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Abstract: The electrochemical behavior of the lithium hexagonal tungsten bronze, LixWO3, is in-
vestigated herein. The material was synthesized at a low temperature under hydrothermal condi-
tions, yielding nanorod-like particles with growth along the c-axis. Upon cycling in a 5 M LiNO3

aqueous electrolyte, a specific capacity of 71 C.g−1 was obtained at 2 mV.s−1, corresponding to a
charge/discharge cycle of 10 min. The charge storage mechanism was elucidated using various com-
plementary techniques, such as electrochemical quartz crystal microbalance (EQCM) and synchrotron
operando X-ray absorption spectroscopy (XAS). A desolvation process upon Li+ intercalation into the
lattice of the material was evidenced, accompanied by a reversible reduction/oxidation of tungsten
cations in the crystal structure upon charge/discharge cycling.

Keywords: electrochemical capacitors; tungsten bronze; operando; high power electrode; pseudocapacitance;
electrochemical quartz crystal microbalance; X-ray absorption spectroscopy

1. Introduction

The global drive to make the changeover to greener and safer energy sources has
sped up considerably in recent years, as evidenced by the ever-increasing development
of renewable technologies such as solar and wind power. These power sources share the
inconvenience of only being intermittently available; however, the energy they produce
needs to be stored so as to be accessible on demand [1]. Energy storage systems [2],
particularly batteries and electrochemical capacitors, may be used to accomplish this
objective, although certain challenges remain [3]. While batteries store charge at the bulk of
the electrodes through electrochemical redox reactions, in electrochemical capacitors, the
charge is stored electrostatically through the adsorption of ions onto the developed surface
area of the electrodes. Naturally, these different storage mechanisms lead to distinctive
electrochemical properties, such as high energy density as regards the former and high
power density for the latter. The holy grail resides in a singular device capable of delivering
higher amounts of energy within shorter periods of time, containing an active material that
exhibits a fast intercalation mechanism. Dunn [4] and Zukalov [5] reported this particular
behavior for TiO2, where the charge is stored via the intercalation of lithium ions in a
non-aqueous electrolyte displaying a theoretical capacity of 1206 C.g−1 (335 mAh.g−1) for
a one-electron redox reaction. Additionally, the layered structures of hydrogen titanates,
H2Ti3O7, were explored due to their pseudocapacitive mechanisms [6,7]. In both of these
materials, the redox couple Ti4+/Ti3+ is responsible for charge storage when the lithium
ions intercalate below 2 V vs. Li+/Li. These investigations were primarily carried out on
nanostructured materials, such as nanowires and nanotubes, obtaining a reversible capacity
of 597 C.g−1 (166 mAh.g−1) in a charge/discharge cycle taking only 5 min [8–12].
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Recent reports have served to demonstrate the fast intercalation behavior of orthorhom-
bic T-Nb2O5. The charge storage of T-Nb2O5 typically occurs due to the intercalation of
lithium ions in organic electrolytes at a potential of <2 V vs. Li+/Li, with a maximum
capacity of 720 C.g−1 (166 mAh.g−1) [13–16]. T-Nb2O5, along with TiO2 and hydrogen
titanates, shows a fast intercalation process for Li+ in non-aqueous electrolytes. It has been
suggested that this behavior is pseudocapacitive in nature; however, one must exercise
caution when reporting the values in terms of capacity (C.g−1) as opposed to capacitance
(F.g−1) for those materials exhibiting a clear faradaic signature in their CVs [7].

Alternatively, tungsten oxide (WO3), along with its different polymorphs, is suitable
for use in a wide range of applications [17], for instance in photochromic and electrochromic
devices [18–21]. Moreover, it has proven to be versatile as an electrode material for batteries
and electrochemical capacitors [22]. Augustyn et al. [23,24] reported the pseudocapacitive
behavior of the hydrated phase of WO3•2H2O: they investigated the fast intercalation of
H+ in acidic media, which was attributed to the change in oxidation state from W6+ to
W5+, with a theoretical capacity of up to 360 C.g−1, corresponding to a single electron in
the process. This study paves the way for investigating WO3 as a working electrode in a
water-based electrolyte.

