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Abstract

The paper introduces a general structure for param-
eter adaptation/learning algorithms (PALA). This
structure is characterized by the presence of an em-
bedded ARMA (poles-zeros) �lter in the PALA. The
key question is how to select the coe�cients of this
�lter in order, on the one hand, to guarantee the sta-
bility of the parameter estimator for any (positive)
value of the adaptation gain/learning rate and for any
initial conditions and on the other hand to accelerate
the adaptation transient. In order to achieve this, it
is shown that on one hand the embedded ARMA �l-
ter should be characterized by a positive real transfer
function and on the other hand the �lter acting on
the correcting term (the dynamic adaptation gain)
should be characterized by a strictly positive real
transfer function. Speci�c conditions for the design
of a second order ARMA embedded �lter (ARIMA2
algorithm) are provided.
It is shown in the paper that many parame-
ter adaptation/learning algorithms (PALA) used in
adaptive control, system identi�cation and neu-
ral networks (Nesterov, Conjugate gradients, Mo-

mentum back propagation, Averaged gradient, In-
tegral+proportional+derivative, ...) are particular
cases of the PALA structure introduced in this pa-
per and speci�c conditions for the stable operation of
these algorithms are given.
Performance of the ARIMA2 algorithm as well as of
the other algorithms reviewed in the paper will be
comparatively evaluated by simulations and exper-
imental results obtained on an active noise control
system.

1 INTRODUCTION

In the last twelve years there was a revitalization of
the �eld of parameter adaptation/learning algorithms
(PALA). Many algorithms have been proposed start-
ing from diverse points of view. Some algorithms
have been proposed in the �eld of neural networks
[7, 19]. Some other algorithms have been inspired by
previous work done in optimization techniques [20, 4].
Applications in adaptive control of new algorithms
have been reported [1]. The papers [5, 17] give a com-
prehensive review of current used algorithms. Unfor-
tunately, for most of these algorithms, there are no
results available for the choice of the various coe�-
cients (weights) allowing to guarantee the asymptotic
stability of the estimator for any value of the adapta-
tion gain/learning rate and for any initial conditions

1



of the estimated parameters. In order to address the
stability issue, it is pertinent to observe that a PALA
is a dynamic system with an inherent feedback struc-
ture. This point of view has been considered in the
�eld of adaptive control. See for example [9, 12].
The paper introduces a general form for the PALA
characterized by the presence of an embedded ARMA
(poles-zeros) �lter acting on the partial gradient of
a criterion to be minimized with respect to the
parameters to be tuned. Using passivity argu-
ments, an answer is given to the question of sta-
bility of the estimator for any value of the adap-
tation gain/learning rate and any initial conditions.
The basic answer is that the embedded ARMA (or
ARIMA if it contains an integrator) �lter should be
characterized by a positive real (PR) discrete time
transfer function. This will allow to give speci�c
conditions for the choice of the various coe�cients
(weights). The paper will show that many adapta-
tion/learning algorithms (Nesterov, Conjugate gra-
dients, Momentum back propagation, Averaged gra-
dient, Integral+proportional+derivative,...) are par-
ticular forms of this general structure for PALA
and speci�c conditions for the stable operation of
these algorithms are provided. Since in a number
of applications one operates at very low adaptation
gains/learning rates leading to what is called �slow
adaptation�, using �averaging� it is possible to relax
the passivity conditions on the embedded �lter and
this will be discussed.
The contributions of the paper can be summarized

as follows:

� A general form for the PALA algorithms is in-
troduced and conditions for assuring the stabil-
ity of the algorithms for any positive value of the
adaptation gain/learning rate are given.

� The concept of dynamic (frequency dependent)
adaptation gain/learning rate emerged from this
study.

� A PALA algorithm characterized by a 2nd order
ARIMA embedded �lter acting on the gradient
is introduced, analysed and evaluated.

� A review of a number of existing PALA from a
uni�ed perspective is done.

� A comprehensive illustration of the e�ect of the
dynamic adaptation gain/learning rate is pro-
vided by simulations and application to an adap-
tive active noise control system.

The paper is organized as follows. Section 2 will
set the equations and review brie�y the gradient al-
gorithm. Section 3 presents a general form for adap-
tation/learning algorithms incorporating an ARIMA
�lter and provides stability conditions. A 2nd order
ARIMA PALA will be presented in Section 4. The
case of �approximate gradients� is discussed in Sec-
tion 5. The analysis of the proposed algorithms in a
noisy environment is discussed in Section 6. An esti-
mation of the convergence rate is provided in Section
7. A review of currently used PALA algorithms is
proposed in Section 8 as particular cases of the gen-
eral structure introduced previously. Simulations and
experimental results on an adaptive active noise at-
tenuation system illustrating the e�ect of the MA and
AR terms are given in Sections 9 and 10 respectively.

2 Revisiting the gradient algo-
rithm � feedback interpreta-
tion and stability issues

The aim of the gradient PALA is to drive the param-
eters of an adjustable model in order to minimize a
quadratic criterion in terms of the prediction error
(di�erence between real data and the output of the
model used for prediction). To formalize the prob-
lem, consider the discrete-time model described by:

y(t+ 1) = −a1y(t)− a2y(t− 1)− . . .

+ b1u(t) + b2u(t− 2) + . . . = θTϕ(t), (1)

where the unknown parameters ai and bi form the
components of the parameter vector θ:

θT = [a1, a2, . . . anA
, b1, b2, . . . bnB

] (2)

and

ϕT (t) = [−y(t),−y(t− 1), . . . , u(t), u(t− 1), . . .] (3)
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is the measurement vector.1 The adjustable predic-
tion model will be described in this case by:

ŷ◦(t+ 1) = ŷ[(t+ 1)|θ̂(t)] = θ̂T (t)ϕ(t) (4)

where ŷ◦(t+1) is termed the a priori predicted out-
put depending upon the values of the estimated pa-
rameter vector θ at instant t:

θ̂T (t) = [â1(t), â2(t), . . . ânA
(t), b̂1(t), b̂2(t), . . . b̂nB(t)]

(5)
It is very useful to consider also the a posteriori pre-
dicted output computed on the basis of the new esti-
mated parameter vector at t+ 1, θ̂(t+ 1), which will
be available somewhere between t+1 and t+2. The
a posteriori predicted output will be given by:

ŷ(t+ 1) = ŷ[(t+ 1)|θ̂(t+ 1)] = θ̂T (t+ 1)ϕ(t) (6)

One de�nes an a priori prediction error as:

ϵ◦(t+ 1) = y(t+ 1)− ŷ◦(t+ 1) (7)

and an a posteriori prediction error as:

ϵ(t+1) = y(t+1)− ŷ(t+1) = [θ− θ̂(t+1)]Tϕ(t) (8)

The objective is to �nd a recursive parameter adap-
tation algorithm (PAA) with memory. The structure
of such an algorithm is:

θ̂(t+1) = θ̂(t)+∆θ̂(t+1) = θ̂(t)+f [θ̂(t), ϕ(t), ϵ◦(t+1)]
(9)

The correction term must enable to minimize the fol-
lowing criterion at each step2

min
θ̂(t+1)

J(t+ 1) = [ϵ(t+ 1)]2 (10)

A solution can be provided by the gradient technique.
The corresponding PALA will have the form:

θ̂(t+ 1) = θ̂(t)− F ▽θ J(t+ 1) = θ̂(t)− F
∂J(t+ 1)

∂θ̂(t+ 1)
(11)

1u(t), y(t) ∈ R1, θ, ϕ ∈ Rn, n = na + nb, Rn is the real
n-dimensional Euclidean space.

