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Abstract

Flow control consists in modifying a flow natural state in order to converge to-
wards another state which is considered as favorable, as drag or noise radiation
might be reduced. In this paper, open-loop flow control experiments are carried
out on a subsonic open-cavity flow. In the case of unstable flow control, the
control focus is brought onto the flow fluctuations modifications rather than
modification of the mean flow properties. Therefore, the forcing flexibility using
arbitrary signals and the forcing linearity are essential for such flow control cases.
In that sense, a linear array of Micro Magneto-Electro-Mechanical Systems ac-
tuators has been implemented to perform open-loop flow control experiments
on an open-cavity. The actuators are able to generate both quasi-steady and
pulsed jets with linear behavior. We proved the microvalves efficiency to damp
the cavity oscillations. The quasi-steady jets reached a reduction of 20 dB in
the cavity fundamental amplitude sound pressure level. Pulsed jets enabled an
additional cavity tone amplitude reduction, which depends on the pulsating fre-
quency and on the forcing amplitude. These results are a first step towards the
implementation of the closed-loop control of the open-cavity flow.

Keywords: MEMS actuators, Flow control, Open-cavity, Quasi-steady
jets, Pulsed jets.
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1. Introduction

Flow control techniques can be defined as methods modifying a flow be-
havior in order to obtain positive changes in the flow [1]. On one hand, many
applications have focused on the control of flow separation with unsteady fluidic
actuators. In such a case, the forcing unsteadiness would not be sufficient on its5

own to modify the flow mean properties, which are meant to be controlled to
change the flow state. The unsteady forcing must be combined with high mass
flow rates to reach control efficiency. On the other hand, control of instabilities,
such as the one developing in the subsonic flow over an open-cavity, control
can be performed with lower mass flow rates, as the focus is brought onto the10

flow fluctuations modifications. Therefore, the forcing flexibility using arbitrary
signals and the forcing linearity are essential for such flow control cases.
In this context, different technologies of actuators have been developed and em-
ployed in flow control applications. The following, non-exhaustive, state of the
art sums up some of the widespread actuation technologies. Considering the re-15

view of Cattafesta and Sheplak [2] on actuators designed for active flow control
applications, devices can be divided between moving surfaces actuators, plasma
actuators and fluidic actuators. Regarding the first category, devices were de-
veloped for instance by Seifert et al. [3] or Sarno and Franke [4]. Seifert et
al. performed flow separation control on an airfoil with piezoelectric unimorph20

actuators, while Sarno and Franke control the flow over an open-cavity with
mechanical fences. The second category of actuators received great attention
over the last decades. Plasma actuators in the form of single Dielectric Barrier
Discharge (DBD) consists in two electrodes separated by a dielectric layer. The
bottom electrode is connected to the ground, while the exposed one is supplied25

with an AC high voltage in the range of kV with a frequency in the range of kHz.
The ambient air is ionized by the electrodes and an electrohydrodynamic force
is induced, which can be used to pursue flow control objectives. For instance,
Kurz et al. [5] performed boundary layer transition control experiments on an
ONERA-D airfoil using DBD actuation. With a similar DBD actuator Maceda30

et al. [6] performed the stabilization of an open-cavity flow. The third category,
reading fluidic actuators, can be decomposed into fluidic oscillators [7, 8], syn-
thetic jets [9, 10, 11, 12] and pulsed jets [13, 14, 15, 16]. Fluidic oscillators were
used for instance by Seele et al. [7, 8] in the form of sweeping jets benefiting from
the coanda effect to perform flow separation control experiments on a wing of35

a Boeing-Bell V22. Synthetic jets are another common type of actuators alter-
nating blowing and air sucking phases to add/subtract momentum into/from a
flow. Mc Cormick [9] performed boundary layer separation control on an airfoil
with directed synthetic jets. However, synthetic jets have a limited bandwith
as their actuation frequency must be close to the actuator resonant frequency40

to induce flow momentum. Pulsed jet actuators circumvent this issue as their
bandwith is larger, even though they require an external source of fluid. For
instance, Bons et al. [13] studied the flow separation control on a low pressure
turbine blade with pulsed jets used as vortex generators jets. All the previously
presented actuators are macro-actuators, as they do not combine electrical and45
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mechanical micromachined components with characteristic dimensions between
1 mm and 1 µm [1]. Their integration on experimental setups might be limited
by their power consumption, supply resources and size. These drawbacks vanish
considering MEMS (Micro Electro Mechanical Systems) devices. MEMS actu-
ators from the previously presented actuation categories have been developed.50