Tungsten oxide (WO3) possesses various polymorphs, the most stable among them
being monoclinic I (γ-WO3) [17], which has been poorly investigated as an electrode
material in neutral aqueous electrolyte. However, another possible metastable phase for
WO3 is the hexagonal tungsten bronze (h-WO3 or HTB). The tungsten bronzes are a widely
studied family of compounds with the general formula AxWO3, where A is an alkali metal,
and x is between 0 and 0.33. Magnéli was the first to report its crystal structure [25], which
was confirmed and clarified by Gerand et al. a few decades later [26,27]. The structure
was described in terms of the layers of corner-sharing WO6 octahedra, in the form of
three- and six-membered rings in the ab-plane. These three- and six-membered rings
result in the formation of triangular and hexagonal windows, respectively. Whittingham
et al. [28] studied the sodium tungstate phases and were the first to suggest the possibility
of the presence of water inside the crystal structure. A few years later, this hypothesis
was confirmed by means of a powder neutron diffraction experiment and a Rietveld
analysis [29,30]. The electrochemical intercalation of alkali cations was later investigated by
Kumagai et al. [31–34]. The hexagonal WO3 phase was obtained after heat treatment of the
orthorhombic hydrated phase at 350 ◦C; it was shown that it is possible to electrochemically
intercalate up to 1.9 Li+ into the lattice of h-WO3 using LiClO4 in a propylene-carbonate
(PC) electrolyte and that this process is reversible. To date, this is the most promising result
for a phase of this kind in an organic electrolyte.

We herein propose, for the first time, an electrochemical study of lithium hexagonal
tungsten bronze (Li-HTB) under mild aqueous cycling conditions. Additionally, advanced
techniques, such as electrochemical quartz crystal microbalance (EQCM) and operando X-ray
absorption spectroscopy (XAS), were applied in order to shed light on the phenomena
taking place not only at the electrode/electrolyte interface of the active material but also
further inwards. By virtue of the proposed approach, we are thus able to unveil the charge
storage mechanism occurring in Li-HTB and pave the way for future applications of this
material in fast aqueous energy storage devices.

2. Materials and Methods
2.1. Hydrothermal Synthesis of Li-HTB

Lithium hexagonal tungsten bronze LixWO3 (Li-HTB) was synthesized in two steps,
based on previous studies [20,35–38]. Firstly, 35 mmol of sodium tungstate dihydrate
(Na2WO4•2H2O) was mixed with 150 mL of deionized water. Then, 15 mL of concentrated
H2SO4 was added dropwise under stirring until the formation of a uniform yellow precipi-
tate. This mixture was left under stirring overnight to ensure that all of the WO3 sol had
precipitated. After 24 h, it was washed off with deionized water to remove the remaining
acidic solution, and the sol was then mixed with a 0.5 M oxalic acid solution.
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The second stage involved hydrothermal synthesis. First, 20 mL of the aforementioned
yellow solution was placed in a Teflon-lined vessel, and 2 g of lithium sulfate monohydrate
(Li2SO4•H2O) was then added to it. The vessel was sealed, placed in the appropriate
autoclave, and then transferred to an oven where it was heated for 24 h at 180 ◦C. After the
reaction had completed and the autoclave had cooled down, the mixture was washed off
with deionized water several times to remove additional side products and then left to dry
in air at 80 ◦C.

