

∫
R2

[∇W ⋆ (nη − n)fη]φ dvdxdt+

∫ T

0

∫
R2

∫
R2

(∇W ⋆ n)φ(f
η − f) dvdxdt. (20) NonLinearEner
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The convergence of the contribution (20) to 0 as η → 0 can follow from almost the same
analysis as in [13], Section 5. Therefore we obtain f is the weak solution of VPFP system (10),
(11), and (12) with the electric field E satisfying E = − q

2πϵ0
∇x ln | · | ⋆ (n−D). Furthermore,

since the sequence (fη)η>0 belongs to L2([0, T ] × R2
x, H

1(R2
v)) it is easily check that f ∈

L2([0, T ]× R2
x, H

1(R2
v)) by using the Theorem 6.2.

Step 5: Properties (13) of solutions. The nonegative limit function f is a direct conse-
quence of the weak-⋆ convergence of the nonegative sequence (fη)η>0 in L

∞((0, T )×R2×R2).
In particular, f ∈ L∞((0, T )×R2×R2). Moreover, we also have (1+ |v|2)γ/2f ∈ L∞((0, T )×
R2 × R2) since the sequence ((1 + |v|2)γ/2fη)η>0 is bounded in L∞((0, T )× R2 × R2). Now,
let φ be any nonnegative function in C∞

0 ([0, T [) and R > 0 be a constant. To prove
f ∈ L∞(0, T ;L1(R2 × R2)) we use the function ψR(t, x, v) = φ(t)1{|x|≤R,|v|≤R}. Hence by
the weak-⋆ convergence of (fη)η>0 to f we deduce that∫ T

0
φ(t)

∫
R2

∫
R2

f(t, x, v)1{|x|≤R,|v|≤R} dvdxdt ≤ lim sup
η→0

∫ T

0
φ(t)

∫
R2

∫
R2

fη(t, x, v) dvdxdt.

Taking now the limit R → ∞ and apply the dominated convergence theorem to get f ∈
L∞(0, T ;L1(R2 × R2)). Similarly, if we choose the test function ψR(t, x, v) = φ(t)(|x| +
|v|2)1{|x|≤R,|v|≤R} then we can show that (|x|+ |v|2)f ∈ L∞(0, T ;L1(R2×R2)). We complete
the property of the solution by showing that f ln f ∈ L∞(0, T ;L1(R2×R2)). Indeed, we have
the identity

f | ln f | = f ln f1{f≥1} − f ln f1{0≤f≤1}.

Since f ln f1{f≥1} ≤ f2 and f ln f1{0≤f≤1} ≤ Ce−(|x|+|v|2) + (|x|+ |v|2)f , for some constant
C > 0 together with f ∈ L∞(0, T ;L2(R2 × R2)) and (|x| + |v|2)f ∈ L∞(0, T ;L1(R2 × R2)),
we deduce that f ln f ∈ L∞(0, T ;L1(R2 × R2)).

The following lemma provides the property on the potential Φ[f ] and the electric field
E[f ] = −∇xΦ[f ] of the Poisson equation on R2, so as to control the potential energy under
the hypothesis H3. We refer to Lemma 3 in [20].

Lemma 2.5
Let ρ ∈ Lp(R2) with any p ∈ [1,∞] be such that

⟨PropSolPoi⟩ ∫
R2

(1 + |x|)|ρ(x)| dx < +∞,

∫
R2

ρ(x) dx = 0.

Consider the potential Φ given by Φ(x) = − 1
2π

∫
R2 ln |x− y|ρ(y)dy. Then, Φ is a continuous

and bounded function such that lim|x|→∞Φ(x) = 0. Furthermore, we also have Φ ∈ L2(R2)
and ∇Φ ∈ (L2(R2))2.

3 A priori estimates

The aim of this section is the derivation of a priori estimates, uniform with respect to ε, on
the weak solution f ε provided by Theorem 2.1. These estimates are deduced from the con-
servation properties of the system and from the dissipation mechanism due to the collisions.
We recall that (f ε, E[f ε]) is a weak solution to the problem (4), (5), and (6) on [0, T ] with
any T > 0, if for any the test function φ ∈ C∞

0 ([0, T [×R2 × R2) we have∫ T

0

∫
R2

∫
R2

f ε
(
ε∂tφ+ v · ∇xφ+

q

m
(E[f ε] +

B(x)

ε
⊥v) · ∇vφ

)
dvdxdt (21) WeakSolScaleVPFP

+
1

τ

∫ T

0

∫
R2

∫
R2

f ε (σ∆vφ− v · ∇vφ) dvdxdt+

∫
R2

∫
R2

εf εin(x, v)φ(0, x, v) dvdx = 0.
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Let us define the free energy of the VPFP system (4), (5), and (6) as

E [f ε] =
∫
R2

∫
R2

(σfε ln f ε + f ε
|v|2

2
) dvdx+

ϵ0
2m

∫
R2

|E[f ε]|2 dx.

Proposition 3.1
Let (f ε, E[f ε]) be a weak solution of the system (4), (5), and (6) provided by Theorem 2.1.

⟨WeakFreeEnergy2D⟩Then, we have the mass conservation and the balance of the free energy

d

dt

∫
R2

∫
R2

f ε(t) dvdx = 0, ε
d

dt
E [f ε(t)] = −1

τ

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdx.

The mass conservation formally follows by integrating (4) in v, which gives the continuity
equation for the mass density, and then integrating in x. On the other hand, the law for the
balance of the total energy is formally derived by summing up these relations below. First,

multiplying the equation (4) by |v|2
2 to obtain the balance of kinetic energy

ε
d

dt

∫
R2

∫
R2

|v|2

2
f ε dvdx =

q

m

∫
R2

∫
R2

E[f ε] · vfε dvdx− 1

τ

∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Then, thanks to the continuty equation ε∂tn[f
ε] + divx

∫
R2vf

ε dv = 0, we multiply this
equation by Φ[f ε] and use the Poisson equation to find the balance of potential energy

ϵ0ε

2m

d

dt

∫
R2

|E[f ε]|2 dx = − q

m

∫
R2

∫
R2

E[f ε] · vfε dvdx.

Finally, multiplying the equation (4) by σ(1 + ln f ε) to get the balance of entropy

ε
d

dt

∫
R2

∫
R2

σfε ln f ε dvdx = −1

τ

∫
R2

∫
R2

(σ∇vf
ε + vfε) · σ∇vf

ε

f ε
dvdx.

As for weak solutions, we shall follow the same scheme. We find relations analogous to
previous relations in Lemmas below. The difficulty is in overcoming the lack of regularity
and the need to justify operations that are taken for granted when the solutions are smooth.
We will prove these properties of solutions by combining the formal arguments above with
the choice of an appropriate sequence of test functions in (21) for every studied property.
A similar rigorous approach that the one given in [2] and [6] can be easily adapted for the
properties studied in our weak solution.

We start with the balance of kinetic energy.

Lemma 3.1
Let f ε be the weak solution of the problem (4), and (5), (6) provided by Theorem 2.1. Then

⟨BalanceKin2D⟩we have

ε
d

dt

∫
R2

∫
R2

|v|2

2
f ε dvdx =

∫
R2

∫
R2

q

m
E[f ε] · vfε dvdx− 1

τ

∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Proof.
Let χ be a nonegative function of class C∞

0 (R) such that

χ(s) = 1, on |s| ≤ 1, χ(s) = 0 on |s| ≥ 2,

we define the function χR as χR(z) = χ
(
|z|
R

)
. Then χR(z) = 1 on |z| ≤ R, χR(z) = 0 on

|z| ≥ 2R and ∥∇zχR∥L∞ ≤ ∥χ′∥∞
R . In the definition of weak solution (21), we use the test

11



functions φ(t, x, v) = ϕ(t)χR(x)χR(v)
|v|2
2 with ϕ ∈ C∞

0 ([0, T [), we obtain∫ T

0

∫
R2

∫
R2

f ε [ε∂tϕ(t)χR(x) + v · ∇xχR(x)ϕ(t)]χR(v)
|v|2

2
dvdxdt

+

∫ T

0

∫
R2

∫
R2

f ε
(
E[f ε] +

B(x)

ε
⊥v

)
· ∇v

(
χR(v)

|v|2

2

)
ϕ(t)χR(x) dvdxdt

+
1

τ

∫ T

0

∫
R2

∫
R2

f ε (σ∆v − v · ∇v)

(
χR(v)

|v|2

2

)
ϕ(t)χR(x) dvdxdt

+

∫
R2

∫
R2

εf εin(x, v)ϕ(0)χR(x)χR(v)
|v|2

2
dvdx = 0.

For each ε > 0, using the Theorem 2.1 on the solution, we have (1+|v|2)f ε ∈ L∞(0, T ;L1(R2×
R2)) and E[f ε] ∈ L∞((0, T )×R2). Letting R→ ∞, one gets, by the dominated convergence
theorem, the following relation for any ϕ ∈ C∞

0 ([0, T [)∫ T

0
∂tϕ(t)

∫
R2

∫
R2

ε
|v|2

2
f ε(t, x, v) dvdxdt+

∫ T

0
ϕ(t)

∫
R2

∫
R2

E[f ε] · vf ε dvdxdt

+
1

τ

∫ T

0
ϕ(t)

∫
R2

∫
R2

(2σ − |v|2)f ε(t, x, v) dvdxdt+
∫
R2

∫
R2

ε
|v|2

2
f εin(x, v)ϕ(0) dvdx = 0.

On the other hand, by Theorem 2.1, our weak solution f ε belongs to L2([0, T ]×R2
x, H

1(R2
v))

and tends to 0 at infinity since (1+ |v|2)γ/2f ε ∈ L∞, thus by the divergence theorem we have

1

τ

∫
R2

∫
R2

(2σ − |v|2)f ε(t, x, v) dvdx = −1

τ

∫
R2

∫
R2

(σ∇vf
ε + vf ε) · v dvdx.

Substituting into the previous relation, we easily deduce the assertions on the lemma.

In the following lemma we obtain the balance of the potential energy.

Lemma 3.2
Let f ε be the weak solution of the problem (4), (5), and (6) provided by Theorem 2.1. Then

⟨BalancePot2D⟩we have

ϵ0ε

2m

d

dt

∫
R2

|E[f ε]|2 dx = − q

m

∫
R2

∫
R2

E[f ε] · vfε dvdx = − 1

m

∫
R2

E[f ε] · j[f ε] dx.

Proof.
First, we show that Φ[f ε], E[f ε] and ∂tE[f ε] belong to L∞(0, T ;L2(R2)). We will apply
Lemma 2.5. The conditions in Lemma 2.5 are fulfilled by the properties on the solution f ε

and the background densities D(x) by assumption H3. Hence one gets Φ[f ε] and E[f ε] lie in
L∞(0, T ;L2(R2)). It remains to prove that ∂tE[f ε] belong to L∞(0, T ;L2(R2))2. Thanks to
the continuity equation on [0, T [×R2 in the sense of distributions

ε∂tn[f
ε] + divx

∫
R2

vf ε dv = 0,

see Lemma 4.1 below, together with the Poisson equation (5), we deduce that

∂tE[f ε(t)](x) = − q

2πϵ0
∇x ln | · | ⋆ ∂t(n[f ε(t)]−D) =

1

2πϵ0ε
∇x ln | · | ⋆ (divxj[f ε(t)]).

In order to estimate ∂tE[f ε(t)], we will use the Calderon-Zygmund inequality, see [26], Lemma
10, but in the dual version. Let η be a test function in C∞

0 ([0, T [×R2). We have〈
1

2πϵ0ε
∇x ln | · | ⋆ (divxj[f ε]), η

〉
=

∫
R2

1

2πϵ0ε
∂2x ln | · | ⋆ η(t, ·) · j[f ε(t)] dx.
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By a simple esimate, one gets j[f ε] ∈ L∞(0, T ;L2(R2 × R2)). Therefore we deduce that∣∣∣∣〈 1

2πϵ0ε
∇ ln | · | ⋆ (divxj[f ε]), η

〉∣∣∣∣ ≤ 1

2πϵ0ε
∥∂2x ln | · | ⋆ η∥L2∥j[f ε(t)]∥L2

≤ C∥η∥L2∥j[f ε(t)]∥L2 .

It allows to conclude that ∂tE[f ε] belongs to L∞(0, T ;L2(R2)).
Now let ν > 0 and let κ ∈ C∞

0 (R2) be a standard mollifier. Define the regularization
kernel κν(x) :=

1
ν2
κ(xν ). Convoluting with κν in the equation divx(∂tE[f ε] + 1

ϵ0ε
j[f ε]) = 0 we

obtain

divx(∂tE
ν [f ε] +

1

ϵ0ε
jν [f ε]) = 0,

where Eν [f ε] = E[f ε] ⋆ κν , j
ν [f ε] = j[f ε] ⋆ κν . Multiplying the previous equation by

Φν [f ε]χR(x) and integrate by parts to find that∫
R2

∂tE
ν [f ε] · Eν [f ε]χR(x) dx+

1

ϵ0ε

∫
R2

Eν [f ε] · jν [f ε]χR(x) dx

+

∫
R2

(∂tE
ν [f ε] +

1

ϵ0ε
jν [f ε]) · Φν [f ε]∇χR dx = 0,

where Φν [f ε] = Φ[f ε]⋆κν and χR stands for the family of smooth cut-off functions, defined in
Lemma 3.1. Let ν → 0. The terms on the left side converge as a consequence of the theorem
of smooth approximations from the first arguments on Φ[f ε], E[f ε], ∂tE[f ε]. Then we obtain∫

R2

∂tE[f ε] · E[f ε]χR(x) dx+
1

ϵ0ε

∫
R2

E[f ε] · j[f ε]χR(x) dx

+

∫
R2

(∂tE[f ε] +
1

ϵ0ε
j[f ε]) · Φ[f ε]∇χR dx = 0.

