
HAL Id: hal-04045225
https://hal.science/hal-04045225

Submitted on 27 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Subset of the CERN Virtual Machine File System:
Fast Delivering of Complex Software Stacks for

Supercomputing Resources
Alexandre F Boyer, Christophe Haen, Federico Stagni, David R C Hill

To cite this version:
Alexandre F Boyer, Christophe Haen, Federico Stagni, David R C Hill. A Subset of the CERN Virtual
Machine File System: Fast Delivering of Complex Software Stacks for Supercomputing Resources. ISC
HPC, 13289, Springer International Publishing, pp.354-371, 2022, Lecture Notes in Computer Science,
�10.1007/978-3-031-07312-0_18�. �hal-04045225�

https://hal.science/hal-04045225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Subset of the CERN Virtual Machine File System:
Fast Delivering of Complex Software Stacks for

Supercomputing Resources

Alexandre F. Boyer1,2, Christophe Haen2, Federico Stagni2, David R.C. Hill1

{alexandre.franck.boyer, christophe.haen, federico.stagni}@cern.ch, david.hill@uca.fr

1 Université Clermont Auvergne, Clermont Auvergne INP,

CNRS, Mines Saint-Etienne, LIMOS, 63000 Clermont-Ferrand, France

2 European Organization for Nuclear Research, Meyrin, Switzerland

Abstract

Delivering a reproducible environment along with complex and up-to-date software
stacks on thousands of distributed and heterogeneous worker nodes is a critical task. The
CernVM-File System (CVMFS) has been designed to help various communities to deploy
software on worldwide distributed computing infrastructures by decoupling the software
from the Operating System. However, the installation of this file system depends on a col-
laboration with system administrators of the remote resources and an HTTP connectivity
to fetch dependencies from external sources. Supercomputers, which offer tremendous
computing power, generally have more restrictive policies than grid sites and do not easily
provide the mandatory conditions to exploit CVMFS. Different solutions have been devel-
oped to tackle the issue, but they are often specific to a scientific community and do not
deal with the problem in its globality. In this paper, we provide a generic utility to assist
any community in the installation of complex software dependencies on supercomputers
with no external connectivity. The approach consists in capturing dependencies of appli-
cations of interests, building a subset of dependencies, testing it in a given environment,
and deploying it to a remote computing resource. We experiment this proposal with a real
use case by exporting Gauss - a Monte-Carlo simulation program from the LHCb experi-
ment - on Mare Nostrum, one of the top supercomputers of the world. We provide steps
to encapsulate the minimum required files and deliver a light and easy-to-update subset
of CVMFS: 12.4 Gigabytes instead of 5.2 Terabytes for the whole LHCb repository.

1 Introduction

To study the constituents of matter and better understand the fundamental structure of the
universe, HEP collaborations rely on complex software stacks and a worldwide distributed
system to process a growing amount of data: the World Wide LHC Computing Grid (WLCG)
[23]. The infrastructure involves 170 computing centers, 1 million cores and 1 exabyte of
storage spread around 42 countries.

Delivering a reproducible environment along with up-to-date software across thousands of
heterogeneous computing resources is a major challenge: Buncic et al. designed CernVM and
CVMFS (CernVM-File System) [16] to tackle it by decoupling the software from the Operating
System.

1



CernVM [20] is a thin Virtual Software Appliance of about 150 Mb in its simplest form. It
supports a variety of hypervisors and container technologies and aims to provide a complete
and portable user environment for developing and running HEP applications on any end-user
computer and Grid Sites, independently of the underlying Operating Systems used by the
targeted platforms.

CVMFS [20] is a scalable and low-maintenance file system optimized for software distri-
bution. CVMFS is implemented as a POSIX read-only file system in user space. Files and
directories are hosted on standard web servers and mounted on the computing resources as a
directory. The file system performs aggressive file-level caching: both files and file metadata
are cached on local disks as well as on shared proxy servers, allowing the file system to scale
to a large number of clients [16].

This approach has been mainly adopted by the HEP community and is now getting users
from various communities according to Arsuaga-Ríos et al. [3]. In a few years, it has become
the standard software distribution service on Grid Sites of WLCG. Nevertheless, computing
infrastructure and funding models are changing, and national science programs are consoli-
dating computing resources and encourage using cloud systems as well as supercomputers, as
Barreiro et al. explain [5]. CVMFS developers have extended the features of the file system
and have provided additional tools to support clouds [46][36] and supercomputers [9].

Supercomputers are highly heterogeneous architectures that pose higher integration chal-
lenges than traditional Grid Sites. Many supercomputers do not allow a CVMFS client to be
mounted on the worker nodes and/or do not provide external connectivity, which is critical
to work with CVMFS. CVMFS tools designed to interact with High-Performance Computing
sites are aimed at administrators of scientific communities that would like to integrate their
workflows on such machines: they ease some steps of the process but may require additional
efforts on behalf of the administrators.

In this study, we aim to automate the whole process and reduce these additional efforts by
providing a utility able to extract, test and deploy parts of CVMFS on supercomputers not hav-
ing outbound connectivity. Section 2 briefly introduces CVMFS and the ecosystem developed
around it, in order to deal with supercomputers. Section 3 focuses on the design of the util-
ity, the steps to extract software dependencies and to deploy them on a given supercomputer.
Finally, section 4 presents a use case and the obtained results in detail.