2.2. Physico-Chemical Characterization

Li quantification in the Li-HTB compound was carried out through chemical analysis
conducted via inductively coupled plasma optical emission spectrometry (ICP-OES), us-
ing a Thermo Scientific iCAP 6300 emission spectrometer to analyze the main elements.
Thermogravimetric analyses (TGA) were performed in a NETZSCH STA 449 F3 thermal
analyzer. The X-Ray diffraction patterns (XRDP) were recorded in air at room temperature
(RT) with a Bruker D8 Advance diffractometer using Cu-Kα1 radiation (λ = 1.54060 Å)
and a LynxEye detector in Bragg–Brentano geometry. The structure of the Li-HTB was
refined using the JANA2006 program [39]. The morphology and shape of the synthesized
particles were characterized using scanning electron microscopy with a Merlin SEM from
Carl Zeiss equipped with a 50 mm2 X-Max detector from Oxford Instruments NanoAnalysis
and transmission electron microscopy with a S/TEM Themis G3 at 300 kV (point-to-point
resolution: 0.18 nm). The specific surface area of the powders was determined from the
77 K nitrogen adsorption curves using the BET (Brunauer–Emmett–Teller) method with a
Quantachrome Nova 4200e analyzer.

2.3. Electrochemical Characterization and Electrode Preparation

The composite electrodes were prepared by mixing the Li-HTB powder with carbon
black, using a PTFE binder, in the respective weight ratios of 60/30/10 as described by
Brousse et al. [40] The mixture was suspended in ethanol and heated up to 60 ◦C under
vigorous stirring until complete evaporation of the ethanol. The resulting black slurry
was then cooled down and rolled until a composite film with a thickness of between 100
to 150 µm was obtained. After drying at 60 ◦C to remove the remaining ethanol, it was
punched into disks of 10 mm in diameter and pressed at 900 MPa onto stainless steel
grids that were used as current collectors. The mass loading of the prepared electrodes
varied from 5 to 10 mg.cm2, which is in agreement with the assessed properties of electrode
materials [41].

The electrochemical performance was evaluated via cyclic voltammetry with a VMP3
galvanostat–potentiostat (BioLogic, EC-Lab software). The experiments were conducted in
a three-electrode electrochemical setup using Ag/AgCl (3M NaCl) as the reference electrode
and a platinum grid as the counter electrode. A neutral 5M LiNO3 aqueous solution was
used as the electrolyte (pH = 7), and all the experiments were performed in a [−0.6 V; 0 V]
vs. Ag/AgCl potential window. This potential window was selected according to results
obtained from preliminary electrochemical experiments.

2.4. In-Situ and Operando Setups
2.4.1. Electrochemical Quartz Crystal Microbalance (EQCM)

EQCM sample preparation was performed using BioLogic 1 in.-diameter Ti-coated
quartz crystals (resonance frequency, f0, 5 MHz) that were spray-coated with a slurry
containing 70 wt.% active material, 15 wt.% carbon black, and 15 wt.% polyvinylidene
fluoride (PVDF) in N-methyl-2-pyrrolidone (NMP), which was added as a binder. The
coated quartz crystal was placed in a PTFE holder before being used as a working electrode,
facing the reference electrode (Ag/AgCl). A Pt wire was used as a counter electrode for
assembling a three-electrode cell (see Figure S6). Tests were performed in a 5 M LiNO3
solution serving as the electrolyte (pH = 7). All the EQCM electrochemical measurements
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were carried out using a QCM922A from Seiko, combined with an SP200 potentiostat
from BioLogic.

2.4.2. X-ray Absorption Spectroscopy

Operando XAS experiments were performed in transmission mode at the ROCK beam-
line [42] of the SOLEIL synchrotron facility. The XAS spectra were collected at the tungsten
L3 edge (10,204 eV) using a Si (111) quick-XAS monochromator with an oscillation fre-
quency of 2 Hz. The Li-HTB electrodes were placed between the first and second ionization
chambers, and a tungsten foil ensured energy calibration. The Li-HTB self-supported
electrode was prepared by mixing the active material with conductive carbon, using a PTFE
binder, with an average mass loading of 6 mg.cm−2; 10 mm disks were then pressed in a
stainless-steel grid, which had previously been perforated to enable X-ray photon trans-
mission (see Figure S9). A specially designed 3-electrode operando cell [43] was used (see
Figure S10), with Pt wire as the counter electrode and Ag/AgCl as the reference electrode.
Commercially available WO2 (W+4) and WO3 (W+6) were used as references to assess the W
oxidation state. Firstly, the electrodes were activated using cyclic voltammetry in aqueous
5M LiNO3 at 20 mV.s−1 from 0.0 to −0.6 V vs. Ag/AgCl. After a few cycles, the XAS
spectra acquisition began with a scan rate of 2 mV.s−1 in the same potential window. XAS
spectra were collected at a frequency of 2 Hz and then averaged 10 by 10 to increase the
signal-to-noise ratio, resulting in an averaged spectrum every 5 s (i.e., every 10 mV cycling
at 2 mV.s−1). This procedure allowed us to closely monitor the evolution and changes in
the Li-HTB active material in real-time cycling conditions.

