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Abstract: This article presents the analysis of a parallel mechanism of type 3-SPS-U. The usual 1

singularity approach is carried out with respect to the Euler angles of the universal joint. However, 2

this approach is computationally expensive especially when stacked structures are analyzed. Thus, 3

the positioning of the mobile platform for the mechanism is analyzed using the theory of Tilt and 4

Torsion (T&T). The singularity-free workspace and the tilt limits of the mechanism are disclosed 5

through this method. These workspaces can then be mapped to the Euler angles of the universal 6

joint and the relation between the T&T space and the Euler space is demonstrated and validated 7

in this study. Initially, simulations are performed using the results of singularity analysis to have a 8

comparison between the T&T space and the Euler space. Experimental validation is then carried out 9

on the prototype of the mechanism to perform a circular trajectory, in line with the simulations. The 10

outcome of this study will be helpful for the integration of the mechanism for a piping inspection 11

robot and also for the analysis of stacked architectures. 12

Keywords: parallel mechanism; tilt and torsion; singularities; control 13

1. Introduction 14

Parallel kinematics machines (PKM) have interesting applications in industries over 15

serial machines. PKMs offer better accuracy, lower mass/inertia properties and high struc- 16

tural stiffness [1]. The performance of parallel robots varies within their workspace, which 17

is considerably smaller when compared to serial robots. At present, many researchers work 18

on parallel robots as they offer simple and conventional designs with ease of calibration [2]. 19

Moreover, the inverse kinematics, in general, is easier to solve for parallel robots, especially 20

when prismatic joints are employed. With the presence of spherical joints in a parallel mech- 21

anism, the modified Euler angles, otherwise known as the “Tilt and Torsion” (T&T) angles, 22

could be employed [3,4]. Bonev et al. [5] proposed the advantages of the T&T angles for 23

the study of spatial parallel mechanisms in-depth. It was demonstrated that there exists a 24

class of parallel mechanisms with zero torsion, which are referred to as zero-torsion parallel 25

mechanisms [5,6]. Another interesting study which exploits the T&T angles is the 3-RRR 26

spherical parallel mechanism, which was analyzed by Tao et al. [7]. This analysis helped in 27

improving the workspace of the parallel mechanism and was applicable for architectures 28

that have revolute joints. Generally, the applications of parallel or spherical mechanisms 29

are found in industrial applications such as machining [8] and nano-alignment, [9]. How- 30

ever, there is another interesting application of a spherical-type parallel mechanism for a 31

piping-inspection robot. A bio-inspired piping-inspection robot that moves like a caterpil- 32

lar was designed and developed at LS2N, France [10]. This prototype was a rigid model 33

and it was limited to straight pipe profiles. An articulation unit was proposed for this 34

robot which addresses two main issues, namely, passive compliance and active compliance. 35

Passive compliance is applicable for a robot working inside a pipeline having an elbow 36

at 90◦ or 45◦. In such scenarios, the articulation units usually work in passive modes. 37

Some examples of such mechanisms that exist in the literature are the squirm-type robot 38

of Zhang et al. [11] and the caterpillar-type robot of Kwon et al. [12]. On the other hand, 39
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for the active compliance issue, the articulation unit must be actuated in order to align the 40

robot assembly with the pipeline axis or follow a certain direction inside the pipeline. This 41

scenario could be imagined for a robot that passes through a junction or a T-branch inside 42

a pipeline. Some examples of active compliance include the robot of Ryew et al. [13], which 43

employs a dual-actuated universal joint for passing through junctions and a pantograph 44

mechanism to ensure contact with pipeline walls during locomotion. The third criterion 45

that must also be taken into account is the tilt limit of the articulation unit as it determines 46

if the mechanism tilt is sufficient to overcome a bend or a junction. By taking these factors 47

into account, a parallel mechanism that employs three tension springs and a universal joint 48

was incorporated as an articulation unit for a bio-inspired piping inspection robot [10,14]. 49

The positioning of the end-effector with respect to the fixed base plays an important role in 50

identifying the tilt limits of this mechanism. The conventional approach involves analyzing 51

the end-effector for the Euler angles of the universal joint [15]. As the universal joint has 52

two degrees of freedom about the x and y axis, the workspace analysis involves studying 53

the influence of both tilt angles for each position of the end-effector within the joint limits. 54

However, there exists an alternate approach where the end-effector can be localized using 55

the T&T angles. When compared to the Euler space, in the T&T space the singularity 56

analysis appears much simpler as the tilt angle remains constant while the azimuth can 57

vary from 0 to 2π radians or vice versa. This article demonstrates a relation that exists 58

between the T&T space and the Euler space for the 3-SPS-U parallel mechanism under 59

study. This relation, also called the “mapping”, has been demonstrated and validated for 60

the mechanism through simulations and experiments. 61

The outline of this article is as follows. Section 2 presents the architecture and the 62

geometrical equations of the mechanism using the T&T angles. In Section 3, the singularity 63

analysis of the mechanism is presented in detail through algebraic methods. Following 64

this, in Section 4, the mapping parameters are demonstrated for the T&T space to the Euler 65

space. A numerical simulation is also presented to demonstrate this mapping. Section 5 66

presents the experimental validation of the mapping theory with the help of the prototype 67

of the mechanism and control laws. Finally, in Section 6, closing discussions are made 68

along with the future perspectives. 69

2. Architecture of the Parallel Mechanism 70

This section presents the architecture of the parallel mechanism that will be analyzed 71

in this article. An overview of the final application of this mechanism is first presented. 72

Followed by that, the geometrical equations that are necessary to analyze the singularities 73

are presented. 74

2.1. A Flexible Mechanism for a Piping Inspection Robot 75

In collaboration with the enterprise AREVA in France, a rigid bio-inspired piping- 76

inspection robot was designed and developed at LS2N, France. With the help of leg 77

mechanisms and DC motors, the robot accomplishes the locomotion of a caterpillar to move 78

inside a pipeline [10]. A 3D model of this robot and its 2D view are shown in Figure 1. The 79

application of this robot is limited to straight pipelines, as the model is rigid. In order to 80

work inside a pipeline that consists of bends and junctions, a flexible version of the robot 81

was proposed in [14]. Two similar parallel mechanisms with two degrees of freedom (DOF) 82

were introduced between each module of the first robot. These parallel mechanisms consist 83

of a universal joint to constrain the mobility between the base and the mobile platform 84

and three tension springs with or without cables for the actuation. This mechanism can 85

potentially assist the piping-inspection robot to overcome a 90◦ bend or a junction. A digital 86

model of the flexible piping-inspection robot with the parallel mechanism is shown in 87

Figure 2. 88
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Rear leg mechanism Central module Front leg mechanism

Figure 1. The 3D model (left) and the 2D view (right) of the rigid bio-inspired piping-inspection
robot developed at LS2N, France [10].