Letting R→ ∞, the dominated convergence theorem yields∫
R2

∂tE[f ε] · E[f ε] dx+
1

ϵ0ε

∫
R2

E[f ε] · j[f ε] dx = 0,

which gives the result in the lemma.

Finally, let us deduce the balance of entropy.

Lemma 3.3
Let f ε be a weak solution of the problem (4), (5), and (6) provided by Theorem 2.1. Then

⟨BalanceEntropy⟩we have

ε
d

dt

∫
R2

∫
R2

σfε ln f ε dvdx = −1

τ

∫
R2

∫
R2

(σ∇vf
ε + vfε) · σ∇vf

ε

f ε
dvdx.

Proof.
Since our solution f ε ∈ L∞(0, T ;L1 ∩ L∞(R2 ×R2)) and E[f ε] ∈ L∞((0, T )×R2), the proof
is very similar to [6], Proposition 2.3, we briefly give the idea of that. We first show that for
any Ψ ∈ C2(R) such that Ψ′′ ∈ L∞(R) and Ψ(0) = 0, Ψ(f) solves the following equation in
the sense of distribution on [0, T [×R2 × R2

ε∂tΨ(f ε) + v · ∇xΨ(f ε) +
q

m
E[f ε] · ∇vΨ(f ε) +

q

m

B(x)

ε
⊥v · ∇vΨ(f ε)

−1

τ
v · ∇vΨ(f ε)− σ

τ
∆vΨ(f ε) =

2

τ
f εΨ′(f ε)− σ

τ
Ψ′′(f ε) |∇vf

ε|2 . (22) NonlinearEqu
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The proof of equality (22) comes from the same argument in [6], Proposition 2.2. We then
apply (22) for the following function

ψδ(f
ε) = (δ + f ε) ln

(
1 +

f ε

δ

)
+ f ε ln δ, δ > 0,

and consider the test function φ(t, x, v) = ϕ(t)χR(x)χR(v), where the function χR was defined
in Lemma 3.1, and ϕ(t) ∈ C1

0 ([0, T [). Passing to the limit as R → ∞, we easily deduce the
following relation

ε
d

dt

∫
R2

∫
R2

ψδ(f
ε(t)) dvdx+

2

τ

∫
R2

∫
R2

ψδ(f
ε) dvdxdτ

=
2

τ

∫
R2

∫
R2

f ε
(
ln

(
1 +

f ε

δ

)
+ ln δ + 1

)
dvdx− σ

τ

∫
R2

∫
R2

|∇vf
ε|2

δ + f ε
dvdx,

which is equivalent to

ε
d

dt

∫
R2

∫
R2

ψδ(f
ε(t)) dvdx+

σ

τ

∫
R2

∫
R2

|∇vf
ε|2

δ + f ε
dvdx =

2

τ

∫
R2

∫
R2

(
f ε − δ ln

(
1 +

f ε

δ

))
dvdx.

(23) equ:LimNonLinear

Finally, by using the dominated convergence theorem when δ goes to zero in (23) and then
the divergence theorem for the integral on the right hand side, we obtain

ε
d

dt

∫
R2

∫
R2

f ε ln f ε dvdx = −σ
τ

∫
R2

∫
R2

|∇vf
ε|2

f ε
dvdx− 1

τ

∫
R2

∫
R2

v · ∇vf
ε dvdx.

So we complete the proof of Lemma.

Now we are ready to prove Proposition 3.1.

Proof. (of Proposition 3.1)
The mass conservation can be deduced by testing the test function φ(t, x, v) = ϕ(t)χR(|x|)χR(|v|)
in (21). On the other hand, using Lemmas 3.1, 3.2 and 3.3, we imply the desired result for
the balance of energy E [f ε].

We establish now uniform bounds for the kinetic energy.

Lemma 3.4
Assume that the initial particle densities (f εin) satisfy f εin ≥ 0, Min := supε>0M

ε
in < +∞,

⟨BoundKinEner2D⟩Uin := supε>0 U
ε
in < +∞, where for any ε > 0

M ε
in :=

∫
R2

∫
R2

f εin(x, v) dvdx, U
ε
in :=

∫
R2

∫
R2

|v|2

2
f εin(x, v) dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε
in]|2 dx.

We assume that (f ε)ε>0 are weak solutions of (4), (5), and (6) given by Theorem 2.1. Then
we have

ε sup
0≤t≤T

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε]|2 dx

}
≤ εUin +

2σT

τ
Min,

and
1

τ

∫ T

0

∫
R2

∫
R2

|v|2f ε(t, x, v) dvdxdt ≤ εUin +
2σT

τ
Min.
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Proof.
Using Lemmas 3.1 and 3.2 yields

ε
d

dt

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε]|2 dx

}
=

2σ

τ
M ε

in −
1

τ

∫
R2

∫
R2

|v|2f ε dvdx,

and therefore we obtain

ε

{∫
R2

∫
R2

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε]|2 dx

}
+

1

τ

∫ t

0

∫
R2

∫
R2

|v|2f ε dvdxds

= εU ε
in +

2σt

τ
M ε

in

which yields the results.

4 Formal derivation of the limit model

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (4), (5), and (6)
when ε becomes small comes from the balance of the free energy functional E [f ε]. Thanks to
Proposition 3.1, we deduce that

εE [f ε(t)] + 1

τ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds = εE [f ε(0)].

Since the dissipation term can rewrite as

1

τ

∫ t

0

∫
R2

∫
R2

|σM∇v(f
ε/M)|2

f ε
dvdxds,

whereM stands for the Maxwellian equilibriumM(v) = (2πσ)−1 exp
(
− |v|2

2σ

)
, v ∈ R2. There-

fore, at least formally, we deduce that f ε = f + O(ε), as ε ↘ 0, where the leading order
distribution function f satisfies

1

τ

∫
R2

∫
R2

|σM∇v(f/M)|2

f
dvdx = 0, t ∈ R+.

Hence, we obtain f(t, x, v) = n(t, x)M(v), (t, x, v) ∈ R+ × R2 × R2. Then, the question is to
determine the evolution equation satisfied by the concentration n(t, x) =

∫
R2f(t, x, v) dv.

We are looking for the model for the concentration n[f ε] =
∫
R2f

ε dv. First, by integrating
the equation (4) with 1 and v, we straightforwardly get the local conservation laws satisfied
by the first two moments.

Lemma 4.1
Let ε > 0. Let f ε be a weak solution of the system (4), (5), and (6) provided by Theorem

⟨ConservationLaw⟩ 2.1. Then the following conservation laws hold in the distributional sense

∂tn[f
ε] +

1

ε
divx

(
j[f ε]

q

)
= 0. (24) ContinuLaw

ε∂t

(
j[f ε]

q

)
+ divx

∫
R2

v ⊗ vf ε dv − q

m
E[f ε]n[f ε]− ωc(x)

ε

⊥j[f ε]

q
= −1

τ

j[f ε]

q
. (25) MomentLaw
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Proof.
For each ε > 0, (f ε, E[f ε]) solves (4) in the sense of distribution given by equation (21) and
satisfies (1+ |v|2)f ε ∈ L∞(0, T ;L1(R2×R2)), E[f ε] ∈ L∞((0, T )×R2). Then, we test (21) on
the test functions of the form φ(t, x, v) = ϕ(t)χR(x)χR(v) and φ(t, x, v) = ϕ(t)χR(x)χR(v)v,
where the function χR was defined in Lemma 3.1, and ϕ ∈ C∞

0 ([0, T [). Letting R → ∞,
one gets, by dominated convergence theorem, the relations (24) and (25) which hold in
the distribution sense on [0, T [×R2 and are respectively the continuity equation and the
momentum equation.

Then, we apply the rotation v 7→ ⊥v to the equation (25) and eliminating 1
ε
j[fε]
q between

the resulting equation and (24) leads to the new equation for the concentration n[f ε].

Corollary 4.1
Let ε > 0. Let f ε be a weak solution of the system (4), (5), (6) provided by Theorem 2.1.

?⟨NewConcen⟩?Then the concentration n[f ε] satisfies the following equation

∂tn[f
ε] + divx

[
n[f ε]

(⊥E[f ε]

B(x)
− σ

⊥∇xωc(x)

ωc(x)2

)]
= divxF

ε, (26) ModConcen2D

where we denote

F ε =
1

ωc(x)

(
ε∂t

⊥j[f ε]

q
+

1

τ

⊥j[f ε]

q
+ ⊥divx

∫
R2

(v ⊗ v − σI2)f
ε dv

)
.

Proof.
The proof of the result is obviously by observing that the momentum flux tensor can be
decomposed as ∫

R2

v ⊗ vfε dv =

∫
R2

(v ⊗ v − σI2)f
ε dv + σI2n[f

ε].

Passing formal to the limit in (26), as ε↘ 0, we get

∂tn[f ] + divx

[
n[f ]

(⊥E[f ]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0,

where we have used that f ε tends to f = n(t, x)M(v) leading to n[f ε] → n[f ], j[f ε] → j[f ] = 0
and

∫
R2(v ⊗ v − σI2)f

ε dv →
∫
R2(v ⊗ v − σI2)f dv = 0. Therefore the limit model is

∂tn+ divx

[
n

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)]
= 0, (t, x) ∈ R+ × R2, (27) LimitMod2D

E[n] = −∇xΦ[n], −ϵ0∆xΦ[n] = q(n−D), (28) PoissonLim2D

with the initial condition
n(0, x) = nin(x), x ∈ R2. (29) LimitInitial2D

We have the following balances for the previous limit model

Proposition 4.1
Any smooth solution of the limit model (27), (28), and (29) verifies the mass and free energy

⟨ConserveEnerLim⟩ conservations

d

dt

∫
R2

n(t, x) dx = 0,
d

dt

∫
R2

{
σn lnn+

ϵ0
2m

|∇xΦ[n]|2
}

dx = 0.
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Proof.
Clearly we have the total mass conservation. For the energy conservation, a straightforward
computation, the evolution in time of the energy for the limit model can be written as∫

R2

σ∂tn(1 + lnn) dx+

∫
R2

ϵ0
m
E[n] · ∂tE[n] dx.

Using the equation (27) for the first integral in the previous equality, we have∫
R2

σ∂tn(1 + lnn) dx =

∫
R2

σ

(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)
· ∇n dx = σ

∫
R2

n
⊥E[n]

B(x)
· ∇B
B(x)

dx.

Thanks to Poisson’s equation (28), then using again (27) for the second integral, we get∫
R2

ϵ0
m
E[n] · ∂tE[n] dx =

∫
R2

q

m
Φ[n]∂tn dx = − q

m

∫
R2

E[n] · n
(⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

)
dx

= −σ
∫
R2

n
⊥E[n]

B(x)
· ∇B
B(x)

dx.

Combining these equalities we obtain the balance of the energy.

5 Well-posedness of the limit model

In this section we focus on the existence, uniqueness and the properties of the solution for the
limit model (27), (28), and (29) with regular initial data. We will construct smooth solution
on any time interval [0, T ], T ∈ R+, following the same arguments as in the well posedness
proof for the Vlasov–Poisson problem with external magnetic field, cf. [3]. We assume that
the initial condition nin satisfies the hypotheses

H4) nin ≥ 0, |x|nin ∈ L1(R2), nin ∈W 1,1(R2) ∩W 1,∞(R2),

H5)
∫
R2nin(x) dx =

∫
R2D(x) dx,

and the external magnetic field B(x) verifies

B ∈ C2
b (R2), inf

x∈R2
|B(x)| = B0 > 0.

Solution integrated along the characteristics. First, a standard computation, the
equation (27) can be rewritten for the unknown n/B as

∂t

( n
B

)
+

(⊥E[n]

B
− σ

⊥∇ωc(x)

ω2
c (x)

)
· ∇x

( n
B

)
= 0. (30) EquivLimMo2D

For any smooth field E ∈ L∞(0, T ;W 1,∞(R2))2, we consider the associated characteristics
flow of (30) given by

d

dt
X (t; s, x) =

⊥E (t,X (t; s, x))

B (X (t; s, x))
− σ

⊥∇ωc (X (t; s, x))

ω2
c (X (t; s, x))

, t, s ∈ [0, T ],

X (s; s, x) = x, s ∈ [0, T ], x ∈ R2,
(31) equ:CharLimMo2D

where X(t; s, x) is the solution of the equation (31), t represents the time variable, s is the
initial time and x is the initial position. X(s; s, x) = x is our initial condition. Notice that by
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the hypothesis on the magnetic field B(x), the vector field σ
⊥∇ωc
ω2
c (x)

is also smooth with respect

to x and we have ∥∥∥∥σ⊥∇ωc

ω2
c (x)

∥∥∥∥
W 1,∞(R2)

≤ C(σ, ∥B∥W 1,∞(R2), B0).