3. Results
3.1. Materials Characterization

Hydrothermal synthesis of the Li-HTB resulted in a blueish precipitate attributed to
the presence of lithium in the structure, and the hexagonal tungsten bronze phase was thus
successfully obtained. To detect and quantify the presence of lithium in the Li-HTB sample,
a chemical analysis was carried out using ICP-OES, confirming the amount of 0.16 moles of
Li per W atom. Furthermore, thermogravimetric analysis (TGA) showed a gradual mass
loss from 100 up to 350 ◦C, resulting in a 4% mass loss. The 0.3 moles of H2O detected can
be attributed to water in the crystal structure of the bronze phase (see Figure S1), a fact that
will be further confirmed during the structural refinement.

The particles of Li-HTB are defined by growth along the c axis in a spiky nanorod-
like shape and stacked on top of one another, as seen in the SEM image (Figure 1A).
This morphology is attributed to the interaction of both the Li+ and SO4

2− ions in the
hydrothermal synthesis, which promotes this distinctive type of growth as has previously
been demonstrated [20,35–38]. Furthermore, in the TEM image (Figure 1B), the assembly
of the initially defined wire particles into broader nanorod-like ones can be seen. Moreover,
the electron diffraction pattern inset in Figure 1C confirms the growth of the wires along
the c direction, while observing the ab plane from above. Additionally, the BET-specific
surface area (SSA), measured according to N2 adsorption, resulted in 12 m2.g−1. This value
fits well with the calculated geometric surface area taken up by the nanorods (according to
TEM and SEM images), thus indicating that most of the surface is linked to the external
surface of the nanorods.

The structural refinement showed that Li-HTB crystallizes in the same space group
P6/mmm as WO3 [26], with the cell parameters a = 7.3328(3) Å and c = 3.86243(18) Å
and a cell volume of 179.859(12) Å3 (Figure S2). The structure of the lithium hexagonal
tungsten bronze can be described in terms of the layers of corner-sharing WO6 octahe-
dra arranged in six-membered rings giving rise to two kinds of tunnels along the c axis,
namely, triangular and hexagonal, as shown in Figures S4 and S5. The chemical formula ob-
tained is Li0.167WO3(H2O)0.333, considering the presence of water molecules in the structure.
Moreover, the crystallite size and lattice strain were refined and found to be 54.2(8) and
0.379(8) nm, respectively. All additional details are provided in the Supporting Information.
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3.2. Electrochemical Characterization

The electrochemical behavior of lithium hexagonal tungsten bronze (Li-HTB) operating
in an aqueous electrolyte was further evaluated. As shown in Figure 2, the electrochemical
signature exhibits faradaic-like behavior with the presence of a reduction peak at −0.43 V
vs. Ag/AgCl and the associated oxidation peak at −0.32 V vs. Ag/AgCl during the reverse
scan. Furthermore, a quasi-rectangular shape can be perceived when the sweep moves
from reduction to oxidation through a small region of the CV. Both the reduction and
oxidation peaks are most likely associated with the Li+ intercalation/deintercalation from
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the electrolyte and into the structure of the material. The quasi-rectangular shape described
previously is non-diffusion-limited and could be ascribed either to a pseudocapacitive-like
behavior [44] caused by fast redox reactions happening at the surface or pure electrostatic
storage in the double layer due to ion adsorption onto the surface. Considering the limited
surface area of the Li-HTB (12 m2.g−1), the double layer contribution should be negligible.
Indeed, taking into account a double layer capacitance of 20 µF.cm−2 (which is among
the highest commonly indicated values for carbons and metals [45]), this translates into a
maximum double layer capacitance of 2.4 F.g−1, which, in turn, gives a 1.5 C.g−1 capacity
over a 0.6 V potential window, i.e., less than 2 % of the total capacity at 2 mV.s−1 and only
up to 10 % to 100 mV.s−1.
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Figure 2. Cyclic voltammogram of Li-HTB at 2 mV.s−1 in 5M LiNO3.

