
HAL Id: hal-04045122
https://hal.science/hal-04045122

Submitted on 24 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability Analysis of Profile Following by a CDPR using
Distance and Vision Sensors

Sophie Rousseau, Nicolò Pedemonte, Stéphane Caro, François Chaumette

To cite this version:
Sophie Rousseau, Nicolò Pedemonte, Stéphane Caro, François Chaumette. Stability Analysis of Profile
Following by a CDPR using Distance and Vision Sensors. CableCon 2023 - The Sixth International
Conference on Cable-Driven Parallel Robots, Jun 2023, Nantes, France. pp.1-12. �hal-04045122�

https://hal.science/hal-04045122
https://hal.archives-ouvertes.fr


Stability Analysis of Profile Following by a
CDPR using Distance and Vision Sensors⋆

Thomas Rousseau1,2[0000−0001−9939−9688], Nicolò
Pedemonte2[0000−0002−4811−3907], Stéphane Caro1[0000−0002−8736−7870], and

François Chaumette3[0000−0002−1238−4385]
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Abstract. Cable-Driven Parallel Robots (CDPRs) form a class of robots
well-adapted to large workspaces since they replace rigid links by cables.
However, they lack in positioning accuracy. In a previous work, a control
law has been proposed to enable a CDPR to perform a profile-following
task, based on the data measured by two different and redundant sensors
that are fused using the Gradient Projection Method (GPM). However,
its robustness had not been assessed yet. This paper analyzes the sta-
bility of such a control law in function of the systematic errors on the
parameters of the system. Numerical simulations show that the charac-
teristics of the system ensure the stability of the control law in the robot
workspace even in the presence of significant errors, provided the initial
angle between the surface to follow and the moving-platform is smaller
than 11°.

Keywords: Stability Analysis · Sensor-based control · Cable-Driven
Parallel Robot

1 Introduction

Cable-driven parallel robots (CDPRs) are robots where the end-effector, named
the moving-platform (MP), is actuated by a set of cables instead of rigid links.
The length of the cables is usually controlled by a drum-pulley system, actuated
by motors fixed to the main frame. These robots are able to carry loads in large
workspaces and could thus help in large industrial assembly tasks. However, their
accuracy, especially for positioning with regards to a given object, needs to be
improved before they can find a place on production lines. While many research
works brought significant improvements to CDPR models [1–3], sensor-based
control, and especially vision-based control [4–6], can also enable such robots to
reach a better precision, without needing the tedious computations required for
the Forward Kinematics.

⋆ This work is supported by IRT Jules Verne in the framework of the PERFORM
program.
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However, vision-based control has some important limitations: embedded
cameras suffer from a limited field of view, while external cameras provide a
global overview of the workspace but at the cost of worse accuracy. A solu-
tion to these shortcomings was proposed in [7] where measurements from both
distance sensors and an external camera are combined using the Gradient Pro-
jection Method (GPM) [8, 9] to prioritize tasks. The robustness of this control
law was not considered in [7]. While the stability analysis for N-tasks problems
was investigated in [10], the proposed stability criterion is only valid in the ideal
case while a specific study based on the quality of the estimations and possi-
ble sensor biases is required in our case. The robustness of CDPR control for
one pure visual task has been tackled in [5]. A novel workspace named Control
Stability Workspace (CSW), enclosing the stable poses for given perturbation
bounds, was also introduced in [11].

In this paper, the robustness of the GPM control for a profile following task is
assessed. First, a stability criterion is derived from the control law of the system.
Then, the impact on stability of all the identified error sources is investigated.
Finally, a combined analysis is run in the robot operating conditions to confirm
its robustness. Since experimental results have already been presented in [7], only
simulation results are discussed in this paper. A view of the experimental plat-
form used in this paper, ACROBOT, a six degrees of freedom (DoF) suspended
CDPR, is shown in Fig. 1.

Fig. 1: ACROBOT, a CDPR located at IRT Jules Verne

This paper is organized as follows: Section 2 presents the two sensors and
their kinematics modeling. The control law is recalled from [7] in Section 3.
Section 4 focuses on the design of the stability criterion and Section 5 presents
the numerical results of the stability analysis. Conclusions are drawn in Section 6.