2 Context

2.1 CVMFS to distribute software on grid resources

At the beginning of 2021, CVMFS was managing about 1 billion files delivered to more than
100,000 computing nodes by (i) 10 public data mirror servers - called Stratum1s - located in
Europe, Asia and the United States and (ii) 400 site-local cache servers [8].

To keep the file system consistent and scalable, developers conceived CVMFS as a read-
only file system. Release managers - or continuous integration workers - aiming to publish a
software release has to log in to a dedicated machine - named Stratum0 - with an attached stor-
age volume providing an authoritative and editable copy of a given repository [11]. Changes
are written into a staging area until they are committed as a consistent changeset: new and
modified files are transformed into a content-addressed object providing file-based dedupli-
cation and versioning. In 2019, Popescu et al. [43] introduced a gateway component, a web
service in front of the authoritative storage, allowing release managers to perform concurrent
operations on the same repository and make CVMFS more responsive (Figure 1.1.b and 1.2.b).

2



The transfer of files is then done lazily via HTTP connections initiated by the CVMFS clients
[43] (Figure 1.3.b). Clients request updates based on their Time-to-Live (TTL) value, which is
generally about a few minutes. Once the TTL value expires, clients download the latest version
of a manifest - a text file located in the top-level directory of a given repository composed of
the current root hash, metadata and the revision number of this repository - and make the
updated content available. Dykstra et al. [27] provide additional details about data integrity
and authenticity mechanisms of CVMFS to ensure that data received matches data initially
sent by a trusted server. This pull-based approach has been proven to be robust and efficient,
according to Popescu et al. [43], and has been widely used to distribute up-to-date software
on grid sites for many years (Figure 1.2.a). Figure 1 presents a simplified schema summarizing
the software distribution process on grid sites via CVMFS.

1a. submit a job

Worker

Nodes

Batch

System

Grid Site

Release Manager

Users

Master Copy Server

Or Stratum 0

Data Mirror Server

Or Stratum 1

Gateway
CVMFS Client

mounted in

read/write

2a. Job gets software

dependencies

3b. pull updated data via HTTP

2b. populate with new data

CVMFS Client

mounted in

read-only

1b. release a new 

version of a software

Figure 1: Schema of the CVMFS workflow on Grid Sites: (a) the steps to get software depen-
dencies from the job; (b) the steps to publish a release of a software in CVMFS.

Users may need to use various versions of software on heterogeneous computing resources
implying different OS and architectures. To provide a convenient environment for the users,

3



release managers generally provide software along with build files related to many architec-
tures, OS and compilers. Framework for building and installing scientific software on hetero-
geneous systems can be used to supply CVMFS with build files. Easybuild [28], Spack [49],
Nix [40] or Gentoo [32] are popular choices in this area [56, 57, 17].

2.2 Software delivery on supercomputers

Communities working around the Large Hadron Collider (LHC) [21] have extensively used
WLCG and CVMFS to process a growing amount of data. This approach was reliable during
LHC Run1 but has demonstrated its limit. According to the analysis of Stagni et al. [50] on
the use of CPU cycles in 2016, all the LHC experiments have consumed more CPU-hours than
those officially pledged to them by the WLCG: they found ways to exploit opportunistic and
not officially supported resources. Moreover, in the High-Luminosity Large Hadron Collider
(HL-LHC) [2] era, experiments are expected to produce up to an order of magnitude more
data compared to the current phase (LHC Run2). To keep up with the computing needs, ex-
periments have started to use supercomputers. They offer a significant amount of computing
power and would potentially offer a more cost-effective data processing infrastructure com-
pared to dedicated resources in the form of commodity clusters, as Sciacca emphasizes [45].
Nevertheless, supercomputers have more restrictive security policies than Grid Sites: they do
not allow CVMFS to be mounted on the nodes by default and many of them have limited or
even no external connectivity. The LHC communities have developed different solutions and
strategies to cope with the lack of CVMFS, which is a critical component to run their workflows.

Stagni et al. [51] rely on a close collaboration with some supercomputer centers - Cineca
in Italy and CSCS in Switzerland - to get CVMFS mounted on the worker nodes. Nevertheless,
their strategy is limited to a few supercomputers and their approach would be difficult to re-
produce on a large number of supercomputers: most of them do not allow such collaboration.

To deal with the lack of CVMFS on supercomputers with outbound connectivity, Filipčič et
al. studied two solutions: rsync and Parrot [31]. The first solution consisted in copying the
CVMFS software repository in the shared file system using rsync: a utility aiming to transfer
and synchronize files and directories between two different systems. rsync added a significant
load on the shared file system of the supercomputers and required changes in the repository
absolute paths. The second solution was based on Parrot: a utility copied on the shared file sys-
tem of the supercomputer, usable without any user privileges. Parrot is a wrapper using ptrace
attached to a process that intercepts system calls that access the file system and can simulate
the presence of arbitrary file system mounts, CVMFS in this case. Nevertheless, the solution
was "unreliable in a multi-threaded environment" [31] because it was unable to handle race
conditions. These methods did not constitute a production-level solution but contributed to
further and future advanced solutions.

In recent years, developments in the Fuse user space libraries and the Linux kernel have
lifted restrictions for mounting Fuse file systems such as CVMFS. Developers of CVMFS have in-
tegrated these changes and designed a package called cvmfsexec [26], which allows mounting
the file system as an unprivileged user. The program needs a specific environment to work cor-
rectly: (i) external connectivity; (ii) the fusermount library or unprivileged namespace mount
points or a setuid installation of Singularity (efficient High-Performance Computing container
technology). Blomer et al. provide additional details about the package [10].

