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The paper introduces a general structure for parameter adaptation/learning algorithms (PALA). This structure is characterized by the presence of an embedded ARMA (poles-zeros) lter in the PALA. The

key question is how to select the coecients of this lter in order, on the one hand, to guarantee the stability of the parameter estimator for any (positive) value of the adaptation gain/learning rate and for any initial conditions and on the other hand to accelerate the adaptation transient. In order to achieve this, it is shown that on one hand the embedded ARMA lter should be characterized by a positive real transfer function and on the other hand the lter acting on the correcting term (the dynamic adaptation gain) should be characterized by a strictly positive real transfer function. Specic conditions for the design of a second order ARMA embedded lter (ARIMA2 algorithm) are provided.

It is shown in the paper that many parameter adaptation/learning algorithms (PALA) used in adaptive control, system identication and neural networks (Nesterov, Conjugate gradients, Mo-mentum back propagation, Averaged gradient, In-tegral+proportional+derivative, ...) are particular cases of the PALA structure introduced in this paper and specic conditions for the stable operation of these algorithms are given.

Performance of the ARIMA2 algorithm as well as of the other algorithms reviewed in the paper will be comparatively evaluated by simulations and experimental results obtained on an active noise control system.

INTRODUCTION

In the last twelve years there was a revitalization of the eld of parameter adaptation/learning algorithms (PALA). Many algorithms have been proposed starting from diverse points of view. Some algorithms have been proposed in the eld of neural networks [START_REF] Haykin | Neural Networks[END_REF][START_REF] Narendra | Gradient methods for the optimization of dynamical systems containing neural networks[END_REF]. Some other algorithms have been inspired by previous work done in optimization techniques [START_REF] Nesterov | A method for solving a convex programming problem with convergence rate 0(1/k2)[END_REF][START_REF] Fletcher | Function minimization by conjugate gradients[END_REF].

Applications in adaptive control of new algorithms have been reported [START_REF] Airimitoaie | Improving adaptive feedforward vibration compensation by using integral+proportional adaptation[END_REF]. The papers [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF][START_REF] Livieris | A survey on algorithms for training articial neural networks[END_REF] give a comprehensive review of current used algorithms. Unfortunately, for most of these algorithms, there are no results available for the choice of the various coecients (weights) allowing to guarantee the asymptotic stability of the estimator for any value of the adaptation gain/learning rate and for any initial conditions 1 of the estimated parameters. In order to address the stability issue, it is pertinent to observe that a PALA is a dynamic system with an inherent feedback structure. This point of view has been considered in the eld of adaptive control. See for example [START_REF] Ioannou | Robust Adaptive Control[END_REF][START_REF] Landau | Adaptive control[END_REF].

The paper introduces a general form for the PALA characterized by the presence of an embedded ARMA (poles-zeros) lter acting on the partial gradient of a criterion to be minimized with respect to the parameters to be tuned. Using passivity argu-

ments, an answer is given to the question of stability of the estimator for any value of the adaptation gain/learning rate and any initial conditions.

The basic answer is that the embedded ARMA (or ARIMA if it contains an integrator) lter should be characterized by a positive real (PR) discrete time transfer function. This will allow to give specic conditions for the choice of the various coecients (weights). The paper will show that many adaptation/learning algorithms (Nesterov, Conjugate gradients, Momentum back propagation, Averaged gradient, Integral+proportional+derivative,...) are particular forms of this general structure for PALA and specic conditions for the stable operation of these algorithms are provided. Since in a number of applications one operates at very low adaptation gains/learning rates leading to what is called slow adaptation, using averaging it is possible to relax the passivity conditions on the embedded lter and this will be discussed.

The contributions of the paper can be summarized as follows:

A general form for the PALA algorithms is introduced and conditions for assuring the stability of the algorithms for any positive value of the adaptation gain/learning rate are given.

The concept of dynamic (frequency dependent) adaptation gain/learning rate emerged from this study.

A PALA algorithm characterized by a 2nd order ARIMA embedded lter acting on the gradient is introduced, analysed and evaluated.

A review of a number of existing PALA from a unied perspective is done.

A comprehensive illustration of the eect of the dynamic adaptation gain/learning rate is provided by simulations and application to an adaptive active noise control system.

The paper is organized as follows. Section 2 will set the equations and review briey the gradient algorithm. Section 3 presents a general form for adaptation/learning algorithms incorporating an ARIMA lter and provides stability conditions. A 2 nd order ARIMA PALA will be presented in Section 4. The case of approximate gradients is discussed in Section 5. The analysis of the proposed algorithms in a noisy environment is discussed in Section 6. An estimation of the convergence rate is provided in Section 

y(t + 1) = -a 1 y(t) -a 2 y(t -1) -. . . + b 1 u(t) + b 2 u(t -2) + . . . = θ T ϕ(t), (1) 
where the unknown parameters a i and b i form the components of the parameter vector θ:

θ T = [a 1 , a 2 , . . . a n A , b 1 , b 2 , . . . b n B ] (2) 
and

ϕ T (t) = [-y(t), -y(t -1), . . . , u(t), u(t -1), . . .] (3) 
is the measurement vector. 1 The adjustable prediction model will be described in this case by:

ŷ• (t + 1) = ŷ[(t + 1)| θ(t)] = θT (t)ϕ(t) (4) 
where ŷ• (t + 1) is termed the a priori predicted output depending upon the values of the estimated parameter vector θ at instant t:

θT (t) = [â 1 (t), â2 (t), . . . ân A (t), b1 (t), b2 (t), . . . bn B (t) ] (5) 
It is very useful to consider also the a posteriori predicted output computed on the basis of the new estimated parameter vector at t + 1, θ(t + 1), which will be available somewhere between t + 1 and t + 2. The a posteriori predicted output will be given by:

ŷ(t + 1) = ŷ[(t + 1)| θ(t + 1)] = θT (t + 1)ϕ(t) (6)
One denes an a priori prediction error as:

ϵ • (t + 1) = y(t + 1) -ŷ• (t + 1) (7) 
and an a posteriori prediction error as:

ϵ(t + 1) = y(t + 1) -ŷ(t + 1) = [θ -θ(t + 1)] T ϕ(t) (8)
The objective is to nd a recursive parameter adaptation algorithm (PAA) with memory. The structure of such an algorithm is:

θ(t+1) = θ(t)+∆ θ(t+1) = θ(t)+f [ θ(t), ϕ(t), ϵ • (t+1)] (9) 
The correction term must enable to minimize the following criterion at each step 2 min θ(t+1)

J(t + 1) = [ϵ(t + 1)] 2 (10) 
A solution can be provided by the gradient technique.

The corresponding PALA will have the form:

θ(t + 1) = θ(t) -F ▽ θ J(t + 1) = θ(t) -F ∂J(t + 1) ∂ θ(t + 1) (11) 1 u(t), y(t) ∈ R 1 , θ, ϕ ∈ R n , n = na + n b , R n is the real n-dimensional Euclidean space.
2 Using the criterion min θ(t) J(t + 1) = [ϵ • (t + 1)] 2 , will not allow to guarantee stability of the PALA for any value of the adaptation gain/learning rate. See [START_REF] Landau | Adaptive control[END_REF] for details.

where F > 0 (a positive denite matrix) is the matrix adaptation gain/learning rate and ∂J(t+1)/∂ θ(t+1)

is the partial gradient of the criterion given in Eq. [START_REF] Jacobs | Increased rates of convergence through learning rate adaptation[END_REF] with respect to θ(t + 1). There are two possible choices for the matrix adaptation gain/learning rate:

(i) F > 0 (positive denite matrix). (ii) F = αI; α > 0 (most of the applications with constant adaptation gain use this second choice). The term adaptation gain or learning rate is used for characterizing α.