Therefore, thanks to Cauchy-Lipschitz theorem, the characteristics in (31) are well defined

for any (s, x) ∈ [0, T ] × R2 and X(t; s, x) ∈ W 1,∞ ([0, T ]× [0, T ]× R2
)2
. Then the equation

(30) can be written as
d

dt

[
n (t,X (t; s, x))

B(X(t; s, x))

]
= 0,

which yields the solution of the transport equation (30) given by

n (t, x) = B(x)
n (0, X (0; t, x))

B(X(0; t, x))
= B(x)

nin (X (0; t, x))

B (X (0; t, x))
, t ∈ [0, T ]. (32) SolCharac2D

Conservation law on a volume. We have the following result∫
R2

|n(t, x)| dx =

∫
R2

nin(x) dx, t ∈ [0, T ]. (33) ConserLaw

Indeed, we denote J(t; s, x) is the Jacobian matrix of X(t; s, x) with respect to x at (t; s, x).
Then the evolution of determinant for the Jacobian matrix J(t; s, x) is given by

d

dt
detJ(t; s, x) = divx

(⊥E

B
− σ

⊥∇ωc

ω2
c (x)

)
(X(t; s, x))detJ(t; s, x),

detJ(s; s, x) = 1,

which is equivalent to

d

dt
detJ(t; s, x) = −

⊥E(t,X(t; s, x))

B(X(t; s, x))
· ∇B(X(t; s, x))

B(X(t; s, x))
detJ(t; s, x). (34) JacobDeter2D

On the other hand, using the equation (31) we deduce that

d

dt
ln |B (X (t; s, x))|

=
B(X(t; s, x))

|B(X(t; s, x))|
∇B (X (t; s, x))

|B (X (t; s, x))|
·
(⊥E (t,X (t; s, x))

B (X (t; s, x))
−

⊥∇ωc (X (t; s, x))

ωc(X (t; s, x))2

)
=

∇B(X(t; s, x))

B(X(t; s, x))
·
⊥E(X(t; s, x))

B(X (t; s, x))
. (35) LnBTrajec

Combining (34) and (35) yields

d

dt
detJ(t; s, x) = − d

dt
ln |B (X (t; s, x))| detJ(t; s, x),

and together with detJ(s; s, x) = 1 one gets |B (X (t; s, x))| detJ(t; s, x) = |B(x)|. Therefore,
integrating the equality (32) with respect to x and then changing the variable x to X(t; 0, x),
we obtain ∫

R2

|n(t, x)| dx =

∫
R2

|B (x)| |nin (X (0; t, x))|
|B (X (0; t, x))|

dx

=

∫
R2

|B (X (t; 0, x))| nin (x)
|B (x)|

detJ (t; 0, x) dx

=

∫
R2

nin(x) dx,

which completes the proof of the equality (33).
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A priori estimates. We establish here a priori estimates on the solution n(t, x) provided
by (32) and its derivative.

Lemma 5.1 (The bound in L∞(0, T ;W 1,∞(R2))). Let n(t, x) be a solution of (30) given
⟨BoInftyLimMod2D⟩ by (32). Then we have

∥n(t)∥L∞(R2) ≤ C(∥B∥L∞(R2), B0)∥nin∥L∞(R2), t ∈ [0, T ]. (36) InftyNorm2D

∥∇xn(t)∥L∞(R2) ≤ C

(
1 + exp

(∫ t

0
∥E(s)∥W 1,∞(R2)ds

))
, t ∈ [0, T ], (37) InftyNormGrad2D

for some constant C(q,m, ∥nin∥W 1,∞(R2), T, ∥B∥W 2,∞(R2), B0, σ).

Proof.
The bound (36) is obviouly from the formula (32) and the hypothesis of the magnetic field.
For the estimate (37), taking the derivative with respect to x in (32), we have

∇xn(t, x) =
t (∂xX) (0; t, x)

[
∇xnin (X (0; t, x))

B (X (0; t, x))
− nin (X (0; t, x))

B(X(0; t, x))

∇B (X (0; t, x))

B(X (0; t, x))

]
B (x)

+∇B(x)
nin (X (0; t, x))

B (X (0; t, x))
, (38) GradSolChar

which implies that

|∇xn(t, x)| ≤ C(nin, B,B0)(1 + | (∂xX) (0; t, x) |), (39) IneqGradSolChar

where C(nin, B,B0) is the constant depending on ∥nin∥W 1,∞(R2), ∥B∥W 1,∞(R2), B0. It therefore
remains to estimate the first derivative of X(0; t, x) with respect to x. Taking the derivative
with respect to x in (31), we deduce that

d

dt
(∂xX) (t) =

[(
∂x

⊥E
)
(t,X (t))

B (X (t))
−

⊥E(t,X(t))

B(X(t))
⊗ ∇B(X(t))

B(X(t))

]
∂xX(t)

+

[
2σ

⊥∇ωc(X(t))⊗∇ωc(X(t))

ω3
c (X(t))

− σ

(
∂x

⊥∇ωc

)
(X (t))

ω2
c (X (t))

]
∂xX(t),

and after integrating in time between s and t we find

|(∂xX)(t)| ≤ 1 + C(q,m,B,B0, σ)

∫ t

s
(∥E(τ)∥W 1,∞(R2) + 1)|(∂xX)(τ)|dτ,

where we have written X(t) instead of X(t; s, x) for simplicity, and C(q,m,B,B0, σ) stands
for the constant depending only on q,m, ∥B∥W 2,∞(R2), B0, σ. Thanks to Gronwall’s inequality
we deduce that

|(∂xX)(t; s, x)| ≤ C(q,m, T,B,B0, σ) exp

(∫ t

s
∥E(τ)∥W 1,∞(R2)dτ

)
. (40) EstGradCharac

Therefore, substituting (40) into (39) we get

|∇xn(t, x)| ≤ C(q,m, nin, T, B,B0, σ)

(
1 + exp

(∫ t

0
∥E(s)∥W 1,∞(R2)ds

))
,

which yields the desired estimate.
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Lemma 5.2 (The bound in L∞(0, T ;W 1,1(R2))). Let n(t, x) be a solution of (30) given by
⟨BoL1LimMod2D⟩ (32). Then we have

∥n(t)∥L1(R2) = ∥nin∥L1(R2), t ∈ [0, T ]. (41) L1Norm2D

∥∇xn(t)∥L1(R2) ≤ C

(
1 + exp

(∫ t

0
∥E(s)∥W 1,∞(R2)ds

))
, t ∈ [0, T ], (42) L1NormGrad2D

for some constant C(q,m, ∥nin∥W 1,∞(R2), ∥nin∥W 1,1(R2), T, ∥B∥W 2,∞(R2), B0, σ).

Proof.
(41) is clearly from (33). For the estimate (42), taking the absolute value on both sides in
(38) then integrating with respect to x and changing the variable x to X(t; 0, x), we get∫

R2

|∇xn(t, x)| dx ≤
∫
R2

|(∂xX)(0; t, ·)|
(
|∇xnin(x)|+

|∇B(x)|
|B(x)|

nin(x)

)
dx

+

∫
R2

|∇B(X(t; 0, x))|
|B(X(t; 0, x))|

nin(x) dx,

which implies that∫
R2

|∇xn(t, x)| dx ≤
(
sup
R2

|∂xX(0; t, ·)|+ C(∥B∥W 1,∞(R2), B0)

)
∥nin∥W 1,1(R2).

Using the inequality (40) we get the estimate (42).

Global existence of smooth solutions. We define the following set of electric field

Σ =
{
E ∈ L∞([0, T ];W 1,∞ (R2

))2
: ∥E(t)∥L∞

t,x
≤M, ∥∂xE (t)∥L∞

x
≤ α (t) , t ∈ [0, T ]

}
,

where the constantM > 0 and the function α(t) : [0, T ] → R+ will be determined later. Given
an electric field E in Σ. Considering the characteristic solution of (30) on R2, corresponding
to the electric field E, denoted by nE which is given by the formula (32). We then construct
the following map F on Σ, whose fixed point gives the solution of the system (30), (28), (29)

E → F (E) (x) = − q

2πϵ0
(∇ ln | · |) ∗x

(
nE −D

)
(x). (43) ?MapFixed2D?

We will show that the map F is left invariant on the set Σ for a convenient choice of the
positive constant M and the function α(t), then we want to establish an estimate like

∥F (E) (t)−F(Ẽ)(t)∥L∞(R2) ≤ CT

∫ T

0
∥(E − Ẽ)(t)∥L∞(R2)dt, ∀t ∈ [0, T ] , (44) Mapconstract2D

for some constant CT , not depending on E, Ẽ. After that, the existence of the solution of the
system (30), (28), and (29) immediately, based on the construction of an iterative method
for F . Before starting, let us recall the following classical inequality cf. [11].

⟨ClassIneq⟩Lemma 5.3 Let ρ(x) be a function which belongs to L1(R2) ∩W 1,∞(R2) and let U(x) such
that

U(x) =

∫
R2

x− y

|x− y|2
ρ(y)dy.

Then we have the following estimates

∥U∥L∞(R2) ≤ C∥ρ∥1/2
L1(R2)

∥ρ∥1/2
L∞(R2)

, (45) LemmaE

∥∇xU∥L∞(R2) ≤ C(1 + ∥ρ∥L∞(R2)(1 + ln+ ∥∇xρ∥L∞(R2)) + ∥ρ∥L1(R2)), (46) LemmaGradE

here the notation ln+ stands for the positive part of ln.
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?⟨ClosedSet2D⟩?Lemma 5.4 There exists a positive constant M and a function α(t) such that F(Σ) ⊂ Σ.

Proof.
Let E ∈ Σ. Thanks to (45), (36) and (41) we have

∥F(E)(t)∥L∞(R2) ≤ C
(
∥nin∥L1(R2) + ∥D∥L1(R2)

)1/2 (∥nin∥L∞(R2) + ∥D∥L∞(R2)

)1/2
,

for some constant C(q, ϵ0, ∥B∥L∞(R2), B0). Therefore, choosing the constantM in the set Σ as
the term on the right hand side of this inequality, we conclude that supt∈[0,T ] ∥F(E)(t)∥L∞(R2) ≤
M , for any E ∈ Σ.
We estimate now ∥∂xF(E)(t)∥L∞(R2). Thanks to (46), (36) and (41) we have

∥∂xF(E)(t)∥L∞(R2) ≤ C0

(
1 + ln+(∥∇xn(t)∥L∞(R2) + ∥∇xD∥L∞(R2))

)
,

for some constant C0(q, ϵ0, ∥nin∥L∞(R2), ∥nin∥L1(R2), ∥D∥L1(R2), ∥D∥L∞(R2), ∥B∥L∞(R2), B0), which

leads to estimate ln+(∥∇xn(t)∥L∞(R2) + ∥∇xD∥L∞(R2)). By inequality (37), we deduce that

∥∇xn(t)∥L∞(R2) + ∥∇xD∥L∞(R2) ≤ C1

(
1 + exp

(∫ t

0
∥∂xE(s)∥L∞(R2)ds

))
,

for some constant C1(q,m, ∥nin∥W 1,∞(R2), ∥D∥W 1,∞(R2), T, ∥B∥W 2,∞(R2), B0). Using the stan-
dard inequality 1 + ex ≤ ex+1 holds for any x ≥ 0, we deduce that

ln+(∥∇xn(t)∥L∞(R2) + ∥∇xD∥L∞(R2)) ≤ (ln+C1 + 1) +

∫ t

0
∥∂xE(s, ·)∥L∞(R2)ds.

Finally, denoting by C2 = ln+C1 + 1 we have

∥∂xF(E)(t)∥L∞(R2) ≤ C0C2 + C0

∫ t

0
∥∂xE(s)∥L∞(R2)ds.

Denote by α(t) the solution on [0, T ] of the linear equation dα/dt = C0α(t) with the initial
condition α(0) = C0C2. Therefore, choosing the function α(t) = C0C2e

C0t in the set Σ, then
we have ∥∂xF(E)(t)∥L∞(R2) ≤ α(t), t ∈ [0, T ] for any E ∈ Σ.

Now we are ready to establish the inequality (44). Let us consider E, Ẽ ∈ Σ and denote

by nE , ñẼ the characteristics solutions of (30) and (31) corresponding to the electric fields
E, Ẽ respectively. It is easily seen from (45) that

∥F (E) (t)−F(Ẽ)(t)∥L∞(R2) ≤ CT ∥nE(t)− ñẼ(t)∥1/2
L∞(R2)

∥nE(t)− ñẼ(t)∥1/2
L1(R2)

, (47) MapcontractBis

where CT is a positive constant, not depending on E, Ẽ. Then, the inequality (44) is derived
from the inequality (47) and Lemmas 5.5 and 5.6 below.

⟨DiffNormInfty2D⟩Lemma 5.5 We have

∥nE(t)− ñẼ(t)∥L∞(R2) ≤ CT

∫ t

0
∥E(s)− Ẽ(s)∥L∞(R2)ds, t ∈ [0, T ],

for some constant CT > 0, not depending on E, Ẽ.
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Proof.
Let us denote XE , X̃Ẽ the characteristic solutions of (31) corresponding to E, Ẽ respectively.
Thanks to the formula (32) we have

|nE(t, x)− ñẼ(t, x)| ≤ |B(x)| |nin(X
E(0; t, x))− nin(X̃

Ẽ(0; t, x))|
|B(XE(0; t, x))|

+ |B(x)|nin(XẼ(0; t, x))

∣∣∣∣∣ 1

B(XE(0; t, x))
− 1

B(X̃Ẽ(0; t, x))

∣∣∣∣∣ ,
which implies that

|nE(t, x)− ñẼ(t, x)| ≤ C|XE(0; t, x)− X̃Ẽ(0; t, x)|, (48) DiffDensity2D

for some constant C(∥nin∥W 1,∞(R2), ∥B∥W 1,∞(R2), B0). On the other hand, from the charac-
teristic equation (31) we deduce that

d

dt

(
XE − X̃Ẽ

)
(t; s, x) =

⊥E
(
t,XE (t; s, x)

)
B (XE (t; s, x))

−
⊥Ẽ(t, X̃Ẽ (t; s, x))

B(X̃Ẽ(t; s, x))

− σ
⊥∇ωc

(
XE (t; s, x)

)
ω2
c (X

E (t; s, x))
+ σ

⊥∇ωc(X̃
Ẽ(t; s, x))

ω2
c (X̃

Ẽ(t; s, x))
,

(XE − X̃Ẽ) (s; s, x) = 0.