2Using the criterion minθ̂(t) J(t+1) = [ϵ◦(t+1)]2, will not

allow to guarantee stability of the PALA for any value of the
adaptation gain/learning rate. See [12] for details.

where F > 0 (a positive de�nite matrix) is the matrix

adaptation gain/learning rate and ∂J(t+1)/∂θ̂(t+1)
is the partial gradient of the criterion given in Eq.
(10) with respect to θ̂(t+ 1). There are two possible
choices for the matrix adaptation gain/learning rate:
(i) F > 0 (positive de�nite matrix). (ii) F = αI; α >
0 (most of the applications with constant adaptation
gain use this second choice). The term adaptation
gain or learning rate is used for characterizing α.
At this stage, it is interesting to point out already

that this is a dynamic system with input the gradient
(or in general a correcting term related to the gradi-
ent) and output the estimated parameter vector, i.e
Eq. (11) can be expressed also as:

θ̂(t+ 1) = HPAA(q
−1)F [−▽θ J(t+ 1)] (12)

where3 HPAA(q
−1) is a MIMO diagonal transfer op-

erator having identical terms. All the diagonal terms
are identical and are described in this case by:

Hii
PAA(q

−1) =
1

1− q−1
(13)

Note also that the operator (13) is characterized by
a PR transfer function (it is a passive system). From
(10), (11) and (8) one obtains (for details see [12]):

θ̂(t+ 1) = θ̂(t) + Fϕ(t)ϵ(t+ 1) (14)

where F is a positive de�nite matrix adaptation
gain4. The algorithm has memory (for ε(t + 1) = 0,

θ̂(t + 1) = θ̂(t)). Consider Eq. (14), subtracting θ
from both sides and then multiplying with ϕ(t)T one
gets:

ϕ(t)T θ̃(t+1) = ϕ(t)T θ̃(t) + ϕ(t)TFϕ(t)ϵ(t+1) (15)

where θ̃(t) = θ̂(t)−θ is the parameter error. Eqs. (8)
and (15) de�ne an equivalent feedback system shown
in Fig. 1. Since it is a feedback structure, stability is

3The complex variable z−1 will be used for characterizing
the system's behaviour in the frequency domain and the delay
operator q−1 will be used for describing the system's behaviour
in the time domain.

4For the e�ective implementation, ϵ(t+1) is given by ϵ(t+

1) =
ϵ◦(t+1)

1+ϕT (t)Fϕ(t)
.
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Figure 1: Feedback structure of gradient adapta-
tion/learning algorithm.

a key issue. Using passivity arguments (see [12]) it
can be shown that the feedback path is passive and
since the feedforward transfer function is 1 (a par-
ticular strictly positive real (SPR) transfer function),
the system will guarantee limt→∞ ϵ(t+1) = 0 for any
initial conditions θ(0), ϵ(0) and any positive de�nite
matrix F (i.e. for any positive value of the adaptation
gain α when F = αI). Furthermore, examining the
equivalent feedback path one observes that there is
an embedded integrator �lter which is characterized
by a PR transfer function.

3 A general form for adapta-
tion/learning algorithms

For stability reasons, it is therefore crucial that the
equivalent feedback path be passive. However, pas-
sivity of the equivalent feedback path can be guar-
anteed if one replaces the integrator �lter (in fact a
multi-input, multi-output �lter) by any other �lter
characterized by a positive real transfer matrix (of
appropriate dimension) with a pole at z = 1 in order
to have memory or without a pole at z = 1 if we do
not want to have memory. This allows on one hand
to generate an in�nite number of adaptation/learning
algorithms and on the other hand it allows to ana-
lyze adaptation/learning algorithms which have been
generated from di�erent points of view. Therefore,
one can consider to replace the integrator in Eq. (14)
by a more general passive linear �lter leading to a

PALA of the form

θ̂(t+ 1) = HPAA(q
−1)[Fϕ(t)ϵ(t+ 1)] (16)

where the �lter HPAA(q
−1) is characterized by a

transfer matrix:

HPAA(z) = C(zI −A)−1B +D (17)

leading to a PALA of the form ([12]):

x(t+ 1) = Ax(t) +Bϕ(t)ϵ(t+ 1) (18)

θ̂(t+ 1) = Cx(t) +Dϕ(t)ϵ(t+ 1) (19)

where x(t) is the state of the passive linear �lter and
the input is the reverse of the gradient, in our case
ϕ(t)ϵ(t + 1). The particular case of integral adapta-
tion/learning corresponds to: A = I, B = D = F ,
C = I. One has the following result:

Theorem 1. For the system described by Eqs (1)
through (8) using the PALA of Eqs (18) and (19)
or of Eq. (16) one has limt→∞ ϵ(t + 1) = 0 for any
positive de�nite gain matrix F and initial conditions
θ(0), ϵ(0) if HPAA(z

−1) is a PR transfer matrix5 with
a pole at z=1.

The proof of Theorem 1 is given in Appendix A.

Relaxation of the PR condition

For small adaptation gains/learning rates the PR
condition upon the embedded ARMA (ARIMA) �lter
for assuring stability can be relaxed using averaging
[2]. If in addition one assumes that the input is a
broad-band signal, the behaviour of the algorithms
will be well described by the �averaging� theory. In
the context of averaging, the passivity condition upon
the equivalent feedback block takes the form:

lim
N→∞

1

N

N∑
t=1

ϕ(t)HPAA(q
−1)ϕT (t) =

1

2

∫ π

−π

Φ(ejω)·

· [HPAA(e
jω) +HPAA(e

−jω)]ΦT (e−jω)dω ≥ 0 (20)

i.e., it should be a positive de�nite matrix (Φ(ejω)
is the Fourier transform of ϕ(t)). Of course the PR

5Or equivalently the system [A,B,C,D] is passive.
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condition upon HPAA(z
−1) allows to satisfy this con-

dition. However in the averaging context it is only
needed that (20) be true which allows that HPAA be
non PR in a limited frequency band. The conclusion
is that HPAA does not need to be PR. It is enough
that the �positive� weighted energy exceeds the �neg-
ative� weighted energy. It is however important to
remark that if the observation vector has its energy
located in the frequency region where HPAA is not
PR, the algorithm may diverge (see [2, 18]).

For the purpose of this paper it is convenient to
particularize HPAA(q

−1) as a MIMO diagonal trans-
fer operator having identical terms. All the diagonal
terms are identical and are described by6:

Hii
PAA =

1 + c1q
−1 + c2q

−2 + ..+ cnC
q−nC

1− d1q−1 − d2q−2..− dnD
q−nD

=
C

D
(21)

and the passivity condition of Theorem 1 implies that
Hii

PAA(z
−1) should be a PR transfer function with a

pole at z = 1 if we want memory.

The explicit form of the PALA algorithm is:

θ̂(t+1) = d1θ̂(t)+d2θ̂(t−1)+. . .+dnD
θ̂(t−nD+1)

+ F [ϕ(t)ϵ(t+ 1) + c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1)

+ . . .+ cnC
ϕ(t− nC)ϵ(t− nC + 1)] (22)

where F > 0 is the adaptation gain/learning rate
(a positive de�nite matrix). The algorithm given in
(22) will be termed Auto Regressive Moving Aver-
age (ARMA) adaptation/learning algorithm and if it
has an integrator, it will be termed Auto Regressive
with Integrator Moving Average (ARIMA) adapta-
tion/learning algorithm. One can see that the cur-
rent parameter estimates depend upon the previous
parameter estimations over a certain horizon (auto
regressive) and upon the current and past values of
the gradient over a certain horizon (moving average).
The ARIMA adaptive/learning algorithms are char-

6In some of the following equations, the parenthesis (q−1)
are dropped to save space.

acterized by an embedded �lter of the form:

Hii
PAA =

1 + c1q
−1 + c2q

−2 + . . .+ cnC
q−nC

(1− q−1)(1− d′1q
−1 − d′2q

−2 − . . . d′nD′ q
−nD′ )

=
C(q−1)

(1− q−1)D′(q−1)
=
C(q−1)

D(q−1)
(23)

and the relation with the coe�cients of (21) and (22)
is given by:

di = (d′i − d′i−1) ; i = 1, . . . nD; d′0 = −1, d′nD
= 0
(24)

To implement the algorithm, one needs a computa-
tional expression for ϵ(t+1). One de�nes in this new

context7: ŷ◦(t+ 1) = θ̂T0 (t)ϕ(t) where:

θ̂0(t) = d1θ̂(t) + d2θ̂(t− 1) + . . .