For instance, Kilberg et al. [17] designed a MEMS control surface for millimeter-
scale rockets. Eijo et al. [18] built a pulsed micro-jet with DBD. Gimeno et al.
[19] developed a synthetic jet relying on magneto-mechanical coupling, whose
design has been enhanced by Gerbedoen et al. [20], who aimed at a wider band-
width. Considering pulsed jets, Viard et al. [21] designed vertically assembled55

magneto-mechanical microvalves employed to perform flow separation control.
Figure 1 synthesizes performances of some of the actuators described previously
and performances of the actuators considered in the present study.

Figure 1: Comparison of fluidic actuators performances (inspired from [21]).

In the present study, Micro-Magneto-Mechanical Systems (MMMS) microvalves60

generating both quasi-steady and pulsed jets with a linear behavior are con-
sidered. The actuators, based on the technology presented in [22], have the
advantage to be able to follow arbitrary command signal. A linear array of 15
microvalves has been integrated to an open cavity upstream edge to perform
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open-loop flow control experiments. The open-cavity is a commonly studied ge-65

ometry in fluid dynamics, with many practical applications. In the aeronautical
domain, airplanes landing gear doors or weapon bays have cavity shapes [23].
These shapes can also be found on vehicles such as cars or trucks, considering
wheel wells, trains between two carriages or even regarding telescope bays [24].
Flow over cavities have been extensively studied by Roshko [25], Rossiter [26]70

or East [27]. As depicted in Figure 2, the laminar or turbulent boundary layer
developing upstream the cavity, characterized by a thickness δ and a momen-
tum thickness θ, separates at the cavity upstream border. It results in a shear
layer developing over the cavity of length L, depth D and span W. This shear
layer undergoes hydrodynamic instabilities over the cavity, reattaches near the75

cavity downstream corner for deep open cavities characterized by an aspect
ratio L/D ≤ 4 according to Rossiter [26]. The vortices growing in the shear
layer impact the trailing edge, generating acoustic waves which propagate up-
stream and excite the shear layer instabilities at the upstream corner. This flow
description was proposed by Rossiter [26] and corresponds to an aeroacoustic80

feedback mechanism, for which oscillations are self-sustained. For deep cavities,
this mechanism can be coupled with an acoustic resonance mechanism due to
the cavity normal acoustic modes. This particular mechanism was investigated
by East [27]. These phenomena can interact with each other, yielding a local
maximum in the global modes growth rate. For low Mach numbers as in [27],85

the latter mechanism can be seen as enhancing the former mechanism response
[28]. Both mechanisms result in the generation of flow-induced noise radiation
and structural vibration, which may cause structural damage. We investigate in
this paper the possibility of damping these flow oscillations through open-loop
fluidic control, using our MMMS microvalves.90

z

Figure 2: Illustration of the developing flow over an open-cavity with an upcoming turbulent
boundary layer.
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In this paper, the first part focuses on the microvalves design and fabrication
process. The second part presents the MMMS actuators characterization per-
formed with hot wire measurements. The third part describes the experimental
setup in which an array of microvalves has been integrated and discusses the95

flow control results.

2. Device design and fabrication

2.1. Microvalve description and working principle
The normally open microvalve is composed of a 240 µm deep silicon micro-

channel containing two inner walls and an outlet hole at one of its extremity.100