At this stage, it is interesting to point out already that this is a dynamic system with input the gradient (or in general a correcting term related to the gradient) and output the estimated parameter vector, i.e Eq. ( 11) can be expressed also as:

θ(t + 1) = H P AA (q -1 )F [-▽ θ J(t + 1)] (12) 
where 3 H P AA (q -1 ) is a MIMO diagonal transfer operator having identical terms. All the diagonal terms are identical and are described in this case by:

H ii P AA (q -1 ) = 1 1 -q -1 (13) 
Note also that the operator ( 13) is characterized by a PR transfer function (it is a passive system). From [START_REF] Jacobs | Increased rates of convergence through learning rate adaptation[END_REF], [START_REF] Jury | A stability test for linear discrete time systems in table form[END_REF] and [START_REF] Hestenes | Methods for conjugate gradients for solving linear systems[END_REF] one obtains (for details see [START_REF] Landau | Adaptive control[END_REF]):

θ(t + 1) = θ(t) + F ϕ(t)ϵ(t + 1) (14)
where F is a positive denite matrix adaptation gain 4 . The algorithm has memory (for ε(t + 1) = 0, θ(t + 1) = θ(t)). Consider Eq. ( 14), subtracting θ from both sides and then multiplying with ϕ(t) T one gets:

ϕ(t) T θ(t + 1) = ϕ(t) T θ(t) + ϕ(t) T F ϕ(t)ϵ(t + 1) (15)
where θ(t) = θ(t) -θ is the parameter error. Eqs. [START_REF] Hestenes | Methods for conjugate gradients for solving linear systems[END_REF] and ( 15) dene an equivalent feedback system shown in Fig. 1. Since it is a feedback structure, stability is 3 The complex variable z -1 will be used for characterizing the system's behaviour in the frequency domain and the delay operator q -1 will be used for describing the system's behaviour in the time domain. 4 For the eective implementation, ϵ(t + 1) is given by ϵ(t

+ 1) = ϵ • (t+1)
1+ϕ T (t)F ϕ(t) . a key issue. Using passivity arguments (see [START_REF] Landau | Adaptive control[END_REF]) it can be shown that the feedback path is passive and since the feedforward transfer function is 1 (a particular strictly positive real (SPR) transfer function), the system will guarantee lim t→∞ ϵ(t + 1) = 0 for any initial conditions θ(0), ϵ(0) and any positive denite matrix F (i.e. for any positive value of the adaptation gain α when F = αI). Furthermore, examining the equivalent feedback path one observes that there is an embedded integrator lter which is characterized by a PR transfer function. 

where the lter H P AA (q -1 ) is characterized by a transfer matrix:

H P AA (z) = C(zI -A) -1 B + D (17) 
leading to a PALA of the form ( [START_REF] Landau | Adaptive control[END_REF]):

x(t + 1) = Ax(t) + Bϕ(t)ϵ(t + 1) (18) 
θ(t + 1) = Cx(t) + Dϕ(t)ϵ(t + 1) (19) 
where x(t) is the state of the passive linear lter and the input is the reverse of the gradient, in our case ϕ(t)ϵ(t + 1). The particular case of integral adaptation/learning corresponds to: A = I, B = D = F , C = I. One has the following result:

Theorem 1. For the system described by Eqs [START_REF] Airimitoaie | Improving adaptive feedforward vibration compensation by using integral+proportional adaptation[END_REF] through [START_REF] Hestenes | Methods for conjugate gradients for solving linear systems[END_REF] using the PALA of Eqs [START_REF] Ljung | Theory and practice of recursive identication[END_REF] and [START_REF] Narendra | Gradient methods for the optimization of dynamical systems containing neural networks[END_REF] or of Eq. ( 16) one has lim t→∞ ϵ(t + 1) = 0 for any positive denite gain matrix F and initial conditions θ(0), ϵ(0) if H P AA (z -1 ) is a PR transfer matrix 5 with a pole at z=1.

The proof of Theorem 1 is given in Appendix A.

Relaxation of the PR condition

For small adaptation gains/learning rates the PR condition upon the embedded ARMA (ARIMA) lter for assuring stability can be relaxed using averaging [START_REF] Anderson | Stability of adaptive systems[END_REF]. If in addition one assumes that the input is a broad-band signal, the behaviour of the algorithms will be well described by the averaging theory. In the context of averaging, the passivity condition upon the equivalent feedback block takes the form:

lim N →∞ 1 N N t=1 ϕ(t)H P AA (q -1 )ϕ T (t) = 1 2 π -π
Φ(e jω )•

• [H P AA (e jω ) + H P AA (e -jω )]Φ T (e -jω )dω ≥ 0 [START_REF] Nesterov | A method for solving a convex programming problem with convergence rate 0(1/k2)[END_REF] i.e., it should be a positive denite matrix (Φ(e jω )

is the Fourier transform of ϕ(t)). Of course the PR 5 Or equivalently the system [A,B,C,D] is passive.

condition upon H P AA (z -1 ) allows to satisfy this condition. However in the averaging context it is only needed that (20) be true which allows that H P AA be non PR in a limited frequency band. The conclusion is that H P AA does not need to be PR. It is enough that the positive weighted energy exceeds the negative weighted energy. It is however important to remark that if the observation vector has its energy located in the frequency region where H P AA is not PR, the algorithm may diverge (see [START_REF] Anderson | Stability of adaptive systems[END_REF][START_REF] Ljung | Theory and practice of recursive identication[END_REF]).

For the purpose of this paper it is convenient to particularize H P AA (q -1 ) as a MIMO diagonal transfer operator having identical terms. All the diagonal terms are identical and are described by 6 :

H ii P AA = 1 + c 1 q -1 + c 2 q -2 + .. + c n C q -n C 1 -d 1 q -1 -d 2 q -2 .. -d n D q -n D = C D (21) 
and the passivity condition of Theorem 1 implies that

H ii P AA (z -1
) should be a PR transfer function with a pole at z = 1 if we want memory.

The explicit form of the PALA algorithm is:

θ(t+1) = d 1 θ(t)+d 2 θ(t-1)+. . .+d n D θ(t-n D +1) + F [ϕ(t)ϵ(t + 1) + c 1 ϕ(t -1)ϵ(t) + c 2 ϕ(t -2)ϵ(t -1) + . . . + c n C ϕ(t -n C )ϵ(t -n C + 1)] (22)
where F > 0 is the adaptation gain/learning rate (a positive denite matrix). The algorithm given in [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] will be termed Auto Regressive Moving Average (ARMA) adaptation/learning algorithm and if it has an integrator, it will be termed Auto Regressive with Integrator Moving Average (ARIMA) adaptation/learning algorithm. One can see that the current parameter estimates depend upon the previous parameter estimations over a certain horizon (auto regressive) and upon the current and past values of the gradient over a certain horizon (moving average).