+ F [c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1) + . . .] (25)

The a posteriori adaptation/prediction error can be
written:

ϵ(t+ 1) = y(t+ 1)± θ̂T0 (t)ϕ(t)− θ̂T (t+ 1)ϕ(t)

= ϵ◦(t+ 1)− [θ̂(t+ 1)− θ̂0(t)]
Tϕ(t)

= ϵ◦(t+ 1)− ϕ(t)TFϕ(t)ϵ(t+ 1) (26)

which leads to:

ϵ(t+ 1) =
ϵ◦(t+ 1)

1 + ϕT (t)Fϕ(t)
(27)

Dynamic adaptation gain/learning rate
(DAG)

The algorithm of Eq. (16), taking into account
Eq. (23), can be rewritten as:

θ̂(t+ 1) = θ̂(t) +HDAG(q
−1)[Fϕ(t)ϵ(t+ 1)] (28)

HDAG will be termed the dynamic adaptation
gain/learning rate (DAG) or frequency dependent

7θ̂0(t) is the best prediction of θ̂(t+ 1) based on the infor-

mation available at instant t (can be denoted also as θ̂0(t) =

θ̂(t+ 1/t)).
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adaptation gain/learning rate. It is a MIMO diag-
onal transfer operator having identical terms. The
DAG in this case will have the form:

Hii
DAG(q

−1) =
C(q−1)

D′(q−1)
(29)

The dynamic adaption gain/learning rate will intro-
duce a phase distortion on the gradient depending
on the frequency. In order to minimize the criterion,
this phase distortion should be less than 90◦ for all
the frequencies from 0 to fs/2 (fs is the sampling fre-

quency). In other terms, the transfer function C(z−1)
D′(z−1)

should be SPR8. Since it is a SPR transfer function,
it will have all its zeros and poles inside the unit cir-
cle. Therefore the dynamic adaptation gain/learning
rate will have a very interesting property summarized
in the following lemma.

Lemma 1. Assume that the polynomials C(z−1) and
D′(z−1) have all their zeros inside the unit circle,
then:

I =

∫ π

0

log

(∣∣∣∣ C(e−jω)

D′(e−jω)

∣∣∣∣)dω = 0 (30)

The proof of this result is given in Appendix B.
This result allows to conclude that the average gain
over the frequency range 0 to fs/2 is 0, i.e. on
the average this �lter will not modify the adaptation
gain/learning rate. It is just a frequency weighting
of the adaptation gain/learning rate. It is this fre-
quency weighting that can be introduced using the
ARIMA algorithm which explains the performance
improvement with respect to the gradient algorithm.
See also Fig. 5 and the related comments.

4 Second order ARIMA algo-
rithm

It will be convenient to consider a particulariza-
tion of this general algorithm by restricting it to
nC = nD = 2 (i.e., nD′ = 1). One of the reasons
is that many PALA algorithms can be interpreted as

8However, this will not guarantee that HPAA(z−1) will be
PR.

second order ARIMA PALA algorithms (denoted as
ARIMA2) with particular choices for the coe�cients
c1, c2, d

′
1. One has in this case:

Hii
PAA =

1 + c1q
−1 + c2q

−2

1− d1q−1 − d2q−2
=

1 + c1q
−1 + c2q

−2

(1− q−1)(1− d′1q
−1)
(31)

The adaptation algorithm takes the form:

θ̂(t+ 1) = d1θ̂(t) + d2θ̂(t− 1) + F [ϕ(t)ϵ(t+ 1)

+ c1ϕ(t− 1)ϵ(t) + c2ϕ(t− 2)ϵ(t− 1)] (32)

Taking d1 = (1 + d′1); d2 = −d′1, one assures the
presence of an integrator. If one would like to guar-
antee the stability of the system for any positive
value of the adaption gain/learning rate, the weights
d′1, c1, c2 should be chosen such that the transfer op-
erator Hii

PAA of Eq. (31) be characterized by a PR
transfer function. It is fundamental for applications
to give explicit bounds for the selection of the co-
e�cients c1, c2, d

′
1 in order to guarantee the positive

realness of the embedded ARIMA �lter. One has the
following result:

Lemma 2. In order that the transfer operator Hii
PAA

given in Eq. (31) be characterized by a PR transfer
function, the necessary and su�cient conditions are:

−1 < d
′

1 < 1 (33)

0 ≤ δ ≤ 2 (34)

−1 ≤ d
′

1 −
γ

1− δ/2
≤ 1 (35)

δ =
1 + c1 + c2

1− d
′
1

; γ =
d

′

1c1 + d
′2
1 + c2

d
′
1 − 1

(36)

The proof of this lemma is given in Appendix C.
From these conditions, closed contours in the plane
c2 − c1 can be de�ned for the di�erent values of d′1
allowing to select c1 and c2 for a given value of d′1
such that HPAA be PR9. This algorithm can be also
interpreted as an Integral + Proportional + Filtered

9A Matlab routine is available for drawing these contours.

6



derivative algorithm, i.e the associated transfer oper-
ator has the form

Hii
PAA(q

−1) =
αI

1− q−1
+ αP + αD

(1− q−1)

(1− d′1q
−1)

(37)

The corresponding expressions of αI , αP and αD

(taking αT = αI + αP + αD = 1) are:

αI =
1 + c1 + c2

1− d′1
(38)

αP = −c1 + c2(2− d′1) + d′1
(1− d′1)

2
(39)

αD = c2 − αP d
′
1; αT = αI + αP + αD = 1 (40)

For performance purposes, we must have a DAG
which is SPR. We will provide subsequently the tools
for the design of a SPR DAG. For ARIMA2 algo-
rithm, the DAG will have the form:

Hii
DAG(q

−1) =
C(q−1)

D′(q−1)
=

1 + c1q
−1 + c2q

−2

1− d′1q
−1

(41)

A criterion for the selection of c1, c2 and d′1 in order
that the DAG be SPR is given next.

Lemma 3. The conditions assuring that Hii
DAG(z) =

1+c1z
−1+c2z

−2

1−d
′
1z

−1
is strictly positive real (SPR) are:

� for c2 ≤ 0, c1 must be such that

−1− c2 < c1 < 1 + c2

� for c2 ≥ 0,

� if the following condition is satis�ed

2(d
′

1 − c2) <
√
2(c2 − c22)(1− d

′2
1 ) < 2(d

′

1 + c2)

the maximum bound on c1 is given by

c1 < d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

otherwise the maximum bound on c1 is given by

c1 < 1 + c2

� if the following condition is satis�ed

2(d
′

1 − c2) < −
√
2(c2 − c22)(1− d

′2
1 ) < 2(d

′

1 + c2)

the minimum bound on c1 is given by

c1 > d
′

1 − 3d
′

1c2 −
√
2(c2 − c22)(1− d

′2
1 )

otherwise the minimum bound on c1 is given by

c1 > −1− c2

The proof of this result is given in Appendix D.
From these conditions, closed contours in the c2−c1

plane can be de�ned for di�erent values of d′1 allow-
ing to select c1 and c2 for a given value of d′1 so that
the DAG be SPR. It is also interesting to see the in-
tersections of the contours assuring the SPR of the
Hii

DAG with the contours assuring that Hii
PAA is PR.

Such an intersection is shown in Fig.2. From this �g-
ure one can conclude that not all the SPR HDAG will
lead to a HPAA PR. In such cases the performance is
improved for low adaptation gains, but one can not
guarantee asymptotic stability for large values of the
adaptation gain. Fig. 2 shows also that there is a
region where despite that HPAA is PR, HDAG is not
SPR. For such con�gurations, large adaptation gains
can be used but the adaptation transient is slower
than for the basic gradient algorithm.

5 The �approximate gradient�
case

In many situations, the gradient can not be exactly
computed (evaluated) because it may depend upon
some unknown parts of the system. In general, this
unknown part will lead to the modi�cation of the
feedforward block of the equivalent feedback repre-
sentation given in Section 2 (Fig.1). The unit gain
will be replaced by a transfer operator. In such situ-
ations, in addition to the passivity condition on the
feedback path, the transfer operator appearing in the
feedforward path should be characterized by a SPR
transfer function.

7
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An illustrative example is the output error algo-
rithm [12], where the a posteriori predictor equation
(6) is replaced by:

ŷ(t+ 1) = θ̂T (t+ 1)ψ(t) (42)

where:

ψT (t) = [−ŷ(t),−ŷ(t− 1), .., u(t), u(t− 1), ...] (43)

In this case, the a posteriori prediction error will be
given by (see [12] for details):

ϵ(t+ 1) =
1

A(q−1)
[θ − θ̂(t+ 1)]Tψ(t) (44)

The gradient in this case can be approximated by:

1

2

∂J(t+ 1)

∂θ̂(t+ 1)
=
∂ϵ(t+ 1)

∂θ̂(t+ 1)
ϵ(t+1) =

[
1

A(q−1)
ψ(t)

]
ϵ(t+1)

(45)
But since A(q−1) is unknown, it will be approximated
by 1, leading to the parameter adaptation/learning
algorithm:

θ̂(t+ 1) = θ̂(t) + Fψ(t)ϵ(t+ 1) (46)

An equivalent feedback system similar to that pre-
sented in Fig.1 will be obtained, where ϕ is replaced
by ψ and in the feedforward path, 1 is replaced by

1
A(q−1) whose associated transfer function should be

SPR.

