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Abstract. This paper presents an initial work of identifying the dy-
namic parameters for cable-driven parallel robot (CDPR), CRAFT with
a rigorous protocol. An orbital trajectory of the platform is designed in
order to get a pure translation movement of the platform. This trajectory
evolves in a plane and allows the identification of four dynamic param-
eters, the mass of the platform and the first three moments along the
three main axes. The identification results obtained respectively from
the data from the experimental measurements of the moving platform,
and from the experimental measurements treated with the application
of a semi-implicit homogeneous differentiator, show that in spite of the
complexity of CRAFT an identification of all its essential dynamic pa-
rameters is possible. Moreover, in the long term, an online identification
of CRAFT during handling tasks is envisaged.

Keywords: Cable-Driven Parallel Robots · Inverse Dynamic Model ·
Dynamic Parameter Identification · Least-squares estimator · Semi-
Implicit Euler Homogeneous Differentiator · Experiments

1 Introduction

The objective is to initiate a scientific approach in order to identify the essential
dynamic parameters of a cable-driven parallel robot (CDPR). A CDPR consists
of a moving-platform (MP ) that is connected to a rigid frame by means of cables
and actuators, the latter being generally mounted on the ground. These robots
are very attractive for handling tasks [16] because of their low inertia, a higher
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payload to weight ratio and a large workspace compared to conventional manip-
ulator robots with articulated rigid limbs. Their possible application fields can
be industrial, or dedicated to search-and-rescue operations. To deal with various
restrictions on cable tensions, cable elasticity, collisions and obstacle avoidance,
over-actuation of the MP is actually a challenging scientific problem [5], [7].

The control of a CDPR is complex because, among other things, whatever
its movement, the tension of its cables must always be positive. There are still
open problems in the control of CDPRs. One key example of an open problem is
that control design requires a consistent dynamic model with a relatively good
knowledge of the dynamic parameters of the robot such as the terms of inertia,
mass, and even friction at the level of the actuators, which manage the winding
of the cables. Several contributions about identification of a robot cable exist.
Kraus et al. [10] present an identification method for the complete actuator of
a cable robot. A second-order system is established with a dead time as an
analogous model. An inverse dynamic method (IDM) is used to identify the
model parameters of a cable-driven finger joint for surgical robot [18] . But To
our best knowledge the identification parameters of the handling platform of a
cable robot during a movement in space is not currently investigated.

A CDPR, named CRAFT and located at LS2N, Centrale Nantes campus, is
equipped with eight actuators and a MP . Each motor has an encoder sensor
measuring the angular velocity of its output shaft allowing to evaluate the per-
formances of the differentiation solutions. The MP has six degrees of freedom.
This MP is thus over-actuated [14].

The identification of the parameters of a robot is essential to evaluate its
behavior in simulation or to synthesize a control based model. The objective of
the identification is not to find physical parameters of a mechanism such as a
robot, whose value is the most exact possible but to provide a modeling tool
that is consistent in order to make simulation, control or other. The identifica-
tion methodology is usually based on an inverse dynamic model that is linear
in the dynamic parameters to be identified [2], [8], or [1]. Any matrix inversion,
which is generally a generator of numerical problems, is thus avoided. However
the identification of dynamic parameters is not easy when the dynamic model is
complex. Among the many challenges is the search for exciting trajectories that
identify the largest number of dynamic parameters and overcome noise prob-
lems [9]. However the identification of dynamic parameters is not easy when the
dynamic model is complex. The dynamic behavior of the CRAFT that moves
in 3D space with rotation and translation combinations effectively requires a
complex modeling with a lot of inertial parameters. In addition, one or more
cables may slacken unexpectedly. As a consequence to initiate an identification
work, only the model of the platform maneuvered by the cables is considered.
Moreover, the defined trajectories generate only translation movements of the
platform, i.e. without any rotational movement of the platform with respect
to itself, in a horizontal plane. The model to describe the dynamic behavior
of CRAFT becomes simpler with only four dynamic parameters to identify. To
manage the noise problems semi-implicit Euler homogeneous differentiators are
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proposed (see e.g. [11] for a comparison of the techniques) and [13]. Off-line
identification was conducted in order to compare, respectively from the planned
trajectories of the platform, the measured filtered signals and their usual Eu-
ler discretization, and measured signals processed with an original semi-implicit
homogeneous differentiators without extra filter. The main advantage of this
differentiator is to offer the perspective of a real-time identification of dynamic
parameters ofCRAFT. The contribution of this work is based on three parts:
Elaboration of a protocol in order to work with a dynamic model for transla-
tional movements of the platform and to have only four parameters to identify
and experimental definition of this movement; Identification of the four parame-
ters starting respectively from the reference trajectory, the tension measurement
of the cable tension, the position measurement and the application of the usual
Euler discretization to obtain the speed and acceleration signals. Furthermore
these speed and acceleration signals are compared with those obtained an orig-
inal semi-implicit Euler homogeneous differentiator. The long-term idea of this
work is to develop a complete framework that brings together numerical identi-
fication and derivation tools to identify the dynamic parameters of the on-line
CRAFT as it performs handling tasks. The remaining of the paper is outlined
as follows. Section 3 is devoted to the presentation of CRAFT namely, its geo-
metric, kinematic, dynamic model and its adaptation to the presented strategy.
The identification methodology, which is based on the least-squares (LS) esti-
mator is presented in Sec. 4, with the solving way. A semi-implicit homogeneous
differentiator, which is considered in this study to get the velocities and the ac-
celerations from the measured position, is presented Sec. 5. The experimental
results are presented in Sec. 6. Conclusions and future work are offered in Sec. 7.