The first term in the right hand side of the previous equality can be estimated by∣∣∣∣∣⊥E
(
t,XE (t)

)
B (XE (t))

−
⊥Ẽ(t, X̃Ẽ(t))

B(X̃Ẽ(t))

∣∣∣∣∣ ≤
∣∣∣∣∣⊥E(t,XE(t))− ⊥Ẽ(t,XE(t))

B(XE(t))

∣∣∣∣∣
+

∣∣∣∣∣∣
⊥Ẽ(t,XE(t))− ⊥Ẽ

(
t, X̃Ẽ (t)

)
B (XE (t))

∣∣∣∣∣∣
+

∣∣∣∣∣⊥Ẽ(t, X̃Ẽ(t))

(
1

B(XE(t))
− 1

B(X̃Ẽ(t))

)∣∣∣∣∣
≤ 1

B0
∥E(t)− Ẽ(t)∥L∞(R2) + C(∥B∥W 1,∞(R2), B0,M, T )

∣∣∣X̃E(t)− X̃Ẽ(t)
∣∣∣ ,

since Ẽ ∈ Σ while the second term can be bounded by∣∣∣∣∣∣σ
⊥∇ωc

(
XE (t)

)
ω2
c (X

E (t))
− σ

⊥∇ωc

(
X̃Ẽ (t)

)
ω2
c

(
X̃Ẽ (t)

)
∣∣∣∣∣∣ ≤ C(∥B∥W 2,∞(R2), B0, σ)

∣∣∣XE (t)− X̃Ẽ (t)
∣∣∣ ,

where we denote (XE(t), X̃Ẽ(t)) = (XE(t; s, x), X̃Ẽ(t; s, x)). Integrating between s and t the

differential system of XE(t)− X̃Ẽ(t), and combining the previous estimations we find∣∣∣XE (t)− X̃Ẽ (t)
∣∣∣ ≤ ∫ t

s

1

B0
∥E (τ)− Ẽ (τ)∥L∞(R2)dτ + C

∫ t

s

∣∣∣XE (τ)− X̃Ẽ (τ)
∣∣∣dτ,

for some constant C(∥B∥W 2,∞(R2), B0, σ, T,M). Thanks to Gronwall’s inequality one gets∣∣∣XE (t; s, x)− X̃Ẽ (t; s, x)
∣∣∣ ≤ eC|t−s| 1

B0

∫ t

s
∥E (τ)− Ẽ (τ)∥L∞(R2)dτ,

which together with (48) yields the desired estimate of the lemma.

22



⟨DiffNormL12D⟩Lemma 5.6 We have

∥nE − ñẼ∥L1(R2) ≤ CT

∫ t

0
∥E(s, ·)− Ẽ(s, ·)∥L1(R2)ds, t ∈ [0, T ],

for some constant CT > 0, not depending on E, Ẽ.

Proof.
Since nE , ñẼ are solutions of (30) corresponding to E, Ẽ thus we deduce that

∂t

(
nE − ñẼ

)
+B

(⊥E

B
− σ

⊥∇ωc

ω2
c

)
· ∇x

(
nE − ñẼ

B

)
+
(
⊥E − ⊥Ẽ

)
· ∇x

(
ñẼ

B

)
= 0,(

nE − ñẼ
)
(0, x) = 0.

Multiplying this equation by sign(nE − ñẼ) and then integrating with respect to x we find

d

dt

∫
R2

∣∣∣nE(t)− ñẼ(t)
∣∣∣dx+

∫
R2

B

(⊥E

B
−

⊥∇ωc

ω2
c

)
· ∇x

∣∣∣∣∣nE − ñẼ

B

∣∣∣∣∣ dx
+

∫
R2

sign
(
nE − ñẼ

)(
⊥E − ⊥Ẽ

)
· ∇x

(
ñẼ

B

)
dx = 0. (49) DeriDiffNormL1

Thanks to Lemma 5.2 we have nE , ñẼ ∈W 1,1(R2) a.e t ∈ [0, T ] and since divx

[
B
(

⊥E
B − ⊥∇ωc

ω2
c

)]
=

0 so by the divergence theorem, we obtain that∫
R2

B

(⊥E

B
−

⊥∇ωc

ω2
c

)
· ∇x

∣∣∣∣∣nE − ñẼ

B

∣∣∣∣∣ dx = 0.

Then, from (49) we imply

d

dt

∫
R2

∣∣∣nE(t)− ñẼ(t)
∣∣∣ dx ≤ C(∥B∥W 1,∞(R2), B0)∥E(t)− Ẽ(t)∥L∞(R2)∥ñẼ(t)∥W 1,1(R2).

Integrating between 0 and t of this inequality leads to

∥nE(t)−ñẼ(t)∥L1(R2) ≤ C(∥B∥W 1,∞(R2), B0) sup
t∈[0,T ]

∥ñẼ(t, ·)∥W 1,1(R2)

∫ t

0
∥E(s)−Ẽ(s)∥L∞(R2)ds.

Finally, thanks to the estimate (42) we conclude the proof.

Now, we shall prove that the sequence of iterative method by map F converges to a solu-
tion of the original problem. First, we consider E0 = 0, then we put E1 = F(E0), ..., Ek+1 =
F(Ek) for each k ∈ N. Applying (44) we have

∥Ek+1 (t)− Ek (t)∥L∞(R2) ≤ (CT )
k t

k

k!
∥E1 (t)− E0 (t)∥L∞(R2),

which yields that there exists E ∈ L∞((0, T )×R2) such that Ek tends to E in L∞((0, T )×R2)
as k → +∞. Moreover, since Ek ∈ Σ hence we also have E ∈ Σ. This allows us to define the

action of the map F on the vector field E as F(E) = − q

2πϵ0
∇ ln | · | ∗

(
nE −D

)
where nE is

the solution of (30) associated with the electric field E. Using again (44) we find

∥Ek+1 (t)−F(E) (t)∥L∞(R2) = ∥F(Ek)(t)−F(E)(t)∥L∞(R2) ≤ CT ∥Ek (t)− E (t)∥L∞(R2) ,
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which leads to Ek+1 → F(E) in L∞((0, T )×R2) as k → ∞. Therefore we get F(E) = E and
nE is the solution of (27), (28), and (29). In addition, by Lemmas 5.1, 5.2 we conclude that
nE ∈ L∞(0, T ;W 1,∞(R2)∩W 1,1(R2)). Hence, from (30), ∂tn

E ∈ L∞(0, T ;L1(R2)∩L∞(R2)).
Thanks to Lemma 5.3, we have ∂tE ∈ L∞((0, T ) × R2)2, thus E ∈ W 1,∞((0, T ) × R2). It
remains to verify that the electric field E lies in L∞(0, T ;L2(R2)). Applying Lemma 2.5,
we need to show that |x|n ∈ L∞(0, T ;L1(R2)). Indeed, by (32) and the change of variable
x 7→ X(t; 0, x) we have ∫

R2

|x||n(t, x)| dx =

∫
R2

|X(t; 0, x)|nin(x) dx.

On the other hand, from (31) we deduce for any t ∈ [0, T ] that

|X(t; 0, x)| ≤ |x|+ C(∥E∥L∞ , ∥B∥L∞(R2), B0)T,

together with (1 + |x|)nin ∈ L1(R2) yields the desired result.

Uniqueness of smooth solutions. The uniquenness of smooth solution n(t, x) which
belongs to L∞(0, T ;W 1,1(R2) ∩W 1,∞(R2)) is immediately derived from the inequality (44)
and Gronwall’s inequality.

Based on the previous details of the arguments we establish the following result.

⟨main_sol_Lim⟩Proposition 5.1 Let T > 0. Let B ∈ C2
b (R2) be a smooth magnetic field, such that

infx∈R2 B(x) = B0 > 0 and the fixed background density D verifies |x|D ∈ L1(R2), D ∈
W 1,1(R2)∩W 1,∞(R2). Assume that the initial condition nin satisfies the hypotheses H4, H5.
There is a unique smooth solution n(t, x) ≥ 0 on [0, T ] × R2 of the limit model (27), (28),
and (29) satisfying the following properties:∫

R2

n(t, x) dx =

∫
R2

D(x) dx, t ∈ [0, T ],

n ∈W 1,∞(0, T ;L1(R2)) ∩W 1,∞((0, T )× R2), |x|n ∈ L∞(0, T ;L1(R2)),

E[n] ∈W 1,∞((0, T )× R2), E[n] ∈ L∞(0, T ;L2(R2)).

⟨HighOrder⟩Remark 5.1 From the estimates (37), (46), and (39) we realize that there is a relation in the
L∞-norm between the following quantities ∇xn, ∂xX, ∂xE. In the same way, we can extend
this relation to the higher order derivative ∂2xn, ∂

2
xX, ∂

2
xE by noting that the inequality (46)

can apply to estimate ∂2xU given by

∥∂2xU∥L∞(R2) ≤ C(1 + ∥∇xρ∥L∞(R2))(1 + ln+ ∥∂2xρ∥L∞(R2)) + ∥∇xρ∥L1(R2)).

By similar arguments we can prove further regularity results for the strong solution of
the limit model. The proof is standard and is left to the reader.

⟨Regularity⟩Proposition 5.2 Let T > 0. Let B ∈ C3
b (R2) be a smooth magnetic field, such that

infx∈R2 B(x) = B0 > 0 and the fixed background density D verifies |x|D ∈ L1(R2), D ∈
W 1,1(R2)∩W 1,∞(R2). Assume that the initial condition nin belongs to W 2,1(R2)∩W 2,∞(R2)
and the background density D lies in W 2,∞(R2). Then the global in time strong solution
(n,E[n]) constructed in Proposition 5.1 satisfies

∂2xn ∈ L∞(0, T ;L∞(R2)), E[n] ∈W 2,∞((0, T )× R2),

∂t∇xn ∈ L∞((0, T )× R2), ∂2t n ∈ L∞((0, T )× R2).
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In the rest of this section, we provide some estimates on ∥ lnn∥L∞(0,T ;W 2,∞(R2)) if we
assume that lnnin belongs to W 2,∞(R2). Let us start with the estimate of ∥ lnn∥L∞((0,T )×R2)

in the lemma below.

⟨BoundLoga⟩
Lemma 5.7 Assume that lnnin ∈ L∞((0, T ) × R2) and B ∈ Cb(R2) with infx∈R2 B(x) =
B0 > 0. Then, there exists a constant C > 0 depends only on ∥ lnnin∥L∞((0,T )×R2), ∥B∥L∞(R2), B0

and T > 0 such that
∥ lnn∥L∞(R2) ≤ C, t ∈ [0, T ].

Proof.
From the equation (30), we deduce that

∂t ln
( n
B

)
+

(⊥E

B
− σ

⊥∇ωc

ω2
c

)
· ∇ ln

( n
B

)
= 0. (50) equ:LogaLimMod2D

Thanks to the formula of the characteristic solution (32), we get

ln
( n
B

)
(t, x) = ln

( n
B

)
(0, X(0, t, x)) (51) SolLogChar

which gives the estimate in the lemma.

We next provide higher-order estimates on lnn.

⟨BoundLogHigh⟩Lemma 5.8 Assume that lnnin ∈ W 2,∞((0, T ) × R2) and B ∈ C3
b (R2) with infx∈R2 B(x) =

B0 > 0. Then we have

∥∂t lnn∥L∞(R2) + ∥∇x lnn∥L∞(R2) ≤ C1, t ∈ [0, T ],

∥∂2x lnn∥L∞(R2) + ∥∂t∇x lnn∥L∞(R2) ≤ C2, t ∈ [0, T ],

where the constants Ck > 0, k = 1, 2 depend only on lnnin, B et B0.

Proof.
From the equation (51) we have

∇x ln
( n
B

)
= (t∂xX)(0; t, x) (∇ lnnin) (X(0; t, x))− (t∂xX)(0; t, x)

(
∇B
B

)
(X(0; t, x)). (52) GradSolLogChar

By (40), the derivative in x of X(0; t, x) is bounded in L∞((0, T ) × R2), thus we get the
L∞ bound for the ∇x lnn. Moreover, from (50) we deduce that ∂t lnn ∈ L∞((0, T ) × R2),
together with the above discussion gives the first assertion in the lemma.
We next estimate ∥∂2x lnn∥L∞(R2). We denote by ∂i = ∂xi for i = 1, 2. Taking the derivative
with respect to xi in the equation (52) we get

∂i∇x ln
( n
B

)
= t [∂i∂xX] (0; t, x) (∇ lnnin) (X(0; t, x))

+ t∂xX(0; t, x)
{
∂2x(lnnin)(X(0; t, x))(∂iX)(0; t, x)

}
− t [∂i∂xX] (0; t, x)

(
∇B
B

)
(X(0; t, x))

+ t∂xX(0; t, x)

(
∂x

(
∇B
B

))
(X(0; t, x))(∂iX)(0; t, x).
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By Remark 5.1 it is well known that ∂2xX(0; t, x) ∈ L∞((0, T ) × R2). Hence we obtain the
L∞ bound for ∂2x lnn.
Finally we estimate ∥∂t∇x lnn∥L∞(R2). Taking the time derivative in (52) yields

∂t∇x

(
ln
n

B

)
= (t∂x(∂tX))(0; t, x) (∇ lnnin) (X(0; t, x))

+ (t∂xX)(0; t, x)∂2x (lnnin) (X(0; t, x))(∂tX)(0; t, x)

− (t∂x(∂tX))(0; t, x)

(
∇B
B

)
(X(0; t, x))

+ (t∂xX)(0; t, x)

(
∂x

(
∇B
B

))
(X(0; t, x))(∂tX)(0; t, x).