6 Stochastic case

We will consider the I/O model given in (1) where
the output is disturbed by a noise w(t+ 1):

y(t+ 1) = θTϕ(t) + w(t+ 1) (47)

In this equation, w(t) is a zero mean stationary
stochastic disturbance with �nite moments. The
adaptation algorithm should have a decreasing adap-
tation gain in order that the estimated parameter
vector tends toward a constant value. Such adapta-
tion gain variation is provided for example by the so
called �stochastic approximation�. The ARIMA PAA
will take the form:

θ̂(t+ 1) = θ̂(t) +
1

t
HDAG(q

−1)[Fϕ(t)ϵ(t+ 1)] (48)

For the analysis of the algorithms, we will use the
ODE method of Ljung [18, 12]. This requires the fol-

lowing assumptions: (1) Stationary processes ϕ(t, θ̂)

and ϵ(t + 1, θ̂) can be de�ned for θ̂(t) ≡ θ̂, (2) θ̂(t)
generated by the algorithm belongs in�nitely often to
the domain (Ds) for which the stationary processes

ϕ(t, θ̂) and ν(t+1, θ̂) can be de�ned. De�ne the con-
vergence domain:

Dc :
{
θ̂ : ϕT (t, θ̂)[θ∗ − θ̂]

}
= 0 (49)

For the algorithm given in Eq. (48), one has the fol-
lowing result:

Lemma 4. Consider the predictor given in Eq. (6)
and the PAA given in Eq. (48). One has

Prob{limt→∞ θ̂(t) ∈ Dc} = 1, if:

1. Hii
DAG(z

−1) is a SPR transfer function.

2. w(t + 1) is a sequence of independently equally
distributed normal random variables (0, σ).

8



The proof is given in Appendix E.
For the �output error� predictor given in Eq.(42),

one gets the following result:

Lemma 5. Consider the predictor given in Eq. (42)
and the PAA given in Eq. (48), where ϕ is replaced
by ψ given in Eq. (43). One has:

Prob{ lim
t→∞

θ̂(t) ∈ Dc} = 1 (50)

Dc :
{
θ̂ : ψT (t, θ̂)[θ∗ − θ̂]

}
= 0 (51)

if:

1. H(z−1) = 1
A(z−1) is a SPR transfer function,

2. Hii
DAG(z

−1) is a SPR transfer function,

3. E[ψ(t, θ̂), w(t+ 1, θ̂)] = 0 10.

The proof is given in Appendix F.

7 Convergence Rate

There are several ways for estimating the asymptotic
convergence rate of a recursive algorithm. One way is
to consider the ODE equation associated to the algo-
rithm and the Lyapunov function V used for studying
the stability of the ODE. The rate of convergence of

the Lyapunov function candidate (de�ned as |V̇ |
V ) can

be considered as an estimation of the asymptotic con-
vergence rate of the algorithm. The ODE equation
associated with the algorithm of Eq. (48) is given in
Eq. (105), the Lyapunov function candidate is given
in Eq. (107) and its derivative is given in Eq. (108).
It results that an estimation of the asymptotic con-
vergence rate is given by:

∆ =
| V̇ |
V

=
1 +

∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

(θ̂ − θ)T (Eθ + ET
θ )(θ̂ − θ)

(θ̂ − θ)TF−1(θ̂ − θ)
(52)

where Eθ = E
{
ϕ(t, θ̂)ϕT (t, θ̂)

}
. The convergence

rate for the gradient algorithm is obtained for cj = 0
, d′j = 0, j = 1, 2, . . . . For the ARIMA algorithms,

10The noise w is uncorrelated with the input u.

the improvement of the rate of convergence with re-
spect to the gradient algorithm is given by the steady

state gain of Hii
DAG de�ned as SSG =

1+
∑nC

j=1 cj

1−
∑n

D′
j=1 d′

j

,

which should be > 1. This will be illustrated in the
simulations section.

8 A review of various adapta-
tion/learning algorithms

It will be shown subsequently, on one hand that
a number of well known adaptation/learning algo-
rithms are particular cases of the ARIMA adapta-
tion/learning algorithm and on the other hand su�-
cient conditions for the stability of these algorithms
for any positive value of the adaptation gain/learning
rate will be provided.

8.1 �Integral + Proportional� param-
eter adaptation algorithm

A �rst particularization of the above results is
obtained for the integral + proportional adapta-
tion/learning algorithm [14, 12, 15, 6, 13]. The al-
gorithm is in general written under the form:

θ̂I(t+ 1) = θ̂I(t) + FIϕ(t)ϵ(t+ 1) ; FI > 0 (53)

θ̂P (t+ 1) = Fpϕ(t)ϵ(t+ 1) ; (54)

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1) (55)

where FI is called the integral adaptation gain and
Fp the proportional adaptation gain. For the case
FI = αII and FP = αP I, the associated embedded
transfer operator takes the form:

Hii
PAA =

αI

1− q−1
+ αP =

αI + αP − αP q
−1

1− q−1
(56)

which of course can be reformulated as (23). The
resulting coe�cients c1 and c2 (d′1 = 0) are given by:

αT = αI + αP ; c1 =
−αP

αT
; c2 = 0 (57)

and the PR conditions become (using Lemma 2):
αI > 0; αP ≥ −0.5αI , i.e., a negative proportional
adaptation gain can be used provided that the above
condition is satis�ed.

9



8.2 �Integral+Proportional+Deri-
vative� parameter adaptation
algorithm

This algorithm has been introduced in [14] with
a continuous time formulation. The corresponding
discrete-time structure of the algorithm is as follows:

θ̂(t+ 1) = θ̂I(t+ 1) + θ̂P (t+ 1) + θ̂D(t+ 1) (58)

where θ̂I(t + 1) and θ̂P (t + 1) are given by (53) and

(54), respectively, and θ̂D(t+ 1) is given by:

θ̂D(t+ 1) = FD[ϕ(t)ϵ(t+ 1)− ϕ(t− 1)ϵ(t)] (59)

For the case of diagonal matrices with identical terms:
FI = αII, FP = αP I and FD = αDI, the embedded
transfer operator can be expressed as:

Hii
PAA(q

−1) =
αI

1− q−1
+ αP + αD(1− q−1) (60)

which can be reformulated as (23) with (d′1 = 0)
where:

αT = αI + αP + αD; c1 =
−αP − 2αD

αT
; c2 =

αD

αT
(61)

The PR conditions resulting from the application of
Lemma 2 lead to:

αI > 0; αP > −0.5αI ; αP + αD ≥ −0.5αI ;

αP + 2αD ≥ −0.5αI (62)

8.3 Averaged gradient algorithms

The basic idea is to use an average of the current and
of previous gradients over a certain horizon (see [23,
24]). A general formulation in the present context
can be:

θ̂(t+1) = θ̂(t)+F

n∑
i=0

ciϕ(t−i)ε(t+1−i); c0 = 1 (63)

The associated embedded adaptation �lter will be:

Hii
PAA(q

−1) =
1 + c1q

−1 + c2q
−2 + . . .

(1− q−1)
(64)

If we want to guarantee stability for any F > 0 the
coe�cients ci should be chosen such that the transfer
function associated to the transfer operator given in
Eq. (64) is positive real. For nC = 2 it corresponds
to the 2nd order ARIMA algorithm with d′1 = 0. In
this case the PR conditions lead to (using Lemma 2):

0 ≤ 1 + c1 + c2 ≤ 2; − 1 ≤ 2c2
1− c1 + c2

≤ 1 (65)

Note that I+P and I+P+D adaptation/learning algo-
rithms (see (60)) for FI = αII, FP = αP I, FD = αDI
can be viewed as particular forms of this algorithm
with c1 and c2 given in (61). Vice versa, for n = 2
the averaged gradient algorithm can be implemented
as a I+P+D algorithm.

