Do neuroplasticity and genetic factors contribute to cognitive training? An imaging-genetics study in healthy children.

Iris MENU¹, Qin HE², Julie VICTOR³, Gabriela REZENDE¹, Lorna LE STANC¹, Julie VIDAL¹, Catherine OPPENHEIM², Edouard DUCHESNAY³, Boris CHAUMETTE², Olivier HOUDÉ^{1,4}, Grégoire BORST^{1,4,*}, & Arnaud CACHIA^{1,2,*}

¹Université Paris Cité, LaPsyDÉ, CNRS, Paris, F-75005, ²Université Paris Cité, IPNP, INSERM, Paris, F-75005, ³Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, F-91191, ⁴Institut Universitaire de France, Paris, France

Introduction

1 Introduction

Inhibitory control (IC)

- Is important for academic achievement, physical and mental health (Diamond, 2013)
- can be improved with cognitive training programs (e.g., Diamond & Lee, 2011; Jaeggi et al., 2011)

Aim of this study: investigate genetic, cerebral and cognitive factors contributing to IC training receptivity

Several factors contribute to cognitive

training gains

• basal cognitive level (Karbach & Kray, 2021)

- brain activity/anatomy (Baniqued et al., 2019;
- Chaddock-Heyman et al., 2020)
- genetic factors (Leckie et al., 2014)

FLUX 2022 Paris Poster 1-A-11 Do neuroplasticity and genetic factors contribute to cognitive training? An imaginggenetics study in healthy children.

) Material and methods

FLUX 2022 Paris Poster 1-A-11 Do neuroplasticity and genetic factors contribute to cognitive training? An imaginggenetics study in healthy children.

2 Material and methods

FLUX 2022 Paris Poster 1-A-11 Do neuroplasticity and genetic factors contribute to cognitive training? An imaginggenetics study in healthy children.

FLUX 2022 Paris Poster 1-A-11 Do neuroplasticity and genetic factors contribute to cognitive training? An imaginggenetics study in healthy children.

FLUX 2022 Paris Poster 1-A-11 Do neuroplasticity and genetic factors contribute to cognitive training? An imaginggenetics study in healthy children.

- 1. Training-relative cognitive changes depends on the interrelation of factors at different levels:
 - molecular (genetics),
 - neural (basal and change of grey matter volumes)
 - and cognitive (basal level)
- 2. Structural Equation Models are a great tool for multilevel longitudinal data analyses

Julia Mathan Poster 2-G-326

LaPsyD

CNrs