The L∞ bounds of ∂tX(0; t, x) and ∂x(∂t)X(0; t, x) are derived from the equation (31) and
the regularity of E and B. Combining two of the above discussion yields the second estimate
in the lemma.

6 Convergence results

We now concentrate on the asymptotic behavior as ε ↘ 0 of the family of weak solutions
(f ε, E[f ε])ε>0 of the Vlasov-Poisson-Fokker-Planck system (4), (5), and (6) and we establish
rigorously the connection to the fluid model (7), (8), and (9). We justify the convergence of
the solutions (n[f ε], E[f ε])ε>0 of the system (26) towards the solution (n,E[n]) of the limit
problem when ε goes to zero by performing the balance of the relative entropy between nε

and n. The proof requires some regularity properties of the limit solutions as well as the
convergence of the initial data.
We intend to estimate the modulated energy E [nε(t)|n(t)], so we will write as

E [nε|n] ==

∫
R2

σnh

(
nε

n

)
dx+

ϵ0
2m

∫
R2

|∇xΦ[n
ε]−∇xΦ[n]|2 dx

=

∫
R2

(σnε lnnε +
ϵ0
2m

|∇xΦ[n
ε]|2) dx−

∫
R2

(σn lnn+
ϵ0
2m

|∇xΦ[n]|2) dx

−
∫
R2

{
σ(1 + lnn) +

q

m
Φ[n]

}
(nε − n) dx

:= E [nε]− E [n]−
∫
R2

k[n](nε − n) dx, (53) equ:EntropyDen2D

where we have been denoted by k[n] = σ(1 + lnn) +
q

m
Φ[n]. We introduce as well the

modulated energy of f ε with respect to nεM , given by

σ

∫
R2

∫
R2

nεMh

(
f ε

nεM

)
dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε]−∇xΦ[n

εM ]|2︸ ︷︷ ︸
=0

dx

= σ

∫
R2

∫
R2

f ε ln f ε − f ε lnnε + f ε ln(2πσ) + f ε
|v|2

2σ
dvdx

=

∫
R2

∫
R2

σfε ln f ε + f ε
|v|2

2
dvdx+

ϵ0
2m

∫
R2

|∇xΦ[f
ε]|2 dx

−
∫
R2

σnε lnnε dx− ϵ0
2m

∫
R2

|∇xΦ[n
ε]|2 dx+ σ ln(2πσ)

∫
R2

∫
R2

f ε dvdx

= E [f ε]− E [nε] + σ ln(2πσ)

∫
R2

∫
R2

f ε dvdx.
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Thanks to the free energy balance and mass conservation of the equation (4) provided by
Proposition 3.1 one gets

E [nε(t)]− E [nε(0)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx (54) equ:BalanEnerDens2D

− σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

= − 1

ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds.

Thanks to Proposition 4.1 and together with (53), (54) leads to

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx−

∫ t

0

d

ds

∫
R2

k[n](nε − n) dxds.

(55) BalModEnerDens2D

The next task is to evaluate the time derivative of − d
dt

∫
R2k[n](n

ε − n) dx. To start estab-
lishing, let us rewrite the model (26) for the concentration nε as following

∂tn
ε + divxA[n

ε] = divxF
ε, (56) EquivModCon2D

where the flux A[nε] is defined by A[nε] = nε
[

⊥Eε

B(x) − σ
⊥∇ωc(x)
ω2
c (x)

]
. Similarly, the limit model

(7) for the limit concentration n can be rewritten as

∂tn+ divxA[n] = 0, (57) EquivLimMod2D

with the flux A[n] = n
[⊥E[n]

B(x) − σ
⊥∇ωc(x)
ω2
c (x)

]
. By direct formal computations, we get

− d

dt

∫
R2

k[n](nε − n) dx = −
∫
R2

(
σ
∂tn

n
+

q

m
∂tΦ[n]

)
(nε − n) dx−

∫
R2

k[n](∂tn
ε − ∂tn) dx

= −
∫
R2

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx

−
∫
R2

∇xk[n] · (A[nε]−A[n]− F ε) dx.

We shall establish this equality for the weak solution of (56) and the strong solution of (57).

⟨EvoluFirstTerm⟩Lemma 6.1 With the notations in (56), (57) we have the equality

− d

dt

∫
R2

σ(1 + lnn)(nε − n) dx = −σ
∫
R2

(nε − n)∂t lnn dx−
∫
R2

(A[nε]−A[n]) · [σ∇x(1 + lnn)] dx

+
d

dt

∫
R2

ε
⊥jε

qωc(x)
· ∇x[σ(1 + lnn)] dx−

∫
R2

ε
⊥jε

qωc(x)
∂t∇x[σ(1 + lnn)] dx

+
1

τ

∫
R2

⊥jε

qωc(x)
· ∇x[σ(1 + lnn)] dx+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[⊥∇x[σ(1 + lnn)]

ωc(x)

]
dx.

Proof.
From (56), (57), we find nε − n satisfying the following equation in the sense of distribution

∂t(n
ε − n) + divx (A[n

ε]−A[n]) = divxF
ε.
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Then for any test function φ ∈ C1
0

(
[0, T [×R2

)
we have∫ T

0

∫
R2

(nε − n)∂tφ dxdt+

∫ T

0

∫
R2

(A[nε]−A[n]) · ∇xφ dxdt+

∫ T

0

∫
R2

ε
⊥jε

qωc(x)
· ∂t∇xφ dxdt

− 1

τ

∫ T

0

∫
R2

⊥jε

qωc(x)
· ∇xφ dxdt−

∫ T

0

∫
R2

∫
R2

(v ⊗ v − σI2) f
ε dv : ∂x

(⊥∇xφ

ωc(x)

)
dxdt

+

∫
R2

ε
⊥jεin
qωc(x)

· ∇xφ(0, x) dx+

∫
R2

(nεin − nin)φ(0, x) dx = 0. (58) WeakDiffDensi2D

We test φ(t, x) where φ(t, x) = θ(t)[σ(1 + lnn(t, x))]χR(|x|) and where θ ∈ C1
0 ([0, T [), χ was

defined in Lemma 3.1. Notice that by Lemmas 5.7, 5.8, and a standard computations, the
sequences ∂tφ,∇xφ, ∂t∇xφ, ∂x(∇xφ) are uniformly bounded with respect to R in L∞((0, T )×
R2). On the other hand, for each ε > 0, using the properties on the solution i .e., taking into
account that (1 + |v|2)f ε ∈ L∞(0, T ;L1(R2)), Eε ∈ L∞((0, T ) × R2)2, we can easily apply
the dominated convergence as R → ∞. Passing to the limit as R → ∞, we get for any test
function θ ∈ C1

0 ([0, T [) that∫ T

0

∫
R2

(nε − n)∂tθ[σ(1 + lnn)] dxdt+ σ

∫ T

0

∫
R2

(nε − n)θ(t)∂t lnn dxdt

+

∫ T

0

∫
R2

(A[nε]−A[n]) · θ(t)∇[σ(1 + lnn)] dxdt+

∫ T

0

∫
R2

ε
⊥jε(t)

qωc(x)
· ∂tθ∇[σ(1 + lnn)] dxdt

+

∫ T

0

∫
R2

ε
⊥jε

qωc(x)
θ(t)∂t∇[σ(1 + lnn)] dxdt− 1

τ

∫ T

0

∫
R2

⊥jε

qωc(x)
· θ(t)∇[σ(1 + lnn)] dxdt

−
∫ T

0

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[
θ(t)

⊥∇[σ(1 + lnn)]

ωc(x)

]
dxdt

+

∫
R2

ε
⊥jεin
qωc(x)

· θ(0)∇x[σ(1 + lnnin)] dx+

∫
R2

(nεin − nin)θ(0)[σ(1 + lnnin)] dx = 0,

which implies the desired equality in the lemma.

⟨EvoluSecdTerm⟩Lemma 6.2 With the notations in (56), (57) we have the equality

− d

dt

∫
R2

q

m
Φ[n](nε − n) dx = −

∫
R2

(nε − n) · q
m
∂tΦ[n] dx−

∫
R2

(A[nε]−A[n]) · q
m
∇xΦ[n] dx

+
d

dt

∫
R2

ε
⊥jε

qωc(x)
· q
m
∇xΦ[n] dx−

∫
R2

ε
⊥jε

qωc(x)
· q
m
∂t∇xΦ[n] dx

+
1

τ

∫
R2

⊥jε

qωc(x)
· q
m
∇xΦ[n] dx+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

 q

m
⊥∇xΦ[n]

ωc(x)

 dx.

Proof.
We test φ(t, x) = q

mθ(t)Φ[n]χR(|x|) in (58). Notice that by Proposition 5.2 we have E[n] ∈
W 2,∞((0, T )× R2), which proves that E[n] is continuously differential with respect to (t, x).
So we have Φ[n] ∈ C1([0, T ];C2(R2)). Then we use the same argument as in Lemma 6.1
which yields the result of the lemma.

Now we combine Lemmas 6.1, 6.2 and further computations, we get

Proposition 6.1
With the notations in (56), (57), we have the evolution of the following equality

⟨TimeEvolution2D⟩

− d

dt

∫
R2

k[n](nε − n) dx =

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(Eε − E[n]) dx+K(t, x),
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where we denote by

K(t, x) =
d

dt

∫
R2

ε
⊥jε

qωc(x)
· ∇xk[n] dx−

∫
R2

ε
⊥jε

qωc(x)
∂t∇xk[n] dx

+
1

τ

∫
R2

⊥jε

qωc(x)
· ∇xk[n] dx+

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

(⊥∇xk[n]

ωc(x)

)
dx.

Proof. First thanks to Lemma 2.5 and Poisson’s equation, the first term on the right hand
side in the equality of Lemma 6.2 can be written as

−
∫
R2

(nε − n)
q

m
∂tΦ[n] dx = −

∫
R2

q

m
(Φ[nε]− Φ[n])∂tn dx.

Then we together this equality with the first term on the right hand side in the equation of
Lemma 6.1 to obtain

−
∫
R2

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx =

∫
R2

divxA[n]

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx

=

∫
R2

σdivx

(⊥E[n]

B(x)

)
(nε − n) dx+ σ

∫
R2

A[n]

n
· ∇ lnn(nε − n) dx+

∫
R2

A[n] · q
m
(Eε − E[n]) dx

=

∫
R2

∇xk[n] ·
A[n]

n
(nε − n) dx+

∫
R2

A[n] · q
m
(Eε − E[n]) dx. (59) First_term_Prop6.1

Observe that

A[nε]−A[n]− A[n]

n
(nε − n) = nε

[ ⊥Eε

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
− n

[⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
−
[ ⊥E[n]

B(x)
− σ

⊥∇ωc(x)

ω2
c (x)

]
(nε − n)

= nε
⊥(Eε − E[n])

B(x)
,

thus we combine the first term of the last line of (59) with the second term of the equation
of Lemmas 6.1 and 6.2 to get

−
∫
R2

∇xk[n] · nε
⊥(Eε − E[n])

B(x)
dx.

On the other hand, we can write the divergence of the flux A[n] in (57) as

divxA[n] = −divx

(
n

ωc(x)
⊥∇xk[n]

)
,

so the second term of the last line of (59) can be written as

−
∫
R2

⊥∇xk[n] · n
(Eε − E[n])

B(x)
dx.

Finally, we obtain the sum of the first two terms of the equation of Lemmas 6.1 and 6.2∫
R2

⊥∇xk[n] · nε
(Eε − E[n])

B(x)
dx−

∫
R2

⊥∇xk[n] · n
(Eε − E[n])

B(x)
dx

=

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(Eε − E[n]) dx.

So, Proposition 6.1 is proved.
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Coming back to (55), the modulated energy balance becomes

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

+

∫ t

0

∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(E[nε]− E[n]) dxds+

∫ t

0
K(s, x)ds (60) BalModEnerDens2DBis

where∫ t

0
K(s, x)ds =

∫ t

0

d

ds

∫
R2

ε
⊥jε

qωc(x)
· ∇xk[n] dxds

−
∫ t

0

∫
R2

ε
⊥jε

qωc(x)
∂s∇xk[n(s)] dxds+

1

τ

∫ t

0

∫
R2

⊥jε

qωc(x)
· ∇xk[n] dxds

+

∫ t

0

∫
R2

(∫
R2

(v ⊗ v − σI2)f
ε dv

)
: ∂x

[⊥∇xk[n]

ωc(x)

]
dxds

:= K1 +K2 +K3 +K4.