8.4 The Nesterov algorithm

The Nesterov algorithm [20, 5] has been developed in
the �eld of optimization in order to improve under
certain conditions the convergence rate of the basic
gradient algorithm. Based on [5], the Nesterov algo-
rithm can be written in the present context as :

θ̂(t+ 1) = ρ(t) + αϕ(t)ε(t+ 1) (66)

ρ(t) = θ̂(t) + β[θ̂(t)− θ̂(t− 1)] (67)

Combining (66) and (67), one gets:

θ̂(t+1) = (1+β)θ̂(t)−βθ̂(t−1)+αϕ(t)ε(t+1) (68)

This is equivalent to say that θ̂(t+1) is the output of
a MIMO diagonal transfer operator and the diagonal
terms are characterized by

Hii
PAA =

α

1− (1 + β)q−1 + βq−2

=
α

(1− q−1)(1− βq−1)
(69)

whose input is ϕ(t)ε(t + 1). It corresponds to the
2nd order ARIMA algorithm with c1 = c2 = 0 and
d′1 = β. In order to lead to a stable algorithm for any
value of the adaption/learning rate, Hii

PAA should be
a PR transfer operator. Using Lemma 2, one gets the
condition: −1 ≤ β ≤ 1/3.
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8.5 Conjugate gradient algorithm

Conjugate gradient methods [8, 4, 21] are e�cient
methods for large scale optimization problems. The
main idea for determining the adaptation/learning
direction is to use a linear combination of the cur-
rent gradient with the previous direction of adapta-
tion/learning. Following [17], this algorithm can be
expressed as follows:

θ̂(t+ 1) = θ̂(t) + αd(t) (70)

d(t) = βd(t− 1)+ϕ(t)ε(t+1); d(0) = ϕ(0)ε(1) (71)

Combining (70) and (71), one gets:

θ̂(t+1) = (1+β)θ̂(t)−βθ̂(t−1)+αϕ(t)ε(t+1) (72)

Eq. (72) has the same form as the Nesterov algorithm
and the same passivity/stability condition applies.

8.6 Momentum back propagation al-
gorithm

This algorithm has been proposed in [22, 10]. Fol-
lowing [17], it can be expressed as:

θ̂(t+ 1) = θ̂(t) +m[θ̂(t)− θ̂(t− 1)]

+ (1−m)αϕ(t)ε(t+ 1) (73)

where m is called momentum and it can be rewritten
as:

θ̂(t+ 1) = (1 +m)θ̂(t)−mθ̂(t− 1)

+ (1−m)αϕ(t)ε(t+ 1) (74)

Comparing with the Nesterov algorithm given in (68),
it results that the only di�erence is the term (1−m)
multiplying the adaptation gain/learning rate. The
equivalent �lter is the one of (69), except that the
numerator is (1 −m)α instead of α. It corresponds
to the 2nd order ARIMA algorithm with c1 = c2 = 0
and d′1 = m and the adaptation gain/learning rate
is α(1 −m) instead of α. The same condition is im-
posed on m in order to guarantee the passivity of the
embedded �lter: −1 ≤ m ≤ 1/3.

8.7 Parameter Adaptation Algorithm
with Leakage

For the case of tracking slowly time-varying param-
eters where there is not a steady state parameter to
be reached, the integrator may not be justi�ed (see
[9, 12]). In this case, one can replace the integrator
by a �rst order system and the embedded �lter of
(21) takes the form:

Hii
PAA(q

−1) =
1

1− σq−1
; 0 < σ < 1 (75)

(i.e. ci = 0, i = 1...nc, d1 = σ, d2 = d3... = 0). The
associated transfer function is SPR. The PALA takes
the form:

θ̂(t+ 1) = σθ̂(t) + Fϕ(t)ε(t+ 1) ; 0 < σ < 1 (76)

and the parameter error is driven by:

θ̃(t+ 1) = σθ̃(t) + Fϕ(t)ε(t+ 1)− (1− σ)θ (77)

The term (1 − σ)θ corresponds to an exogenous
bounded input to the equivalent feedback represen-
tation of Fig. 1 (where the integrator is replaced by

1
1−σq−1 ). Since the linear feedforward path is strictly
passive, the equivalent feedback representation has a
BIBO property, and this exogenous input will gener-
ate a bounded adaptation error ε(t+ 1) ̸= 0 even for
the case θ = constant (the algorithm does not have
memory). For details, see [9, 12].

9 Simulation Results

The second order ARIMA algorithm has been cho-
sen to illustrate the properties of the various PALA
algorithms. The system under consideration is char-
acterized by

S =
q−2 + 0.5q−3

1− 1.5q−1 + 0.7q−2
(78)

whose input is a PRBS with N = 255 samples. The
objective is to estimate the parameters of this model.
An adaptation gain of the form F = αI has been
used.
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9.1 Performance

For a given adaptation gain/learning rate α = 0.1,
the performance of the adaptation algorithms will
be evaluated with respect to the choice of the co-
e�cients c1, c2, d

′
1. To assess the performance, the

following indicators will be used: (i) the sum of
the squared a posteriori prediction errors: Jϵ(N) =∑N

t=0 ϵ
2(t+ 1), (ii) the square of the parametric dis-

tance: D2(t) =
{
[θ − θ̂(t)]T [θ − θ̂(t)]

}
, and (iii) the

sum of the squared parametric distance: JD(N) =∑N
t=0D

2(t).
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Figure 3: Evolution of the squared parametric dis-
tance D2(N) (perfect matching).

Table 1 summarizes the performance of the 2nd
order ARIMA algorithm and of the various particu-
lar cases. The table provides the best performance
for each con�guration11. Fig. 3 shows the evolution
of the squared parametric distance. Clearly the 2nd
order ARIMA algorithm provides a signi�cant per-
formance improvement with respect to the various
particular cases.

11This is true for I+P and Conjugate Gradient algorithms.
It may exist, however, better choices for the coe�cients of the
other algorithms given in Table 1.

Table 1: Performance of 2nd order ARIMA algo-
rithms.

Algorithm PR c1 c2 d′1 JD(N) Jϵ(N)

Integral (gradient) Y 0 0 0 51.65 13.32

Conj.Gr/Nest.. N 0 0 0.5 37.15 12.09
I+P+D (αP = −2αD) N 0 0.99 0 34.58 11.95

I+P Y 0.667 0 0 41.41 12.45
ARIMA 2 N −0.5 0.4 0.7 26.62 9.67

9.2 Stability

Two sets of coe�cients are considered. As shown
in Fig. 4, for the I+P con�guration with c1 =
0.667; c2 = 0; d′1 = 0 the corresponding embedded
�lter is positive real. Simulations have shown that for
adaptation gains/learning rates of 0.1 and 1000, the
estimator is stable and one converges towards the ex-
act parameters. For the second con�guration, using
ARIMA 2 with c1 = −0.5; c2 = 0.4; d′1 = 0.7, the
embedded �lter is not PR in the region up to 0.17fs
but the PR condition on the average is satis�ed for
small adaptation gains. Simulations have shown that
for an adaptation gain of 0.1 the estimator is stable
and the parameters converge towards the exact values
while for an adaptation gain of 1000 the adaptation
process is unstable.
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Figure 4: Phase of the embedded �lter HPAA for
two con�gurations (I+P with solid line and ARIMA2
with dashed line).

Table 2 summarizes the performance achieved
when one restricts the parameters of the embedded

12



�lter in order that the �lter be PR (assuring stability
for any value of the adaptation gain). One can still
observe a performance improvement with respect to
the integral adaptation.

Table 2: Performance of 2nd order ARIMA algo-
rithms under the PR constraint.