Communities exploiting supercomputers that do not provide outbound connectivity cannot
directly benefit from cvmfsexec: the package still needs to pull updated data via HTTP, which
is not available in such context. We can distinguish two cases: (i) supercomputers that grant
outside network or specific service access to a limited number of nodes and (ii) supercomputers

4



that do not provide nodes with any external connectivity at all.
Tovar et al. recently worked on the first case [54]. They managed to build a virtual private

network (VPN) client and server to redirect network traffic from the workloads running on the
worker nodes to external services such as CVMFS. In this configuration, the VPN client runs
on a worker node along with the job, while the VPN server is hosted on one of the specific
nodes of the supercomputer and can interact with external services. Communities working on
supercomputers from the second case cannot leverage the solution developed by Tovar et al.

O’Brien et al., one of the first teams to work with supercomputers in the LHC context,
address the lack of external network access by copying part of it to the shared Lustre file
system accessible by the WNs [42]. The approach (i) worked because the environment of the
supercomputer was similar to a grid site one, (ii) required changes in the CVMFS files and
(iii) degraded the performance of the software as Angius et al. described [41]. To tackle the
latter issue on the Titan supercomputer, Angius et al. moved the software to a read-only NFS
server [41]: this eliminated the problem of metadata contention and improved metadata read
performance.

Similarly, on the Chinese HPC CNGrid, Filipčič regularly packed a part of CVMFS in a
tarball. Filipčič provided a deployment script to install the software and fix the path relocation
on the shared file system to the local system administrators: they were then responsible for
getting and updating the CVMFS tarball on the network when requested [30].

To help communities to unpack a CVMFS repository in a file system, a team of developers
designed uncvmfs [38]. The utility deduplicates files of a software stack: it populates a given
directory with the CVMFS files that are then hard-linked into it, if possible. The program
was used, in combination with Shifter [33], a container technology providing a reproducible
environment, in the context of the integration of the ALICE and CMS experiments workflows on
the NERSC High-Performance Computing resources [29, 37]. As a proof of concept, Gerhardt
et al. used uncvmfs to deduplicate the ATLAS repository and copy it into an ext4 image - about
3.5Tb of data containing 50 million files and directories -, compressed into a 300Gb squashfs
image; and Shifter to provide a software-compatible environment to run the jobs [33]. Despite
encapsulating the files in a container reduced the startup time of the applications, the solution
generated large images, long to update and deliver on time.

To cope with large images, Teuber and the CVMFS developers conceived cvmfs_shrinkwrap
[52]. The tool supports uncvmfs features with certain optimizations and delivers additional
features: cvmfs_shrinkwrap can extract specific files and directories based on specification
files, deduplicate them, making them easy to export in various formats such as squashfs or
tarball. In this way, the following operations remain on behalf of the user communities: (i)
trace their applications - meaning, in this context, "capturing all their dependencies and their
locations in the file system" -, (ii) call cvmfs_shrinkwrap to get a subset of CVMFS composed
of the minimum required files, and (iii) export this subset in a certain format and deploy it on
sequestered computing resources to run their jobs.

Douglas et al. already described such a project in an article [7], but the work remains
specific to the ATLAS experiment. They use uncvmfs to produce a large image that has to be
filtered afterward. In this paper, we aim at assisting various user communities in this process
by providing an open-source utility that would take applications of interest in input and would
output - with the help of cvmfs_shrinkwrap - a subset of CVMFS with the minimum required
files to run the given applications, in combination with a container image if needed. To our
knowledge, no paper has already covered the subject.

5



3 Design of the CVMFS Subset Builder

3.1 Input and output data

The utility takes a directory as input that should contain: (i) a list of applications of interest
(apps): a command along with its input data in a separate sub-directory for each applica-
tion to trace; and/or (ii) a list of files composed of paths to include in the subset of CVMFS
(namelists). Additionally, user communities can embed a (iii) container image compatible
with Singularity to get a specific environment to trace and test the applications; (iv) and a
configuration file to fine-tune the utility with variables related to the deployment process, or
information about repositories. A schema of the inputs is available in Figure 2.

inputs

apps

appC1

command.sh

command-input1.conf

appC2

command.sh

command-input1.json

command-input2.sh

appC3

command.sh

namelists

appA.txt

appB.txt

container-image.sif

pipeline-config.json

Figure 2: Schema of the input structure given to the utility.

The expected output can take different forms depending on the utility configuration:

• The subset of CVMFS, generated as a standalone. In this case, administrators represent-
ing their user communities need to provide the right environment by themselves, which
might also involve discussions with the system administrators.

• The subset of CVMFS embedded within the given Singularity container image. The utility
merges both elements and submits the resulting image, which can be long to generate
and deploy but may limit manual operations on the remote location.

6



3.2 Features

We break down the process into four main steps, namely:

• Trace: consists in running applications contained in apps and trapping their system calls
at runtime, using Parrot, to identify and extract the paths of their dependencies. Applica-
tions can run in a Singularity container when provided, which delivers further software
dependencies and a reproducible environment. Dependencies are then saved in a spe-
cific file namelist.txt. In this context, Parrot is only used to capture system calls and,
thus, is not impacted by the issues mentioned in section 2.2. If the step detects an error
during the execution of an application, then the program is stopped. The step is partic-
ularly helpful for users of the utility having no technical knowledge of the applications
of interest.