In the CV presented in Figure 2, at a sweep rate of 2 mV.s−1, a maximum specific
capacity of 71 C.g−1 is achieved, corresponding to a charge/discharge time of 10 min.,
which is a significantly faster process compared to the charge/discharge rates previously
reported for similar compounds in organic electrolytes [32]. Considering that the total
theoretical capacity extracted, when one mole of electrons is being transferred, which is
about 404 C.g−1, the number of Li+ intercalated into Li-HTB at 2 mV.s−1 works out to be
around 0.175 mol per formula unit, as seen in Equation (1):

Li0.167WO3(H2O)0.333 + 0.175 Li+ + 0.175 e− → Li0.342WO3(H2O)0.333 (1)

Figure 3A demonstrates the evolution of the specific capacity as a function of scan
rate. Li-HTB reaches above 40 C.g−1 at 20 mV.s−1, translating to a charge/discharge
rate of only 1 min. Figure 3B displays the CVs corresponding to the evolution of the
scan rate from 2 to 100 mV.s−1. The CVs show how the faradaic response fades when
reaching higher sweep rates. At 20 mV.s−1, a broader anodic peak is still visible, whereas
the cathodic peak has disappeared, and the CV shows an increasingly distorted shape,
especially as the potential scan direction moves from oxidation to reduction and vice versa
(Figure 3B), which is typical of increasing equivalent series resistance. This behavior can be
explained kinetically, meaning that the cations in the electrolyte do not have enough time to
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intercalate into the material. At higher rates, a non-diffusion-limited surface process takes
over. Moreover, whenever the scan rate is further increased, the shape of the CV becomes
even more resistive, thereby indicating a certain limitation concerning the interesting
intercalation feature described for Li-HTB. Additionally, Figure 3C shows the stability of
the Li-HTB at 20 mV.s−1 over 1000 cycles, even if a slight decay is observed upon the first
400 cycles, presumably due to electrode surface changes that were not unveiled during
this study. During the first couple of hundred cycles, there is a slight drop in the capacity,
which otherwise remains very stable, even after 500 cycles. As previously mentioned, at
20 mV.s−1, it is still possible to observe a specific faradaic response in the material.
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Figure 3. (A) Evolution of the capacity in C.g−1 vs. the scan rate, (B) cyclic voltammograms of the
respective scan rates, and (C) relative specific capacity vs. cycle number. Fluctuations after 400 cycles
may be due to slight changes in electrolyte temperature while cycling the electrode.
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Li-HTB is capable of accommodating more Li+ than what is reported here, as previous
studies have shown with a similar hexagonal structure although using an organic elec-
trolyte. However, to preserve the structure’s stability, a maximum of 0.33 cations can be
intercalated [46,47]. Aside from this, it is worth noting that the water occupying the hexag-
onal cavity between two layers of hexagonal rings (as reported in the structural refinement
section, see Figures S2 and S3) might play a role in how the intercalation of Li+ takes place.
In addition, the Li+ solvation shell should be taken into account, and whether the Li+ are
partially or completely desolvated during the intercalation process needs verifying. This
distinctive faradaic behavior serves to highlight certain intriguing features of the lithium
hexagonal bronze structure compared to previous reports of hexagonal WO3, as well as to
the classic γ-WO3. A thorough study of the charge storage mechanism of this compound
will be presented in the following section.

3.3. Charge Storage Mechanism Investigation

In order to explain the intercalation mechanism, we performed electrochemical quartz
crystal microbalance (EQCM) to monitor the electrode/electrolyte interface (see Figure S6
for the setup).