Algorithm PR c1 c2 d′1 JD(N) Jϵ(N)

Integral (gradient) Y 0 0 0 51.65 13.32

Conj.Gr/Nest.. Y 0 0 0.333 42.16 11.99

I+P+D Y 0.1 0.333 0 42.91 12.04
I+P Y 0.667 0 0 41.41 12.45

I+P+D/Av.Gr Y 0 0.33 0 44.655 12.21
ARIMA 2 Y 0.0989 0.0789 0.22 41.96 11.99

ARIMA 2 Y 0.408 −0.032 0.2 40.59 12.39

9.3 Dynamic adaptation
gain/learning rate

For all the algorithms given in Table 1, the dynamic

adaptation gain/learning rate C(q−1)
D′(q−1) is strictly

positive real (SPR). Fig. 5 gives the Bode diagram
for the ARIMA 2 and I+P algorithms (the gradient
algorithm corresponds to the 0 dB axis). One can
see that the phase lag is less than 90 degrees at all
the frequencies. It was veri�ed that the average gain
over the all frequency range is 0 dB. This means
that the improvement in performance is related
to the frequency distribution of the adaptation
gain/learning rate. Now examining the magnitude,
one observes that both are low pass �lters amplifying
low frequencies. This means that if the frequency
content of the gradient is in the low frequency
range, the e�ective adaptation gain/learning rate
will be larger than the gradient adaptation gain (0
dB), which should have a positive e�ect upon the
adaptation/learning transient. In particular the
DAG which has a larger gain in low frequencies
(ARIMA2) should provide better performance than
the (I+P) DAG (which is indeed the case). This
is also coherent with the estimated asymptotic

convergence rate.
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Figure 5: Bode diagram of the dynamic adaptation
gain/learning rateHDAG for ARIMA2, I+P and Gra-
dient algorithms (from Table 1).

9.4 Imperfect matching

It is interesting to see if the improvements observed in
the case of perfect matching (see Subsection 9.1) hold
also in the case of an imperfect matching. Speci�cally
the estimated model has only one coe�cient at the
numerator and the second coe�cient has been set to
zero. Note that in this case the parametric distance
does not go to zero. Figure 6 gives a zoom on the
time evolution of the squared parametric distance.
The conclusions drawn in the perfect matching case
hold also for the case of imperfect matching.

9.5 Stochastic case

To the same simulation example a white noise has
been added on the output (signal/noise ratio (stan-
dard deviation): 33 dB). The algorithm of Eq. (48)
with F=I has been used. Figure 7 shows the evo-
lution of the squared parametric distance (average
over 100 noise realizations). One gets asymptotic
unbiased parameters estimates (initial value of the
squared parametric distance is 4) and the improve-

13



0 20 40 60 80 100

Sample N

0

0.5

1

1.5

2

2.5

3

3.5

4

S
q
u
a
re

d
p
a
ra

m
e
tr

ic
d
is

ta
n
c
e

Integral: c
1
=0, c

2
=0, d

1

'
=0, G=0.1

Conj.Gr/Nest.: c
1
=0, c

2
=0, d

1

'
=0.5, G=0.1

I+P+D: c
1
=0, c

2
=0.99, d

1

'
=0, G=0.1

I+P: c
1
=0.67, c

2
=0, d

1

'
=0, G=0.1

c
1
=-0.05, c

2
=0.99, d

1

'
=0.00, G=0.1

ARIMA2: c
1
=-0.5, c

2
=0.4, d

1

'
=0.7, G=0.1

Figure 6: Evolution of the squared parametric dis-
tance D2(N) in the case of imperfect matching.

ment of the transient performances with respect to
the gradient is obvious12.

Figure 7: Evolution of the squared parametric dis-
tance in the presence of noise (zoom).

12The transient performance can be related to the asymp-
totic convergence rate given in Section 7.

10 Experimental results

The various algorithms presented above have been
evaluated experimentally on an active noise control
test-bench. The view of the test-bench used for ex-
periments and its detailed scheme are shown in Fig. 8.
The speaker used as the source of disturbances is la-

Figure 8: Duct active noise control test-bench photo
(top) and block diagram (bottom).

belled as 1, while the control speaker is marked as
2. At pipe's open end, the microphone that mea-
sures the system's output (residual noise e(t)) is de-
noted as 3. s(t) is the disturbance. Inside the pipe,
close to the source of disturbances, the second micro-
phone, labelled as 4, measures the perturbation's im-
age, denoted as y(t). u(t) is the control signal. The
transfer function between the disturbance's speaker
and the microphone (1→3) is called Global Primary
Path, while the transfer function between the con-
trol speaker and the microphone (2→3) is denoted

14



Secondary Path. The transfer function between mi-
crophones (4→3) is called Primary Path. The in-
ternal coupling found between (2→4) is denoted Re-
verse Path. Speakers and microphones are connected
to a target computer with Simulink Real-time®. A
second computer is used for development and op-
eration with Matlab. The sampling frequency is
fs = 2500 Hz.
The various paths are described by models

of the form: X(q−1) = q−dx BX(q−1)
AX(q−1) =

q−dx
bX1 q−1+...+bXnBX

q
−nBX

1+aX
1 q−1+...+aX

nAX
q
−nAX

, with BX = q−1B∗
X for

any X ∈ {G,M, T}. Ĝ = q−dG B̂G

AG
, M̂ = q−dM B̂M

AM
,

and T̂ = q−dT B̂T

AT
denote the identi�ed (estimated)

models of G,M , and T . The system's order is de�ned
as (the indexes G, M , and T have been omitted):
n = max(nA, nB + d). The models of the various
paths are characterized by the presence of many pairs
of very low damped poles and zeros. These models
have been identi�ed experimentally. The orders of
the various identi�ed models are: nD = 27, nG = 33
and nM = 27.
The objective is to attenuate an incoming unknown
wide-band noise disturbance. The corresponding
block diagram for the adaptive feedforward noise
compensation using FIR Youla-Kucera (FIR-YK)
parametrization of the feedforward compensator is
shown in Figure 9. The adjustable �lter Q̂ has the

Global primary path

Positive feedback coupling 

Measurement of the

image of the disturbance

Secondary

path

    Residual

 noise

measurement

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward compensator

Figure 9: Feedforward AVC with FIR-YK adaptive
feedforward compensator.

structure:

Q̂(q−1) = q̂0 + q̂1q
−1 + ...+ q̂nQ

q−nQ (79)

and the parameters qi will be adapted in order to
minimize the the residual error. The algorithm which
will be used (introduced in [16]) can be summarized
as follows. One de�nes

θT = [q0, q1, q2, . . . , qnQ
] (80)

θ̂T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (81)

ϕT (t) = [v(t+ 1), v(t), . . . , v(t− nQ + 1)] (82)

where:

v(t+ 1) = BM ŷ(t+ 1)−AM û(t+ 1) (83)

= B∗
M ŷ(t)−AM û(t+ 1) (84)

One de�nes also the regressor vector (a �ltered ob-
servation vector) as:

ϕf (t) = L(q−1)ϕ(t)

= [vf (t+ 1), v(t), . . . , vf (t− nQ+ 1)] (85)

where

vf (t+ 1) = L(q−1)v(t+ 1) (86)

Using R0 = 0 and S0 = 1, the poles of the inter-
nal positive closed loop will be de�ned by AM and
they will remain unchanged. The �lter used in (86)
is L = Ĝ and the associated linear transfer opera-
tor appearing in the equivalent feedforward path is

H(q−1) = G(q−1)

Ĝ(q−1)
(the algorithm uses an approxi-

mate gradient � see Section 5). H(z−1) should be
SPR in order to assure asymptotic stability in the
case of perfect matching. This is a very mild condi-
tion as far as a good experimental identi�cation of
the models is done. The PAA which will be used is
the one of Eq. (32), where θ̂ is given by Eq. (81)
and ϕ is replaced by ϕf given in Eq. (85). The ad-

justable �lter Q̂(t, q−1) has 60 parameters. The adap-
tation gain is α = 0.2. A broad-band disturbance
70-170 Hz is used as an unknown disturbance act-
ing on the system. The steady state and transient
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attenuation13 will be evaluated for the various val-
ues of the parameters c1, c2 and d′1 given in Tables
1 and 2. The system will operate in open loop dur-
ing the �rst 15 s. Figure 10 shows the time response
of the system as well as the evolution of the global
attenuation when using the gradient (integral) algo-
rithm (top) and the ARIMA2 algorithm (bottom)
with c1 = −0.5, c2 = 0.4, d′1 = 0.7 (last row of Ta-
ble 1). The top of Fig. 11 shows a comparative time
evolution of the global attenuation for the algorithms
considered in Table 1. As it can be observed, there
is a clear improvement in the adaptation transient
using ARIMA2 (last row of Table 1) with respect to
the gradient algorithm (�rst row of Table 1). The
adaptation/learning transient is reduced by a factor
of two and a half. One observes also an improvement
of the steady state attenuation with respect to gradi-
ent adaptation (one operates on an imperfect match-
ing context). The other algorithms (from Table 1)
provide also an improvement with respect to the gra-
dient algorithms. Their performance are close each
other. The bottom of Fig. 11 gives a comparison of
the attenuation time response for the algorithms of
Table 2 (PR constraint). The transient improvement
provided by the various algorithms with respect to
the gradient is slightly less signi�cant then for the
algorithms of Table 1. However these algorithms will
tolerate higher values of the adaption/learning rate.