The ARIMA adaptive/learning algorithms are char- 6 In some of the following equations, the parenthesis (q -1 ) are dropped to save space.

acterized by an embedded lter of the form:

H ii P AA = 1 + c 1 q -1 + c 2 q -2 + . . . + c n C q -n C (1 -q -1 )(1 -d ′ 1 q -1 -d ′ 2 q -2 -. . . d ′ n D ′ q -n D ′ ) = C(q -1 ) (1 -q -1 )D ′ (q -1 ) = C(q -1 ) D(q -1 ) (23) 
and the relation with the coecients of ( 21) and ( 22) is given by:

d i = (d ′ i -d ′ i-1 ) ; i = 1, . . . n D ; d ′ 0 = -1, d ′ n D = 0 (24) 
To implement the algorithm, one needs a computational expression for ϵ(t + 1). One denes in this new context 7 : ŷ• (t + 1) = θT 0 (t)ϕ(t) where:

θ0 (t) = d 1 θ(t) + d 2 θ(t -1) + . . . + F [c 1 ϕ(t -1)ϵ(t) + c 2 ϕ(t -2)ϵ(t -1) + . . .] (25) 
The a posteriori adaptation/prediction error can be written:

ϵ(t + 1) = y(t + 1) ± θT 0 (t)ϕ(t) -θT (t + 1)ϕ(t) = ϵ • (t + 1) -[ θ(t + 1) -θ0 (t)] T ϕ(t) = ϵ • (t + 1) -ϕ(t) T F ϕ(t)ϵ(t + 1) (26)
which leads to:

ϵ(t + 1) = ϵ • (t + 1) 1 + ϕ T (t)F ϕ(t) (27)

Dynamic adaptation gain/learning rate (DAG)

The algorithm of Eq. ( 16), taking into account Eq. ( 23), can be rewritten as:

θ(t + 1) = θ(t) + H DAG (q -1 )[F ϕ(t)ϵ(t + 1)] (28)
H DAG will be termed the dynamic adaptation gain/learning rate (DAG) or frequency dependent 7 θ0 (t) is the best prediction of θ(t + 1) based on the information available at instant t (can be denoted also as

θ0 (t) = θ(t + 1/t)).
adaptation gain/learning rate. It is a MIMO diagonal transfer operator having identical terms. The DAG in this case will have the form:

H ii DAG (q -1 ) = C(q -1 ) D ′ (q -1 ) (29) 
The dynamic adaption gain/learning rate will introduce a phase distortion on the gradient depending on the frequency. In order to minimize the criterion, this phase distortion should be less than 90 • for all the frequencies from 0 to f s /2 (f s is the sampling frequency). In other terms, the transfer function

C(z -1 ) D ′ (z -1 )
should be SPR 8 . Since it is a SPR transfer function, it will have all its zeros and poles inside the unit circle. Therefore the dynamic adaptation gain/learning rate will have a very interesting property summarized in the following lemma.

Lemma 1. Assume that the polynomials C(z -1 ) and D ′ (z -1 ) have all their zeros inside the unit circle, then:

I = π 0 log C(e -jω ) D ′ (e -jω ) dω = 0 (30)
The proof of this result is given in Appendix B.

This result allows to conclude that the average gain over the frequency range 0 to f s /2 is 0, i.e. on the average this lter will not modify the adaptation gain/learning rate. It is just a frequency weighting of the adaptation gain/learning rate. It is this frequency weighting that can be introduced using the ARIMA algorithm which explains the performance improvement with respect to the gradient algorithm.

See also Fig. 5 and the related comments.

4 Second order ARIMA algorithm It will be convenient to consider a particularization of this general algorithm by restricting it to n C = n D = 2 (i.e., n D ′ = 1). One of the reasons is that many PALA algorithms can be interpreted as 8 However, this will not guarantee that H P AA (z -1 ) will be PR.

second order ARIMA PALA algorithms (denoted as ARIMA2) with particular choices for the coecients

c 1 , c 2 , d ′ 1 .
One has in this case:

H ii P AA = 1 + c 1 q -1 + c 2 q -2 1 -d 1 q -1 -d 2 q -2 = 1 + c 1 q -1 + c 2 q -2 (1 -q -1 )(1 -d ′ 1 q -1 ) (31) 
The adaptation algorithm takes the form:

θ(t + 1) = d 1 θ(t) + d 2 θ(t -1) + F [ϕ(t)ϵ(t + 1) + c 1 ϕ(t -1)ϵ(t) + c 2 ϕ(t -2)ϵ(t -1)] (32)
Taking given in Eq. (31) be characterized by a PR transfer function, the necessary and sucient conditions are:

d 1 = (1 + d ′ 1 ); d 2 = -d ′ 1 ,
-1 < d ′ 1 < 1 (33) 0 ≤ δ ≤ 2 (34) -1 ≤ d ′ 1 - γ 1 -δ/2 ≤ 1 (35) δ = 1 + c 1 + c 2 1 -d ′ 1 ; γ = d ′ 1 c 1 + d ′ 2 1 + c 2 d ′ 1 -1 (36)
The proof of this lemma is given in Appendix C. such that H P AA be PR 9 . This algorithm can be also interpreted as an Integral + Proportional + Filtered 9 A Matlab routine is available for drawing these contours. derivative algorithm, i.e the associated transfer operator has the form

H ii P AA (q -1 ) = α I 1 -q -1 + α P + α D (1 -q -1 ) (1 -d ′ 1 q -1 ) (37) 
The corresponding expressions of α I , α P and α D (taking α T = α I + α P + α D = 1) are:

α I = 1 + c 1 + c 2 1 -d ′ 1 (38) α P = - c 1 + c 2 (2 -d ′ 1 ) + d ′ 1 (1 -d ′ 1 ) 2 (39) α D = c 2 -α P d ′ 1 ; α T = α I + α P + α D = 1 (40)
For performance purposes, we must have a DAG which is SPR. We will provide subsequently the tools for the design of a SPR DAG. For ARIMA2 algorithm, the DAG will have the form:

H ii DAG (q -1 ) = C(q -1 ) D ′ (q -1 ) = 1 + c 1 q -1 + c 2 q -2 1 -d ′ 1 q -1 (41) 
A criterion for the selection of c 1 , c 2 and d ′ 1 in order that the DAG be SPR is given next.

Lemma 3. The conditions assuring that

H ii DAG (z) = 1+c1z -1 +c2z -2 1-d ′ 1 z -1
is strictly positive real (SPR) are:

for c 2 ≤ 0, c 1 must be such that -1 -c 2 < c 1 < 1 + c 2 for c 2 ≥ 0,
if the following condition is satised

2(d ′ 1 -c 2 ) < 2(c 2 -c 2 2 )(1 -d ′ 2 1 ) < 2(d ′ 1 + c 2 )
the maximum bound on c 1 is given by

c 1 < d ′ 1 -3d ′ 1 c 2 + 2 2(c 2 -c 2 2 )(1 -d ′ 2 1 )
otherwise the maximum bound on c 1 is given by

c 1 < 1 + c 2
if the following condition is satised

2(d ′ 1 -c 2 ) < -2(c 2 -c 2 2 )(1 -d ′ 2 1 ) < 2(d ′ 1 + c 2 )
the minimum bound on c 1 is given by

c 1 > d ′ 1 -3d ′ 1 c 2 -2(c 2 -c 2 2 )(1 -d ′ 2 1 )
otherwise the minimum bound on c 1 is given by

c 1 > -1 -c 2
The proof of this result is given in Appendix D.