A 100 µm thick flexible Polydimethylsiloxane (PDMS) membrane surmounts
this channel and is fixed to a 350 µm thick silicon pad. A couple of perma-
nent NdFeB magnets of total thickness 2.5 mm is attached to the pad and
is surrounded by a coil, contained in the microvalve packaging. This design,
schematically presented in Figure 3, allows two different actuation types. To105

operate the microvalve, a source of pressurized air has to be supplied to the
actuator, alongside with an electrical source, if pulsed jets are to be generated.
The first actuation mode consists in generating a quasi-steady jet thanks to a
pressure difference applied through the microvalve. Due to the pressure increase
inside the micro-channel, the silicon pad and the magnets are lifted up to an110

equilibrium position. Hence, the air flows from the inlet to the submillimetric
outlet. To generate a pulsed-jet, an electrical input signal is applied to the coil
surrounding the magnets. Hence, the silicon pad oscillates around its equilib-
rium position defined by the inlet pressure. Therefore, the micro-channel height
is modulated and a pulsed jet is generated at the microvalve outlet. The sili-115

cium pad considered here has an increased size compared to the one presented in
[22]. This limits the apparition of non linearities in the actuation. Furthermore,
the actuators have a large frequency bandwith and are not only used at their
resonant frequency, which is an advantage regarding the control application of
an open-cavity flow.120

Figure 3: Schematic description of a MMMS microvalve.
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2.2. Fabrication process
The fabrication process of the MMMS microvalves associates silicon micro-

machining and rapid prototyping. Rapid prototyping was used to process the
package of the microvalve that fixes the coil and allows the microvalve assem-125

bling. Silicon micro-machining techniques were exploited to realize both the
membrane and the micro-channel parts. The membrane is processed (Figure
4 (a) and (b)) by first preparing and spin-coating a PDMS solution on a 350
µm thick wafer. After PDMS baking, the wafer is processed on its backside.
Photo-lithography defines the silicon pad dimensions and Deep Reactive Ion130

Etching (DRIE) process is used to etch the silicon wafer. The process, called
Bosch process, alternates a passivation phase using C4F8 and an etching phases
using SF6 gas to ensure anisotropic etching of silicon.

Thereby, the silicon wafer is etched over its thickness and the silicon pad is
only maintained by the PDMS layer. This allows the pad to move and proceed135

to the actuation of the microvalve.
For the micro-channel part, two DRIE steps were needed (Figure 4 (c) and

(d)) to manufacture the microfluidic channel and the output. This process is
realized on a 500 µm thick double side polished silicon wafer. On one side, the
micro fluidic channel is defined by photolithography. DRIE Bosch process etches140

the silicon by 250 µm which is the wanted depth for the microfluidic channel.
Then, backside photo-lithography is needed to align the outlet with the front
side microfluidic channel. The remaining 250 µm thick silicon is etched again
using the Bosch process until the outlet is completely open.

Figure 4: Fabrication process of the microvalve. Left: Membrane process with (a) PDMS
spin-coating (b) Silicon pad etching. Right Micro-channel process: (c) frontside

micro-channel etching (d) backside outlet etching

Figures 5 (a) and (b) are Scanning Electron Microscopy (SEM) pictures of145

the realized device parts. Figure 5 (a) shows the silicon pad etched over the wafer
thickness and maintained by the PDMS layer. Figure 5 (b) shows one extremity
of the microfluidic channel, where there is the outlet of the microvalve. This
picture shows the two etching steps: the first up to half the wafer thickness for
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the microfluidic channel and the second step opening the silicon wafer for the150

fluidic jet outlet.

Figure 5: SEM (Scanning Electron Microscopy) pictures of the MMMS microvalve: (a) the
membrane and the silicon pad (b) the extremity of the microfluidic channel with the outlet

2.3. Assembled microvalve
The microvalve outlet had to be adapted to the open-cavity geometry. To

perform flow control experiments with the microvalves, their induced jets have
to spread over the entire cavity span. Therefore, the submillimetric outlet was155

adapted towards a slot outlet. For a single microvalve, the slot length and height
are respectively 12 mm and 0.2 mm. An example of assembled microvalve with
the jet adapter is presented in Figure 6a. The adapters were fabricated by
stereolithography in a Problack10 resin. It is composed of an upper and a lower
part, which brought together induce a jet outlet angle of 45◦ as sketched in160

Figure 6b.

(a) Picture of an assembled microvalve.
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(b) Scheme of a microvalve with associated axes.