• Build: builds a subset of CVMFS based on the paths coming from Trace and the namelists
directory. First, the step merges the namelist files to remove duplicated or non-existent
path references, and then separates the paths in different specification files related to
repositories. Finally, the step calls cvmfs_shrinkwrap to generate the subset of CVMFS.
Figures 3 and 4.3 illustrate an example. The utility deduplicates the files, and hard-link
data to populate a directory, ready to be exported in various formats as explained in
Section 2.2 and shown in Figure 4.3.

in namelist1.txt:
/cvmfs/repoA/path/to/file
/cvmfs/repoB/path/to/another/file
in namelist2.txt:
/cvmfs/repoA/path/to/file
/cvmfs/repoB/path/to/yet/another/file

in repoA.spec:
/path/to/file
in repoB.spec:
/path/to/another/file
/path/to/yet/another/file

Figure 3: Transformation process occurring during the Trace step: CVMFS dependencies are
extracted from namelist.txt and moved to specification files.

• Test: consists in testing certain applications - in the given Singularity container environ-
ment when provided - using the subset of CVMFS obtained during the Build step (see
Figure 4.4). By default, applications from apps are used but further tests can also be
provided by modifying the utility configuration. All the applications have to complete
their execution to go to the next step.

• Deploy: deploys the subset of CVMFS (Figure 4.5) embedded or not within the container
image depending on the configuration options. If such is the case, then the utility (i)
generates a new container definition file that includes the files with the container image,
(ii) executes it to produce a new read-only container image. The utility supports ssh
deployment via rsync, provided the right credentials in the configuration.

7



 DTN


Sequestered computing resources

Pipeline


 CVMFS

 Application

1. a new
application comes

in

 Parrot

2. Execute and monitor the
application with CVMFS and a

container image


3. Get the dependencies and
create a subset of CVMFS from it

 Dependencies

 CVMFS Shrinkwrap

4. Mount the subset in the
container and run the
application against it

5. Submit subset-CVMFS and
the conainer to a Data

Transfer Node


Trace

Build

Test

Deploy

 Container


Figure 4: Schema of the utility workflow: from getting an application to trace to a subset of
CVMFS on the Data Transfer Node of a High-Performance Computing cluster.

3.3 Implementation

The utility is built as a 2-layer system. The first layer, subcvmfs-builder[12], is the core of the
system and is self-contained. It takes the form of a Python package, which embeds the steps
described in section 3.2, and provides a command-line interface to call and execute steps
independently from each other. The first layer is, and should remain, simple and generic to be
easily managed by developers and used by various communities.

The second layer is the glue code: it consists of a workflow executing - all, or some of -
the steps of the first layer. It contains the complexity required to generate and deliver a subset
of dependencies according to the needs of its users. Unlike the first layer, the second one can
take several forms and each community can tailor it for its software stack.

We propose a first, simple and generic layer-2 implementation calling each step one after
the other: subcvmfs-builder-pipeline[13]. This layer-2 implementation is executed from a Git-
Lab CI/CD [34], which provides a runner and a docker executor bound to a CVMFS client to

8



execute the code (see Figure 5) GitLab includes features such as log preservation to help de-
bug the implementation and integrates a pipeline scheduling mechanism to regularly update
a subset of dependencies. Even though this layer-2 solution is adapted for basic examples -
implying a few commands to trace and test, having a small number of dependencies -, it might
require further fine-tuning for more advanced use cases.

Indeed, this generic layer-2 implementation is not scalable as it (i) is a single-threaded and
single-process program, and (ii) requires manual operations to insert additional inputs in the
process. This is not adapted to communities having to trace and test hundreds of various appli-
cations to generate large subsets of CVMFS. Two possibilities for such communities: building
a new layer-2 implementation - able to automatically fetch applications and trace/test them
in parallel - based on subcvmfs-builder-pipeline or creating one from scratch.

In the next section, we are going to study how the LHCb experiment [25] leverages subcvmfs-
builder and subcvmfs-builder-pipeline to deliver Gauss [24], a Monte-Carlo simulation program,
on the worker nodes of Mare Nostrum [55], a supercomputer with no external connectivity
based in Barcelona, Spain.

GitLab 


Runner

 CVMFS Shrinkwrap

CVMFS Client


Docker

executor

SubCVMFS-builder-

pipeline

Layer2

Apps and

Namelists

Container

Image

Layer1

SubCVMFS-

builder

1. Call SubCVMFS-

builder-pipeline

2. Call each step of

SubCVMFS-builder

Figure 5: Schema of a layer-2 implementation within GitLab CI.

4 A Practical Use Case

4.1 Gauss

To better understand experimental conditions and performances, the LHCb collaboration has
developed Gauss, a Monte-Carlo simulation application - based on the Gaudi framework [4]
- that reproduces events occurring in the LHCb detector. The application consists of two in-
dependent phases executed sequentially, namely the generation of the events [6] relying on

9



Pythia [48] by default; the tracking of the particles through the simulated detector depending
on Geant4 [1].