From these conditions, closed contours in the c 2 -c 1 plane can be dened for dierent values of d ′ Such an intersection is shown in Fig. 2. From this gure one can conclude that not all the SPR H DAG will lead to a H P AA PR. In such cases the performance is improved for low adaptation gains, but one can not guarantee asymptotic stability for large values of the adaptation gain. Fig. 2 shows also that there is a region where despite that H P AA is PR, H DAG is not SPR. For such congurations, large adaptation gains can be used but the adaptation transient is slower than for the basic gradient algorithm. [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF] The approximate gradient case In many situations, the gradient can not be exactly computed (evaluated) because it may depend upon some unknown parts of the system. In general, this unknown part will lead to the modication of the feedforward block of the equivalent feedback representation given in Section 2 (Fig. 1). The unit gain will be replaced by a transfer operator. In such situations, in addition to the passivity condition on the feedback path, the transfer operator appearing in the feedforward path should be characterized by a SPR transfer function. An illustrative example is the output error algorithm [START_REF] Landau | Adaptive control[END_REF], where the a posteriori predictor equation ( 6) is replaced by: ŷ(t + 1) = θT (t + 1)ψ(t) (42) where:

ψ T (t) = [-ŷ(t), -ŷ(t -1), .., u(t), u(t -1), ...] (43)
In this case, the a posteriori prediction error will be given by (see [START_REF] Landau | Adaptive control[END_REF] for details):

ϵ(t + 1) = 1 A(q -1 ) [θ -θ(t + 1)] T ψ(t) (44) 
The gradient in this case can be approximated by: 1 2

∂J(t + 1) ∂ θ(t + 1) = ∂ϵ(t + 1) ∂ θ(t + 1) ϵ(t+1) = 1 A(q -1 ) ψ(t) ϵ(t+1) (45) 
But since A(q -1 ) is unknown, it will be approximated by 1, leading to the parameter adaptation/learning algorithm:

θ(t + 1) = θ(t) + F ψ(t)ϵ(t + 1) (46) 
An equivalent feedback system similar to that presented in Fig. 1 will be obtained, where ϕ is replaced by ψ and in the feedforward path, 1 is replaced by 1 A(q -1 ) whose associated transfer function should be SPR.

Stochastic case

We will consider the I/O model given in [START_REF] Airimitoaie | Improving adaptive feedforward vibration compensation by using integral+proportional adaptation[END_REF] where the output is disturbed by a noise w(t + 1):

y(t + 1) = θ T ϕ(t) + w(t + 1) (47)
In this equation, w(t) is a zero mean stationary stochastic disturbance with nite moments.

The adaptation algorithm should have a decreasing adaptation gain in order that the estimated parameter vector tends toward a constant value. Such adaptation gain variation is provided for example by the so called stochastic approximation. The ARIMA PAA will take the form:

θ(t + 1) = θ(t) + 1 t H DAG (q -1 )[F ϕ(t)ϵ(t + 1)] (48)
For the analysis of the algorithms, we will use the ODE method of Ljung [START_REF] Ljung | Theory and practice of recursive identication[END_REF][START_REF] Landau | Adaptive control[END_REF]. This requires the following assumptions: (1) Stationary processes ϕ(t, θ) and ϵ(t + 1, θ) can be dened for θ(t) ≡ θ, (2) θ(t) generated by the algorithm belongs innitely often to the domain (D s ) for which the stationary processes ϕ(t, θ) and ν(t + 1, θ) can be dened. Dene the convergence domain:

D c : θ : ϕ T (t, θ)[θ * -θ] = 0 (49) 
For the algorithm given in Eq. ( 48), one has the following result: Lemma 4. Consider the predictor given in Eq. ( 6) and the PAA given in Eq.

(48).

One has

P rob{lim t→∞ θ(t) ∈ D c } = 1, if: 1. H ii DAG (z -1
) is a SPR transfer function. 2. w(t + 1) is a sequence of independently equally distributed normal random variables (0, σ).

The proof is given in Appendix E.

For the output error predictor given in Eq.( 42), one gets the following result:

Lemma 5. Consider the predictor given in Eq. ( 42) and the PAA given in Eq. ( 48), where ϕ is replaced by ψ given in Eq. ( 43). One has:

P rob{ lim t→∞ θ(t) ∈ D c } = 1 (50) D c : θ : ψ T (t, θ)[θ * -θ] = 0 (51) 
if:

1.

H(z -1 ) = 1 A(z -1 ) is a SPR transfer function, 2. H ii DAG (z -1 ) is a SPR transfer function, 3. E[ψ(t, θ), w(t + 1, θ)] = 0 10 .
The proof is given in Appendix F. It results that an estimation of the asymptotic convergence rate is given by:

∆ = | V | V = 1 + n C j=1 c j 1 - n D ′ j=1 d ′ j ( θ -θ) T (E θ + E T θ )( θ -θ) ( θ -θ) T F -1 ( θ -θ) (52)
where E θ = E ϕ(t, θ)ϕ T (t, θ) . The convergence rate for the gradient algorithm is obtained for c j = 0 , d ′ j = 0, j = 1, 2, . . . . For the ARIMA algorithms, 10 The noise w is uncorrelated with the input u.

the improvement of the rate of convergence with respect to the gradient algorithm is given by the steady state gain of H ii DAG dened as SSG =

1+ n C j=1 cj 1- n D ′ j=1 d ′ j ,
which should be > 1. This will be illustrated in the simulations section.

A review of various adaptation/learning algorithms

It will be shown subsequently, on one hand that a number of well known adaptation/learning algorithms are particular cases of the ARIMA adaptation/learning algorithm and on the other hand sucient conditions for the stability of these algorithms for any positive value of the adaptation gain/learning rate will be provided. 

where F I is called the integral adaptation gain and F p the proportional adaptation gain. For the case F I = α I I and F P = α P I, the associated embedded transfer operator takes the form:

H ii P AA = α I 1 -q -1 + α P = α I + α P -α P q -1 1 -q -1 (56) 
which of course can be reformulated as [START_REF] Scmidt | Minimizing nite sums with the stochastic average gradient[END_REF]. The resulting coecients c 1 and c 2 (d ′ 1 = 0) are given by:

α T = α I + α P ; c 1 = -α P α T ; c 2 = 0 (57)
and the PR conditions become (using Lemma 2):

α I > 0; α P ≥ -0.5α I , i.e., a negative proportional adaptation gain can be used provided that the above condition is satised.

Integral+Proportional+Derivative parameter adaptation algorithm

This algorithm has been introduced in [START_REF] Landau | Adaptive control : the model reference approach[END_REF] with a continuous time formulation. The corresponding discrete-time structure of the algorithm is as follows:

θ(t + 1) = θI (t + 1) + θP (t + 1) + θD (t + 1) (58)

where θI (t + 1) and θP (t + 1) are given by ( 53) and (54), respectively, and θD (t + 1) is given by:

θD (t + 1) = F D [ϕ(t)ϵ(t + 1) -ϕ(t -1)ϵ(t)] (59)
For the case of diagonal matrices with identical terms:

F I = α I I, F P = α P I and F D = α D I, the embedded transfer operator can be expressed as:

H ii P AA (q -1 ) = α I 1 -q -1 + α P + α D (1 -q -1 ) (60)
which can be reformulated as ( 23) with (d ′

1 = 0)
where:

α T = α I + α P + α D ; c 1 = -α P -2α D α T ; c 2 = α D α T (61) 
The PR conditions resulting from the application of Lemma 2 lead to: α I > 0; α P > -0.5α I ; α P + α D ≥ -0.5α I ;

α P + 2α D ≥ -0.5α I (62)