PM

Rear leg mechanism Front leg mechanismCentral module

PM

PM: The proposed parallel mechanism

Figure 2. The 2D view of the flexible piping-inspection robot with the parallel mechanism [16].

The primary focus of this article is to analyze the singular configurations of this parallel 89

mechanism which will provide the tilt limits. 90

2.2. Geometrical Equations of the Mechanism 91

The parallel mechanism under study was analyzed earlier through two approaches, 92

namely, (i) using the Tilt and Torsion (T&T) angles and (ii) singularity analysis with respect 93

to the Euler angles. The former was employed to study the joint limits where three types of 94

architectures were analyzed to identify an inverse pendulum configuration [17]. On the 95

other hand, the singularity analysis was carried out for the Euler angles, which led to the 96

conclusion that the 3-SPS-U architecture was not an ideal solution for addressing passive 97

compliance owing to the limited tilt angles [15]. In this article, the singularity analysis is 98

revisited for the 3-SPS-U mechanism by using the T&T angles. The articulation unit that 99

consists of the tension springs and universal joints is correlated to a parallel manipulator of 100

type 3-SPS-U [18,19]. The representation of the parallel mechanism under study is shown 101

in Figure 3. In this mechanism, S indicates the spherical joint, U indicates the universal 102

joint and P indicates the actuated prismatic joints or the springs. The mechanism also 103

employs cables that pass through each spring from the base to the end-effector. The cable 104

actuation is performed using external motors in the active modes and it does not resemble 105

a classic prismatic link. Thus, under operation, the mobility of the end-effector is purely 106

obtained through the two rotation angles of the universal joint. The home pose represented 107

in Figure 3a is the position where the tilt angles, as well as the external forces on the 108

mechanism, are equal to zero. The fixed coordinate frame of the base is represented by ∑0. 109

The spring mounting points on the fixed base are represented by B1, B2 and B3 and they 110

form an imaginary equilateral triangle of the manipulator base. The vector coordinates for 111

the base mounting points can be written as: 112

b0
i =


r f cos

(
2π(i−1)

3

)
r f sin

(
2π(i−1)

3

)
−r f h

, with i = 1, 2, 3 (1)
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Figure 3. Representation of the (a) parallel mechanism at home pose, (b) 3D view of the correlation to
a 3-SPS-U manipulator and (c) 2D view of the manipulator.

Equation (1) provides the coordinates of Bi in the fixed coordinate frame ∑0. To deter- 113

mine the position of the end-effector, the Euler angles are usually employed [15], especially 114

to study the singular configurations. In this case, the T&T angles are revisited from [17] 115

for identifying singular configurations. It must be noted that in [17], the singularity anal- 116

ysis was not performed for the T&T space. As the torsion for the mechanism has been 117

constrained, the tilt and azimuth angles are sufficient to analyze the architecture. The repre- 118

sentation of the tilt and azimuth angles on the mechanism is revisited from [17] and it is 119

shown below in Figure 4. 120

z

x

y
z*

x*

y*

M

α

β

Figure 4. Representation of the tilt (α) and azimuth (β) angles on the parallel mechanism under study.

This representation is correlated with the study shown by Bonev et al. [3], where β 121

represents the azimuth angle between the x-axis and the face of z-axis. A rotation about M 122

causes a shift of the axis xyz to x∗y∗z∗. The angle between z and z∗ represents the tilt angle, 123

α. Here, the resultant rotation matrix R is a modified form of the equation presented in [3] 124

by Bonev et al. but in this case without the torsion. The matrix is given by the equation: 125

R = Rz(β)Rx(α)Rz(−β) (2)
126

R =


cos(β)2 + sin(β)2 cos(α) cos(β) sin(β)(1 − cos(α)) sin(β) sin(α)

cos(β) sin(β)(1 − cos(α)) sin(β)2 + cos(β)2 cos(α) − cos(β) sin(α)

− sin(β) sin(α) cos(β) sin(α) cos(α)

 (3)
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127

where Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

, Rz(−β) =


cos(β) sin(β) 0

− sin(β) cos(β) 0

0 0 1


The moving coordinate frame of the end-effector is represented by ∑1. The spring 128

mounting points of the end-effector are represented by C1, C2 and C3 for the mechanism. 129

In order to obtain the position of the end-effector, Equation (2) is multiplied by the vector 130

coordinates of Ci, which are given by: 131

c1
i = R o1

i , with i = 1, 2, 3 & o1
i =


r f cos

(
2π(i−1)

3

)
r f sin

(
2π(i−1)

3

)
r f h

 (4)

In Equation (4), o1
i are the coordinates of Ci in the mobile reference frame ∑1 of the 132

end-effector. The length of the mechanism li, which provides the solution for the inverse 133

kinematic problem (IKP), can be solved by computing the distance between the vector 134

coordinates of the base and the end-effector. The constraint equations are given by: 135∥∥∥b0
i − c1

i

∥∥∥ = li where b0
i = [bix, biy, biz]

T , c1
i = [cix, ciy, ciz]

T with i = 1, 2, 3 (5)

1362 rf 2
(
(cos(β))2 cos(α)− 2 sin(β) sin(α)h + cos(α)h2 − (cos(β))2 + h2 − cos(α) + 1

)
= l2

1 (6a)

−0.5 rf 2(2 cos(β) sin(β) cos(α)
√

3 − 4
√

3 cos(β) sin(α)h + 2 (cos(β))2 cos(α)