Figure 6: Picture (6a) and scheme (6b) of a microvalve with associated axes.
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3. Microvalves characterization

3.1. Characterization experimental setup
Once we assembled a set of 15 microvalves, we first individually characterized

their quasi-steady jets and then their pulsed jets. microvalves were mounted as165

an array on a test bench as depicted in Figure 7. Hot wire measurements were
performed to characterize the jets induced by the actuators. A Dantec 55P15 hot
wire probe associated to a mini CTA 54T42 was used to perform measurements
with a sampling frequency of 20 kHz over 1 s at each considered point.

Figure 7: Test bench with the integrated microvalves array from two different views.

3.2. Quasi-steady jets characterization170

Each actuator was supplied with a pressure difference, set up with respect
to the ambient pressure, varied between 0 and 200 mbar. The induced flow
rate through the microvalves was measured and proved that the mounted mi-
crovalves have the same flow rate/pressure difference characteristics. For pres-
sure differences lower than 25 mbar no flow rate could be measured. However,175

for pressure differences higher than 25 mbar the flow rate/pressure difference
relation is affine as described by the following equation:

D = −0.15 + 0.01∆P with D is L/min and ∆P in mbar. (1)

Figure 8 shows for a tens of microvalves the flow rate against pressure curves,
along with the mean flow rate/pressure characteristic. In this chart, the scat-
tering between the highest and the lowest flow rates measured for a driving180
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Figure 8: Microvalves flow rate/pressure characteristics.

pressure above 100 mbar is about 14 %. This scattering can be explained by
the manual assembly of each layer composing the microvalves.

To further characterize the quasi-steady jet of a microvalve, hot wire mea-
surements in the (YZ) and (XZ) planes were carried out. For these measure-
ments, the flow crosses the measurement plane with a 45° angle in the (XZ)185

plane. The hot wire probe is placed parallel to the Y axis. Therefore, the velocity
measured by the hot wire is a combination of the velocity X and Z components.
One microvalve was supplied with a pressure difference of ∆P = 150 mbar, yield-
ing a flow rate D of 1.5 L/min. Figures 9 and 10 respectively present the mea-
surements in the (YZ) and (XZ) planes. For these measurements, the axes origin190

is taken at the microvalve outlet center. As sketched in Figure 6b, X, Y and Z
axes are defined with respect to the actuators outlet.
As depicted in Figure 9, it was observed that the jet outlet is centered on the
slot exit. The maximum velocity reached for ∆P = 150 mbar is about 25 m/s.
Figure 10 presents the jet velocity mapping for the same parameters in the (XZ)195

plane. The jet outlet angle of 45 ◦ can be measured from this mapping.

3.3. Pulsed jets characterization
Afterwards, we characterized the microvalves’ pulsed jets. The entire array

was supplied with a total pressure difference of 250 mbar. One microvalve at
a time was supplied with an electrical signal. Input signals used were sine200
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Figure 9: Quasi-steady jet mapping in the (YZ) plane for ∆P = 150 mbar.

Figure 10: Quasi-steady jet mapping in the (XZ) plane for ∆P = 150 mbar.

waves of the form A sin(2πft) with amplitude values A of 0.5 V, 1 V, 1.5 V
and 2 V and frequencies f ranging from 20 Hz up to 380 Hz. The amplitude
denoted A corresponds to the signal generator amplitude, which is firstly fed
to a linear amplifier before it reaches the actuators. Hot wire measurements
were performed at the microvalve maximum velocity location for X = 0.5 mm.205

Figure 11 illustrates the input signal used to control the pulsed jet and the
actuator outlet velocity post processing performed on the measurements for
several actuation cases. Considering an input signal of frequency 240 Hz and
amplitude 2V in Figure 11a, the associated velocity measurements is presented
in Figure 11b. It can be observed that the velocity oscillates around a mean210

value of 22 m/s. Figure 11c presents the raw velocity Power Spectral Density
(PSD). It is composed of three peaks: one at 240 Hz corresponding to the
fundamental frequency of the actuation and two others respectively at 480 Hz
and 720 Hz corresponding to harmonics. Harmonics are largely dominated by
the fundamental frequency, as their PSD is lower by at least 10 dB. In Figure215

11d, we therefore consider the output signal filtered at the sinusoidal forcing
frequency and four amplitudes A. The velocity modulation depth appears to
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evolve linearly with A.