11 Conclusion

The paper has shown that many parameter adapta-
tion/learning algorithms can be characterized by the
presence of an embedded IIR (ARIMA) �lter. A gen-
eral form of this type of algorithm has been proposed
and analysed from stability and performance points
of view. Signi�cant improvement of the transient per-
formance with respect to the gradient algorithm can
be obtained.

13The attenuation is de�ned as the ratio between the vari-
ance of the residual noise in the absence of the control and the
variance of the residual noise in the presence of the adaptive
feedforward compensation. The variance is evaluated over an
horizon of 3 s.

A Proof of Theorem 1

Consider Eq.(8):

ϵ(t+ 1) =y(t+ 1)− ŷ(t+ 1) = y(t+ 1)− θ̂T (t+ 1)ϕ(t)

=− θ̃T (t+ 1)ϕ(t) (87)

where θ̃(t) = θ̂(t) − θ. Eq. (16) can be rewritten as
Eq. (28) and this leads to:

θ̃(t+ 1) = θ̃(t) +HDAG(q
−1)ϕ(t)ϵ(t+ 1) (88)

and respectively:

θ̃(t+ 1) = HPAA(q
−1)ϕ(t)ϵ(t+ 1) (89)

Using the [A,B,C,D] state space representation as-
sociated to HPAA(z) one gets:

x(t+ 1) = Ax(t) +Bϕ(t)ϵ(t+ 1) (90)

θ̃(t+ 1) = Cx(t) +Dϕ(t)ϵ(t+ 1) (91)

and respectively:

ϕT (t)θ̃(t+1) = ϕT (t)Cx(t)+ϕT (t)Dϕ(t)ϵ(t+1) (92)

Eqs (87), (90), and (92) de�ne an equivalent feedback
system, the equivalent feedback path being de�ned by
(90) and (92). Then one can use [12, Theorem 3.3.1]:

Theorem 2. For a PAA having the form of (90)
and (91), the equivalent feedback path described by
(90) and (92) is passive, i.e.,

η(0, t1) =

t1∑
t=0

ϵ(t+ 1)ϕT (t)θ̃(t+ 1) ≥ −γ2 ;

γ2 <∞, ∀t ≥ 0 (93)

if the associated linear system [A,B,C,D] described
by (18) and (19) is passive, or equivalently, if
HPAA(z) given in (17) is a PR transfer matrix.

SinceHPAA(z) is a PR transfer matrix by hypothe-
sis, it results from (87) (after multiplication of the left
hand side by ϵ(t+1)) and (93) that

∑∞
t=0 ϵ

2(t+1) ≤
γ2 and one concludes that limt→∞ ϵ(t+ 1) = 0.
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B Proof of Lemma 1

Let us consider the function log
(∣∣∣ C(z−1)

D′ (z−1)

∣∣∣), where
C(z−1) = 1 +

∑nC

k=1 ckz
−k, D

′
(z−1) = 1 −∑n

′
D

k=1 d
′

kz
−k. One seeks to evaluate (30).

For |z| = 1, one has z = ejω, dz = jejωdω, and
dz
z = jdω. Thus one can write

I =
1

j

(∮
T
log

∣∣∣∣∣1 +
nC∑
k=1

ckz
−k

∣∣∣∣∣ dzz
−
∮
T
log

∣∣∣∣∣∣1−
n
′
D∑

k=1

d
′

kz
−k

∣∣∣∣∣∣ dzz
 (94)

where T is the unit circle.

On the other hand
∣∣1 +∑nC

k=1 ckz
−k
∣∣ =∣∣1 +∑nC

k=1 ckz
k
∣∣ for |z| = 1. The poles of

f(z) = log
(∣∣1 +∑nC

k=1 ckz
k
∣∣) are the zeros of∣∣1 +∑nC

k=1 ckz
k
∣∣, and they all lie outside the unit

circle (by assumption, otherwise HPAA cannot
be PR). Therefore the function f : z 7→ f(z) is
holomorphic in the open unit circle, and one can
apply the Cauchy Integral's Formula (see [3, pg.
411]). This formula yields

1

j

∮
T
f(z)

dz

z
= Ind(T, 0)f(0)

where Ind(T, 0) is the index of the unit circle with
respect to z = 0. One has Ind(T, 0) = 1, and f(0) =
log(1) = 0. Therefore one gets

1

j

∮
T
log

(∣∣∣∣∣1 +
nC∑
k=1

ckz
−k

∣∣∣∣∣
)

dz

z
=

1

j

∮
T
f(z)

dz

z
= 0

The same machinery can be applied mutatis mu-

tandis for f(z) = log

∣∣∣∣1−∑n
′
D

k=1 d
′

kz
k

∣∣∣∣. One �nally

obtains
∫ +π

−π
log
(∣∣∣ C(e−jω)

D′ (e−jω)

∣∣∣)dω = 0 and, since the

function
∣∣∣ C(e−jω)

D′ (e−jω)

∣∣∣ is even, one gets the claimed re-

sult.

C Proof of Lemma 2

A �rst necessary condition is given by condition (33)
assuring that the poles of the transfer function HPAA

are inside or on the unit circle. By performing a par-
tial fraction expansion of HPAA, one has:

HPAA(q
−1) = 1 + δq−1

1−q−1 + γq−1

1−d
′
1q

−1
. Set β such that

β ∈]0, 1[, one can write HPAA(q
−1) = H1(q

−1) +

H2(q
−1) withH1(q

−1) = β+ δq−1

1−q−1 = β
1− β−δ

β q−1

1−q−1 and

H2(q
−1) = (1−β)+ γq−1

1−d
′
1q

−1
= (1−β)

1−
(
d
′
1−

γ
1−β

)
q−1

1−d
′
1q

−1
.

Since H1, H2 are �rst order transfer function opera-
tors, and since β > 0, 1 − β > 0, a su�cient condi-
tion for H1 and H2 to be both PR is that their zeros
be inside or on the unit circle. This is assured if
the two following conditions are met simultaneously:
(a)−1 ≤ β−δ

β ≤ 1, (b) ≤ d
′

1 −
γ

1−β ≤ 1.

If (a) and (b) are met at the same time, there ex-
ists at least one β ∈]0, 1[ such that the two con-
ditions (a) and (b) are met at the same time, and
this value is β0 the smallest value of β such that
Re(H1(e

iω)) ≥ 0 ∀ω. Condition (a) will be sat-
is�ed if condition (34) is met. One has therefore
0 ≤ δ ≤ 2 and β ∈ [ δ2 , 1[. Moreover, the function

f(β) = d
′

1 −
γ

1−β is monotone for β ∈ [ δ2 , 1[. If there

exists only one value of β such that condition b) is sat-
is�ed, this value is necessarily δ/2 since −1 < d

′

1 < 1.
Hence condition (35).
These conditions are also necessary: Let us assume
that the condition β−δ

β ≤ 1 is violated, since β > 0

one has δ < 0. By de�nition δ = 1+c1+c2
1−d

′
1

and

1− d
′

1 > 0. That leads to 1 + c1 + c2 < 0. But from
the Jury criterion [11], a necessary and su�cient con-
dition for 1+ c1q

−1+ c2q
−2 be a stable polynomial is

that at the same time the three following conditions
|c2| < 1, 1 + c1 + c2 > 0, 1 − c1 + c2 > 0 are veri-
�ed. Therefore if β−δ

β > 1, one has 1 + c1 + c2 < 0

and 1 + c1q
−1 + c2q

−2 cannot be stable, and HPAA

cannot be positive real. Similarly if β−δ
β ≤ −1, one

has δ ≥ 2 and since 1 − d
′

1 > 0 there exists some
values of d

′

1 such that 1 + c1 + c2 > 2: for c1 = 0
this implies c2 > 1 which is not compatible with the
�rst condition of the Jury criterion, thus in this case
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1+c1q
−1+c2q

−2 cannot be stable and HPAA cannot
be positive real. This ends the proof.