2 Robot CRAFT

The cable-driven parallel robot prototype, named CRAFT is located at LS2N,
France. The base frame of CRAFT is 4 m long, 3.5 m wide, and 2.7 m high, see
Figure 1). The three-DoF translational and the three-DoF rotational motions
of its suspended MP are controlled with eight cables being respectively wound
around eight actuated reels fixed to the ground. The MP is 0.28 m long, 0.28 m
wide, and 0.2 m high, its overall mass being equal to 5 kg. For each of the
eight electrical motors an encoder sensor measures the angular variable of its
shaft. The eight motors are equipped with a gearbox reducer of ratio n = 8. The
measured value is divided by n in order to obtain the angular position of the
output shaft of the gearbox reducer. The robot CRAFT has no tachometer.

The main hardware of the prototype consists of a PC (equipped with © MAT-
LAB and © ControlDesk software), eight © PARKER SME60 motors and TPD−M
drivers, a © dSPACE DS1007-based real-time controller and eight custom made
winches. Each cable can exert a tension up to 150 N to the MP . The maximum
velocity of each cable is equal to 5.9 m/s. The cable tensions are measured using
eight FUTEK FSH04097 sensors, one for each cable, attached to cable anchor
points. Their signal is amplified using eight FSH03863 voltage amplifiers and sent



4 T. Rasheed et al.

reflective marker

infrared cameras

Moving Platform

Ai

Bi

P

ai

bi

Fb

Fp

li

O

p

ui

xb

yb

zb

xp

yp
zp

G

Fig. 1: (left) CRAFT prototype located at LS2N, Nantes, France and (right)
CRAFT Geometric Parametrization.

to the robot controller by a coaxial cable. CRAFT is equipped with a motion
capture, OptiTrack that the sampling period is equal to 0.01 s.

3 Robot Modeling

Figure 1 depicts the main geometric parameters of CRAFT and the ith cable
where i ∈ {1, . . . , m}, m being the number of cables attached to the n Degree-of-
freedom (DoF) MP (for CRAFT, m = 8 and n = 6). The dynamic equilibrium
wrench equation can be expressed as:

Wτ − Ipp̈ − Cṗ + wg = 0m (1)

with W being the robot wrench matrix expressed as:

W =

[
u1 . . . ui . . . um

b1 × u1 . . . bi × ui . . . bm × um

]
(2)

where ui is the unit vector of the ith cable vector pointing from cable anchor
points Bi to exit points Ai, expressed in the reference frame Fb. Vector bi

pointing from point P to point Bi and is expressed in the platform frame Fp.
From Eq. (1), τ = [τ1, . . . , τi, . . . , τm] is the cable tension vector, Ip is the inertia
tensor, C is the Coriolis matrix and wg is the gravity wrench. ṗ = [ṫ,ω]⊤

and p̈ = [̈t,α]⊤ are the vectors of the MP velocity and acceleration, where,
ṫ = [ṫx, ṫy, ṫz]⊤ and ẗ = [ẗx, ẗy, ẗz]⊤ are the vectors of the MP linear velocity
and acceleration, while ω = [ωx, ωy, ωz]T and α = [αx, αy, αz]⊤ are the vectors
of the MP angular velocity and angular acceleration, respectively. The gravity
wrench is:

wg = m

[
I3

bRpŜG

]
g (3)

m is the MP mass, I3 is the 3 × 3 identity matrix, bRp is the rotation matrix

of the MP Fp frame w.r.t the base frame Fb, ŜG is the skew-symmetric matrix
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associated to sG = [xG, yG, zG]⊤ which represents the coordinate vector of the
center of mass of the MP expressed in Fp as:

ŜG =




0 −zG yG

zG 0 −xG

−yG xG 0


 (4)

mbRpŜG represents the first momentum of the MP defined with respect to base
frame Fb. g = [0, 0, −g] is the gravity acceleration vector where g = 9.81 m s−2.
The matrix Ip in Eq. (1) can be expressed as:

Ip =

[
m I3 −m bRp ŜG

m bRp ŜG Ip

]
(5)

with Ip being the MP inertia tensor expressed in Fp. The term C, which repre-
sents the centrifugal and Coriolis effects in Eq. (1) is expressed as:

C =

[
03 −m ω̂ ŜG

03 ω̂ Ip

]
(6)

Using Eqs. (3), (5), and (6) in Eq. (1), gives:

[
m I3 −m bRp ŜG

m bRp ŜG Ip

] [
ẗ

α

]
+

[
03 −m ω̂ ŜG

03 ω̂ Ip

] [
ṫ

ω

]
− m

[
I3

bRpŜG

]
= Wτ (7)

As a first step of the identification, in this article, we will only consider platform
translations, i.e., the platform does not rotate in relation to itself. Hence, the
angular velocities and accelerations of the MP in Eq. (7) vanish and is reduced
to: [

m I3

m bRp ŜG

] [̈
t
]

−

[
mI3

mbRpŜG

]
g = Wτ (8)

As the platform orientation is always constant, we can consider bRp = I3. Eq. (8)
can be expressed as in the form as:

Ax = b (9)

where,

A =




ẗx 0 0 0
ẗy 0 0 0

ẗz + g 0 0 0
0 0 ẗz + g −ẗy

0 −ẗz − g 0 ẗx

0 ẗy −ẗx 0




, x =




m
mxG

myG

mzG


 , b = Wτ (10)

In Eq. (10), we need the linear acceleration of the MP ẗ and the cable tensions τ .
As the robot is already equipped with the cable tension senors so we can directly
acquire τ .



6 T. Rasheed et al.

4 Identification Methodology

The identification methodology is based on the used of the inverse dynamic model
(ID) Eq. (9), [2], [3], [1]. This model is linear as function of the four parameters
m, mxG, myG, and mzG. An off-line identification of these parameters is then
considered, given measured or estimated off-line data for the linear acceleration
of the MP ẗ and the cable tensions τ , collected while the robot CRAFT is
tracking a planned trajectory. The model Eq. (9) is sampled at a sufficient number
of time samples ti, for i = 1, · · · , ne, with (6ne) ≫ 4, in order to get an over-
determined linear system of (6ne) equations [1]:

YID(τ ) = WIDx + ρ (11)

where

YID(τ ) =




b1(6 × 1)
...

bne
(6 × 1)


 ; WID =




A1(6 × 4)
...

Ane
(6 × 4)


 , (12)

ρ is the (6ne × 1) vector of errors between the data of the measurement of the
torques in YID(6ne×1) and the data WID(6ne×4) predicted by the model. These
errors are due to noise measurement and modelling error. The identification
problem consists in finding x the norm squared of the error ρ:

‖ρ‖2 = ‖YID − WIDx‖2 (13)

The LS estimator models a process by fitting the parameter vector x according
to the minimisation of Eq. (13). Then model (14) becomes

YID(τ ) = WIDx̂ + ρ̂ (14)

The estimated parameter x̂ is equal to:

x̂ = W+
IDYID (15)

where W+
ID is the pseudo-inverse of WID. Since 6ne > 4 then W+

ID = (W⊤

IDWID)−1W⊤

ID.
x̂ is the unique LS solution of Eq. (15). The standard deviation σ

x̂
is estimated

assuming that WID is a deterministic matrix and ρ is a zero-mean additive
independent Gaussian noise, with a covariance matrix Cρρ

Cρρ = E(ρρ⊤) = σ2
ρI (16)

E is the expectation operator and I(6ne × 6ne) is the identity matrix. By replac-
ing YID in Eq. (15) with its definition Eq. (14) we obtain:

x̂ = x + W+
IDρ (17)

Applying the expectation operator at both sides of Eq. (17) ρ being a zero-mean
additive independent Gaussian noise we get:

E(x̂) = E(x) (18)
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Thus the estimated values are unbiased. An unbiased estimation of the standard
deviation σρ is:

σ̂2
ρ =

‖YID − WIDx̂‖2

(6ne − 4)
(19)

WID and being respectively a non-stochastic matrix and a stochastic matrix,
the covariance matrix of the LS estimation error is then given by:

C
x̂x̂

= E(x−x̂⊤) = (W⊤

IDWID)−1W⊤

ID σ2
ρI WID(W⊤

IDWID)−1 = σ̂2
ρ(W⊤

IDWID)−1

(20)
σ̂2

xi
= C

x̂x̂
(i, i) is the ith diagonal coefficient of C

x̂x̂
. The relative standard

deviation %σ̂xi
for each identified parameters is given by:

%σ̂
x̂i

=
σ̂

x̂i

|x̂i|
(21)

The calculation of Eq. (14) and the condition number of WID can be obtained
using the singular value decomposition (SVD) of WID.

5 Semi-implicit Homogeneous differentiator

The purpose is to estimate the velocity of the angular variable exclusively from
the measured position of the output shaft for each of the eight motors. To esti-
mate the velocity let us introduce the continuous-time state:

Σ :





ẋ1 = x2

ẋ2 = p(t)
y = x1

(22)

where x1 and x2 are respectively the angular variable and its velocity; y is the
measure of x1 with additional noise η. Here p(t) is a bounded perturbation,
which is unknown and assumed to be a constant parameter or a slowly variable.
This implies that for a sufficient small sampling-time h > 0, p ≡ p+, with the
notation for a discretized variable: •(t = (k + 1)h) = •+ and •(t = kh) = •.
Homogeneity approach is interesting because if a local stability is obtained due
to the dilatation, this framework allows extending this local property to global
settings, [17]. This differentiator can be written such as [15], [4],





ż1 = z2 + λ1µ⌈ǫ1⌋α

ż2 = λ2µ2⌈ǫ1⌋2α−1

ŷ = z1

(23)

where α ∈ ]0.5 1[ has to be fixed [6], ǫ1 = y − z1, and the notation ⌈•⌋α =
| • |αsgn(•) is adopted along the paper. The degree of homogeneity of the differ-
entiator (23) d is equal to α − 1 with respect to dilatation Λr with r = (r1 =
1, r2 = 1) [15]. Moreover, λi > 0, i = 1, 2 are the linear part gains, which are
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considered and allow to have the eigenvalues of the differentiation error ǫ1 suf-
ficiently stables, while the coefficient µ is chosen sufficiently large to cancel the
effect of the unknown perturbation p(t).

The discretization of the differentiator (23) is based on the so-called implicit
projection that acts as corrective terms and aim to "generalize" the sign function
in sliding-based differentiator in order to reduce the chattering and preserve
stability properties for high time steps). Two projectors N1 and N2 are used
respectively to design the correction terms with the differentiator SIHD-2. In [12],
it has been highlighted that the SIHD-2 algorithm offers better performances
than with only one projector since the projectors N1 and N2 are respectively
dedicated to the estimation of z1 and z2. Considering the signal to differentiate
y, the error ǫ1 = y − z+

1 , and the definition of the notation ⌈ǫ+
1 ⌋ ≡ |ǫ1|sign(ǫ+

1 ),
As a result, the semi-implicit homogeneous Euler discretization based on two
projectors (SIHD-2) reads as:

{
z+

1 = z1 + h
(
z+

2 + λ1µ|ǫ1|αd N1

)

z+
2 = z2 + E+

1 hλ2µ2|ǫ1|2 αd−1N2.
(24)

The projector N1, and N2 are defined:

N1(ǫ1) :=





ǫ1 ∈ SD → N1 =
⌈ǫ1⌋1−αd

λ1µh
, E+

1 = 1

ǫ1 /∈ SD → N1 = sign(ǫ1), E+
1 = 0,

(25)

with the domain of attraction SD = {ǫ1 / |ǫ1| ≤ (λ1µh)
1

1−α }.

N2(ǫ1) :=





ǫ1 ∈ SD′ → N2 =
⌈ǫ1⌋2(1−αd)

λ2h2µ2

ǫ1 /∈ SD′ → N2 = sign(ǫ1),
(26)

where SD′ = {ǫ1 ∈ SD/ |ǫ1| ≤ (λ1µ2h2)
1

2(1−α
d

) ≡ |ǫ2| ≤ (λ1µ2)
1

2(1−α
d

) h
α

d

1−α
d }.