(a) Electrical driving signal. (b) Raw pulsed jet velocity.

(c) Microvalve velocity spectrum. (d) Filtered pulsed jet velocity.

Figure 11: Actuator input signal (11a), velocity measurement (11b), spectrum (11c) and
comparison of the filtered velocity around the actuation frequency for different amplitudes

(11d), f = 240 Hz and A = 0.5 V, 1 V, 1.5 V and 2 V.

The microvalves transfer function, defined as the ratio between the velocity
hot wire measurements and the signal generator driving signal, have then been220

computed. The transfer function Bode diagram of one microvalve is presented
in Figure 12.

Figure 12: Microvalve transfer function Bode diagrams.

The gain plot indicates that the actuator behaves linearly as the four curves
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for the different amplitudes superimpose, except for A = 2 V and f ≥ 250 Hz.
Considering the phase plot for a given frequency, whatever the input signal am-225

plitude is, the same delay between the signal command and the outlet velocity
is induced. Figure 13 further proves the linear behavior of the microvalves. An
input signal composed of two sine waves respectively with frequencies of 100 Hz
and 200 Hz and with the same amplitudes was used. The microvalve response
was measured with a hot wire. Both the input and output signals PSD are230

presented in Figure 13. The input signal PSD is obviously composed of two
peaks respectively at 100 Hz and 200 Hz with the same amplitude. The output
signal PSD is also composed of two peaks at these frequencies pointing out the
superposition principle respected by the actuator. The amplitude difference be-
tween the two peaks is explained by the transfer function presented previously235

which does not exhibit a flat gain curve.

(a) Input signal PSD. (b) Hot wire measurement PSD.

Figure 13: Illustration of the actuator superposition principle.

The linear behavior of such actuators implies their ability to be controlled
with arbitrary signals and constitutes a first step towards future works which
will be focused on the implementation of closed-loop control strategies of the240

flow over the open-cavity.

4. Flow control experiments

4.1. Experimental setup
After their characterization, MMMS actuators were used for open-loop flow

control experiments carried out in the S19 wind tunnel at ONERA Meudon. In245

the present study, the objective is to integrate a linear array of 15 microvalves
such that their jet can interact with the shear layer developing over the cavity.
Therefore, it was decided to integrate the microvalves on the upstream cavity
corner, as depicted in Figure 14b. As detailed in [29], the shear layer instabilities
are sensitive to forcings close to the cavity upstream edge. The actuators are250

located just below the shear layer at the cavity upstream edge, and out-coming
jets interact with the shear layer due to their angle of 45◦ with respect to the
shear layer.

The wind tunnel consists of a plenum chamber, a rectangular test section of
length 1910 mm, span 300 mm and height 150 mm, followed by a diverging duct.255
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(a) Sketch of the cavity geometry with depths and spans of the two cavity parts.

(b) Pictures of the wind tunnel experimental setup with the cavity dimensions (left) and
integration of the actuator array (right).

Figure 14: Sketch of the cavity with the dimensions (14a) and photography of the
experimental setup inside the wind tunnel (14b).

The flow developing in the test section is turbulent due to a carborundum strip
placed upstream the cavity. The cavity of length L = 134 mm is inserted on the
lower wall of the rectangular test section. The cavity is composed of two parts
with different spans W1 and W2. The first part of depth D1 = 300 mm spans
over W1 = 300 mm. Below, the second part of depth D2 = 600 mm spans over260

W2 = 216 mm. Therefore, the cavity total depth D equals 900 mm. A sketch
of the cavity with the dimensions is presented in Figure 14a. The second part
of the cavity was added such that the open-cavity flow oscillation frequencies
matched the actuators bandwith. Stagnation pressure Pi and total temperature
Ti measurements are performed in the wind tunnel plenum chamber. 17 static265

pressure probes are located along the upper wall of the test section and divergent
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duct. To characterize the cavity flow dynamics, 4 Kulite unsteady pressure
sensors XCQ-093-15A (15PSI) are integrated to the cavity downstream wall, 3
mm below the edge. These sensors have a resonant frequency of 200 kHz and
a sensitivity of 1 µV/Pa, according to the manufacturer. The Kulite sensors270

output are passed through an amplifier of gain 50. Data are acquired using a
National Instruments chassis with 18-bits PXI-6284 module characterized by a
500 kHz bandwidth. The acquisition chain enables simultaneous recordings of
Pi, Ti, the ambient pressure Patm, the flow velocity U∞ (deduced from pressure
measurements using a Pitot tube upstream the cavity), the 4 unsteady pressure275

measurements from the Kulite sensors and the actuator input signal. With a
turbulence intensity of u′