−2 cos(β) sin(β)
√

3 − 4 sin(β) sin(α)h − 4 h2 cos(α)− 2 (cos(β))2 − 4 h2 + cos(α)

−1) = l2
2 (6b)

−0.5 rf 2(−2 cos(β) sin(β) cos(α)
√

3 + 4
√

3 cos(β) sin(α)h + 2 (cos(β))2 cos(α)

+2 cos(β) sin(β)
√

3 − 4 sin(β) sin(α)h − 4 h2 cos(α)− 2 (cos(β))2 − 4 h2 + cos(α)

−1) = l2
3 (6c)

Equation (6a) to (6c) represents the solutions to the IKP. For known values of the tilt 137

and azimuth angles as well as the design parameters r f and h, these equations can be 138

employed to calculate the distance between the base and end-effector of the mechanism. 139

3. Singularity Analysis and Workspace of the Mechanism in the T&T Space 140

This section focuses on the singularity analysis of the mechanism. With the presence 141

of the universal joint, the end-effector coordinates are identified conventionally using the 142

Euler XY rotation angles about the origin A shown in Figure 3. In this approach, for each 143

position of the end-effector, the influence of both rotation angles must be taken into account. 144

However, with the help of the tilt and azimuth angles, it is still possible to analyze the 145

presence of singularities in the mechanism. Moreover, in the T&T space, the mechanism will 146

be simpler to analyze wherein one of the angles remains fixed or constant while the other 147

changes. In [17], only the analysis of joint limits was carried out by setting minimum and 148

maximum values for each prismatic link. This analysis provided the tilt angles for the joint 149

limits; however, the direct kinematic problem (DKP), which presents the singularity-free 150

workspace in T&T space, was not solved in [17]. The singularity-free workspace is thus 151

identified by analyzing the mechanism in the T&T space, which provides the solution to 152

the DKP and the tilt limits. 153
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3.1. Singularity Equations of the Mechanism 154

For a parallel mechanism, the singularity equation is given by the well-known equa- 155

tion [20]: 156

At + Bρ̇ = 0 (7)

where t represents the angular velocity vector

and ρ̇ = [l̇1, l̇2, l̇3]T represents the joint velocity vector

The IKP Equations (6a) to (6c) are employed in Equation (7), where their time deriva- 157

tives are taken to study the singularities. In Equation (7), A represents the direct-kinematics 158

matrix or forward Jacobian matrix and B represents the inverse-kinematics matrix or in- 159

verse Jacobian matrix of the mechanism. The pose variables for the mechanism are the tilt 160

and azimuth angles α and β. The articular variables are the lengths: l1, l2 and l3. A parallel 161

mechanism in general might encounter three types of singularities, namely, Type-1, Type-2 162

and Type-3 [21,22]. When the determinant of the direct kinematics matrix A loses its rank, 163

the determinant of this matrix becomes zero and this scenario leads to parallel singularities 164

or Type-2 singularities. From the number of pose variables and articular variables, it could 165

be seen that matrix A does not correspond to an n × n square matrix. For identifying the 166

singularity equations and to construct a square matrix, the 3-SPS-U mechanism is split 167

into three sets of 2-SPS-U architecture, which comprise the length pairs l1 − l2 , l2 − l3 and 168

l1 − l3. The corresponding direct kinematic matrices A are created for the three sets by 169

differentiating Equations (6a) to (6c) with respect to the pose variables. The matrices are 170

given by: 171

A1−2 =

[
∂L1
∂α

∂L1
∂β

∂L2
∂α

∂L2
∂β

]
, A2−3 =

[
∂L2
∂α

∂L2
∂β

∂L3
∂α

∂L3
∂β

]
, A1−3 =

[
∂L1
∂α

∂L1
∂β

∂L3
∂α

∂L3
∂β

]
(8)

In Equation (8), L1, L2 and L3 represent the left-hand sides of Equations (6a) to (6c). 172

The parallel singularities are analyzed by calculating the determinant of matrices in 173

Equation (8) and equating them to zero. The determinant values are given by: 174

det(A1−2) , Dp1 : −4 sin(β)(cos(α))2(cos(β))2√3h + 2 sin(β)(cos(α))2√3h3

−2 sin(α) cos(α)(cos(β))2√3h2 + 6 sin(β) sin(α) cos(α) cos(β)h2

+8 sin(β) cos(α)(cos(β))2√3h + 2 sin(α)(cos(β))2√3h2

−6 (cos(α))2 cos(β)h3 − 6 sin(β) sin(α) cos(β)h2 − 4 sin(β)(cos(β))2√3h

−2 sin(β)
√

3h3 + sin(α) cos(α)(cos(β))2√3 − 3 sin(α) cos(α)
√

3h2

−3 sin(β) sin(α) cos(α) cos(β)− 2 sin(β) cos(α)
√

3h − sin(α)(cos(β))2√3

− sin(α)
√

3h2 + 3 (cos(α))2 cos(β)h + 6 cos(β)h3 + 3 sin(β) sin(α) cos(β)

+2 sin(β)
√

3h − sin(α) cos(α)
√

3 + sin(α)
√

3 − 3 cos(β)h = 0 (9)

175det(A2−3) , Dp2 : 8 sin(β)(cos(α))2(cos(β))2h + 8 sin(β)(cos(α))2h3

−8 (cos(β))2 sin(α)h2 cos(α)− 16 sin(β) cos(α)(cos(β))2h

+8 sin(α)(cos(β))2h2 − 6 sin(β)(cos(α))2h + 8 sin(β)(cos(β))2h

−8 sin(β)h3 + 4 (cos(β))2 sin(α) cos(α) + 12 cos(α)h2 sin(α)