2 Task definition

The CDPR considered in this paper is subject to a control law enabling its MP
to perform a profile following task. This task can be divided into two subtasks:
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Fig. 2: Parametrization of the three distance sensors embedded on the MP and
facing the target surface. The external camera observes the MP.

maintaining the MP parallel to the followed surface at a constant distance, de-
noted T1, and moving from a starting pose to a target pose along the profile,
denoted T2. The control of the robot stems from sensor-based control and com-
bines measurements provided by two types of sensors: an array of three distance
sensors embedded on the MP, and an external camera located in front of the
robot. The boarded sensors and the surface to follow are shown in Fig. 2.

2.1 Sensors

Distance sensors Three ultrasonic distance sensors are placed on the bottom
of the MP, facing downwards along the z-axis of the MP frame Fp, as shown
in Fig. 2. Since all sensors are coplanar and their directions are parallel, for
the MP to be locally parallel to the surface, the three sensors must return the
same distance. The vector of distances measured by the sensors is denoted as
s = [s1, s2, s3]

T , si being the distance measured by the ith sensor Si. The time
derivative of the measured distance vector, noted ṡ, is then expressed as a func-
tion of the MP twist vp:

ṡ = pL1 vp (1)

with vp = [νp
T ,ωp

T ]
T

where νp is the MP linear velocity vector and ωp is
its angular velocity vector, expressed in Fp.

pL1 is the interaction matrix of
the distance sensors [12, 13]. Using a constant value of the interaction matrix
corresponding to the desired configuration is a usual choice in sensor-based con-
trol [13]. The interaction matrix pL1 thus only depends on the respective posi-
tions (xi, yi) of the distance sensors expressed in Fp, and can be evaluated for the
particular case s = s∗, where s∗ = [s∗, s∗, s∗]T and with s∗ = 0.2 m the common
reference distance so that the MP is locally parallel to the followed surface:

pL1|s=s∗ =

0 0 −1 −y1 x1 0
0 0 −1 −y2 x2 0
0 0 −1 −y3 x3 0

 (2)
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External camera The images acquired by the external camera are processed
by an algorithm recognizing several AprilTags, placed on the MP as well as on
the starting and target points of the trajectory. The relative pose of the reference
frames attached to these April Tags is then estimated with regard to the camera
frame Fc. Then, this pose is expressed in the world frame Fw, and, as for Pose-
Based Visual Servoing (PBVS), the visual features are selected as:

sv =

(
wtp
θu

)
(3)

where wtp is the position vector of the MP expressed in Fw and θu is the axis-
angle representation of the rotation matrix p∗

Rp. The target pose is given by:

s∗v =

(
wt∗p
03

)
(4)

where wt∗p is the position of the target AprilTag in Fw. The interaction matrix
wL2 of these visual features can be found in [13]:

wL2 =

[
I3 −[wtp]×
03 Lω

]
(5)

with [wtp]× the skew-symmetric matrix of wtp. Lω can be approximated by I3,
the (3×3) identity matrix. To express this matrix in Fp, the adjoint matrix wVp

is used [11]:

wVp =

[
wRp [wtp]×

wRp

03
wRp

]
(6)

The change of reference frame is then performed:

pL2 = wL2
wVp (7)

This interaction matrix only depends on the estimated position and orientation
of the MP in Fw.

2.2 Fusion using the Gradient Projection Method

The fusion between the data from the external camera and the three distance
sensors is performed with the GPM. In this method, a first main task is consid-
ered as a priority, while only the part of the second task compatible with the
realization of the first one is retained [9].