Averaged gradient algorithms

The basic idea is to use an average of the current and of previous gradients over a certain horizon (see [START_REF] Scmidt | Minimizing nite sums with the stochastic average gradient[END_REF][START_REF] Pouyanfar | A survey on deep learning: Algorithms, techniques, and applications[END_REF]). A general formulation in the present context can be:

θ(t+1) = θ(t)+F n i=0 c i ϕ(t-i)ε(t+1-i); c 0 = 1 (63)
The associated embedded adaptation lter will be:

H ii P AA (q -1 ) = 1 + c 1 q -1 + c 2 q -2 + . . . (1 -q -1 ) (64) 
If we want to guarantee stability for any F > 0 the coecients c i should be chosen such that the transfer function associated to the transfer operator given in Eq. ( 64) is positive real. For n C = 2 it corresponds to the 2nd order ARIMA algorithm with d ′ 1 = 0. In this case the PR conditions lead to (using Lemma 2):

0 ≤ 1 + c 1 + c 2 ≤ 2; -1 ≤ 2c 2 1 -c 1 + c 2 ≤ 1 (65)
Note that I+P and I+P+D adaptation/learning algorithms (see (60)) for F I = α I I, F P = α P I, F D = α D I can be viewed as particular forms of this algorithm with c 1 and c 2 given in (61). Vice versa, for n = 2

the averaged gradient algorithm can be implemented as a I+P+D algorithm.

The Nesterov algorithm

The Nesterov algorithm [START_REF] Nesterov | A method for solving a convex programming problem with convergence rate 0(1/k2)[END_REF][START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF] has been developed in the eld of optimization in order to improve under certain conditions the convergence rate of the basic gradient algorithm. Based on [START_REF] Gaudio | Connections between adaptive control and optimization in machine learning[END_REF], the Nesterov algorithm can be written in the present context as :

θ(t + 1) = ρ(t) + αϕ(t)ε(t + 1) (66) 
ρ(t) = θ(t) + β[ θ(t) -θ(t -1)] (67) 
Combining (66) and (67), one gets:

θ(t + 1) = (1 + β) θ(t) -β θ(t -1) + αϕ(t)ε(t + 1) (68) 
This is equivalent to say that θ(t + 1) is the output of a MIMO diagonal transfer operator and the diagonal terms are characterized by

H ii P AA = α 1 -(1 + β)q -1 + βq -2 = α (1 -q -1 )(1 -βq -1 ) (69)
whose input is ϕ(t)ε(t + 1). It corresponds to the 2nd order ARIMA algorithm with c 1 = c 2 = 0 and d ′ 1 = β. In order to lead to a stable algorithm for any value of the adaption/learning rate, H ii P AA should be a PR transfer operator. Using Lemma 2, one gets the condition: -1 ≤ β ≤ 1/3.

Conjugate gradient algorithm

Conjugate gradient methods [START_REF] Hestenes | Methods for conjugate gradients for solving linear systems[END_REF][START_REF] Fletcher | Function minimization by conjugate gradients[END_REF][START_REF] Polak | Note sur la convergence de methods de directions conjuguees[END_REF] are ecient methods for large scale optimization problems. The main idea for determining the adaptation/learning direction is to use a linear combination of the current gradient with the previous direction of adaptation/learning. Following [START_REF] Livieris | A survey on algorithms for training articial neural networks[END_REF], this algorithm can be expressed as follows:

θ(t + 1) = θ(t) + αd(t) (70) d(t) = βd(t -1) + ϕ(t)ε(t + 1); d(0) = ϕ(0)ε(1) (71)
Combining ( 70) and (71), one gets:

θ(t + 1) = (1 + β) θ(t) -β θ(t -1) + αϕ(t)ε(t + 1) (72)
Eq. ( 72) has the same form as the Nesterov algorithm and the same passivity/stability condition applies.

Momentum back propagation algorithm

This algorithm has been proposed in [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF][START_REF] Jacobs | Increased rates of convergence through learning rate adaptation[END_REF]. Following [START_REF] Livieris | A survey on algorithms for training articial neural networks[END_REF], it can be expressed as:

θ(t + 1) = θ(t) + m[ θ(t) -θ(t -1)] + (1 -m)αϕ(t)ε(t + 1) (73)
where m is called momentum and it can be rewritten as:

θ(t + 1) = (1 + m) θ(t) -m θ(t -1) + (1 -m)αϕ(t)ε(t + 1) (74)
Comparing with the Nesterov algorithm given in (68), it results that the only dierence is the term (1 -m)

multiplying the adaptation gain/learning rate. The equivalent lter is the one of (69), except that the numerator is (1 -m)α instead of α. It corresponds to the 2nd order ARIMA algorithm with c 1 = c 2 = 0 and d ′ 1 = m and the adaptation gain/learning rate is α(1 -m) instead of α. The same condition is imposed on m in order to guarantee the passivity of the embedded lter: -1 ≤ m ≤ 1/3.

Parameter Adaptation Algorithm with Leakage

For the case of tracking slowly time-varying parameters where there is not a steady state parameter to be reached, the integrator may not be justied (see [START_REF] Ioannou | Robust Adaptive Control[END_REF][START_REF] Landau | Adaptive control[END_REF]). In this case, one can replace the integrator by a rst order system and the embedded lter of ( 21) takes the form: 

H ii P AA (q -1 ) = 1 1 -σq -1 ; 0 < σ < 1 (75) (i.e. c i = 0, i = 1...n c , d 1 = σ, d 2 = d 3 ... = 0).
θ(t + 1) = σ θ(t) + F ϕ(t)ε(t + 1) ; 0 < σ < 1 (76)
and the parameter error is driven by:

θ(t + 1) = σ θ(t) + F ϕ(t)ε(t + 1) -(1 -σ)θ (77)
The term (1 -σ)θ corresponds to an exogenous bounded input to the equivalent feedback representation of Fig. 1 (where the integrator is replaced by 1 1-σq -1 ). Since the linear feedforward path is strictly passive, the equivalent feedback representation has a BIBO property, and this exogenous input will generate a bounded adaptation error ε(t + 1) ̸ = 0 even for the case θ = constant (the algorithm does not have memory). For details, see [START_REF] Ioannou | Robust Adaptive Control[END_REF][START_REF] Landau | Adaptive control[END_REF].

Simulation Results

The second order ARIMA algorithm has been chosen to illustrate the properties of the various PALA algorithms. The system under consideration is characterized by

S = q -2 + 0.5q -3 1 -1.5q -1 + 0.7q -2 (78)
whose input is a PRBS with N = 255 samples. The objective is to estimate the parameters of this model.

An adaptation gain of the form F = αI has been used.

Performance

For a given adaptation gain/learning rate α = 0.1, the performance of the adaptation algorithms will be evaluated with respect to the choice of the coecients c 1 , c 2 , d ′ 1 . To assess the performance, the following indicators will be used: (i) the sum of the squared a posteriori prediction errors: J ϵ (N ) = 11 This is true for I+P and Conjugate Gradient algorithms. It may exist, however, better choices for the coecients of the other algorithms given in Table 1. Table 2 summarizes the performance achieved when one restricts the parameters of the embedded lter in order that the lter be PR (assuring stability for any value of the adaptation gain). One can still observe a performance improvement with respect to the integral adaptation. 1, the dynamic adaptation gain/learning rate C(q -1 ) D ′ (q -1 ) is strictly positive real (SPR). Fig. 5 gives the Bode diagram for the ARIMA 2 and I+P algorithms (the gradient algorithm corresponds to the 0 dB axis). One can see that the phase lag is less than 90 degrees at all the frequencies. It was veried that the average gain over the all frequency range is 0 dB. This means that the improvement in performance is related to the frequency distribution of the adaptation gain/learning rate. Now examining the magnitude, one observes that both are low pass lters amplifying low frequencies. This means that if the frequency content of the gradient is in the low frequency range, the eective adaptation gain/learning rate will be larger than the gradient adaptation gain (0 dB), which should have a positive eect upon the adaptation/learning transient.