D Proof of Lemma 3

In order to assess the strict real positivity ofHDAG(z)
one must check the condition:

Re
(
(1− d

′

1z)(1 + c1z
−1 + c2z

−2)
)
> 0 (95)

Set z = ejω = cos(ω) + j sin(ω), and the condition
(95) becomes

(1−c2−d′1c1)+(c1−d′1c2−d′1) cos(ω)+2c2 cos
2(ω) > 0

(96)
Set X = cos(ω), x ∈ [−1, 1] and f(X) = 2c2X

2 +
(c1 − d′1c2 − d′1)X + (1− c2 − d′1c1).

� case c2 ≤ 0
f has a �nite maximum, and it is located at

Xmax =
−c1+d′

1c2+d′
1

4c2
.

If Xmax > 1 one must verify f(−1) > 0,
moreover one has f(1) > f(−1).
If Xmax < −1 one must verify f(1) > 0,
moreover one has f(−1) > f(1).
If −1 < Xmax < 1 one must verify at the same
time f(−1) > 0 and f(1) > 0.
In any case one must check that
min(f(−1), f(1)) > 0. But f(1) > 0 im-
plies that c1 > −c2 − 1, and f(−1) > 0 implies
that c1 < c2 + 1. Thus for c2 < 0 the passivity
condition is equivalent to −1− c2 < c1 < 1+ c2.

� case c2 = 0
In this case f is represented by a line, and one
must again verify that f(−1) > 0 and f(1) > 0
that leads to the passivity condition −1 < c1 < 1

� case c2 > 0
In this case f has a �nite minimum at Xmin =
−c1+d

′
1c2+d

′
1

4c2
. A su�cient condition for f(X) ≥

0 ∀X is that f(X) = 0 has a unique solution. In
such a situation the discriminant of f denoted
∆ is given by ∆ = (c1 − d

′

1c2 − d
′

1)
2 − 8c2(1 −

c2 − d
′

1c1), and one must have ∆ = 0, which is

equivalent to

c21+c1(−2d
′

1+6d
′

1c2)+d
′2
1 (c2+1)2+8c2(c2−1) = 0

(97)

Thus, one looks for the solutions of (97). The dis-
criminant ∆′ of (97) is ∆′ = 32(c2− c22)(1−d

′2
1 ), and

the two solutions of (97) are

c∗1+ = d
′

1 − 3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 )

c∗1− = d
′

1 − 3d
′

1c2 − 2
√
2(c2 − c22)(1− d

′2
1 )

On the other hand if −1 ≤ Xmin ≤ 1 one must have
(owing to the expression of Xmin)

−4c2 + d
′

1c2 + d
′

1 < c1 < 4c2 + d
′

1c2 + d
′

1 (98)

Now if c∗1+ meets (98), the upper bound on c1 is d
′

1−

3d
′

1c2 + 2
√
2(c2 − c22)(1− d

′2
1 ), otherwise this upper

bound is given by c1 < 1 + c2, and similarly if c∗1−
meets (98) the lower bound on c1 is d

′

1 − 3d
′

1c2 −
2
√
2(c2 − c22)(1− d

′2
1 ), otherwise this lower bound is

given by c1 > −c2 − 1. This ends the proof.

E Proof of Lemma 4

The algorithm given in (48) can be written as:

θ̂(t+ 1) = θ̂(t) +

nD′∑
j=1

d′j [θ̂(t+ 1− j))− θ̂(t− j)]

+
1

t
F

nC∑
j=0

cjϕ((t− j)ϵ(t+ 1− j); c0 = 1 (99)

where:

ϵ(t+1) = y(t+1)−ŷ(t+1) = [θ−θ̂(t+1)]Tϕ(t)+w(t+1)
(100)
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The behaviour of the algorithm for t >> 1 and an
interval N : 1 << N << t will be described by:

θ̂(t+N + 1) = θ̂(t)+

+

n′
D∑

j=1

d′j

N∑
i=0

[θ̂(t+ i− j + 1))− θ̂(t+ i− j)]+

+

nC∑
j=0

cj

[
N∑
i=0

1

t+ i
Fϕ((t+ i− j)ϵ(t+ 1 + i− j)

]
(101)

Observe that

N∑
i=0

[θ̂(t+ i)− θ̂(t+ i−1)] = θ̂(t+N)− θ̂(t−1) (102)

Taking into account the hypotheses on t and N , (101)
becomes:1−

n′
D∑

j=1

d′j

 [θ̂(t+N + 1)− θ̂(t)] ≈

≈
nC∑
j=0

cj

[
N∑
i=0

1

t+ i
Fϕ(t+ i− j)ϵ(t+ 1 + i− j)

]
(103)

This equation can be approximated for large N by

θ̂(t+N + 1)− θ̂(t) ≈

≈
1 +

∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

[
N∑
i=0

1

t+ i
Fϕ(t+ i)ϵ(t+ 1 + i)

]
(104)

This is exactly the formalism used in the ODE ap-
proach of Ljung [18] and therefore, the associated
ODE equation will take the form:

dθ̂

dτ
= −

1 +
∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

f(θ̂); ∆τN+1
t ≈

N∑
i=0

1

t+ i

(105)

where f(θ̂) = −E
{
[Fϕ(t, θ̂)ϵ(t+ 1, θ̂)]

}
. Using

(100), f(θ̂) will be given by:

f(θ̂) = E
{
[Fϕ(t, θ̂)ϕT (t, θ̂)]

}
(θ̂ − θ)

−E
{
[Fϕ(t, θ̂)w(t+ 1)]

}
(106)

But as a consequence of condition (2), the second
term in the right side of (106) will be null. The stabil-
ity of the ODE will be analyzed using the Lyapunov
function candidate:

V (θ̂) = (θ̂ − θ)TF−1(θ̂ − θ) (107)

The derivative evaluated along the trajectories of the
ODE (105) is:

dV

dτ
= V̇ = −

1 +
∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

(θ̂ − θ)T (Eθ + ET
θ )(θ̂ − θ)

(108)

where Eθ = E
{
ϕ(t, θ̂)ϕT (t, θ̂)

}
. SinceHDAG is SPR,

V̇ ≤ 0 and this will assure, w.p.1 convergence towards
the domain DC . If ϕ

T (t, θ̂) is a persistently exciting
signal, there is a unique possible convergence point
θ̂ = θ and global asymptotic stability is assured lead-
ing to w.p. 1 convergence towards θ̂ = θ.

F Proof of Lemma 5

Following the same procedure one gets:

f(θ̂) = E
{
[Fψ(t, θ̂)H(q−1)ψT (t, θ̂)]

}
(θ̂ − θ)

−E
{
HDAG(q

−1)[Fψ(t, θ̂)w′(t+ 1)]
}

(109)

where H(q−1) = 1/A(q−1) and w′(t + 1) =
A(q−1)w(t + 1). But as a consequence of condition
(3) the second term in right side of Eq. (109) will
be null and the equilibrium points of the ODE (Eq.
(105)) will be given by Dc (Eq. (51)).
We must examine now the stability of the associated
ODE given in Eq. (105) for f(θ̂) given in Eq. (109)
without the forcing term. We will use the Lyapunov
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function candidate given in Eq. (107). The derivative
evaluated along the trajectories of the ODE (105) is:

dV

dτ
= V̇ = −

1 +
∑nC

j=1 cj

1−
∑nD′

j=1 d
′
j

(θ̂ − θ)T (Gθ +GT
θ )(θ̂ − θ)

(110)

where Gθ = E
{
ψ(t, θ̂)H(q−1)ψT (t, θ̂)

}
. Since

HDAG is SPR, V̇ ≤ 0 if (Gθ+G
T
θ ) is a positive de�nite

matrix. This holds if H(q−1) is SPR (for a detailed
proof of this result see for example [12], (pp 129-130),
[18].)
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Figure 10: Time evolution of the residual noise using
the gradient (integral) algorithm (top) and using the
ARIMA2 algorithm (bottom).
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Figure 11: Time evolution of the global attenuation
for the algorithms of Table 1 (top) and of Table 2
(bottom).
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