In 2021, Gauss represents about 70% of the distributed computing activities of the LHCb
collaboration and 150 million events are simulated per day. The application has originally
been tailored for WLCG grid sites: Gauss is a compute-intensive single-process (SP), single-
threaded (ST) application, only supporting x86 architectures and CERN-CentOS-compatible
environments [19]. Gauss and most of its dependencies are delivered via CVMFS.

Gauss takes a certain number of events to process as inputs, as well as a "run number" and
an "event number". The combination of both numbers forms a seed, which ensures repeatabil-
ity during the generation and simulation phases. It mainly relies on packages such as Python,
Boost and gcc to produce histograms and ntuples under the form of a ROOT [22] file.

Gauss is modular and highly configurable and constitutes a complex use-case: it can inte-
grate extra packages such as various event generators and decay tools. Depending on LHCb
production needs and the computing environments available, different versions of Gauss and
its attached packages can be used. A plethora of option files can also be passed as inputs to
the extra packages. Figure 6 describes the inputs, outputs and dependencies of Gauss as well
as its interactions with some extra packages and their options.

Gauss v55r1

and its packages

-Histograms

-Ntuples

-Run number

-Number of events

Extra-

Package1 

AppConfig 

v3r4

Extra-

Package2

GenDecFiles

v31r7

opt1 opt2 opt3

Geant4 data

Inside LHCb CVMFS

repository

Figure 6: Example of a Gauss instance, its dependencies and some interactions with extra
packages and their options.

10



4.2 Mare Nostrum

To start integrating their workflows on High-Performance computing resources, LHC experi-
ments can benefit from a collaboration with PRACE [44] and GÉANT [35, 18]. This collabora-
tion gives them access to several European supercomputers such as Marconi in Italy and Mare
Nostrum in Spain.

Managed by the Barcelona Supercomputing Center (BSC), MareNostrum is the most pow-
erful and emblematic supercomputer in Spain [15]. MareNostrum was built in 2004 (MareNos-
trum 1), has been updated 3 times since then (Mare Nostrum 2,3 and 4) and was ranked 63rd
in the June 2021 Top500 list [53]. Each node composing the general-purpose block is equipped
with two Intel Xeon Platinum 8160 24 cores at 2.1 GHz chips, and at least 2GB of RAM: this
configuration matches with Gauss requirements. Nevertheless, Mare Nostrum is more restric-
tive than a traditional Grid Site on WLCG: (i) no external connectivity at all; (ii) no service
can be installed on the edge node; (iii) no CVMFS, and thus, no Gauss and its dependencies
available.

4.3 Running Gauss on Mare Nostrum

Running embarrassingly parallel applications such as Gauss on a supercomputer can be seen
as counterproductive. While it is true that the interconnect of the supercomputer partitions
has not been designed for millions of small Monte-Carlo runs, it is better to use available, oth-
erwise unused, cycles in agreement with the management of the supercomputer sites. In the
meantime, developers are adapting software [47, 39], but it remains a long process, requiring
deep and technical software inputs.

To deliver Gauss on Mare Nostrum, LHCb can rely on (i) subcvmfs-builder to produce a
subset of CVMFS containing the required files; (ii) a CernVM Singularity container to provide
a Gauss-compatible environment and to mount the subset of CVMFS as if it was a CVMFS
client.

Nevertheless, as we explained in 4.1, a Gauss execution can involve different packages,
extra packages, options, data and versions. Encapsulating its ecosystem requires a good un-
derstanding of the application and/or a large amount of storage to encapsulate the right de-
pendencies. Therefore, different options are available:

• Include the whole LHCb CVMFS repository: would not require any specific knowledge
about Gauss and would involve all the necessary files to run any Gauss instance. How-
ever, this option would imply a tremendous quantity of storage - the full LHCb repository
needs 5.2 Terabytes -, long periods to update the subset and many unnecessary files.

• Include the dependencies of various Gauss runs: as the first option, would not need any
specific knowledge about Gauss and would include a few gigabytes of data. Nevertheless,
such an option would not guarantee the presence of all needed files and would require
a tremendous amount of computing resources to trace Gauss workloads continuously.

• Include all the known dependencies of Gauss: would require a deep understanding of
Gauss and its dependencies to include all the required files in a subset of CVMFS. While
this option would not involve many computing or storage resources, it would include
human resources to update the content of the subset of CVMFS according to the releases
of Gauss and its extra packages.

As the default storage quota on Mare Nostrum is smaller than the LHCb repository, we
decided to reject the first option. LHCb has access to tremendous computing power: it interacts

11



with hundreds of WLCG Sites to run Gauss workloads and could theoretically trace them and
extract their requirements. In practice, tracing Gauss workloads in production could slow
down the applications and their execution, which is not an option. Similarly, LHCb does not
have human resources to update the subset of CVMFS according to the changes done. Thus,
we chose to combine the second and the third options to propose a light and easy to update
and maintain solution. The process consists in getting insights into the structure of the Gauss
dependencies by running and tracing a small set of Gauss workloads and analyzing the system
calls before including the structure in subcvmfs-builder-pipeline.

After analyzing 500 commands calling Gauss from the LHCb production environment and
tracing 3 Gauss applications using subcvmfs-builder [14], we noticed that:

• 97% of the workloads studied were running the same Gauss versions (v49r20) with the
same extra packages and versions. The versions of Gauss and its extra packages seem
related to the underlying architecture.