In particular the DAG which has a larger gain in low frequencies (ARIMA2) should provide better performance than the (I+P) DAG (which is indeed the case). This is also coherent with the estimated asymptotic convergence rate. dient algorithms (from Table 1).

Imperfect matching

It is interesting to see if the improvements observed in the case of perfect matching (see Subsection 9.1) hold also in the case of an imperfect matching. Specically the estimated model has only one coecient at the numerator and the second coecient has been set to zero. Note that in this case the parametric distance does not go to zero. Figure 6 gives a zoom on the time evolution of the squared parametric distance.

The conclusions drawn in the perfect matching case hold also for the case of imperfect matching.

Stochastic case

To the same simulation example a white noise has been added on the output (signal/noise ratio (standard deviation): 33 dB). The algorithm of Eq. ( 48)

with F=I has been used. Figure 7 shows the evolution of the squared parametric distance (average over 100 noise realizations). One gets asymptotic unbiased parameters estimates (initial value of the squared parametric distance is 4) and the improve- 12 The transient performance can be related to the asymptotic convergence rate given in Section 7.

Experimental results

The various algorithms presented above have been evaluated experimentally on an active noise control test-bench. The view of the test-bench used for experiments and its detailed scheme are shown in Fig. 8.

The speaker used as the source of disturbances is la- X(q -1 ) = q -dx B X (q -1 ) 

A X (q -1 ) = q -dx b X 1 q -1 +...+b X n B X q -n B X 1+a X 1 q -1 +...+a X n A X q -n A X , with B X = q -1 B * X for any X ∈ {G, M, T }. Ĝ = q -d G BG A G , M = q -d M BM
Q(q -1 ) = q0 + q1 q -1 + ... + qn Q q -n Q (79)
and the parameters q i will be adapted in order to minimize the the residual error. The algorithm which will be used (introduced in [START_REF] Doré Landau | A YoulaKu£era parametrized adaptive feedforward compensator for active vibration control with mechanical coupling[END_REF]) can be summarized as follows. One denes

θ T = [q 0 , q 1 , q 2 , . . . , q n Q ] (80) θT = [q 0 , q1 , q2 , . . . , qn Q ] (81) ϕ T (t) = [v(t + 1), v(t), . . . , v(t -n Q + 1)] (82) 
where:

v(t + 1) = B M ŷ(t + 1) -A M û(t + 1) (83) = B * M ŷ(t) -A M û(t + 1) (84) 
One denes also the regressor vector (a ltered observation vector) as:

ϕ f (t) = L(q -1 )ϕ(t) = [v f (t + 1), v(t), . . . , v f (t -nQ + 1)] (85)
where

v f (t + 1) = L(q -1 )v(t + 1) (86) 
Using R 0 = 0 and S 0 = 1, the poles of the internal positive closed loop will be dened by A M and they will remain unchanged. The lter used in ( 86) is L = Ĝ and the associated linear transfer operator appearing in the equivalent feedforward path is

H(q -1 ) = G(q -1 ) Ĝ(q -1 )
(the algorithm uses an approximate gradient see Section 5). H(z -1 ) should be SPR in order to assure asymptotic stability in the case of perfect matching. This is a very mild condition as far as a good experimental identication of the models is done. The PAA which will be used is the one of Eq. (32), where θ is given by Eq. ( 81) and ϕ is replaced by ϕ f given in Eq. ( 85). The adjustable lter Q(t, q -1 ) has 60 parameters. The adaptation gain is α = 0.2. A broad-band disturbance 70-170 Hz is used as an unknown disturbance acting on the system. The steady state and transient attenuation 13 will be evaluated for the various val- ues of the parameters c 1 , c 2 and d ′ 1 given in Tables 1 and2. The system will operate in open loop during the rst 15 s. Figure 10 shows the time response of the system as well as the evolution of the global attenuation when using the gradient (integral) algorithm (top) and the ARIMA2 algorithm (bottom)

with c 1 = -0. 13 The attenuation is dened as the ratio between the variance of the residual noise in the absence of the control and the variance of the residual noise in the presence of the adaptive feedforward compensation. The variance is evaluated over an horizon of 3 s.

A Proof of Theorem 1

Consider Eq.( 8): ϵ(t + 1) =y(t + 1) -ŷ(t + 1) = y(t + 1) -θT (t + 1)ϕ(t) = -θT (t + 1)ϕ(t) (87) where θ(t) = θ(t) -θ. Eq. ( 16) can be rewritten as Eq. ( 28) and this leads to:

θ(t + 1) = θ(t) + H DAG (q -1 )ϕ(t)ϵ(t + 1) (88) 
and respectively:

θ(t + 1) = H P AA (q -1 )ϕ(t)ϵ(t + 1) (89) 
Using the [A, B, C, D] state space representation associated to H P AA (z) one gets:

x(t + 1) = Ax(t) + Bϕ(t)ϵ(t + 1) (90) θ(t + 1) = Cx(t) + Dϕ(t)ϵ(t + 1) (91) 
and respectively: ϕ T (t) θ(t+1) = ϕ T (t)Cx(t)+ϕ T (t)Dϕ(t)ϵ(t+1) (92) Eqs (87), (90), and (92) dene an equivalent feedback system, the equivalent feedback path being dened by (90) and (92). Then one can use [START_REF] Landau | Adaptive control[END_REF]Theorem 3.3.1]: Theorem 2. For a PAA having the form of (90) and (91), the equivalent feedback path described by (90) and (92) is passive, i.e.,

η(0, t 1 ) = t1 t=0 ϵ(t + 1)ϕ T (t) θ(t + 1) ≥ -γ 2 ; γ 2 < ∞, ∀t ≥ 0 (93)
if the associated linear system [A, B, C, D] described by [START_REF] Ljung | Theory and practice of recursive identication[END_REF] and [START_REF] Narendra | Gradient methods for the optimization of dynamical systems containing neural networks[END_REF] is passive, or equivalently, if H P AA (z) given in [START_REF] Livieris | A survey on algorithms for training articial neural networks[END_REF] is a PR transfer matrix.

Since H P AA (z) is a PR transfer matrix by hypothesis, it results from (87) (after multiplication of the left hand side by ϵ(t + 1)) and (93) that ∞ t=0 ϵ 2 (t + 1) ≤ γ 2 and one concludes that lim t→∞ ϵ(t + 1) = 0.

B Proof of Lemma 1

Let us consider the function log C(z -1 )

D ′ (z -1 )
, where

C(z -1 ) = 1 + n C k=1 c k z -k , D ′ (z -1 ) = 1 - n ′ D k=1 d ′ k z -k .
One seeks to evaluate (30). For |z| = 1, one has z = e jω , dz = je jω dω, and dz z = jdω. Thus one can write

I = 1 j T log 1 + n C k=1 c k z -k dz z - T log 1 - n ′ D k=1 d ′ k z -k dz z   (94)
where T is the unit circle.