As the motional resistance is constant, negligible dissipation changes are presumed
(see Figures S7 and S8), thereby validating the gravimetric approach and the use of the
Sauerbrey’s equation (Equation (1)). Figure 4A displays both the CV profile and the
frequency response of the Li-HTB phase at 10 mV.s−1, where the arrows indicate the scan
direction. From −0.3 to −0.5 V (vs. Ag/AgCl), an increase in mass is observed, which
most likely corresponds to the intercalation of Li+ into the hexagonal cavities. Figure 4B
shows the linear increase in mass versus the accumulated charge (see the orange line).
As per Faraday’s law, the average molecular weight per charge (z = 1) is calculated to
be 15.9 g.mol−1 and could correspond to one mole of Li+ accompanied by an average of
0.5 moles of H2O (Li+•0.5 H2O). This result thus serves to demonstrate that Li+ cations are
not intercalated alone but rather along with the surrounding H2O molecules. This is in
agreement with what has previously been reported for CDCs [48] and MXene [49] phases
using aqueous electrolytes.
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Furthermore, X-ray absorption spectroscopy (XAS) was used to directly explore the
contribution of tungsten to the charge transfer process. Being a site-selective technique,
XAS provides information about both the electronic structure of the absorbing atom (i.e.,



Batteries 2023, 9, 136 9 of 16

its chemical state) and its local atomic environment (i.e., the bond distances, coordination
and geometry) on a very restricted scale (4–5 Å) [50].

Although various in-situ studies exist, only a few contain operando analyses performed
on materials exhibiting a pseudocapacitive mechanism. An obvious advantage of the
operando approach is the possibility of observing the changes occurring in real-time, thereby
avoiding any parasitic involvement related to relaxation. As the pioneers of this approach,
Goubard-Breteshé et al. [43] investigated the behavior of FeWO4 in aqueous electrolytes,
confirming the redox activity of Fe and the spectator role of W. Additionally, Robert
et al. [51] notably demonstrated the charge storage process on vanadium nitride films,
explaining their high capacitive performance.

Operando XAS was thus our technique of choice for monitoring the W redox activity in
the Li-HTB electrode in 5 M LiNO3. The W L3-edge electronic transition corresponds to
the transition of 2p3/2 electrons towards available 5d states, and the intensity of the peak
above the edge, called the white line (WL), is proportional to the 5d empty state. The shift
in edge energy is shown in Figure 5, where the normalized absorption in both reduction
and oxidation sweeps are displayed. This energy shift to lower values upon reduction
is attributed to the decrease in the binding energy of the W absorber core level [52,53],
meaning that W is being reduced from W6+ to W5+ due to the Li+ intercalation. As indicated
by the arrows, the spectra shift towards lower energy values upon reduction and then go
back to higher energy values upon oxidation. To precisely assess the W charge transfer
upon cycling, these spectra were associated with a respective potential value in the CV of
the Li-HTB (Figure 6A), such that each potential value is associated with a specific energy
value (Figure 6B). In this way, the shift in energy due to the sweep of potential towards
more negative values and then towards more positive values becomes even more apparent.
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Figure 6. (A) Cyclic voltammogram for Li-HTB at 2 mV.s−1 in 5 M LiNO3 (the colored dots represent
the XAS spectra acquisition selected for this representation). (B) Evolution of the W L3-edge energy
position as a function of the sweep of potential vs. Ag/AgCl.

Moreover, this behavior is not linear, as per the findings for the pseudocapacitive mate-
rials already reported in [54–56]. Indeed, within a potential window of 0.0 down to −0.4 V
vs. Ag/AgCl, the reduction current is steadily increasing, witnessing a pseudocapacitive-
like mechanism, while below −0.4 V, a clear intercalation process occurs (Figure 6A).
Subsequently, a quicker shift in W L3-edge is observed below this potential, leading to a
non-linearity in the plot (Figure 6B). This non-linearity indicates that such a mechanism
is not entirely pseudocapacitive, and intercalation must be the predominant process at
specific values of potential. The same observations are valid upon oxidation scans, where
Li+ de-intercalation is first observed with a rapid increase in W L3-edge, followed by a
more steady regime.