• 846 Mb of files were needed to run 3 Gauss (v49r20) workloads. About 95% of the size
is related to the Gauss version and the underlying architecture, and is common to the
Gauss workloads traced, while the 5% left is bound to the options and Geant4 data used
that are specific to a given Gauss workload.

• Integrating all the options and Geant4 data related to Gauss v49r20 would correspond
to 1.8 Gb of files.

Based on these assumptions, we created a namelist file containing (i) the files shared by
the 3 Gauss applications that we traced and (ii) all the options and Geant4 data in order to
generate a subset of CVMFS able to run any Gauss workload targeting the v49r20 version. We
used subcvmfs-builder-pipeline to build the subset of CVMFS, to successfully test it with 5 Gauss
workloads - different from the ones we used previously - and to deploy it to Mare Nostrum.
We fine-tuned the utility to disable the trace step and to deploy the subset separately from the
container. Indeed, CernVM - the container that we use to provide a reproducible environment
to the workload - does not need regular updates and merging it with the subset of CVMFS is
a time-consuming operation.

This resulted in a CernVM singularity container occupying 6.4 Gb on the General Paral-
lel File System (GPFS) of Mare Nostrum combined with a subset of CVMFS covering 6 Gb:
dependencies occupies 3.2 Gb of space while 2.8 Gb are required for the cvmfs_shrinkwrap
metadata. Thus, 12.4 Gb of space on the GPFS of Mare Nostrum is currently sufficient to run
97% of the Gauss workloads analyzed: 0.24% of the LHCb repository.

Even though this approach provides a light, easy and fast-to-update solution, LHCb de-
velopers need to keep it up to date to integrate new versions or structure changes. One
way to proceed would consist in automating and repeating the analysis work regularly. One
could also integrate the trace command of subcvmfs-builder within the LHCb production test
phase, which consists in running a few events of upcoming Gauss workloads on a given Grid
Site. LHCb developers could trace some of them during the process and store the traces in a
database. An LHCb-specific subcvmfs-pipeline-builder could then periodically fetch the content
of the database to build, test and deploy a new subset of dependencies to Mare Nostrum.

5 Conclusion

This paper presents a dependency delivery system based on CVMFS to provide complex soft-
ware stacks on sequestered computing resources such as worker nodes of supercomputers not
having external connectivity.

12



After introducing CVMFS (section 2.1), a critical tool - especially for LHC communities -
to supply workloads with complex dependencies on Grid Sites, we have described the context
of this study (section 2.2): several virtual organizations are exporting their workflow from
WLCG to supercomputers, which have more restrictive policies than grid sites and generally
do not allow to mount CVMFS on the worker nodes.

We have highlighted several solutions aiming to overcome the issue such as collaborating
with the system administrators and using tools such as Parrot and cvmfsexec. Nevertheless,
these approaches do not work when worker nodes have no external connectivity. Then, we
have emphasized different ways to export parts of CVMFS to supercomputers with no external
connectivity: uncvmfs and cvmfs_shrinkwrap. These solutions require several manual steps
and therefore we have proposed a utility to assist communities in this process.

We have explained the different steps of the utility in detail (section 3.2). It traces - captures
the system calls of - applications of interest, builds a subset with the required files, tests the
subset and deploys it to a remote computing resource. We also described the structure of
the solution (section 3.3), which is composed of two layers: a first one, generic with simple
components, and a second one more complex, adapted to communities needs that can be
fine-tuned.

Finally, we have provided a use case based on Gauss, a Monte-Carlo simulation application
reproducing events occurring in the LHCb detector (section 4.1). Gauss is highly configurable
and can be coupled with different packages, extra packages, options, data and versions. It
represents a complex bundle of dependencies, which makes it ideal to test our utility. We have
proposed a method to encapsulate Gauss and its dependencies in a subset, which represents
12.4 Gb of space on the GPFS of the Mare Nostrum supercomputer (section 4.3). The solution
produced represents 0.24% of the full LHCb repository and, thus, is easier to update. We have
successfully tested the solution with different Gauss workloads. Future work could focus on
encapsulating further applications from different domains using this utility, and analyzing its
performances to deploy subsets on various supercomputers.

References

[1] S. Agostinelli and al. Geant4—a simulation toolkit. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment, 506(3):250 – 303, 2003.

[2] G. Apollinari, I. Béjar Alonso, O. Brüning, M. Lamont, and L. Rossi. High-Luminosity Large
Hadron Collider (HL-LHC) : Preliminary Design Report. CERN Yellow Reports: Mono-
graphs. CERN, Geneva, Dec. 2015.

[3] María Arsuaga-Ríos, Seppo S Heikkilä, Dirk Duellmann, René Meusel, Jakob Blomer,
and Ben Couturier. Using s3 cloud storage with ROOT and CvmFS. Journal of Physics:
Conference Series, 664(2):022001, dec 2015.

[4] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, G. Corti, M. Frank, G. Gra-
cia, J. Harvey, E.van Herwijnen, P. Maley, P. Mato, S. Probst, and F. Ranjard. Gaudi —
a software architecture and framework for building hep data processing applications.
Computer Physics Communications, 140(1):45–55, 2001. CHEP2000.

[5] Fernando Barreiro, Doug Benjamin, Taylor Childers, Kaushik De, Johannes Elmsheuser,
Andrej Filipčič, Alexei Klimentov, Mario Lassnig, Tadashi Maeno, Danila Oleynik, and

13



et al. The future of distributed computing systems in atlas: Boldly venturing beyond
grids. EPJ Web of Conferences, 214:03047, 2019.