On the other hand

1 + n C k=1 c k z -k = 1 + n C k=1 c k z k for |z| = 1. The poles of f (z) = log 1 + n C k=1 c k z k are the zeros of 1 + n C k=1 c k z k ,
and they all lie outside the unit circle (by assumption, otherwise H P AA cannot be PR). Therefore the function f : z → f (z) is holomorphic in the open unit circle, and one can apply the Cauchy Integral's Formula (see [3, pg. 411]). This formula yields

1 j T f (z) dz z = Ind(T, 0)f (0)
where Ind(T, 0) is the index of the unit circle with respect to z = 0. One has Ind(T, 0) = 1, and f (0) = log(1) = 0. Therefore one gets

1 j T log 1 + n C k=1 c k z -k dz z = 1 j T f (z) dz z = 0
The same machinery can be applied mutatis mutandis for f (z) = log 1 - 

C Proof of Lemma 2

A rst necessary condition is given by condition (33)

assuring that the poles of the transfer function H P AA are inside or on the unit circle. By performing a partial fraction expansion of H P AA , one has:

H P AA (q -1 ) = 1 + δq -1 1-q -1 + γq -1 1-d ′ 1 q -1 . Set β such that β ∈]0, 1[, one can write H P AA (q -1 ) = H 1 (q -1 ) + H 2 (q -1 ) with H 1 (q -1 ) = β+ δq -1 1-q -1 = β 1-β-δ β q -1 1-q -1 and H 2 (q -1 ) = (1-β)+ γq -1 1-d ′ 1 q -1 = (1-β) 1-d ′ 1 -γ 1-β q -1 1-d ′ 1 q -1 .
Since H 1 , H 2 are rst order transfer function operators, and since β > 0, 1 -β > 0, a sucient condition for H 1 and H 2 to be both PR is that their zeros be inside or on the unit circle. This is assured if the two following conditions are met simultaneously: [START_REF] Jury | A stability test for linear discrete time systems in table form[END_REF], a necessary and sucient condition for 1 + c 1 q -1 + c 2 q -2 be a stable polynomial is that at the same time the three following conditions

(a)-1 ≤ β-δ β ≤ 1, (b) ≤ d ′ 1 -γ 1-β ≤ 1.
|c 2 | < 1, 1 + c 1 + c 2 > 0, 1 -c 1 + c 2 > 0 are veri- ed. Therefore if β-δ
β > 1, one has 1 + c 1 + c 2 < 0 and 1 + c 1 q -1 + c 2 q -2 cannot be stable, and H P AA 

This equation can be approximated for large N by θ(t + N + 1) -θ(t)

≈ ≈ 1 + n C j=1 c j 1 - n D ′ j=1 d ′ j N i=0 1 t + i F ϕ(t + i)ϵ(t + 1 + i) (104) 
This is exactly the formalism used in the ODE approach of Ljung [START_REF] Ljung | Theory and practice of recursive identication[END_REF] and therefore, the associated ODE equation will take the form:

d θ dτ = - 1 + n C j=1 c j 1 - n D ′ j=1 d ′ j f ( θ); ∆τ N +1 t ≈ N i=0 1 t + i (105)
where f ( θ) = -E [F ϕ(t, θ)ϵ(t + 1, θ)] . Using (100), f ( θ) will be given by: f ( θ) = E [F ϕ(t, θ)ϕ T (t, θ)] ( θ -θ)

-E [F ϕ(t, θ)w(t + 1)] (106) But as a consequence of condition (2), the second term in the right side of (106) will be null. The stability of the ODE will be analyzed using the Lyapunov function candidate:

V ( θ) = ( θ -θ) T F -1 ( θ -θ) (107)
The derivative evaluated along the trajectories of the ODE (105) is:

dV dτ = V = - 1 + n C j=1 c j 1 - n D ′ j=1 d ′ j ( θ -θ) T (E θ + E T θ )( θ -θ) (108) 
where E θ = E ϕ(t, θ)ϕ T (t, θ) . Since H DAG is SPR, V ≤ 0 and this will assure, w.p. 

F Proof of Lemma 5

Following the same procedure one gets:

f ( θ) = E [F ψ(t, θ)H(q -1 )ψ T (t, θ)] ( θ -θ)

-E H DAG (q -1 )[F ψ(t, θ)w ′ (t + 1)]

where H(q -1 ) = 1/A(q -1 ) and w ′ (t + 1) = A(q -1 )w(t + 1). But as a consequence of condition

(3) the second term in right side of Eq. (109) will be null and the equilibrium points of the ODE (Eq.

(105)) will be given by D c (Eq. ( 51)).

We must examine now the stability of the associated ODE given in Eq. (105) for f ( θ) given in Eq. (109)

without the forcing term. We will use the Lyapunov function candidate given in Eq. ( 107). The derivative evaluated along the trajectories of the ODE (105) is:

dV dτ = V = - 1 + n C j=1 c j 1 - n D ′ j=1 d ′ j ( θ -θ) T (G θ + G T θ )( θ -θ) (110) 
where G θ = E ψ(t, θ)H(q -1 )ψ T (t, θ) .

Since

H DAG is SPR, V ≤ 0 if (G θ +G T θ
) is a positive denite matrix. This holds if H(q -1 ) is SPR (for a detailed proof of this result see for example [START_REF] Landau | Adaptive control[END_REF], (pp 129-130), [START_REF] Ljung | Theory and practice of recursive identication[END_REF].) 
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 7 A review of currently used PALA algorithms is proposed in Section 8 as particular cases of the general structure introduced previously. Simulations and experimental results on an adaptive active noise attenuation system illustrating the eect of the MA and AR terms are given in Sections 9 and 10 respectively.2 Revisiting the gradient algorithm feedback interpretation and stability issuesThe aim of the gradient PALA is to drive the parameters of an adjustable model in order to minimize a quadratic criterion in terms of the prediction error (dierence between real data and the output of the model used for prediction). To formalize the problem, consider the discrete-time model described by:

Figure 1 :

 1 Figure 1: Feedback structure of gradient adaptation/learning algorithm.

  one assures the presence of an integrator. If one would like to guarantee the stability of the system for any positive value of the adaption gain/learning rate, the weights d ′ 1 , c 1 , c 2 should be chosen such that the transfer operator H ii P AA of Eq. (31) be characterized by a PR transfer function. It is fundamental for applications to give explicit bounds for the selection of the coecients c 1 , c 2 , d ′ 1 in order to guarantee the positive realness of the embedded ARIMA lter. One has the following result: Lemma 2. In order that the transfer operator H ii P AA

From

  these conditions, closed contours in the plane c 2 -c 1 can be dened for the dierent values of d ′ 1 allowing to select c 1 and c 2 for a given value of d ′ 1

  1 allow- ing to select c 1 and c 2 for a given value of d ′ 1 so that the DAG be SPR. It is also interesting to see the intersections of the contours assuring the SPR of the H ii DAG with the contours assuring that H ii P AA is PR.

5 'Figure 2 :

 52 Figure 2: Intersection in the plane c 1 -c 2 of the contour H P AA = P R with the contour H DAG = SP R for d ′ 1 = 0.5.

7

 7 Convergence Rate There are several ways for estimating the asymptotic convergence rate of a recursive algorithm. One way is to consider the ODE equation associated to the algorithm and the Lyapunov function V used for studying the stability of the ODE. The rate of convergence of the Lyapunov function candidate (dened as | V | V ) can be considered as an estimation of the asymptotic convergence rate of the algorithm. The ODE equation associated with the algorithm of Eq. (48) is given in Eq. (105), the Lyapunov function candidate is given in Eq. (107) and its derivative is given in Eq. (108).