Ū
, of 0.3 %, where u’ is the root-mean-square of the

turbulent velocity fluctuations and Ū the mean velocity, the S19 wind-tunnel is
a quiet wind tunnel.

4.2. Unforced flow dynamics characterization280

First measurements were dedicated to the flow dynamics characterization
without microvalves jets. The aim is to find a flow regime with low frequency
oscillations. Velocities U∞ ranging from 10 m/s to 46 m/s were explored. The
Sound Pressure Level (SPL), expressed in dB, obtained from the Power Spectral
Density (PSD) of each Kulite sensors were computed based on the following285

relationship:

SPL = 20 log10

(√
PSD

Pref

)
, (2)

where Pref = 20 µPa is a reference pressure corresponding to the threshold of
human hearing. Depending on the freestream velocity U∞, periodic or quasi-
periodic flow regimes were identified. From pressure measurements, three peri-
odic oscillating flow regimes were identified respectively for freestream velocities290

of U∞ = 20 m/s, U∞ = 30 m/s and U∞ = 34 m/s. Resonant frequencies for
these three freestream velocities are presented in Table 1.

Velocity U∞ (m/s) Resonant frequency (Hz)
20 128.6 257.2 385.9
30 122 244 366
34 124 247 371 495

Table 1: Resonant frequencies for three values of the freestream velocity U∞.

The pressure spectrum for U∞ = 20 m/s is presented in Figure 15. It is
composed of a parasitic peak at 50 Hz due to electrical noise and three peaks
characterizing the flow dynamics. The flow spectrum is therefore composed of295

a fundamental oscillation frequency f1 at 128.6 Hz and two harmonics f2 and f3
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respectively at 257.2 Hz and 385.9 Hz. Signals were acquired over a duration
of 45 s with a sampling frequency fs = 10 kHz. The signal PSD was then com-
puted with a Welch’s algorithm based on 60 Hamming windows and an overlap
of 50%, yielding a frequency resolution of 0.11 Hz. The 4 Kulite sensors indicate300

the same oscillation frequencies and similar values of SPL within a couple of dB.
The results presented in this section are based on one of the 4 unsteady pressure
sensors.

Figure 15: SPL (dB) flow spectrum near the downstream edge of the cavity for
U∞ = 20 m/s.

4.3. Quasi-steady jets305

For each of the three freestream velocities, effects of quasi-steady jets on the
flow dynamics were studied. Actuators driving pressures are presented in Table
2.

∆P (mbar)
0 150 175 200 225 250 275 290

Table 2: Actuators driving pressure.

Quasi-steady jets reduced the amplitudes of the peaks at the resonant fre-
quencies. Their effects for a freestream velocity of 20 m/s can be observed310

in Figure 16. The fundamental frequency is reduced by 20.4 dB and the har-
monic peaks completely vanish for a driving pressure above 250 mbar. From
these spectra and for the different freestream velocities, the decrease in am-
plitude of the cavity fundamental frequency peak was computed. Figure 17
shows the effect of the quasi-steady jets on the cavity fundamental SPL. The315
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Figure 16: Flow spectra for U∞ = 20 m/s and different driving pressure generating
quasi-steady jets.