Main task The main task T1 is selected from the distance sensor measurements,
such that the task error e1 is given by:

e1 = s− s∗ (8)

The next step is to determine the Jacobian of the main task. As described
above in Section 2.1, the time variation of the main task is related to the MP twist
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vp by (1). As the inputs of the low-level controller of the CDPR are the velocities

l̇ of the m cable lengths, they are related to vp by:

l̇ = A vp (9)

where the forward Jacobian matrix A of the CDPR is given by [5]:

A =

[
u1 . . . ui . . . um

b1 × u1 . . . bi × ui . . . bm × um

]T
(10)

where ui are the cable direction unit vectors, pointing from the exit points
(pulleys) of the CDPR to the anchor points placed on the MP, and where bi are
the position vectors of the anchors points, known from the platform design. All
these vectors are expressed in Fp. ui vectors are calculated geometrically from
the MP pose expressed in Fw using the straight and inelastic cable model [5].

Equations (1) and (9) can be combined to obtain:

ė1 = J1 l̇ (11)

where the Jacobian J1 of the main task is a (3×m) matrix, given by

J1 = L1A
+ (12)

with A+ the Moore-Penrose pseudo-inverse of A.

Secondary task T2 consists in minimizing the error between the current and
the desired MP poses, expressed in Fw, and noted as follows:

e2 = sv − s∗v (13)

From (7) and (9), its Jacobian is a (6×m) matrix given by:

J2 = wL2
wVp A+ (14)

Similarly to (11), ė2 satisfies the following relationship:

ė2 = J2 l̇ (15)

3 Control strategy

In practice, the true Jacobians J1 and J2 can be subject to approximations,
which is the case for the form given in (2), noise measurements, and calibration
errors. The Jacobians used in the control scheme are thus different from the true
ones and are denoted Ĵ in the following. The control law, pictured in Fig. 3
and performing the fusion described above, is detailed in [7]. It relies on the

projection operator P̂1 on the kernel of the primary task given by:

P̂1 = Im − Ĵ+
1 Ĵ1 (16)
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The control law is expressed in terms of e1 and e2, with the gain ratio rλ = λ2/λ1

l̇ = −λ1Ĵ
+
1 e1 − λ1(J2P̂1)

+(rλe2 − J2Ĵ
+
1 e1) (17)

To simplify the notations, the term ẽ2 = rλe2 − J2Ĵ
+
1 e1 and matrix ̂̃J2 = J2P̂1

are defined such that the control law has the simple form:

l̇ = −λ1(Ĵ
+
1 e1 +

̂̃J+

2 ẽ2) (18)

Fig. 3: Control scheme of the CDPR with the fusion of the distance and pose
errors.

4 Stability criterion

The stability of the control scheme can be classicaly assessed using a Lyapunov
stability analysis. Since the main task is of dimension three, the projection of
the secondary task on the kernel of the main task causes the secondary task to
lose three degrees of freedom. Hence, the stability of the control law cannot be
assessed directly by considering ||e1||2 + ||e2||2 as candidate Lyapunov function.

4.1 Secondary task error redefinition

To solve the analysis problem, a three-dimensional secondary task e2r can be
defined by projecting the six-dimensional secondary task e2 on the null space of
e1, expressed in the MP frame. First, the projected error e

′

2 is considered:

e
′

2 = pP̂1 e2, with pP̂1 = I6 − p̂L
+

1|s=s∗
p̂L1|s=s∗ (19)

Considering only the three non-zero terms of e
′

2, the reduced error vector e2r
can be defined as:

e2r =

wxp −w x∗
p

wyp −w y∗p
θuz

 (20)

The stacked vectors e1 and e2r hence form a six-dimensional error. The corre-
sponding stability problem can be assessed since the dimension of the variables
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matches the number of DoF of the MP. The modified interaction matrix pL2r

is then obtained by selecting the rows corresponding to the retained features
and the corresponding modified matrices J2r and J̃2r are computed similarly by
substituting L2 by L2r in their definition. A modified control law follows:

l̇ = −λ1(Ĵ
+
1 e1 +

̂̃J+

2r ẽ2r) (21)

4.2 Lyapunov stability criterion

By considering the reduced secondary task, the Lyapunov candidate function L,
strictly positive and continuously differentiable, is defined as:

L =
1

2
||e1||2 +

1

2
||e2r||2 (22)

Its time derivative is nothing but:

L̇ = eT1 ė1 + eT2rė2r = eT1 J1 l̇+ eT2rJ2r l̇ (23)

Assuming the low level robot controller is able to perfectly apply the cable
velocity vector computed by the control law (21), we obtain:

L̇ = −λ1

[
eT1 J1Ĵ

+
1 e1 − eT1 J1

̂̃J+

2rĴ2rĴ
+
1 e1 + rλe

T
1 J1

̂̃J+

2re2r

+eT2rJ2rĴ
+
1 e1 + rλe

T
2rJ2r

̂̃J+

2re2r − eT2rJ2r
̂̃J+

2rĴ2rĴ
+
1 e1

] (24)

The previous equation can be expressed in a matrix form such that the Lyapunov
candidate function derivative L̇ is expressed as:

L̇ = −λ1[e
T
1 e

T
2r] Π

[
e1
e2r

]
(25)

which leads to the stability criterion Π> 0 with:

Π =

 J1(Im − ̂̃J+

2rĴ2r)Ĵ
+
1 rλJ1

̂̃J+

2r

J2r(Im − ̂̃J+

2rĴ2r)Ĵ
+
1 rλJ2r

̂̃J+

2r

 (26)

In the ideal case, that is when the Jacobians used in the control scheme

correspond to the real ones, i.e., Ĵ1 = J1 and ̂̃J2 = J̃2, it follows that J1J̃
+
2r = 03

and the expression of matrix Π becomes:

Π =

[
I3 03

J2rJ
+
1 − J2rJ̃

+
2rJ2rJ

+
1 rλJ2rJ̃

+
2r

]
(27)

As expected, the resulting expression in the ideal case matches with the rela-
tionship already established in [10].
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5 Stability analysis

The sign of the Lyapunov function derivative L̇ depends on the sign of the
criterion Π. If the criterion is positive definite, the derivative is negative for
all input vectors, thus guaranteeing the stability of the control law. This sign
depends on the quality of the estimation of a series of parameters. These are
the position error of the exit points of the pulleys and the anchor points of the
cables on the MP δai and δbi, the vision-based pose estimate error δw t̂p, the

positionning error of the distance sensors in the platform reference frame δL̂s,d,
the relative orientation of the surface to follow with regard to the platform frame,
given by the vectors nTi

, as well as the gain ratio rλ. Since there is an infinity of
combinations of poses and parameter values, the path P validated experimentally
in [7] on the ACROBOT is chosen for this study. An analysis parameter by
parameter is run to determine which ones have an important impact on the
stability and which ones can be neglected. Then, a combined analysis using
known parameter values is conducted to provide us with the expected stability
domain of the robot during its standard behaviour. The analytical sign analysis
of Π is rather complex, due the multiple interactions between the parameters. A
numerical analysis is thus proposed. For this analysis, an initial angle between
the MP and the tangent plane to the surface followed of 15° was retained.

CDPR geometrical parameters The precision of the CDPR geometry pa-
rameters ai and bi values has an impact on Â and hence on Π. Considering
only errors in the estimation of these parameters along the path P, the stability
margin versus both ai and bi parameters is shown Fig. 4. The control law re-
mains stable up to an error of 0.08 m for ai and to 0.10 m for bi. The stability
isocontours, i.e., the lines where the lowest eigenvalue remains constant, closely
follow the altitude profile of the path, hinting at a significant dependency on this
parameter regarding the stability of the control law. For this experiment system,
the accuracy of these parameters is respectively 0.01 m for δai and 0.008 m for
δbi. Hence, the stability of the robot is not threatened by these errors.

Vision-based pose estimation The pose estimation impacts the stability
since it is involved in the estimation of the robot Jacobian A and pL2, necessary
to compute the estimates of J1 and J2r. The impact of the position measurement
bias resulting of a low image resolution is shown Fig. 5. However, this bias is
not uniformly distributed along the three directions, and the estimated position
error is larger along the depth of the image observed by the camera. The norm of
the position error plotted in Fig. 5 was thus distributed accordingly. The impact
of the orientation error about the three directions of Fp was computed along
P, and is represented for a central position in the robot cell in Fig. 7. In both
cases, the accuracy of the pose-estimation, 70 mm for the position and 3 degrees
for the orientation at worst, does not overshoot the stability limits. However,
the resulting margin is lower than the one obtained for the CDPR geometrical
parameters errors and pose-estimation errors have a larger stability impact.
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(a) Stability versus the norm of the exit
point error δai.