[6] I Belyaev, T Brambach, N H Brook, N Gauvin, G Corti, K Harrison, P F Harrison, J He,
C R Jones, M Lieng, G Manca, S Miglioranzi, P Robbe, V Vagnoni, M Whitehead, and
J Wishahi and. Handling of the generation of primary events in gauss, the LHCb simula-
tion framework. Journal of Physics: Conference Series, 331(3):032047, Dec. 2011.

[7] Benjamin, Douglas, Childers, Taylor, Lesny, David, Oleynik, Danila, Panitkin, Sergey,
Tsulaia, Vakho, Yang, Wei, and Zhao, Xin. Building and using containers at hpc centres
for the atlas experiment. EPJ Web Conf., 214:07005, 2019.

[8] Jakob Blomer. Cernvm-fs overview and roadmap. [Online] Available:
https://easybuild.io/eum/002_eum21_cvmfs.pdf, 2021. [Accessed: 26-May-2021].

[9] Jakob Blomer, Gerardo Ganis, Nikola Hardi, and Radu Popescu. Delivering lhc software
to hpc compute elements with cernvm-fs. In Julian M. Kunkel, Rio Yokota, Michela
Taufer, and John Shalf, editors, High Performance Computing, pages 724–730, Cham,
2017. Springer International Publishing.

[10] Blomer, Jakob, Dykstra, Dave, Ganis, Gerardo, Mosciatti, Simone, and Priessnitz, Jan. A
fully unprivileged cernvm-fs. EPJ Web Conf., 245:07012, 2020.

[11] Blomer, Jakob, Ganis, Gerardo, Mosciatti, Simone, and Popescu, Radu. Towards a server-
less cernvm-fs. EPJ Web Conf., 214:09007, 2019.

[12] Alexandre Franck Boyer. Subcvmfs-builder. Mar 2022.

[13] Alexandre Franck Boyer. Subcvmfs-builder-pipeline. Mar 2022.

[14] Alexandre Franck Boyer. Subcvmfs: Gauss analysis, Mar 2022.

[15] BSC. Marenostrum. [Online] Available: https://www.bsc.es/marenostrum/, 2020. [Ac-
cessed: 04-Oct-2021].

[16] P Buncic, C Aguado Sanchez, J Blomer, L Franco, A Harutyunian, P Mato, and Y Yao.
CernVM – a virtual software appliance for LHC applications. Journal of Physics: Confer-
ence Series, 219(4):042003, apr 2010.

[17] Burr, Chris, Clemencic, Marco, and Couturier, Ben. Software packaging and distribution
for lhcb using nix. EPJ Web Conf., 214:05005, 2019.

[18] CERN. Cern, skao, gÉant and prace to collaborate on high-performance computing. [On-
line] Available: https://home.cern/news/news/computing/cern-skao-geant-and-prace-
collaborate-high-performance-computing, 2020. [Accessed: 04-Oct-2021].

[19] CERN. Linux@cern. [Online] Available: https://linux.web.cern.ch/, 2020. [Accessed:
09-Feb-2021].

[20] CERN. Cernvm-fs. [Online] Available: https://cernvm.cern.ch/, 2021. [Accessed: 19-
May-2021].

[21] CERN. The large hadron collider. [Online] Available:
https://home.cern/science/accelerators/large-hadron-collider, 2021. [Accessed:
27-May-2021].

14



[22] CERN. Root: analyzing petabytes of data, scientifically. [Online] Available:
https://root.cern.ch/, 2021. [Accessed: 30-Sep-2021].

[23] CERN. Worldwide lhc computing grid. [Online] Available: https://wlcg.web.cern.ch/,
2021. [Accessed: 27-May-2021].

[24] M Clemencic, G Corti, S Easo, C R Jones, S Miglioranzi, M Pappagallo, and P Robbe and.
The LHCb simulation application, gauss: Design, evolution and experience. Journal of
Physics: Conference Series, 331(3):032023, Dec. 2011.

[25] The LHCb Collaboration. The LHCb detector at the LHC. Journal of Instrumentation,
3(08):S08005–S08005, aug 2008.

[26] CVMFS. cvmfsexec. [Online] Available: https://github.com/cvmfs/cvmfsexec, 2021.
[Accessed: 28-May-2021].

[27] D. Dykstra and J. Blomer. Security in the CernVM File System and the Frontier Dis-
tributed Database Caching System. In Journal of Physics Conference Series, volume 513
of Journal of Physics Conference Series, page 042015, June 2014.

[28] EasyBuild. Easybuild: building software with ease. [Online] Available:
https://easybuild.io/, 2021. [Accessed: 11-Dec-2021].

[29] Markus Fasel. Using nersc high-performance computing (hpc) systems for high-
energy nuclear physics applications with alice. Journal of Physics: Conference Series,
762:012031, Oct. 2016.

[30] Andrej Filipčič. Integration of the chinese hpc grid in atlas distributed computing. Journal
of Physics: Conference Series, 898:082008, Oct. 2017.

[31] Andrej Filipčič, S. Haug, Michi Hostettler, Rodney Walker, and Michele Weber. Atlas
computing on cscs hpc. Journal of Physics: Conference Series, 664(9):092011, Dec. 2015.

[32] Gentoo. Gentoo linux. [Online] Available: https://www.gentoo.org/, 2021. [Accessed:
11-Dec-2021].