+4 h sin(β) cos(α)− 4 (cos(β))2 sin(α)− 4 h2 sin(α) + 2 sin(β)h

− sin(α) cos(α) + sin(α) = 0 (10)
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176

det(A1−3) , Dp3 : 4 sin(β)(cos(α))2(cos(β))2√3h − 2 sin(β)(cos(α))2√3h3

+2 sin(α) cos(α)(cos(β))2√3h2 + 6 sin(β) sin(α) cos(α) cos(β)h2

−8 sin(β) cos(α)(cos(β))2√3h − 2 sin(α)(cos(β))2√3h2

−6 (cos(α))2 cos(β)h3 − 6 sin(β) sin(α) cos(β)h2 + 4 sin(β)(cos(β))2√3h

+2 sin(β)
√

3h3 − sin(α) cos(α)(cos(β))2√3 + 3 sin(α) cos(α)
√

3h2

−3 sin(β) sin(α) cos(α) cos(β) + 2 sin(β) cos(α)
√

3h + sin(α)(cos(β))2√3

+ sin(α)
√

3h2 + 3 (cos(α))2 cos(β)h + 6 cos(β)h3 + 3 sin(β) sin(α) cos(β)

−2 sin(β)
√

3h + sin(α) cos(α)
√

3 − sin(α)
√

3 − 3 cos(β)h = 0 (11)

Using Equations (9) to (11), it is possible to identify the pose variables and understand 177

the presence of parallel singularities in the mechanism. On the other hand, when the 178

determinant of the inverse kinematics matrix B loses its rank, the determinant of this 179

matrix becomes zero and this scenario leads to serial singularities or Type-1 singularities. 180

Similar to the parallel singularity equations, the inverse kinematics matrix B is created by 181

differentiating the right-hand side of Equations (6a) to (6c) with respect to the articular 182

variables. Following this, the determinant of these matrices is computed and equated to 183

zero for verifying the serial singularities. The matrices and the determinant values are 184

given by: 185

B1−2 =

[
∂R1
∂l1

∂R1
∂l2

∂R2
∂l1

∂R2
∂l2

]
, B2−3 =

[
∂R2
∂l2

∂R2
∂l3

∂R3
∂l2

∂R3
∂l3

]
, B1−3 =

[
∂R1
∂l1

∂R1
∂l3

∂R3
∂l1

∂R3
∂l3

]
(12)

186

det(B1−2) , Ds1 : l1l2 = 0 , det(B2−3) , Ds2 : l2l3 = 0 , det(B1−3) , Ds3 : l1l3 = 0 (13)

In Equation (12), R1, R2 and R3 represent the right-hand side of Equations (6a) to (6c). 187

From Equation (13), when the determinant of the inverse kinematics matrices is equated to 188

zero, serial singularities can occur only when the length of one or two prismatic springs 189

becomes zero. This condition is not feasible for the mechanism under study as the prismatic 190

springs cannot have a length of 0 mm. Thus, there exist no serial singularities in the 191

mechanism. The Type-3 singularities exist when a parallel mechanism encounters both 192

serial and parallel singularities. Since there exist no serial singularities in the mechanism, 193

only the parallel singularities Equations (9) to (11) are analyzed to extract the feasible 194

workspace of the mechanism. 195

3.2. Results of Singularity Analysis Using the CAD Algorithm 196

In order to extract the tilt limits for the mechanism from the workspace, the SIROPA 197

library of Maple is employed [23]. The vector coordinates of base from Equation (1), the end- 198

effector coordinates from Equation (4) and the inverse kinematics Equations (6a) to (6c) that 199

map the base to the end-effector are used as inputs for the CreateManipulator function of the 200

SIROPA library. This function virtually constructs the 3-SPS-U manipulator in Maple [23,24]. 201

The tilt and azimuth angles are set as the pose variables and the lengths (l1, l2 and l3) are set 202

as the articular variables for computations. Then, using the ParallelSingularities function 203

of SIROPA, the Type-2 singularities Equations (9) to (11) are generated. The actual prototype 204

that will be incorporated with the piping-inspection robot has the design parameters r f 205

as 11 mm and h = 0.6 [16]. As an experimental validation is carried out in the upcoming 206

section, a scaled value of r f = 56.7 mm for h = 0.6 is chosen for the singularity analysis [25]. 207

As the constraint equations require joint limits for analysis, the minimum and maximum 208

lengths for each prismatic spring are set as lmin = 40 mm and lmax = 106 mm. The Cylindrical 209

Algebraic Decomposition (CAD) algorithm is then employed to analyze the workspace 210

of the mechanism. This approach was proposed for parallel robots by Chablat et al. [26] 211
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wherein the workspace, as well as the joint space, are decomposed into cells from C1, ...., Ck. 212

The steps involved in this computation are: 213

• Ck is an open connected subset of the workspace 214

• for all pose values in Ck, the direct (resp. inverse) kinematics problem has a constant 215

number of solutions 216

• Ck is maximal in the sense if Ck is contained in a set E , then E does not satisfy the first 217

or second condition. 218

In Maple, the SIROPA library is exploited to use the CAD algorithm for the parallel 219

mechanism [26] and the analysis is carried out as follows: 220

• Computation of a subset of the workspace (resp. joint space) where the number of 221

solutions changes: the discriminant variety 222

• Description of the complementary of the discriminant variety in connected cells: the 223

Generic Cylindrical Algebraic Decomposition 224

• Connecting the cells that belong to the same connected component of the complemen- 225

tary of the discriminant variety: interval comparisons 226

Discriminant varieties can be computed using basic and well-known tools from com- 227

puter algebra such as the Groebner bases [27]. A general framework for computing such 228

objects is available through the RootFinding[Parametric] function of Maple. For extract- 229

ing the workspace of the mechanism, the CAD algorithm combined with the parametric 230

root-finding technique of Maple is employed to find solutions to the DKP for the tilt and 231

azimuth angles [28]. This is carried out using the CellDecompositionPlus function of the 232

SIROPA library in Maple [23,24]. The parallel singularity Equations (9) to (11) and the joint 233

limit Equations (6a) to (6c) are transformed as inequalities for isolating the aspects around 234

the home pose. The results of the workspace generated by the CAD algorithm for the tilt 235

and azimuth angles are represented in Figure 5. In Figure 5a, the blue regions indicate 236

the feasible workspaces for the mechanism where there exists one solution to the DKP. 237

The white regions are the zones where there exists no solution. Around the home pose, 238

a larger workspace could be observed. Beyond the singularity zones, it is also possible to 239

identify solutions for the direct kinematics problem, especially between −π to −2π/3 and 240

2π/3 to π radians. However, in order to attain these positions, the mechanism has to cross 241

singularity boundaries, which might lead to locking of the mechanism in singular modes. 242