Figure 7A,B show the electrochemical signature in current vs. time, coupled with
the energy shift vs. #scan (spectra number). This representation makes it easier to follow
the shift in energy upon cycling, where the energy shift trend is visible when sweeping
from more negative to more positive potentials. In order to extract information on the
whole dataset, PCA (principal component analysis) and MCR-ALS (multivariate curve
resolution–alternating least squares) [57] analyses were performed. Owing to this strategy,
we were able to determine how many main components are involved in the electrochemical
process when the Li-HTB was being cycled in aqueous 5M LiNO3. Figure 7C displays the
concentration profile of the two principal components (blue and red) required to describe
the operando dataset. Figure 7D shows the reconstructed XANES spectra exhibiting different
W oxidation states. Moreover, it is worth noting that, over three cycles, the concentration of
the two components is periodic, indicating the good reversibility of the process.

Even though there is very little energy shift upon cycling, the fact that the redox
contributions are limited to the interface of the electrode/electrolyte, while the XAS mea-
surements performed in transmission mode are bulk sensitive, should be taken into account.
Furthermore, considering the reference samples of WO2 for W4+ and WO3 for W+6, with
an associated energy shift of ~1.0 eV translated to a difference of 2 e−, then it is possible to
estimate the number of electrons exchanged by the variation in energy for the Li-HTB. This
value was found to be ~0.1 e−, which agrees with the value extracted from the capacity
obtained during the electrochemical process.

The aforementioned visible faradaic contribution was indeed confirmed by the slight
energy shift in the W L3-edge position, thereby confirming a slight variation in the oxidation
state in the tungsten upon intercalation. Nonetheless, even though we managed to propose
a fitting mechanism explaining most of the depicted electrochemical behaviors, there
were still a few questions that kept arising whenever the concentration of the electrolyte
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changed. We, therefore, decided to investigate these instances, and the corresponding study
is presented in the next section.
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of the spectra number. The dotted lines indicate the values where the potential reaches −0.6 V and
goes back to 0.0 V vs. Ag/AgCl. (C) Concentration profile of the two principal components required
to describe the operando XAS spectra (blue and red). (D) Reconstructed XANES spectra of the two
independent components required to describe the Li HTB system.

3.4. Electrochemical Study Using Various Concentrations of LiNO3

To verify the effect of the salt concentration on the electrochemical signature, an
electrochemical study with different LiNO3 concentrations was performed. Firstly, the
number of water moles per Li+ moles in each electrolyte tested was determined to find out
if there were enough molecules available to form the associated hydration shells. We found
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95, 20, and 11 moles of H2O per 1 mole of Li+ for 10, 5, and 1 M of LiNO3 concentration,
respectively (see Figure 8A).
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The electrochemical response as a function of the salt concentration is shown in
Figure 8B. The CVs display a shift in the peak potentials to positive values when the
concentration of Li+ increases. Moreover, a clear trend linking the concentration and the
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potential is observed. The peak potential (cathodic and anodic) separation ∆E and the
average potential E1/2 (measured by taking the average of the difference between the
potential values of anodic and cathodic peaks) vs. the concentration of electrolyte are
reported in Figure 8B.

Figure 8C demonstrates that the E1/2 moves towards more positive potential values,
and the ∆E shrinks as the concentration increases. These changes occurring upon the
increase in concentration are probably caused by a decrease in the amount of the energy
required for the Li+ cations to intercalate into the lattice of the materials, thereby facilitating
intercalation and making it even more reversible [58]. If less water is available for the
Li+, then less water is available to form the associated hydration shells (around six water
molecules are needed for the first shell) [59–61]. Additionally, according to our conductivity
measurements, the conductivity of all the LiNO3 electrolytes (from 1 to 10 M) is sufficient to
provide ions at the desired sweep rate of 2 mV.s−1. Li+ cations can thus easily be desolvated,
improving their intercalation into the lithium hexagonal tungsten bronze phase. Moreover,
the Li+ intercalation takes place at a more positive potential value (vs. Ag/AgCl) when
the ratio of H2O to Li+ decreases. Furthermore, the effect observed upon the increase
in concentration is merely a result of using a water-based electrolyte and will thus not
occur with organic electrolytes, where concentrations as high as those used here cannot
be achieved. This, therefore, confirms the fact that the water surrounding the Li+ plays an
important role during Li+ intercalation into the Li-HTB phase.