quasi-steady jets reduce the fundamental frequency amplitude by 20.4 dB for
∆P = 290 mbar and U∞ = 20 m/s. The amplitude reduction observed can be
explained by the interaction of jets with the shear layer developing over the
cavity. The 45◦ inclined jets might deflect the shear layer to the top, mitigating
its interaction with the downstream corner. Effects of the quasi-steady jets on320

the cavity fundamental frequency is dependent on both the microvalves driving
pressure ∆P and on the freestream velocity U∞. For a fixed value of U∞, the
higher ∆P is, the more effect quasi-steady jets have on the cavity fundamen-
tal resonant frequency. In addition, for a fixed value of ∆P, the higher the
freestream velocity U∞ is, the less effect microvalves have on the cavity reso-325

nant frequency. As experiments at several values of freestream velocities U∞
are performed at constant values of ∆P, effects of the quasi-steady steady jets
on the fundamental resonant frequency is less important when U∞ is increased.
For U∞ = 30 m/s, the amplitude reduction is only of 12.6 dB for the same ∆P
of 290 mbar. For U∞ = 34 m/s, the quasi-steady jets have no effect on the flow330

dynamics, regardless of the imposed driving pressure. Measurements performed
at these three velocities show the actuators authority limit on the flow dynamics.

16



0 25 50 75 100 125 150 175 200 225 250 275 300
-25

-20

-15

-10

-5

0

5

 U
¥
 =20 m/s

 U
¥
 =30 m/s

 U
¥
 =34 m/S

SP
L 

di
ff

er
en

ce
 (d

B
)

Actuators driving pressure (mbar)

Figure 17: Evolution of the fundamental frequency SPL (dB) against the actuators driving
pressure for different velocities.

4.4. Evaluation of microvalves control efficiency
In order to compare results obtained with the quasi-steady jets to those335

obtained in passed similar studies, the blowing coefficient Bc, firstly proposed
by Vakili and Gauthier [30] for rectangular cavities has been calculated. This
coefficient is defined as the mass flow rate of the actuator normalized by a
typical mass flow rate of the cavity, where ρ∞ denotes the freestream density
and Acavity = LW:340

Bc =
˙minj

ρ∞U∞Acavity
. (3)

The results obtained for U∞ = 20 m/s and ∆P = 290 mbar are compared
in Figure 18 to results from different open-loop control studies of a cavity flow.
This chart presents the distribution of Bc in % against the SPL reduction in
dB.

Depending on the study-cases and the actuators technology used, different345

SPL reduction in the cavity oscillation were obtained. In the present study,
measurements were realized on an open-cavity of aspect ratio L/D = 0.15 and
for Mach numbers M varying between 0.06 and 0.1. The control was performed
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Figure 18: Evolution of the Bc coefficient against the fundamental resonant frequency SPL
(dB) reduction for different studies and actuation technologies.

with MMMS microvalves and the SPL reduction obtained with the quasi-steady
jets is compared with other studies. Studies presented in Figure 18 were per-350

formed on different study cases and different Mach numbers implying different
flow dynamics. Shaw [31] considered an open-cavity such that L/D = 6.5 with
M ranging from 0.6 up to 1.05. The control was performed with pulsed jets
integrated to the upstream cavity border. The study case presented by Vak-
ili and Gauthier [30] was such that M = 1.8 and for a cavity characterized by355

L/D = 2.54. Momentum was added to the flow through perforated plates placed
upstream the cavity. This results in modified boundary layer properties affect-
ing the cavity oscillations amplitudes. Stanek et al. [32] used 4 high frequency
fluidic actuators to control the flow over a cavity of aspect ratio L/D = 5 with
M varying between 0.4 and 1.35. Raman and Raghu [33] studied a cavity of360

length to depth ratio of 6 with Mach flows ranging between 0.4 and 0.7. They
performed control experiments with sweeping jets benefiting from the coanda ef-
fect placed on the bottom floor of the cavity near the upstream and downstream
edges. Bueno et al. [34] focused on a cavity for which L/D was varied between
5 and 9 with a freestream Mach number of 2. Their actuators were commercial-365

ized high speed valves (General Valve Series 9) pressurized up to 11 bar. Due
to the actuators size, a staggered configuration was employed to integrate the
valves to the experimental setup. Zhuang et al. [35] studied a cavity of length
to depth ratio of 5.16 with a flow Mach number of 2. The actuators employed
simply consist of micro-holes of 400 µm diameter supplied with a pressurized370

source of nitrogen. On their side, Ukeiley et al. [36] considered a cavity of length
to depth ratio of 5.6 or 9 with Mach numbers of 0.6 and 0.75 and the control
was performed with powered whistles. In Figure 18, low Bc coefficients cor-
respond to low energy consumption control systems, while efficient controllers
are represented on this chart with a high SPL reduction value. Therefore, it375

can be observed that the microvalves provide a satisfying compromise between
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efficiency and energy cost compared to the other studies.