(b) Stability of the robot versus the
norm of the anchor point error δbi.

Fig. 4: Stability of the robot along P versus the CDPR geometrical parameters.

Fig. 5: Stability of the robot along P
versus the position estimation error
δwtp

Fig. 6: Stability of the robot along P
versus the norm of the sensor position
error

Distance sensors positioning The position of the distance sensors with re-
gards to the MP-frame is measured and these measured values xi and yi are
used for computing matrix L̂s,d (2). The impact of a measurement error on the
stability of the control law is shown Fig. 6. From this figure, it is clear that the
quality of such measurements significantly impacts the stability since the max-
imum norm of the error ensuring stability for these parameters is twice lower
than for the parameters studied above. However, an adequate accuracy on these
parameters can easily be achieved with a robust design of the MP or following a
characterization of this MP. For ACROBOT, this accuracy is estimated to 1 mm.

Gain ratio Eventually, the gain ratio between the main task and the secondary
task is also involved in the computation of the stability criterion Π2. The cor-
responding plot is not shown due to lack of space but the result obtained shows
that this parameter cannot prevent the stability of the control law. However, the
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(a) Orientation error δθux along P (b) Orientation error δθuy along P

(c) Orientation error δθuz along P (d) Stability isosurface of the robot at po-
sition [0, 0, 0.2]

Fig. 7: Stability of the robot versus the three components of the orientation
estimation error δθu

values below rλ = 0.25 reduce the stability margin. Furthermore, no difference
in stability has been noticed all along the path P for this parameter.

Combination of parameters To analyze the combination of these factors,
another analysis is conducted, combining all the error sources. A series of 20.000
trajectories was run, selecting randomly the errors applied. Each of these param-
eters was assigned an error box whose side corresponds to its respective estimated
accuracy. For each trajectory and for each parameter discussed above, a random
vertex of the corresponding error box is selected. The distance measurements re-
turned by the distance sensors are generated randomly with a Gaussian centered
on µ = 0.2 m and σ = 0.025. The distance difference between the three sensors
generates an angle α between the normal nS and the normal to the tangent plane
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nT , equivalent to the angle between the plane xpOpyp and the tangent plane.
The results of this analysis with regard to the angle α are presented Fig. 8.

Fig. 8: Stability margin of the tested configurations versus orientation angle α.
In blue: stable configurations and in red: unstable configurations.

When observing the minimum eigenvalues of the stability criterion versus the
angle α, all configurations are stable when α ≤ 11°. However, after this threshold,
the proportion of stable configurations decreases when the angle increases. No
stable configurations were found when α ≥ 33°. This implies that an initial
configuration of the system with α lower than 11° and that, while executing
the two tasks, the tracking error with regard to the main task remains below
11° is a sufficient condition for the convergence of the system. On the tested
trajectory P, the orientation of the tracking error does not exceed 8°, and the
stability of the control law with the measured parameter errors is thus ensured.

6 Conclusion

This paper proposed a stability analysis of a sensor-based control law for profile
following using a CDPR. First, a stability criterion was derived, then a numerical
parameter by parameter analysis was conducted, highlighting the most critical
parameters that ensure the stability of the system. The most critical parameters
are the coordinates of the distance sensor in the MP frame as well as the bias
on the vision-based pose estimation. A combined analysis taking into account
the most relevant parameters for various configurations of the robot was also
presented. This analysis shows that all these configurations for the biases of
the relevant parameters of the prototype ACROBOT are stable when the angle
between the MP and the tangent plane to the target surface is smaller than 11°.
A sufficient condition for the stability of the system on the initial configuration
of the robot and on the tracking error hence results from this analysis. This
implies that the response time of the main task must remain short so that
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the moving MP during the trajectory following does not overshoot the stability
angle threshold. While these results are specific to the ACROBOT prototype,
the method is transferable. Stability domains of other CDPRs using the same
control scheme can be computed similarly if the relevant parameters are given.
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