The filtering properties of the differentiator avoid using an extra filter before the
differentiation, and the cascade offers the possibility of adjusting the homoge-
neous parameter αd with some flexibility. The measured angular positions are
noisy such as y becomes ym = x1 +η.The λi, i = 1, 2 parameters are chosen such
as the linear part is stable. The value of homogeneous exponent αd is chosen to
allow better filtering properties of the estimated differentiation. The µ parame-
ter is also chosen by numerical test trial and error in order to determine the best
possible action of both projectors N1 and N2. The numerical values of these five
parameters are tuned as follows:

λ1 = 210, λ2 = 210, λ3 = 525, λ4 = 525 αd = 0.95, µ = 1. (27)

6 Experiments

The platform performs four orbital movements. A video of these movements
is available at 3. A sampling period of 10 ms is used to measure the position

3 https://youtu.be/I-IOcAGha3o

https://youtu.be/I-IOcAGha3o
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a) b)

Fig. 2: a) Cable tensions τ as function of time, b) Orientation of the mobile
platform.

vector t and the cable tension τ with the FUTEK FSH04097 sensors. The eight
measured cable tensions are plotted Fig. 2 a). The Euler angles of the platform
during its motion are shown in Fig. 2 b). This motion of the platform is indeed
translational as it is predicted by the trajectory planning. The identification of
the parameters m, mxG, myG, and mzG needs the linear acceleration vector
of the MP ẗ. For the best knowledge of this acceleration vector a comparison
is made from the measured platform position t between the estimation of the
velocity vector ṫ and the acceleration vector ẗ respectively thanks to the proposed
SIHD-2 algorithm and the estimation of these vectors thanks the usual Euler
discretization method. With the usual Euler discretization method the numerical
tests shows that the estimation of ṫ and ẗ requires filtering the position vector
t of the platform with a cutoff frequency of 4Hz. The filter applies a zero-phase
forward and reverse digital infinite impulse response (IIR) filtering. Figure 3
shows the estimated velocity and acceleration vectors in 3D by using the SIHD-
2 algorithm and the usual Euler discretization method. The curves are similar
between the two algorithms. Table 1 gathers the four identified parameters. The
standard deviations are not computed based on the standard deviation from the
actual parameter values that are unknown. The numerical values obtained by the
two methods for each identified parameter are very close to each other. However,
having to filter the position measurement of the platform is a strong constraint
in the perspective of doing real time identification of the dynamic parameters
of CRAFT. That is why the SIDH -2 algorithm, which is iterative, is a relevant
solution in the perspective of real time identification.

7 Discussion and Future Work

This research paper presents a novel methodology for identifying the dynamic
parameters of Cable-Driven Parallel Robots (CDPRs). Initially, the focus is on
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a)

b)

c)

d)

Fig. 3: ṫ and ẗ along the orbital trajectory of the platform: velocity (a) and
acceleration (b) with SIDH-2; velocity (c) and acceleration (d) with Euler dis-
cretization.

Table 1: Numerical values of the identified parameters
Identified differentiation Euler

parameters SIHD-2 discretization
x̂i σ̂

x̂i

%σ̂xi
x̂i σ̂

x̂i

%σ̂xi

m (kG) 9.88 0.0027 0.027 9.88 0.0027 0.027
mxG (kGm) -0.064 0.0027 4.21 -0.064 0.0027 4.16
myG (kGm) 0.019 0.0027 13.86 0.019 0.0027 13.65
mzG (kGm) -1.059 0.070 6.67 -1.210 0.078 6.41

identifying four parameters, specifically the platform mass and the location of
its center of mass, using an orbital trajectory that has been specifically designed
to achieve pure platform translation movement in all the three xyz−plane. The
trajectory, which occurs within a single plane, allows for the identification of
these four dynamic parameters. The values determined by the identification of
the inertial parameters are consistent with the actual platform mass (measured)
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and the estimated center of mass location from the computer aided Design. The
results have also been compared with other types of trajectories, such as point-
to-point linear trajectories. The reason for choosing a circular trajectory is the
availability of continuous platform accelerations which facilitates the use of the
proposed methodology. The results obtained from experimental measurements of
the platform position, as well as measurements treated with the application of a
homogeneous semi-implicit differentiator, indicates that despite the complexity
of the CRAFT, these results allow for the real-time identification of all the
essential dynamic parameters.

In future work, the proposed approach will be used to identify the remaining
six dynamic terms associated with the inertia tensor, specifically three terms
associated with the platform moment of inertia and other three are products of
inertia. To manage the future identification tasks, an IMU sensor will be used
in order to provide acceleration measurements that are synchronized with those
of the cable tensions. Additionally, we will also aim to identify the friction that
acts throughout the actuators of CRAFT.
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