In order to apply Gronwall’s lemma, we will estimate the integrals in the last line of (60).
Thanks to the formula

(nε − n)(E[nε]− E[n]) =
ϵ0
q
[divx(E[nε]− E[n])](E[nε]− E[n])

=
ϵ0
q
divx

(
(E[nε]− E[n])⊗ (E[nε]− E[n])− |E[nε]− E[n]|2

2
I2

)
,

we obtain∫
R2

⊥∇xk[n]

B(x)
· (nε − n)(E[nε]− E[n]) dx

=
ϵ0
q

∫
R2

(
(E[nε]− E[n])⊗ (E[nε]− E[n])− |E[nε]− E[n]|2

2
I2

)
: ∂x

(⊥∇xk[n]

B(x)

)
dx

≤ ϵ0
m

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

(
1 +

√
2

2

)∫
R2

|E[nε]− E[n]|2 dx,

where for any matrix P ∈ M2,2(R), the notation ∥P∥ stands for (P : P )1/2. Next we shall
estmate the integrals Ki, for i = 1, ..., 4. For K1, we have

K1 = ε

∫
R2

⊥jε(t, x)

qωc(x)
· ∇xk[n(t)] dx− ε

∫
R2

⊥jε(0, x)

qωc(x)
· ∇xk[n(0)] dx

≤ m

qB0

√
ε

∫
R2

∫
R2

(f ε(t, x, v) + f ε(0, x, v))

(
ε
|v|2

2
+

∥∇xk[n]∥2L∞

2

)
dvdx.

For K2, an elementary estimate yields

K2 ≤
m

qB0
∥∂s∇xk[n]∥L∞(R2)ε

∫ t

0

∫
R2

∫
R2

(
|v|2

2
+

1

2

)
f ε(s, x, v) dvdxds.

For K3, since j
ε = q

∫
R2(σ∇vf

ε + vf ε) dv we have

K3 = −1

τ

∫ t

0

∫
R2

∫
R2

(σ∇vf
ε + vfε) ·

⊥∇xk[n]

ωc(x)
dvdxds

≤ 1

4ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vf ε|2

f ε
dvdxds+

m

qB0τ
∥∇xk[n]∥L∞ε

∫ t

0

∫
R2

∫
R2

f ε dvdxds.
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For K4, since∫
Rd

(v ⊗ v − σI2)f
ε dv =

∫
Rd

(vfε + σ∇vf
ε)⊗ v dv =

∫
Rd

(vf ε + σ∇vf
ε)√

εf ε
⊗ v
√
εf ε dv,

we have

K4 ≤
1

4ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds+

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞

ετ

∫ t

0

∫
R2

∫
R2

|v|2f ε dvdxds.

Plugging the above computations in the equality (60), the modulated energy balance becomes
for 0 ≤ t ≤ T

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤ E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

+

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞(R2)

(
2 +

√
2
) ϵ0
2m

∫
R2

|E[nε]− E[n]|2 dx

+

(
m

2qB0
∥∂s∇xk[n]∥L∞ +

∥∥∥∥∂x(⊥∇xk[n]

ωc(x)

)∥∥∥∥
L∞

τ

)
ε

∫ T

0

∫
R2

∫
R2

|v|2f ε dvdxdt

+
m

qB0

√
ε sup
t∈[0,T ]

ε

∫
R2

∫
R2

|v|2f ε dvdx

+
m

qB0

√
ε

(
∥∇xk[n]∥L∞ +

√
ε
T

2

(
∥∂s∇xk[n]∥L∞ +

2

τ
∥∇xk[n]∥L∞

))∫
R2

∫
R2

f ε(0, x, v) dvdx.

Thanks to Lemma 3.4 and (53) for some constant CT , 0 ≤ t ≤ T , 0 < ε < 1 we obtain

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤ E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

∫ t

0
E [nε(s)|n(s)]ds+ CT

√
ε.

Applying Gronwall’s lemma, we deduce that for 0 ≤ t ≤ T , 0 < ε < 1

E [nε(t)|n(t)] + σ

∫
R2

∫
R2

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

4ετ

∫ t

0

∫
R2

∫
R2

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤
[
E [nε(0)|n(0)] + σ

∫
R2

∫
R2

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

√
ε

]
eCT t.

The above inequality says that the particle density f ε remains close to the Maxwellian with
the same concentration, i .e., nε(t)M , and nε(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)
We justify the convergence of f ε toward nM in L∞(0, T ;L1(R2×R2)), the other convergences
being obvious. We use the Csisár -Kullback inequality in order to control the L1 norm by
the relative entropy, cf. [14, 23]∫

Rn

|g − g0|dx ≤ 2max

{(∫
Rn

g0dx

)1/2

,

(∫
Rn

gdx

)1/2
}(∫

Rn

g0h

(
g

g0

)
dx

)1/2
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for any non negative integrable functions g0, g : Rn → R. Applying two times the Csisár
-Kullback inequality we obtain∫

R2

∫
R2

|f ε(t, x, v)− n(t, x)M(v)| dvdx

≤
∫
R2

∫
R2

|f ε(t, x, v)− nε(t, x)M(v)| dvdx+

∫
R2

|nε(t, x)− n(t, x)| dx

≤ 2
√
Min

(
nε(t)M(v)h

(
f ε(t)

nε(t)M

))1/2

+ 2max
{√

Min,
√
∥nin∥L1(R2)

}(∫
R2

n(t)h

(
nε(t)

n(t)

)
dx

)1/2

→ 0, as ε↘ 0.

Appendix A. The Vlasov-Fokker-Planck equation with external magnetic field.
In Section 2, we built the existence of regularized solution of (14) relied on the existence of
solutions to the linear kinetic equations. The purpose of this part is to prove this result. We
consider the Vlasov-Fokker-Planck equation with a given electric field E(t, x) = −∇xΦ(t, x){

∂tf + v · ∇xf + E(t, x) · ∇vf +B(x)⊥v · ∇vf = σ∆vf + divv(vf),
f(0, x, v) = fin(x, v), (x, v) ∈ R2 × R2.

(61) equ:LiVFPAppen

The results on the existence and uniqueness of solutions are deeply inspired by those given
by Degond in [11], also taking into account the velocity transport, generated by the external
magnetic field. We have the following result

Theorem 6.1
For a given T ∈]0,∞[. Let fin be an initial data verifying H1, H2, E(t, x) be an external

⟨ExiVFP2D⟩ electric field belongs to (L∞((0, T ) × R2))2, and B ∈ L∞(R2). Then there exists a unique
positive weak solution of the equation (61) on the interval [0, T ] in the sense of Definition
2.1 provided by Proposition 6.2 such that f ∈ L∞(0, T ;L∞ ∩ L1(R2 × R2)). Furthermore, f
belongs to L2([0, T ]× R2

x;H
1(R2

v)) and verifies the following estimates

∥f∥L∞(0,T ;Lp(R2×R2)) ≤ e
p−1
p

2T ∥fin∥Lp(R2×R2), p ∈]1,∞[, (62) ?InegLp?

∥f∥L∞(0,T ;L1(R2×R2)) = ∥fin∥L1(R2×R2), ∥f∥L∞((0,T )×R2×R2) ≤ e2T ∥fin∥L∞(R2×R2),

sup
[0,T ]

∫
R2

∫
R2

f(t, x, v)
|v|2

2
dvdx < C(∥E∥L∞ , T, σ)

∫
R2

∫
R2

fin(x, v)
|v|2

2
dvdx, (63) ?InegKinEner?

sup
[0,T ]

∫
R2

∫
R2

f(t, x, v)|x| dvdx < C(T )

∫
R2

∫
R2

fin(x, v)|x| dvdx, (64) ?InegPosition?

∥∇vf
1/2∥L2(0,T ;L2(R2×R2)) ≤ C(∥E∥L∞ , T, fin, σ) +

∫
R2

∫
R2

σfin| ln fin| dvdx. (65) ?InegDissipation?

Let us introduce the Hilbert space

H = L2([0, T ]× R2
x, H

1(R2
v)) =

{
u ∈ L2([0, T ]× R2 × R2) | ∇vu ∈ L2([0, T ]× R2 × R2)

}
,

with norm ∥ · ∥H and scalar product ⟨·, ·⟩H defined by

∥u∥2H =

∫ T

0

∫
R2

∫
R2

|u|2 dvdxdt+
∫ T

0

∫
R2

∫
R2

|∇vu|2 dvdxdt, u ∈ H,
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⟨u,w⟩H =

∫ T

0

∫
R2

∫
R2

uw dvdxdt+

∫ T

0

∫
R2

∫
R2

∇vu · ∇vw dvdxdt, u, w ∈ H.

We also denote H′ is the dual space of H which is given by H′ = L2([0, T ] × R2
x, H

−1(R2
v)).

The symbole ⟨·, ·⟩H′,H represents the dual relation between H and its dual.
We first state a result on the existence and uniqueness of a weak solution of equation (61) in
an L2 setting, which can be rewritten in the following form

∂tf + T f + E(t, x) · ∇vf − 2f − σ∆vf = 0,

where T denotes the transport operator given by T = v · ∇x + (B(x)⊥v − v) · ∇v. Then we
have the following result

Proposition 6.2
Under the hypothesis of Theorem 6.1, there exists a unique weak solution f of equation (61)

⟨PropExiUniq⟩ in the class of functions Y defined by

Y =

{
u ∈ H| ∂u

∂t
+ T u ∈ H′

}
, (66) ?ClassWeakSol?

and satisfying the initial condition in the sense of distribution.

We first recall the theorem of Lions [24], already used in [11].

Theorem 6.2
Let F be a Hilbert space, provided with a norm ∥ · ∥F and scalar product (, ). Let V be a

⟨LionsThm⟩ subspace of F with a prehilbertian norm ∥ · ∥V such that the injection V ↪→ H is continuous.
We consider a bilinear form E

E : F × V → R
(u, ϕ) 7→ E(u, ϕ),

such that E(·, ϕ) is continuous on F , for any fixed ϕ ∈ V, and such that

|E(ϕ, ϕ)| ≥ α∥ϕ∥2V , ϕ ∈ V, α > 0.

Then given a linear form L in V ′, there exists a solution u in F of problem

E(u, ϕ) = L(ϕ), for any ϕ ∈ V.

Proof. (of Proposition 6.2)
We follow exactly the proof in [11]. First make the change of unknown function f̃(t, x, v) =
e−(λ+2)tf(t, x, e−tv), with any λ > 0 so that f̃ satisfies the equation ∂f̃

∂t
+ e−tv · ∇xf̃ +B(x)⊥v · ∇vf̃ + etE(t, x) · ∇vf̃ + λf̃ − σe2t∆vf̃ = 0,

f̃(0, x, v) = f̃in(x, v) = fin(x, v).
(67) equ:NewVFP2D

Now, let F be equal to the space H and let V be the space C∞
0 ([0, T [×R2×R2). V is equipped

with a prehilbertian norm defined by

∥ϕ∥2V =
1

2

∫
R2

∫
R2

|ϕ(0, x, v)|2 dvdx+ ∥ϕ∥2H, ϕ ∈ V.
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A weak solution of equation (67) in the distribution sense is a function f̃ ∈ H such that∫ T

0

∫
R2

∫
R2

f̃
(
−∂tϕ− e−tv · ∇xϕ−B(x)⊥v · ∇vϕ+ λϕ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

∇vf̃ ·
(
etE(t, x)ϕ+ σe2t∇vϕ

)
dvdxdt =

∫
R2

∫
R2

f̃in(x, v)ϕ(0, x, v) dvdx, (68) equ:WeakFormNVFP

for any ϕ ∈ V. We consider the following bilinear form E as the left-hand side of the variational
equation (68) defined by

E(f̃ , ϕ) =
∫ T

0

∫
R2

∫
R2

f̃
(
−∂tϕ− e−tv · ∇xϕ−B(x)⊥v · ∇vϕ+ λϕ

)
dvdxdt

+

∫ T

0

∫
R2

∫
R2

∇vf̃ ·
(
etE(t, x)ϕ+ σe2t∇vϕ

)
dvdxdt,

and the linear form

L(ϕ) =

∫
R2

∫
R2

f̃in(x, v)ϕ(0, x, v) dvdx.

Now, let us check E satisfies the properties stated in Theorem 6.2. It is easily seen that E(·, ϕ)
est continue sur H since E ∈ (L∞((0, T )× R2))2. It remains to show that E is coercivity on
V × V. Indeed, for any ϕ ∈ V, by a simple computation we have

E(ϕ, ϕ) = 1

2

∫
R2

∫
R2

|ϕ(0, x, v|2 dvdx+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vϕ|2 dvdxdt

+ λ

∫ T

0

∫
R2

∫
R2

|ϕ|2 dvdxdt ≥ min (1, σ, λ) ∥ϕ∥2V .

Then Lion’s Theorem 6.2 applies and we get that variational equation E(f̃ , ϕ) = L(ϕ), for any
ϕ ∈ V admits a solution f̃ ∈ H. Moreover, f̃ satisfies the equation (68) for any ϕ ∈ V, hence
by using the test function ϕ̃ = e(λ+2)tϕ(t, x, etv) we deduce that f(t, x, v) = e(λ+2)tf̃(t, x, etv)
is a weak solution of (61) in the sense of distribution. This gives that

∂f

∂t
+ T f = −E(t, x) · ∇vf + 2f + σ∆vf ∈ H′,

so that f belongs to Y.
We shall call the following Lemma to give a meaning to the initial condition, and also, to

show the uniqueness. The proof is very close to the one of Lemma A.1 in [11] and we have
been left behind.