4. Conclusions

In this study, LixWO3 hexagonal tungsten bronze (Li-HTB) was synthesized using
a low-temperature approach, producing elongated nanorod-like particles. Moreover, the
desired crystal structure was obtained, which is formed by assembled layers of corner-
sharing WO6 octahedra arranged in six-membered rings and giving rise to two kinds
of tunnels, triangular and hexagonal, along the c axis. This peculiar structure promotes
faradaic-like behavior, as evidenced by the redox peaks of its CV, and is due to the inter-
calation of Li+ into the water-based electrolyte, resulting in a capacity of ~71 C.g−1 and a
charge/discharge rate of a mere 10 min. Interestingly, the concentration of the electrolyte is
strongly correlated to the ability of Li+ to be desolvated and then intercalated into the lattice
of the material. EQCM confirmed that the Li+ intercalation mechanism is accompanied by
around 0.5 moles of H2O, which is to be expected, considering the half-empty hexagonal
cavities that can host some Li+ in addition to the water molecules surrounding a mole of
Li+. Furthermore, synchrotron operando XAS studies revealed that tungsten is responsible
for the charge compensation upon electrochemical cycling. Although the corresponding W
energy shift is minute, we were able to successfully identify two main components involved
in the electrochemical process using a chemometric approach, based on a combination
of PCA and MCR-ALS analyses. To conclude, this study serves to unveil the mechanism
involved in Li+ intercalation into the lattice of LixWO3, where W is reduced and oxidized
in a reversible process. Even though WO3 is a well-known material, we herein propose an
original and low-cost synthesis approach for obtaining LixWO3 possessing a suitable struc-
ture and remarkable electrochemical properties for fostering fast energy storage devices in
an aqueous electrolyte. Although the performance of such electrode materials are quite
modest compared to other materials (70 C.g−1 at 2 mV.s−1), our approach should trigger
innovative material engineering taking advantage of the knowledge acquired on lithium
hexagonal tungsten bronze.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/batteries9020136/s1, Figure S1: TGA analysis for the Li-
HTB sample; Figure S2: Rietveld refinement of Li0.167WO3(H2O)0.333. The final reliability factors
are Rp = 0.076, Rwp = 0.100, Rexp = 0.055, and R(F) = 0.046; Figure S3: Electronic density at 2e (0,0,z)
with z ~ 0.30 (max1) obtained after refining the WO3 model and performing Fourier difference
calculations; Table S1: Atomic coordinates of the Li0.167WO3.333 compound with a = 7.3328(3) Å,
c = 3.86243(18) Å, V = 179.859(12) Å3, and SG P6/mmm. Atomic displacement parameters (Å2),

https://www.mdpi.com/article/10.3390/batteries9020136/s1
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selected interatomic distances (Å), and bond valence sum calculations; Figure S4: Structure of the
Li0.167WO3.333 compound; Figure S5: (a) O3 atoms in the hexagonal cavity along the c-axis and O-O
distances and (b) Li-O distances (distances in angstroms); Figure S6: Schematic of EQCM setup;
Figure S7: Change of the motional resistance of Li-HTB on a Ti substrate in 5 M LiNO3 at 10 mV.s−1;
Figure S8: (A) Homogeneously coated quartz and (B) CV of bare quartz vs. CV of coated quartz
with Li HTB in 5M LiNO3 at 10 mV.s−1; Figure S9: Electrode drawing to be used in an operando cell
for XAS; Figure S10: Operando XAS cell. (A) Scheme of the cell indicating the 3-electrode setup and
(B) frontal view of the operando cell [26,62–68].
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