[33] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen, Mustafa
Mustafa, Jeff Porter, and Vakho Tsulaia. Shifter: Containers for hpc. Journal of Physics:
Conference Series, 898:082021, Oct. 2017.

[34] GitLab. Gitlab ci/cd. [Online] Available: https://docs.gitlab.com/ee/ci/, 2021. [Ac-
cessed: 23-Sep-2021].

[35] GÉANT. GÉant. [Online] Available: https://www.geant.org/, 2021. [Accessed: 04-Oct-
2021].

[36] A Harutyunyan, J Blomer, P Buncic, I Charalampidis, F Grey, A Karneyeu, D Larsen,
D Lombraña González, J Lisec, B Segal, and P Skands. CernVM co-pilot: an extensi-
ble framework for building scalable computing infrastructures on the cloud. Journal of
Physics: Conference Series, 396(3):032054, dec 2012.

[37] Dirk Hufnagel. Cms use of allocation based hpc resources. Journal of Physics: Conference
Series, 898:092050, Oct. 2017.

15



[38] ic hep. uncvmfs. [Online] Available: https://github.com/ic-hep/uncvmfs, 2018. [Ac-
cessed: 30-May-2021].

[39] Michal Mazurek, Gloria Corti, and Dominik Muller. New simulation software technolo-
gies at the LHCb Experiment at CERN. 12 2021.

[40] NixOS. Nixos. [Online] Available: https://nixos.org/, 2021. [Accessed: 11-Dec-2021].

[41] Danila Oleynik, Sergey Panitkin, Matteo Turilli, Alessio Angius, Kaushik De, Alexei Kli-
mentov, Sarp H. Oral, Jack C. Wells, and Shantenu Jha. High-throughput computing on
high-performance platforms: A case study, 2017.

[42] B. O’Brien, R. Walker, and A. Washbrook. Leveraging hpc resources for high energy
physics. Journal of Physics: Conference Series, 513(3):032104, Jun. 2014.

[43] Popescu, Radu, Blomer, Jakob, and Ganis, Gerardo. Towards a responsive cernvm-fs
architecture. EPJ Web Conf., 214:03036, 2019.

[44] PRACE. Partnership for advanced computing in europe. [Online] Available:
https://prace-ri.eu/, 2021. [Accessed: 04-Oct-2021].

[45] Francesco Giovanni Sciacca. Enabling atlas big data processing on piz daint at cscs. EPJ
Web Conf., 245:09005, 2020.

[46] B Segal, P Buncic, C Aguado Sanchez, J Blomer, D Garcia Quintas, A Harutyunian,
P Mato, J Rantala, D Weir, and Y Yao. Lhc cloud computing with cernvm. 13th In-
ternational Workshop on Advanced Computing and Analysis Techniques in Physics Research
(ACAT2010), 093(4):042003, feb 2011.

[47] Benedetto Gianluca Siddi and Dominik Müller. Gaussino - a gaudi-based core simulation
framework. In 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference
(NSS/MIC), page 1–4, Manchester, United Kingdom, Oct. 2019. IEEE.

[48] Torbjörn Sjöstrand, Patrik Edén, Christer Friberg, Leif Lönnblad, Gabriela Miu, Stephen
Mrenna, and Emanuel Norrbin. High-energy-physics event generation with pythia 6.1.
Computer Physics Communications, 135(2):238–259, Apr. 2001.

[49] Spack. Spack. [Online] Available: https://spack.readthedocs.io/en/latest/, 2021. [Ac-
cessed: 11-Dec-2021].

[50] Federico Stagni, Andrew McNab, Cinzia Luzzi, Wojciech Krzemien, and Dirac Consor-
tium. Dirac universal pilots. Journal of Physics: Conference Series, 898(9):092024, Oct.
2017.

[51] Federico Stagni, Andrea Valassi, and Vladimir Romanovskiy. Integrating lhcb workflows
on hpc resources: status and strategies. EPJ Web of Conferences, 245:09002, 2020.

[52] Samuel Teuber. Efficient unpacking of required software from CERNVM-FS, February
2019.

[53] Top500. Top500. [Online] Available: https://www.top500.org/, 2021. [Accessed: 04-
Oct-2021].

16



[54] Tovar, Benjamin, Bockelman, Brian, Hildreth, Michael, Lannon, Kevin, and Thain, Dou-
glas. Harnessing hpc resources for cms jobs using a virtual private network. EPJ Web
Conf., 251:02032, 2021.

[55] David Vicente and Javier Bartolome. Bsc-cns research and supercomputing resources.
In Michael Resch, Sabine Roller, Katharina Benkert, Martin Galle, Wolfgang Bez, and
Hiroaki Kobayashi, editors, High Performance Computing on Vector Systems 2009, pages
23–30, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[56] Volkl, Valentin, Madlener, Thomas, Lin, Tao, Wang, Joseph, Konstantinov, Dmitri, Razu-
mov, Ivan, Sailer, Andre, and Ganis, Gerardo. Building hep software with spack: Ex-
periences from pilot builds for key4hep and outlook for lcg releases. EPJ Web Conf.,
251:03056, 2021.

[57] Xu, Benda, Amadio, Guilherme, Gro, Fabian, and Haubenwallner, Michael. Gentoo prefix
as a physics software manager. EPJ Web Conf., 245:05036, 2020.

17