Lemma 6.3
1. For u ∈ Y, u admits continuous trace values u(0, x, v) and u(T, x, v) in L2(R2×R2). This

⟨GreenFormulas⟩means that the linear map u→ (u(0, ·, ·), u(T, ·, ·)) is continuous from Y to L2(R2 × R2).
2. For f and f̃ in Y we have〈

∂tf + T f, f̃
〉
H′×H

+
〈
∂tf̃ + T f̃ , f

〉
H′×H

= 2

∫ T

0

∫
R2

∫
R2

ff̃ dvdxdt

+

∫
R2

∫
R2

f(T, x, v)f̃(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f̃(0, x, v) dvdx, (69) InteGreen

where T = v · ∇x + (B(x)⊥v − v) · ∇v.
3. Similary, for f and f̃ in Y we have〈

∂tf + T ′f, f̃
〉
H′×H

+
〈
∂tf̃ + T ′f̃ , f

〉
H′×H

=

∫
R2

∫
R2

f(T, x, v)f̃(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f̃(0, x, v) dvdx, (70) InteGreenBis
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where T ′ = e−tv · ∇x +B(x)⊥v · ∇v.

Let us now end the proof of Proposition 6.2. Using formula (69) to the solution f of
equation (61) and test function ϕ in V we have

⟨∂tf + T f, ϕ⟩H′×H + ⟨∂tϕ+ T ϕ, f⟩H′×H (71) GreenBis1

= 2

∫ T

0

∫
R2

∫
R2

fϕ dvdxdt−
∫
R2

∫
R2

f(0, x, v)ϕ(0, x, v) dvdx.

As f is a solution of (61) in H′ then we get

⟨∂tf + T f, ϕ⟩H′×H = ⟨−E(t, x) · ∇vf − (λ− 2)f + σ∆vf, ϕ⟩H′×H

= −
∫ T

0

∫
R2

∫
R2

(E(t, x) · ∇vfϕ+ (λ− 2)fϕ+ σ∇vf · ∇vϕ) dvdxdt.

Furthermore, f satisfies the variational equality E(f, ϕ) = L(ϕ) thus

⟨∂tϕ+ T ϕ, f⟩H′×H =

∫ T

0

∫
R2

∫
R2

λfϕ+∇vf · (E(t, x)ϕ+ σ∇vϕ) dvdxdt

−
∫
R2

∫
R2

fin(x, v)ϕ(0, x, v) dvdx.

Substituting into (71) which yields∫
R2

∫
R2

(f(0, x, v)− fin(x, v))ϕ(0, x, v) dvdx = 0, ∀ϕ ∈ V.

Therefore, the initial condition is satisfied in L2(R2 × R2). Now for uniqueness, we assume
that f is a solution of (61) with fin = 0, which belongs to Y. Proceeding as in the existence
solution of Proposition 6.2, we define the function f̃ as f̃(t, x, v) = e−(λ+2)tf(t, x, e−tv) which
verifies equation (67) with zero initial data. We apply the formula (70) to the solution f̃ of
equation (67) which gives

0 =
〈
∂tf̃ + T ′f̃ , f̃

〉
H′×H

+
〈
etE(t, x) · ∇vf̃ + λf̃ − σe2t∆vf̃ , f̃

〉
H′×H

=
1

2

∫
R2

∫
R2

|f̃(T, x, v)|2 dvdx+ λ

∫ T

0

∫
R2

∫
R2

|f̃ |2 dvdxdt+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vf̃ |2 dvdxdt

≥ λ

∫ T

0

∫
R2

∫
R2

|f̃ |2 dvdxdt.

Therefore we get f̃ = 0, which proves uniqueness.

Proof. (of Lemma 6.3)
Let us consider set Y of C∞ functions of (x, t) in [0, T ] × R2

x with values in H1(R2
v) which

are compactly supported in [0, T ]×R2 ×R2. Following the arguments in Lemma A.1 in [11],
we have that the set Y is dense on Y.
Let us take u ∈ Y . Using a partition of unity we can assume, without of loss of generality, that
u vanishes on

{
(0, x, v) : (x, v) ∈ R2 × R2

}
or
{
(T, x, v) : (x, v) ∈ R2 × R2

}
. Assume that u

does not vanish on
{
(0, x, v) : (x, v) ∈ R2 × R2

}
. By identity (69) we have∫

R2

∫
R2

|u(0, x, v)|2 dvdx = −2

∫ T

0

∫
R2

∫
R2

u
[
∂t + v · ∇x + (B(x)⊥v − v) · ∇v

]
u dvdxdt

+ 2

∫ T

0

∫
R2

∫
R2

|u|2 dvdxdt

≤ 2
∥∥∥[∂t + v · ∇x + (B(x)⊥v − v) · ∇v

]
u
∥∥∥
H′

∥u∥H + 2∥u∥2H ≤ C∥u∥2Y.
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The rest of the lemma follows from straightforward arguments involving the density of Y in
Y.

The following Proposition is devoted to a maximum principle and an L∞ estimate.

Proposition 6.3
Assume that the initial condition fin is positive and belongs to L∞(R2 × R2). Then the

⟨NormInfty2D⟩ solution f provided by Proposition 6.2 is positive and satisfying

∥f(t)∥L∞(R2×R2) ≤ e2T ∥fin∥L∞(R2×R2), t ∈ [0, T ].

We start by giving the following Lemmas. The proof of these Lemmas are very close to those
given by in [11]. We leave it to the reader.

Lemma 6.4
Let f ∈ Y then f+ and f− defined by f+ = max(f, 0) f− = max(−f, 0) belong to H and

⟨LemNormInftyBis1⟩
∇vf

+ =
1 + sign(f)

2
∇vf, ∇vf

− =
−1 + sign(f)

2
∇vf . Furthermore, we have〈

∂tf + T ′f, f−
〉
H′×H

=
1

2

(∫
R2

∫
R2

f(T, x, v)f−(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f−(0, x, v) dvdx

)
(72) IntMaxMin1

where T ′ = e−tv · ∇x +B(x)⊥v · ∇v. Similarly, we also have

〈
∂tf + T f, f−

〉
H′×H =

∫ T

0

∫
R2

∫
R2

ff− dvdxdt

+
1

2

(∫
R2

∫
R2

f(T, x, v)f−(T, x, v) dvdx−
∫
R2

∫
R2

f(0, x, v)f−(0, x, v) dvdx

)
(73) IntMaxMin2

where T = v · ∇x + (B(x)⊥v − v) · ∇v.

Lemma 6.5
Let V ⊂ H ⊂ V′ be a canonical triple of Hilbert spaces. We suppose that the mapping u→ u−

⟨LemNormInftyBis2⟩ is a contraction on V. Let u belong to L2(0, T ;V)∩C0([0, T ];H) such that du
dt ∈ L2(0, T ;V′).

Then ∫ T

0

〈
du

dt
, u−

〉
V′×V

dt =
1

2

(
|u−(0)|2H − |u−(T )|2H

)
. (74) ?IntTime?

Proof. (of Proposition 6.3)
We will first show that f ≥ 0 a.e. As above, we define f̃ = e−(λ+2)tf(t, x, e−tv) with any
λ > 0 which solves (67) with the initial data fin. It is well known that f̃ ∈ Y since f ∈ Y and
thus ∂tf̃ + T ′f̃ ∈ H′. Thanks to Lemma 6.4 we have f̃− ∈ H which implies from (67) that〈

∂tf̃ + T ′f̃ , f̃−
〉
H′×H

+
〈
etE(t, x) · ∇vf̃ + λf̃ − σe2t∆vf̃ , f̃

−
〉
H′×H

= 0.

Then we apply the formula (72) for the function f̃ to compute
〈
∂tf̃ + T ′f̃ , f̃−

〉
H′×H

and

Lemma 6.5 for the second term in the previous equation. Therefore we obtain

0 ≤ −λ
〈
f̃−, f̃−

〉
L2×L2

,

which implies that f̃− = 0 a.e and f̃ ≥ 0 a.e so f ≥ 0 a.e.
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Now we estimate the bound of L∞ norm. First, making the change of unknown function
w(t, x, v) = e−2tf(t, x, v) in the equation (61) we get{

∂w
∂t +

[
v · ∇xw + (B(x)⊥v − v) · ∇vw

]
+ E(t, x) · ∇vw − σ∆vw = 0,

w0(x, v) = fin(x, v).

We will prove that ∥w(t)∥L∞ ≤ ∥w0∥L∞ , t ∈ [0, T ]. Putting w1(t, x, v) = K(w(t, x, v) −
∥w0∥L∞) where K is a function of class C2 satisfying:

K(s) = 0, s ≤ 0, K is increasing,

∥K ′∥L∞ ≤ C, K ′′ ≥ 0.

We give an example on the function K as K(y) =
∫ y
0 g(s)ds with g(s) = e−

1
s if s > 0 and

f(s) = 0 if s ≤ 0. By the construction of K and w ∈ Y we deduce that w1 ∈ H and
∂tw1 + T w1 = K ′(w(t)− ∥w0∥∞)(∂tw+ T w) ∈ H′. Multiplying the equation for w above by
K ′(w(t, x, v)− ∥w0∥L∞) then w1 belongs to Y and satisfies the following equation{

∂tw1 + T w1 + E(t, x) · ∇vw1 − σ∆vw1 + σ|∇vw|2K ′′(w − ∥w0∥L∞) = 0,
w1(0) = K(w(0, x, v)− ∥w0∥L∞) = 0.

We then put w2(t, x, v) = e−βtw1(t, x, v), with any β > 0. The function w2 belongs to Y and
satifies the equation{

∂tw2 + T w2 + E(t, x) · ∇vw2 + βw2 − σ∆vw2 + e−βtσ|∇vw|2K ′′(w − ∥w0∥L∞) = 0,
w2(0) = 0.

Therefore, w2 satisfies the variational equation〈
∂tw2 + T w2, w

+
2

〉
H′×H

+
〈
E(t, x) · ∇vw2 + βw2 − σ∆vw2 + e−βtσ|∇vw|2K ′′(w − ∥w0∥L∞), w+

2

〉
H′×H

= 0.

Using (73) for
〈
∂tw2 + T w2, w

+
2

〉
H′×H, we can easily deduce that∫ T

0

∫
R2

∫
R2

|w+
2 |

2 dvdxdt+ β
〈
w+
2 , w

+
2

〉
L2×L2 + σ

〈
∇vw

+
2 ,∇vw

+
2

〉
L2×L2 ≤ 0.

This implies that w+
2 = 0. Thus w2 ≤ 0 and w1 ≤ 0 which yields ∥w(t)∥L∞ ≤ ∥w0∥L∞ .

Remark 6.1
If we add the source term U(t, x, v) in the right hand side of (61), that means

?⟨RemarkInfty⟩?
∂f

∂t
+ v · ∇xf + (B(x)⊥v − v) · ∇vf + E(t, x) · ∇vf − 2f − σ∆vf = U,

and we assume that U ∈ L1(0, T ;L∞(R2 × R2)). Then we have

∥f(t)∥L∞(R2×R2) ≤ e2T ∥fin∥L∞(R2×R2) +

∫ T

0
∥U(s)∥L∞ds, t ∈ [0, T ].

The following estimates relate to the Lp estimate, the kinetic energy and the entropy
of equation (61). To establish these estimates, we make the change of unknown function
w(t, x, v) = e−2tf(t, x, e−tv). Then w is the solution of the following equation

∂w

∂t
+ e−tv · ∇xw +B(x)⊥v · ∇vw + etE(t, x) · ∇vw − σe2t∆vw = 0,

w0(x, v) = fin(x, v).
(75) equ:NewVFP2DBis
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The solution w satisfies w ∈ H and ∂tw + T ′w ∈ H′ since f ∈ Y. The estimates of solutions
that we will study can be obtained by choosing of an appropriate sequence of functions in
the varational equation of w.

Proposition 6.4
Assume that the initial data fin is positive and belongs to Lp(R2 × R2), with any p ∈ [1,∞[.
Then solution f provided by Proposition 6.2 satisfies

∥f∥L∞(0,T ;Lp(R2×R2)) ≤ e
p−1
p

2T ∥fin∥Lp(R2×R2), 1 ≤ p <∞, (76) LpNormAppen

∥∇vf
p/2∥L2(0,T ;L2(R2×R2)) ≤

√
p

4(p− 1)σ
e(p−1)T ∥fin∥Lp(R2×R2), 1 < p <∞. (77) LpGradNormAppen

Proof.
First we consider the case p = 2. Since w in H satisfies (75), we deduce that〈

∂tw + T ′w,w
〉
H′×H =

〈
−etE(t, x) · ∇vw + σe2t∆vw,w

〉
H′×H .

Since w ∈ H the divergence theorem implies that the integral of −etE(t, x) · ∇vw vanish on
R2 × R2. Then we apply (70) for ⟨∂tw + T ′w,w⟩H′×H to obtain

2
〈
∂tw + T ′w,w

〉
H′×H =

∫
R2

∫
R2

|w(T, x, v)|2| dvdx−
∫
R2

∫
R2

|w(0, x, v)|2 dvdx.

Therefore we get for any T > 0 that∫
R2

∫
R2

|w(T, x, v)|2 dvdx+ 2σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2 dvdxdt =
∫
R2

∫
R2

|w(0, x, v)|2 dvdx

which yields the bounds of (76) and (77) when p = 2.
Next, we consider the case 1 ≤ p < ∞ and p ̸= 2. We establish a class of function of

approximation C2 of pxp−1, x ≥ 0 (indeed, the function pwp−1 does not belong to H hence
we can not define

〈
∂tw + T ′w, pwp−1

〉
H′,H so we need to modify the function pxp−1) verifies

(i) p = 1 : ψε(s) = 0 if s ≤ 0, ψε(s) = 1 if ε ≤ s and ψε(s) is increasing in [0, ε].