4.5. Pulsed jets
We then tested the effect of pulsed jets. Pulsed jets modulate the velocity

about a mean value fixed by the driving pressure ∆P, we therefore expect at380

least the same amplitude reduction at the fundamental frequency. In Figure
19, cavity spectra for U∞ = 20 m/s are compared for quasi-steady jets and
pulsed jets with a driving pressure of ∆P = 250 mbar. The unsteady forcing
highlighted in this Figure is characterized by a pulsating frequency of 140 Hz
and two different input signal amplitudes of 1 V and 2 V. Two phenomena can385

be observed. Firstly, a peak at the pulsating frequency appears in the spectrum,
which SPL depends on the forcing amplitude and on the actuation frequency.
For a frequency of 140 Hz and an amplitude of A = 1 V, the SPL reaches 103
dB, while for A = 2 V the SPL reaches 108 dB, yielding a difference of 5 dB
between the two pulsating cases. Secondly, a further reduction in the cavity390

fundamental frequency amplitude of 3 to 5 dB, depending on the frequency
and forcing amplitude, is observed due to the pulsed jets. These measurements
were performed for the sets of parameters described in Table 3. These two
phenomena indicate a non-linear response of the cavity to the unsteady forcing
as a forcing at a different pulsating frequency induces an effect on the cavity395

fundamental frequency amplitude. However, the cavity response at the forcing
frequency is quasi-linear which is an important result for setting up closed-loop
control strategies in future work.

∆P (mbar) 200, 250 290
Frequencies (Hz) 80 to 300 (step of 20 Hz)
Amplitudes (V) 0.5 V, 1 V, 1.5 V2 V

Table 3: Sets of parameters used for the study of pulsed jets effects.

5. Conclusion

This paper presented the characterization of MMMS microvalves, their in-400

tegration on an open-cavity in a wind tunnel and their use in open-loop flow
control experiments. The actuators command flexibility and linearity make
them interesting for the control of flows such as the one developing over an
open-cavity, as the microvalves act on the flow unsteadiness with the generated
forcing fluctuations. Thanks to the microvalves small size, a linear array of405

15 actuators was successfully integrated and flush mounted in a wind tunnel
to perform flow control experiments on an open-cavity. The quasi-steady jets
induced by the MEMS actuators reduced the cavity tones amplitude down to
20.4 dB for a freestream velocity of 20 m/s. Compared to quasi-steady jets and
depending on the actuation frequency and the amplitude, pulsed jets reduced410

further the cavity tones down by 5 dB. Furthermore, the pulsed jets frequency
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Figure 19: SPL (dB) spectra comparison with U∞ = 20 m/s for a quasi-steady jets case and
two different pulsed jets cases.

appears in the cavity spectrum depending on the input voltage amplitude. This
significant result is of interest for future works dedicated to the closed loop-
control of the flow over the open-cavity. The closed-loop strategy would benefit
from these actuators as the microvalves are able to follow an arbitrary command415

signal delivered by the controller. The actuators command flexibility would be
an advantage in implementing the closed-loop control of the open-cavity flow.
Furthermore, the effect of quasi-steady jets will be limited as closed-loop exper-
iments will be carried out with low driving pressures. Therefore, the effects of
the closed-loop control would be only due to the unsteady part of the jets. The420

aim of the closed-loop control strategy will be to further reduce the actuators
energy consumption and further damp the cavity resonance SPL.
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 A design of Micro-Magneto_Mechanical Systems (MMMS) microvalves for flow control
is presented

 The fabrication process based on micro-machining techniques is described
 Hot wire characterizations highlight the microvalves linear behavior
 A linear array of microvalves is integrated on an open-cavity in a wind tunnel
 Open-loop flow control experiments are performed and discussed
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