Thus, the workspace around the home pose is isolated and they are represented in Figure 5b. 243

Based on observations from Figure 5b, the maximum tilt limits that could be attained or 244

reached by the mechanism corresponds to ±π/6 radians. These limits are represented by 245

dotted orange lines in Figure 5b. Thus, for a maximum input tilt of α = ±π/6 radians, 246

the mechanism is capable of following a circular trajectory around the home pose. 247

0-π/3-2π/3-π ππ/3 2π/3
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0

-π/3
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β
 (
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d
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0
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β
 (
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d
ia
n
s)

-π/6 π/6

0-π/3-2π/3-π ππ/3 2π/3

α (radians)

(a) (b)

Solutions to the DKP obtained by CAD alogrithm

Working limits

Figure 5. Representation of (a) aingularities and workspace zones for the mechanism at lmin= 40 mm
and (b) extraction of feasible workspace around home pose at lmin = 40 mm.
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4. Mapping the T&T Angles to the Euler Angles 248

The singularity analysis helped in understanding the tilt limits for the 3-SPS-U parallel 249

mechanism using the theory of T&T. However, these results must be mapped with respect to 250

the Euler angles of the universal joint. The 3-SPS-U architecture demonstrated in Figure 3a 251

at the home pose has two degrees of freedom about the universal joint in the center. 252

The conventional approach to identify the vector coordinates of Ci exploits the XY Euler 253

angles about the origin A of the mechanism. In the Euler space, the two angles about the 254

x and y axes are considered as η and ϕ. The transformation matrix E about the universal 255

joint is given by: 256

E = Rx(η)Ry(ϕ) =


cos(ϕ) 0 sin(ϕ)

sin(η) sin(ϕ) cos(η) − sin(η) cos(ϕ)

− cos(η) sin(ϕ) sin(η) cos(η) cos(ϕ)

 (14)

where Rx(η) =


1 0 0

0 cos(η) − sin(η)

0 sin(η) cos(η)

, Ry(ϕ) =


cos(ϕ) 0 sin(ϕ)

0 1 0

− sin(ϕ) 0 cos(ϕ)


In Equation (14), E ∈ SE(3) represents the spatial transformation matrix obtained 257

from the Euler angles of the universal joint. This matrix is used to identify the end-effector 258

coordinates, which are given by: 259

c1
i = E o1

i , with i = 1, 2, 3 (15)

In Equation (15), o1
i are the coordinates of Ci in the mobile reference frame ∑1 whose 260

vector equation is given in Equation (4). The inverse kinematic model that determines the 261

length of the prismatic springs is computed by calculating the distance between the base 262

and end-effector at the home pose and working conditions. The constraint equations in the 263

Euler space are given by: 264

2r2
f
(
cos(ϕ)(h2 cos(η)− 1)− h sin(ϕ)(cos(η) + 1) + h2 + 1

)
= l2

1 (16a)

2r2
f (

√
3

2 sin(η)
(

h cos(ϕ) + h +
sin(ϕ)

2

)
+ cos(ϕ)

(
h2 cos(η)− 1

4

)
+

h sin(ϕ)
2 (1 + cos(η))

+h2 − 3 cos(η)
4 + 1) = l2

2 (16b)

−2r2
f (

√
3

2 sin(η)
(

h cos(ϕ) + h +
sin(ϕ)

2

)
− cos(ϕ)

(
h2 cos(η)− 1

4

)
− h sin(ϕ)

2 (1 + cos(η))

−h2 +
3 cos(η)

4 − 1) = l2
3 (16c)

In the T&T space, the mechanism is initially tilted to its maximum limit, i.e., α = π/6 radians. 265

Once this limit is reached, α remains a constant, whereas β changes from 0 to 2π radians, 266

thereby achieving a complete revolution in the counter-clockwise direction. In the Euler 267

space, the initial tilt is performed by keeping η as 0 radians and tilting ϕ = π/6 radians. 268

Unlike the T&T space, both the angles are modified as a function of the angle β in the 269

Euler space to achieve a complete revolution. The actuation sequence of the mechanism in 270

both spaces is provided in Table 1. This table demostrates the relation between the T&T 271

space and the Euler space. For each position of β between 0 to 2π, each and every value 272

of the angles η and ϕ is computed as a function of α and β as demonstrated in Table 1 to 273

achieve the mapping in the Euler space. A simulation of this mapping was performed 274

in MATLAB and the video link is provided at the bottom of this page (Video link for the 275

simulation in MATLAB: Available online: https://drive.google.com/file/d/1xXPy4oU_Q0 276

4Sgcu1kcQn9qt_9WIT2N5E/view?usp=share_link (accessed on: 15 January 2023) 1x Speed, 277

Available online: https://drive.google.com/file/d/1RrIgmipxXAAhKP71hspWaot4OM5 278

XT4dL/view?usp=share_link (accessed on 15 January 2023) 0.4x Speed). The postures of 279

https://drive.google.com/file/d/1xXPy4oU_Q04Sgcu1kcQn9qt_9WIT2N5E/view?usp=share_link
https://drive.google.com/file/d/1xXPy4oU_Q04Sgcu1kcQn9qt_9WIT2N5E/view?usp=share_link
https://drive.google.com/file/d/1xXPy4oU_Q04Sgcu1kcQn9qt_9WIT2N5E/view?usp=share_link
https://drive.google.com/file/d/1RrIgmipxXAAhKP71hspWaot4OM5XT4dL/view?usp=share_link
https://drive.google.com/file/d/1RrIgmipxXAAhKP71hspWaot4OM5XT4dL/view?usp=share_link
https://drive.google.com/file/d/1RrIgmipxXAAhKP71hspWaot4OM5XT4dL/view?usp=share_link
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the mechanism in both the spaces at the home pose and working conditions are represented 280

in Figure 6. 281

Table 1. The actuation angles for the mechanism in the T&T space and the Euler space.