N t=0 ϵ 2

 2 (t + 1), (ii) the square of the parametric distance: D 2 (t) = [θ -θ(t)] T [θ -θ(t)] , and (iii) the sum of the squared parametric distance: J D (N ) = N t=0 D 2 (t).
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Figure 3 :

 3 Figure 3: Evolution of the squared parametric distance D 2 (N ) (perfect matching).

11 .

 11 Fig. 3 shows the evolution of the squared parametric distance. Clearly the 2nd order ARIMA algorithm provides a signicant performance improvement with respect to the various particular cases.

Algorithm PR c 1 c 2 d ′ 1 J 2 N

 12 D (N ) J ϵ (N ) 5 37.15 12.09 I+P+D (α P = -2α D ) N 0 0.99 0 34.58 11.95 I+P Y 0.667 0 0 41.41 12.45 ARIMA -0.5 0.4 0.7 26.62 9.67 9.2 Stability Two sets of coecients are considered. As shown in Fig. 4, for the I+P conguration with c 1 = 0.667; c 2 = 0; d ′ 1 = 0 the corresponding embedded lter is positive real. Simulations have shown that for adaptation gains/learning rates of 0.1 and 1000, the estimator is stable and one converges towards the exact parameters. For the second conguration, using ARIMA 2 with c 1 = -0.5; c 2 = 0.4; d ′ 1 = 0.7, the embedded lter is not PR in the region up to 0.17f s but the PR condition on the average is satised for small adaptation gains. Simulations have shown that for an adaptation gain of 0.1 the estimator is stable and the parameters converge towards the exact values while for an adaptation gain of 1000 the adaptation process is unstable.

Figure 4 :

 4 Figure 4: Phase of the embedded lter H P AA for two congurations (I+P with solid line and ARIMA2 with dashed line).

Figure 5 :

 5 Figure 5: Bode diagram of the dynamic adaptation gain/learning rate H DAG for ARIMA2, I+P and Gra-

Figure 6 :

 6 Figure 6: Evolution of the squared parametric distance D 2 (N ) in the case of imperfect matching.

Figure 7 :

 7 Figure 7: Evolution of the squared parametric distance in the presence of noise (zoom).

Figure 8 :

 8 Figure 8: Duct active noise control test-bench photo (top) and block diagram (bottom).

Figure 9 :

 9 Figure 9: Feedforward AVC with FIR-YK adaptive feedforward compensator.

  C(e -jω ) D ′ (e -jω ) dω = 0 and, since the function C(e -jω ) D ′ (e -jω ) is even, one gets the claimed result.

′ 1 < 1 . 1 and 1 -d ′ 1 > 0 .

 111110 If (a) and (b) are met at the same time, there exists at least one β ∈]0, 1[ such that the two conditions (a) and (b) are met at the same time, and this value is β 0 the smallest value of β such that Re(H 1 (e iω )) ≥ 0 ∀ω. Condition (a) will be satised if condition (34) is met. One has therefore 0 ≤ δ ≤ 2 and β ∈ [ δ 2 , 1[. Moreover, the function f (β) = d ′ 1 -γ 1-β is monotone for β ∈ [ δ 2 , 1[. If there exists only one value of β such that condition b) is satised, this value is necessarily δ/2 since -1 < d Hence condition (35). These conditions are also necessary: Let us assume that the condition β-δ β ≤ 1 is violated, since β > 0 one has δ < 0. By denition δ = 1+c1+c2 1-d ′ That leads to 1 + c 1 + c 2 < 0. But from the Jury criterion

′ 1 >

 1 cannot be positive real. Similarly if β-δ β ≤ -1, one has δ ≥ 2 and since 1 -d 0 there exists some values of d ′ 1 such that 1 + c 1 + c 2 > 2: for c 1 = 0 this implies c 2 > 1 which is not compatible with the rst condition of the Jury criterion, thus in this caseThe behaviour of the algorithm for t >> 1 and an interval N : 1 << N << t will be described by:θ(t + N + 1) = θ(tt + i -j + 1)) -θ(t + i -j)]+ (t + i -j)ϵ(t + 1 + i -j) t + i) -θ(t + i -1)] = θ(t + N ) -θ(t -1) (102)Taking into account the hypotheses on t and N , t + i -j)ϵ(t + 1 + i -j)

  1 convergence towards the domain D C . If ϕ T (t, θ) is a persistently exciting signal, there is a unique possible convergence point θ = θ and global asymptotic stability is assured leading to w.p. 1 convergence towards θ = θ.

Figure 11 :

 11 Figure 11: Time evolution of the global attenuation for the algorithms ofTable 1 (top) and of Table 2

Table 1

 1 

summarizes the performance of the 2nd order ARIMA algorithm and of the various particular cases. The table provides the best performance for each conguration

Table 1 :

 1 Performance of 2nd order ARIMA algorithms.

Table 2 :

 2 Performance of 2nd order ARIMA algorithms under the PR constraint.

	Algorithm 1 J Integral (gradient) Y PR c 1 c 2 d ′ 0 0 0 51.65 13.32
	Conj.Gr/Nest..	Y	0	0 0.333 42.16 11.99
	I+P+D	Y	0.1 0.333 0 42.91 12.04
	I+P	Y 0.667	0	0 41.41 12.45
	I+P+D/Av.Gr	Y	0	0.33	0 44.655 12.21
	ARIMA 2	Y 0.0989 0.0789 0.22 41.96 11.99
	ARIMA 2				

D (N ) J ϵ (N ) Y 0.408 -0.032 0.2 40.59 12.39 9.3 Dynamic adaptation gain/learning rate For all the algorithms given in Table

Table 1 (

 1 top) and of Table2(bottom).

1 + c 1 q -1 + c 2 q -2 cannot be stable and H P AA cannot be positive real. This ends the proof. D Proof of Lemma 3 In order to assess the strict real positivity of H DAG (z) one must check the condition:

Set z = e jω = cos(ω) + j sin(ω), and the condition (95) becomes

case c 2 ≤ 0 f has a nite maximum, and it is located at

.

If X max > 1 one must verify f (-1) > 0, moreover one has f (1) > f (-1). If X max < -1 one must verify f (1) > 0, moreover one has f (-1) > f (1).

If -1 < X max < 1 one must verify at the same time f (-1) > 0 and f (1) > 0.

In any case one must check that

In this case f is represented by a line, and one must again verify that f (-1) > 0 and f (1) > 0 that leads to the passivity condition -1

, and one must have ∆ = 0, which is equivalent to

Thus, one looks for the solutions of (97). The discriminant ∆ ′ of (97

1 ), and the two solutions of (97) are

1 )

On the other hand if -1 ≤ X min ≤ 1 one must have (owing to the expression of X min )

Now if c * 1+ meets (98), the upper bound on c

), otherwise this upper bound is given by c 1 < 1 + c 2 , and similarly if c * 1meets (98) the lower bound on c 1 is d

1 ), otherwise this lower bound is given by c 1 > -c 2 -1. This ends the proof.

E Proof of Lemma 4

The algorithm given in (48) can be written as:

c j ϕ((t -j)ϵ(t + 1 -j); c 0 = 1 (99)

where:

ϵ(t+1) = y(t+1)-ŷ(t+1) = [θ-θ(t+1)] T ϕ(t)+w(t+1)

(100)