(ii) 1 < p < ∞, p ̸= 2 : ψε(s) = 0 if s ≤ ε, ψε(s) = psp−1 if ε ≤ s ≤ 1

ε
and ψ′

ε(s) = 0 on

[1/ε,+∞).

It is easily seen that ψε ∈ C2 with ψ′
ε ∈ L∞(R) and ψε(0) = 0. Let φε(s) be a primitive of

ψε(s) defined by φε(t) =
∫ t
−∞ ψε(s)ds. Since w ∈ H we imply that ψε(w) and φε(w) belong

to H and ∇vφε(w) = ψε(w)∇vw. Moreover, the function w in H satisfies (75), we deduce
that 〈

∂tw + T ′w,ψε(w)
〉
H′×H +

〈
etE(t, x) · ∇vw − σe2t∆vw,ψε(w)

〉
H′×H = 0, (78) equ:VarApprox

where T ′w = e−tv · ∇xw +B(x)⊥v · ∇vw. In the same way of Lemma 6.3 we also have〈
∂tw + T ′w,ψε(w)

〉
H′×H =

∫
R2

∫
R2

φε(w(T, x, v)) dvdx−
∫
R2

∫
R2

φε(w(0, x, v)) dvdx.

Since w ∈ H the divergence theorem implies the integral of etE(t, x) ·∇vw vanish on R2×R2.
If p = 1, we apply again the divergence theorem to

〈
−σe2t∆vw,ψε(w)

〉
H′×H we have

〈
−σe2t∆vw,ψε(w)

〉
H′×H = σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w)1{0≤w≤ε} dvdxdt.
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Then the equation (78) gives∫
R2

∫
R2

φε(w(T, x, v)) dvdx+ σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w)1{0≤w≤ε} dvdxdt

=

∫
R2

∫
R2

φε(w(0, x, v)) dvdx.

Since ψ′
ε ≥ 0 and by using Fatou’s Lemma and the dominated convergence theorem we get

for any T > 0 that

∥w(T )∥L1(R2×R2) =

∫
R2

∫
R2

w(T, x, v) dvdx ≤ ∥w0∥L1(R2×R2),

which yields (76) with p = 1.
If 1 < p <∞ and p ̸= 2, by the construction of ψε we have

〈
−σe2t∆vw,ψε(w)

〉
H′×H = σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2ψ′
ε(w)1{ε≤w≤1/ε} dvdxdt

= σp(p− 1)

∫ T

0

∫
R2

∫
R2

e2t|∇vw|2wp−21{ε≤w≤1/ε} dvdxdt

=
4(p− 1)

p
σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw
p/2|21{ε≤w≤1/ε} dvdxdt.

Then the equation (78) becomes∫
R2

∫
R2

φε(w(T, x, v)) dvdx+
4(p− 1)

p
σ

∫ T

0

∫
R2

∫
R2

e2t|∇vw
p/2|21{ε≤w≤1/ε} dvdxdt

=

∫
R2

∫
R2

φε(u(0, x, v)) dvdx.

Using Fatou’s Lemma and the dominated convergence theorem we get for any T > 0 that

∥w(T )∥p
Lp(R2×R2)

+
4(p− 1)

p
σ∥∇vw

p/2∥2L2(0,T ;L2(R2×R2)) ≤ ∥w0∥pLp(R2×R2)
,

which yields the estimates of (76) and (77) when 1 < p <∞ and p ̸= 2.

Next we provide the estimates of the kinetic energy and the entropy. First we consider
the truncation function χ(s) ∈ C∞

0 (R) such that

χ(s) = 1 if |s| ≤ 1, χ(s) = 0 if |s| ≥ 2, ∥χ∥W 1,∞(R) ≤ 1

and we define χR(z) = χ
(
|z|
R

)
, z ∈ R2, R > 0. We then consider a function of class C∞(R)∩

L∞(R) satisfying ψε(s) = 0 if s ≤ 0, ψε(s) = 1 if s ≥ ε and ψε is increasing on [0, ε]. Let φε

be a primitive of ψε as φε(t) =
∫ t
−∞ ψε(s)ds.

Proposition 6.5
Assume that the initial data fin is positive and (1 + |v|2/2)fin ∈ L1(R2 × R2). Then the

⟨EsKinEnerVFP2D⟩ solution given by Proposition 6.2 satisfies∫
R2

∫
R2

|v|2

2
f(t) dvdx ≤ C1 + C2

∫
R2

∫
R2

|v|2

2
fin dvdx, t ∈ [0, T ],

for some constants C1 and C2, depending only on ∥E∥L∞ , fin, T, σ.
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Proof.
Since w(t) = e−2tf(t, x, e−tv) in H satisfies the equation (75), we deduce for any function
h ∈ H that 〈

∂tw + T ′w, h
〉
H′×H +

〈
etE(t, x) · ∇vw − σe2t∆vw, h

〉
H′×H = 0, (79) equ:VariForm

where T ′ = e−tv · ∇xw + B(x)⊥v · ∇v. Taking in (79) the function h = χR(|v|) |v|
2

2 ψε(w). It

is easily seen that h ∈ H since the function χR(|v|) |v|
2

2 ∈ L∞(R) and ψε(w) ∈ H by w ∈ H.
In the same way of Lemma 6.3, we have the following formula for the first term in (79)

〈
∂tw + T ′w, h

〉
H′×H =

∫
R2

∫
R2

[φε(w(T, x, v))− φε(w(0, x, v))]χR(|v|)
|v|2

2
dvdx.

Before estimating the other terms in (79) we need to observe that φε(w) = wΦε(w) with
Φε(w) =

∫ 1
0 ψε(θw)dθ, which implies that

φε(w) = |φε(w)| ≤ w

∫ 1

0
|ψε(θw)|dθ ≤ w, ∀ε > 0.

Moreover, the solution w belongs to L1((0, T ) × R2 × R2) beacause w ∈ L∞(0, T ;L1(R2 ×
R2)). On the other hand, since w ∈ H the divergence theorem implies that the term〈
etE(t, x) · ∇vw, h

〉
H×H′ can be estimated as

〈
etE(t, x) · ∇vw, h

〉
H′×H ≤ ∥χ∥W 1,∞(R2)∥E∥L∞eT

∫ T

0

∫
R2

∫
R2

w(t, x, v)|v| dvdxdt

≤ 1

2
C(∥E∥L∞ , T )

(∫ T

0

∫
R2

∫
R2

w dvdxdt+

∫ T

0

∫
R2

∫
R2

w|v|2 dvdxdt
)
.

It remains to estimate the contribution of
〈
−σe2t∆vw, h

〉
H×H′ in (79). Similarly, applying

the divergence theorem and by direct computations we get

〈
−σe2t∆vw, h

〉
H′×H ≥ σ

∫ T

0

∫
R2

∫
R2

e2t∇vw ·
[(
χ′
(
|v|
R

)
v
|v|
2R

1{|v|≤2R} + χRv

)
ψε(w)

]
dvdxdt

= σ

∫ T

0

∫
R2

∫
R2

e2t∇vφε(w) ·
(
χ′
(
|v|
R

)
v
|v|
2R

1{|v|≤2R} + χRv

)
dvdxdt

= −σ
∫ T

0

∫
R2

∫
R2

e2tφε(w)

[(
χ′′
(
|v|
R

)
|v|2

2R2
1{|v|≤2R} + 2χ′

(
|v|
R

)
|v|
R
1{|v|≤2R} + 2χR

)]
dvdxdt

→ −2σ

∫ T

0

∫
R2

∫
R2

e2tw dvdxdt, when ε↘ 0, R→ ∞,

where we have used the dominated convergence theorem in the last integral. Since∫ T

0

∫
R2

∫
R2

w dvdxdt ≤
∫ T

0

∫
R2

∫
R2

w0 dvdxdt = T∥fin∥L1(R2×R2),

we finally deduce from the above estimations that∫
R2

∫
R2

φε(w(T, x, v))χR(|v|)
|v|2

2
dvdx ≤

∫
R2

∫
R2

φε(w(0, x, v))χR(|v|)
|v|2

2
dvdx

+C(∥E∥L∞ , T, σ, fin) + C(∥E∥L∞ , T )

∫ T

0

∫
R2

∫
R2

w
|v|2

2
dvdxdt.
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Using Fatou’s Lemma and then the dominated convergence theorem when ε ↘ 0, R → ∞
we get for any T > 0 that∫

R2

∫
R2

w(T, x, v)
|v|2

2
dvdx ≤

∫
R2

∫
R2

w(0, x, v)
|v|2

2
dvdx

+C(∥E∥L∞ , T, σ, fin) + C(∥E∥L∞ , T )

∫ T

0

∫
R2

∫
R2

w
|v|2

2
dvdxdt.

Thanks to Gronwall’s inequality we complete the proof.

In the same way as for the proof of Proposition 6.5, if we take the function h in the
equation (79) given by h(t, x, v) = χR(|x|)|x|ψε(w), we can obtain the following Proposition

Proposition 6.6
Assume that the initial data fin belongs to L1(R2 × R2) and satisfies (|x| + |v|2/2)fin ∈

?⟨BoundPosit⟩?L1(R2 × R2). Then the solution f is given by Proposition 6.2 satisfies∫
R2

∫
R2

|x|f(t) dvdx ≤ C1 + C2

∫
R2

∫
R2

|x|fin dvdx, t ∈ [0, T ],

for some constants C1 and C2, depending only on fin, T .

Proposition 6.7
Assume that the initial function fin is positive and verifies (1+ |x|+ |v|2/2)fin ∈ L1(R2×R2).

?⟨EntropyVFP2D⟩?Then the solution f of Proposition 6.2 satisfies∫
R2

∫
R2

σf | ln f | dvdx ≤ C +

∫
R2

∫
R2

σfin| ln fin| dvdx, t ∈ [0, T ],

∫
R2

∫
R2

|σ∇vf |2

f
dvdx ≤ C +

∫
R2

∫
R2

σfin| ln fin| dvdx, t ∈ [0, T ],

for some constant C, depending only on ∥E∥L∞ , fin, T, σ.

Proof.
As before, we will work on w(t, x, v) = e−2tf(t, x, e−tv) which is satisfied by equation (75)
and variational equation (79). For any ε > 0, we define the function gε(w) as:

gε(w) := 1{ε≤w≤1/ε} lnφε(w) = 1{ε≤w≤1/ε} lnw,

and it is obvious that it belongs to L∞((0, T )× R2 × R2). It is easily seen that

∂tw(1 + 1{ε≤w≤1/ε} lnφε(w)) = ∂t(wgε(w)),

and
T ′w(1 + 1{ε≤w≤1/ε} lnφε(w)) = T ′(wgε(w)).

Multiplying the equation (75) by σ(1 + 1{ε≤w≤1/ε} lnφε(w)) and then passing to the varia-
tional equation with h = ψε(w) ∈ H we get

σ
〈
∂t(wgε(w)) + T ′(wgε(w)), ψε

〉
H′×H

+σ
〈
[etE(t, x) · ∇vw − σe2t∆vw](1 + gε(w)), ψε(w)

〉
H′×H = 0. (80) equ:VariFormBis
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Since ψε(w) = 1 on ε ≤ w ≤ 1/ε so in the same way of Lemma 6.3, we have the following
formula for the first term in (80)

σ
〈
∂t(wgε(w)) + T ′(wgε(w)), ψε

〉
H′×H =

∫
R2

∫
R2

σw(T, x, v) lnw(T, x, v)1{ε≤w≤1/ε} dvdx

−
∫
R2

∫
R2

σw(0, x, v) lnw(0, x, v)1{ε≤w≤1/ε} dvdx.

We estimate now the other terms in (80). Since w ∈ H so the divergence theorem implies
that

σ
〈
etE(x) · ∇vw(1 + gε(w)), ψε(w)

〉
H′×H = 0,

and 〈
−σ2e2t∆vw(1 + gε(w)), ψε(w)

〉
H′×H =

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt.

Finally, from (80) we obtain for any T > 0 that∫
R2

∫
R2

σw(T, x, v) lnw(T, x, v)1{ε≤w≤1/ε} dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt

=

∫
R2

∫
R2

σw(0, x, v) lnw(0, x, v)1{ε≤w≤1/ε} dvdx.

By standard argument, there exists a constant C > 0, (see [27], Lemma 2.3) such that

|u lnu| = u lnu− 2u lnu1{0≤u≤1} ≤ u lnu+
1

4
(|x|+ |v|2)u+ Ce−

|x|+|v|2
2 ,

therefore∫
R2

∫
R2

σw(T, x, v)| lnw(T, x, v)|1{ε≤w≤1/ε} dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
1{ε≤w≤1/ε} dvdxdt

≤
∫
R2

∫
R2

σw(0, x, v)| lnw(0, x, v)| dvdx+
1

4

∫
R2

∫
R2

(|x|+ |v|2)w dvdx+ C8π

where we have used that
∫
R2

∫
R2e

− |x|+|v|2
2 dvdx = 8π. Thanks to the hypothesis on the initial

data fin we infer that 1
4

∫
R2

∫
R2(|x| + |v|2)w dvdx ≤ C(∥E∥L∞ , fin, T, σ). Therefore, Fatou’s

Lemma implies that∫
R2

∫
R2

σw(T, x, v)| lnw(T, x, v)| dvdx+

∫ T

0

∫
R2

∫
R2

e2t
|σ∇vw|2

w
dvdxdt

≤
∫
R2

∫
R2

σw(0, x, v)| lnw(0, x, v)| dvdx.

Substitutively w = e−2tf(t, x, e−tv) leads to the desired result.
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