Movement Type Tilt Space Euler Space

α (radians) β (radians) η (radians) ϕ (radians)

Initial tilt 0 → π/6 0 0 0 → π/6

Circular path π/6 0 → 2π α sin(β) α cos(β)

Return to home π/6 → 0 0 0 π/6 → 0

(i) Home-pose condition

(ii) Initial tilt to 30 

(iii) Intermediate circular position

(iv) Intermediate circular position

Figure 6. Postures of the 3-SPS-U mechanism in the T&T space and the Euler space.
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5. Experimental Validation 282

In this section, the mapping theory is validated by performing a circular trajectory 283

on the parallel mechanism. The prototype of the 3-SPS-U parallel mechanism is realized 284

at LS2N, France with a universal joint of length 68 mm. As explained earlier, a value of 285

r f = 56.7 mm was considered for h = 0.6. The base and end-effector of the mechanism are re- 286

alized by rapid prototyping. Using tension springs and supports, the base and end-effector 287

are connected. The control of this mechanism is carried out using a BeagleBone (BB) black 288

microcomputer. Three Maxon DC motors coupled with quadrature encoders are employed 289

to tilt the mechanism. In order to have a static model and higher torques, a planetary 290

gearhead with a reduction of 1621:1 is coupled to each DC motor. A 36/2 servo-controller 291

is employed for each motor to control the position. The three DC motors are assembled 292

on a platform, which is made by rapid prototyping. As the distance between the gearbox 293

output shaft and the mechanism was higher, an extended shaft with a flange coupling is 294

employed to connect to the gearbox shaft. A 40 mm diameter pulley is assembled on the 295

extended shaft and a cable of 1.5 mm diameter is wound over this pulley. The other end of 296

the cable connects to the end-effector mounting support by passing through each spring. 297

For eliminating the effects of radial play in the pulley shaft, flange couplings are employed. 298

The cables are assembled in such a way that at the home pose, the tension along the cables is 299

high. The entire experimental setup and its digital model are represented below in Figure 7. 300

The experiments are carried out for two orientations: vertical and horizontal under no-load 301

conditions. The vertical orientation is in line with the orientation of the piping-inspection 302

robot inside a vertical pipeline l and this posture is represented in Figure 7a. The horizontal 303

orientation is in-line with the orientation of the robot inside a horizontal pipeline, as shown 304

in Figure 1. 305

(a) (b)

(c) (d)

Motor-1

Motor-3

Motor-2

Figure 7. Representation of the (a) experimental setup of the mechanism in vertical orientation, (b) ex-
perimental setup of the mechanism in horizontal orientation , (c) digital model of the experimental
setup and (d) one of the three ESCON 36/2 servo-controllers.
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5.1. Trajectory Generation 306

For the experiments, at each instance of the control loop, the tilt angles of the Euler 307

space η and ϕ were passed as inputs to solve the IKP. This actuation is carried out through 308

the cables that pass through the springs of the mechanism. The pose variables and the artic- 309

ular variables for the mechanism are given by q = [η, ϕ] and ρ = [l1, l2, l3] [25]. The length 310

of the springs is calculated using Equations (16a) to (16c) in the Euler space. The IKP for 311

each spring is converted into angular displacements of the pulley, which will be the target 312

position for each DC motor. The equation for the desired angular position of the pulley 313

with respect to the IKP is given by: 314

θdi =
(li−lhome)

r , with i = 1, 2, 3 (17)

In Equation (17), θdi is the desired angular position calculated from IKP for given
input tilt angles η and ϕ. The parameter r indicates the pulley radius, which is 20 mm.
At the home position, the value of lhome is 68 mm. For every angular displacement of the
DC motor, the encoder data are passed to the BB black ports. The angular displacement of
the pulley from the encoder channel information can be calculated by:

θmi =
Eiπ

2CG
, with i = 1, 2, 3 (18)

In Equation (18), Ei indicates the output data of the encoder channels of Motor-i. 315

The angle θmi is the measured angular displacement at the output shaft of the gearbox. C 316

indicates the counts per revolution of the encoder, which is 500, and G is the reduction ratio 317

of the gearbox, and these values are taken from the technical datasheet of the encoder and 318

the gearbox unit. At a given tilt angle, the mechanism tries to attain the position θdi. For the 319

trajectory planning, the fifth-degree polynomial equation proposed by Khalil et al. [29] is 320

employed. This equation is used to define the position s(t), velocity ṡ(t) and acceleration 321

s̈(t) for the mechanism and they are given by: 322

s(t) = 10

(
t
t f

)3

− 15

(
t
t f

)4

+ 6

(
t
t f

)5

(19)

ṡ(t) = 30

(
t2

t3
f

)
− 60

(
t3

t4
f

)
+ 30

(
t4

t5
f

)
(20)

s̈(t) = 60

(
t
t3

f

)
− 180

(
t2

t4
f

)
+ 120

(
t3

t5
f

)
(21)

An initial linear tilt is performed for the mechanism before performing the circular
trajectory. For the trajectory generation, the simulation time t f is estimated and it is given
by:

t f = max(γV ,
√

γA) (22)

In Equation (22), γV is the ratio of the maximum joint velocity to the speed of the 323

motor and γA is the ratio of the maximum joint acceleration to the acceleration of the 324

motor [8]. In order to demonstrate the circular trajectory, the T&T angles must be mapped 325

to the Euler space in the control law. Using Table 1, the mapping is incorporated in the 326

control law and it is implemented using the equation: 327

D(t) =
[

η
ϕ

]
=

[
α sin(βs(t))
α cos(βs(t))

]
(23)

Equation (23) represents the input tilt angles η and ϕ in the Euler space as a function 328

of the tilt and azimuth angles of the T&T space. α represents the tilt angle and the az- 329

imuth value β goes from 0 to 2π radians for a constant tilt to perform a counter-clockwise 330
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circular trajectory in line with the simulation. The corresponding angular velocities and 331

accelerations are given by: 332

V(t) =
[

αβṡ(t) cos(βs(t))
−αβṡ(t) sin(βs(t))

]
(24)

A(t) =
[

αβs̈(t) cos(βs(t))− αβ2 ṡ(t)2 sin(βs(t))
−αβs̈(t) sin(βs(t))− αβ2 ṡ(t)2 cos(βs(t))

]
(25)

In order to calculate the Cartesian velocities of the prismatic joints, the Jacobian 333

matrices are employed. The equation is given by: 334

 l̇1
l̇2
l̇3

 = Jc

[
η̇
ϕ̇

]
, with Jc =


∂l1
∂η

∂l1
∂ϕ

∂l2
∂η

∂l2
∂ϕ

∂l3
∂η

∂l3
∂ϕ

 (26)

In Equation (26), Jc represents the direct kinematics matrix (A). Using Equation (26),
the joint velocities are estimated, following which the desired angular velocities of the
output shaft can be estimated. The joint coordinate vector can be estimated by the equation:

q(t) = f (D(t)) (27)

In Equation (27), f = [l1, l2, l3]T is the vector that contains the solution of the IKP for
the input tilt angles. The joint velocities can be computed with the help of the Jacobian
matrix Jc using the equation:

q̇(t) = JcV(t) (28)

The accelerations in the joints can be computed using the Jacobian matrix and its time
derivative, whose equation is given by:

q̈(t) = JcA(t) + J̇cV(t) (29)

5.2. PID Control Law 335

In [10] a force control algorithm was implemented for the control of the piping- 336

inspection robot represented in Figure 1. The same algorithm is employed here for the 337

control of the parallel mechanism. By applying motor torques and current, the mechanism 338

tilts to attain a certain position. Once the desired position is reached, the current and torque 339

are cut off for attaining a static phase. For each angular position of the DC motor, the 340

encoder position data are transmitted to the user by the BB black. However, the output data 341

from the encoders are not directly used to calculate the solutions to the IKP as there exists 342

a significant difference between the desired and measured positions. These differences 343

are caused by factors such as motor inertia, frictional effects and inertial forces. In order 344

to compensate for these factors, a closed-loop PID controller is employed, which tries to 345

minimize the errors between the desired and measured positions. The PID control scheme 346

as provided in [8,30] for calculating the motor torques is given by: 347

Γ = J
(

θ̈di + KP(θdi − θmi) + KD(θ̇di − θ̇mi) + KI
∫ t

0 (θdi − θmi)
)

, with i = 1, 2, 3 (30)

where θdi , θmi are the desired and measured positions

θ̇di , θ̇mi are the desired and measured velocities

θ̈di is the desired acceleration

In Equation (30), Γ represents the output torque at the gearbox after PID correction. 348

From the technical datasheet of the gearbox unit, the inertia J is taken as 4.1 × 10−7
349

kg.m2. The desired positions are computed using the mapping Equation (23) and the IKP 350

relations. The desired velocity and acceleration of each joint is computed with the help 351
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of Equations (28) and (29). The measured positions are computed using Equation (18). 352

In Equation (30), KP is the proportionality term, which examines the error term and 353

responds proportionally. The integral term KI tries to reduce the error at each time instant. 354

The overshoot of value from the desired position is compensated by the difference term KD. 355

Thus, the PID in general takes into account the past step, the present step and the future 356

step such that the error is reduced [31]. The values for the PID terms of Equation (30) are 357

given by: 358

ω = ktke
RJ = 14 rad/s

KP = 3ω2 = 588 , KD = 3ω = 42 , KI = ω3 = 2744 (31)

In Equation (31), ω is a parameter that is a function of the torque constant (kt), the speed 359

constant (ke), the motor resistance (R) and its inertia (J). It helps to determine the PID 360

parameters KP, KD and KI [32] as per the relation given in Equation (31). This approach 361

was tested and validated on PID control of other robots at LS2N [8,33]. The closed-loop 362

system that is incorporated for the control of the 3-SPS-U mechanism is represented below 363

in Figure 8. 364

BeagleBone black

K
I 
∫

K
P 

K
D 

θ
di

θ
di

θ
di

+
+

+

Motor with 
ESCON 
controller

Γ

θ
mi

θ
mi

Feedback

Feedback

e

e

Figure 8. Closed-loop PID controller employed for the mechanism [8].

In Figure 8, e and ė indicate the error and its derivative, which are computed based 365

on the difference between the desired and measured data. Before the start of experiments, 366

the servo-controllers are calibrated in a computer. The saturation current is used as a refer- 367

ence for controlling the direction of rotation of the DC motors. For safer operations, 90% and 368

10% duty cycles are set as the limits for the rotation of motors in either direction. The PWM 369

calibration of each servo-controller is carried out as per Table 2. The force control algorithm 370

is executed in the C language using the BB black microcomputer. The link for the algorithm 371

is provided at the bottom of this page (GitHub link for the algorithm: Available online: 372

https://github.com/stvt1991/Control-of-3-SPS-U-Tensegrity-mechanism (accessed on 20 373

January 2023)). 374

Table 2. ESCON controller calibration for the force control algorithm.

PWM Duty Nominal Current (A) Motor Torque (mN.m) Motor Speed (rpm)

10% −0.177 −6.05 3720 (Counter-clockwise)
50% (idle) 0 0 0

90% 0.177 6.05 3720 (Clockwise)

https://github.com/stvt1991/Control-of-3-SPS-U-Tensegrity-mechanism
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5.3. Results of Experiments 375

For performing the circular trajectory, it is necessary to define the tilt angle α from the 376

T&T space. An initial tilt along one of the motors (Motor-1) is performed. A circular path 377

in a counter-clockwise direction is then traced by the mechanism. At the end of the circular 378

trajectory, the mechanism is pulled back to its home pose. For the circular trajectory, a tilt of 379

α=π/10 radians within the workspace of the mechanism is chosen. The circular trajectory 380

experiment is performed in the following sequence: 381

Home → Motor-1: linear tilt → Circular path (counter-clockwise) → Home: linear tilt 382

The linear tilt is performed before and after the circular trajectory for a period of 9 s.
The circular path is performed for 35 s. Owing to the sleep routines in the control loop,
the time taken to initiate the circular trajectory after the initial linear tilt is longer. The total
time to perform the experiments is around 124 s. The plot of the joint positions at each
instance of the experiments is represented in Figure 9 for both orientations of the mechanism.
The initial linear tilt is performed from 0 to π/10 radians. The circular trajectory is created
from this tilt position in the counter-clockwise direction. During the experimental cycle,
the prismatic springs extended to a maximum length of 84.7 mm from the home position.
The intermediate change in prismatic lengths can be observed in Figure 9a–f between 50
and 100 s for both orientations of the mechanism. The springs connected to each motor
also reached a minimum length of 50 mm at π/10 radians. The zones between 75.9 and
84.6 mm describe the redundancy of the mechanism where one of the springs has limited
effects in tilting the mechanism. The error between the measured and desired data can be
calculated using the equation:

Error =
(θmi − θdi)180

π
(32)

The plots of the error for both orientations of the mechanism are shown in Figure 10. 383

Due to the frequency issues with the micro-computer, noise could be observed in the 384

final plot. From Figure 10, the error data were found to be between −0.022◦ and 0.036◦ 385

in the vertical orientation and between −0.025◦ and 0.025◦ in the horizontal orientation. 386

These values were found to be closer to 0, thanks to the calibration of the PID parameters. 387

Similarly, using the current flow data from the algorithm, the output torques were calculated 388

using the motor torque constant. The plots of the motor torques in both orientations are 389

shown in Figure 11. The torque values were between −0.0059 N.m and 0.0053 N.m in the 390

vertical orientation and between −0.0057 N.m and 0.0058 in the horizontal orientation. 391

It could be observed that these values were similar in both orientations. This is due to 392

the fact that the self-weight of the parallel mechanism had a negligible influence on the 393

motor torques, especially for the horizontal configuration. However, with the presence 394

of external loading, the operating torques might vary significantly in both orientations. 395

From Figure 11 it can also be observed that the operating torques were well within the 396

nominal torque rating of the DC motor. A video link that demonstrates the generation 397

of the circular trajectory in the Euler space of the mechanism is provided at the bottom 398

of this page (Video link for the circular trajectory experiments: Available online: https: 399

//uncloud.univ-nantes.fr/index.php/s/b96nfCRTcBESzGo (accessed on 20 January 2023)). 400

https://uncloud.univ-nantes.fr/index.php/s/b96nfCRTcBESzGo
https://uncloud.univ-nantes.fr/index.php/s/b96nfCRTcBESzGo
https://uncloud.univ-nantes.fr/index.php/s/b96nfCRTcBESzGo
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horizontal orientations of the mechanism.
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6. Discussion and Perspectives 401

This article presented the application of the theory of Tilt and Torsion (T&T) to a 402

spherical parallel mechanism. The estimation of the vector coordinates as well as the 403

inverse kinematics problem is solved conventionally using the Euler angles of the universal 404

joint. However, the singularity approach using these angles will require the analysis of 405

the workspace by considering the presence of both tilt angles, i.e., η and ϕ [15]. This 406

computation was time-consuming and it will be even more complicated to study the 407

workspaces of the mechanism when a stacked model is analyzed as there will be four 408

tilt angles. In order to overcome this issue, the T&T space was considered in this study. 409

The advantage of this method is that for a constant tilt angle, the azimuth can vary between 410

0 and 2π radians or vice versa. The computation was much simpler and consumes less time 411

through this approach when compared to the Euler space. The mapping was successfully 412

implemented from the T&T space to the Euler space. The numerical simulations were first 413

validated for mapping using MATLAB. Following this, experiments were performed on the 414

prototype of the mechanism. The T&T space was mapped to the Euler space by using the 415

mapping equations and the mechanism was made to perform a counter-clockwise circular 416

trajectory in line with the simulations. At each instance of the trajectory, the equivalent 417

X − Y Euler angles were mapped from the T&T space. The experiments also helped in 418

calculating the error data as well as the torque generated on each motor. It was found that 419

the operating torques were well within the nominal rating of the motor units employed. 420

Since this parallel mechanism is proposed to be implemented in the piping-inspection robot 421

that was presented in Figure 1, the circular trajectory can prove vital to align the axis of the 422

robot assembly with the axis of the pipeline, especially when the robot encounters a pipe 423

bend or a junction. This alignment can be performed using control systems that incorporate 424

the mapping equations and thereby perform a circular path according to the profile of the 425

pipe bend to ensure alignment. 426

The application of this mapping is proposed to be extended to the study of a two-stage 427

(stacked) model of the 3-SPS-U mechanism. The tilt limits generated by the single stage 428

were around ±π/6 radians. These limits were not sufficient to assist the piping-inspection 429

robot to overcome a bend or a junction. With a stacked model, higher tilt limits could 430

be obtained. The singularity analysis of the stacked structure in the Euler space will be 431

computationally expensive due to the presence of four tilt angles. The T&T space will 432

thus be employed and it will lead to the analysis of singularities with two tilt angles 433

and a common azimuth. Moreover, the T&T equations facilitate an easier computational 434

approach to calculate the value of the applied forces on the cables of the mechanism, as 435

demonstrated in [17]. This will be very useful for the prototyping and control strategy of 436

the stacked model in the future. Advanced industrial controllers such as the EtherCAT 437

are proposed to be employed for the control strategy of the mechanism, as the existing BB 438

black micro-computer has some frequency issues. This controller will also help provide an 439

easy interfacing with the piping-inspection robot as well as the parallel mechanism and all 440

these modules could be controlled from a central unit. 441
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Abbreviations 453

The following abbreviations are used in this manuscript: 454

455

PKM Parallel Kinematic Mechanism
T&T Tilt and Torsion
IKP Inverse Kinematics Problem
DKP Direct Kinematics Problem
BB Black BeagleBone Black

456

Nomenclature 457

bi Vector coordinates for base Bi
ci Vector coordinates of mobile platform Ci
r f Distance of spring mounting point in mm
h Design constant of the mechanism (no unit)
R Tilt and Azimuth transformation matrix
li Length of ith prismatic spring
α Tilt angle in T&T space
β Azimuth angle in T&T space
A Direct kinematics matrix
B Inverse kinematics matrix
D Determinant value of the direct kinematics matrix
E Euler angle transformation matrix
η, ϕ XY tilt/rotation angles in the Euler space
θdi, θmi Desired and measured angular positions in rad
˙θdi, ˙θmi Desired and measured angular velocities in rad/s
¨θdi Desired angular acceleration in rad/s2

ω Pulsation in rad/s

458
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