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Abstract
Self-organisation in robot swarms can produce collective behaviours, particularly through spatial self-organisation. For
example, it can be used to ensure that the robots in a swarm move collectively. However, from a designer’s point of
view, understanding precisely what happens in a swarm that allows these behaviours to emerge at the macroscopic
level remains a difficult task. The same behaviour can come from multiple different controllers (i.e. the control algorithm
of a robot) and a single controller can give rise to multiple different behaviours, sometimes caused by slight changes in
self-organisation. To grasp the causes of these differences, it is necessary to investigate the relationships between the
many methods of self-organisation that exist and the various behaviours that can be obtained. The work presented here
addresses self-organisation in robot swarms by focusing on the main behaviours that lead to spatial self-organisation of
the robots. First, we propose a unified definition of the different behaviours and present an original classification system
highlighting ten self-organisation methods that each allow one or more behaviours to be performed. An analysis, based
on this classification system, links the identified mechanisms with behaviours that could be considered as obtainable
or not. Finally, we discuss some perspectives on this work, notably from the point of view of an operator or designer.

Keywords
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formation

1 Introduction

The field of swarm intelligence studies complex systems
composed of agents with low capabilities that reveal a
so-called ‘intelligent’ behaviour once these agents are
interacting. These systems have many particularly interesting
properties including self-organisation, which is defined by
De Wolf and Holvoet as “a dynamical and adaptive process
where systems acquire and maintain structure themselves,
without external control” (De Wolf & Holvoet, 2004).

Interest in these self-organising systems has led to
the emergence of simulations that reproduce the self-
organisation present in nature in order to: study and
understand their mechanisms (e.g. in biology or physics),
reuse them in engineering contexts to solve a precise
problem, or even invent new self-organising systems. Swarm
robotics is one result of the study of these self-organising
systems. It adds new technical constraints to self-organising
systems not found in nature but has its own unique benefits
and uses, such as aiding in the exploration of dangerous
environments (Şahin, 2004).

Self-organisation in robot swarms can produce collective
behaviours from the unique actions and interactions of the
individual robots. However for designers, understanding
what creates these behaviours at the macroscopic level
remains a difficult task. On the one hand, very different
controllers (i.e. the algorithm that controls the robot) can
give rise to the same behaviour. On the other hand, a single
controller can cause several different behaviours to emerge:
by tuning one parameter, the behaviour of the swarm can
change drastically.

The main objective of this work is to review and
highlight the methods and mechanisms used in swarm self-
organisation in order to offer a new perspective for their
analysis. In this document, we define a mechanism as a
basic element participating in self-organisation, such as an
attraction or random movement. A method can be defined as
a composition of several mechanisms, which can lead to the
appearance of one or more collective behaviours. Finally, a
collective behaviour is a way the swarm organises itself, with
identifiable collective properties.

In swarm robotics, objective-based (e.g. flocking, forag-
ing, etc.) and method-based (e.g. virtual forces, artificial
evolution, etc.) classifications have been previously proposed
(Brambilla et al., 2013; Trianni & Campo, 2015; Bayındır,
2016; Rossi et al., 2018; Nedjah & Junior, 2019; Olaronke
et al., 2020; Schranz et al., 2020; Cheraghi et al., 2021).
Methods that are identical, but implemented differently or
for different objectives, are usually split up into different
categories. Similarly, the same method can be implemented
in different ways, for example, with finite state machines
or virtual forces. Moreover, these different classifications
mix behaviours that are at different levels of complexity. In
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fact, some of these behaviours are an assembly of several
elementary behaviours. These elementary behaviours can
therefore be seen as building blocks, which can be used alone
or in association with other building blocks to form complex
behaviours (Brambilla et al., 2013). Complex behaviours
allow the systems to complete higher-level and less abstract
objectives. An example of such complex behaviours is for-
aging, which could be viewed as an assembly of explo-
ration (Nauta et al., 2020), path formation (Vaughan et al.,
2000; Sperati et al., 2011) and sometimes collective trans-
port (Groß & Dorigo, 2009) behaviours.

In this article, we propose an original classification
system that brings together methods leading to similar
types of self-organisation. Each category combines models
and algorithms from past literature using the mechanisms
that we identified as necessary for self-organisation. This
categorisation does not take into account the type of
implementation (virtual force, finite state machines, etc..).
Instead, we focus on spatially self-organising systems
applied to swarms of robots. Spatially self-organising
systems are composed of elements that can organise
themselves in space without external control, thus giving
rise to static (e.g. an aggregate) and dynamic (e.g. an
aggregation) spatial properties at the macroscopic level. In
this work, we focus on the four spatial self-organisation
behaviours we identified as building blocks based on
past literature: aggregation, flocking, coverage and pattern
formation. The study of the methods leading to complex
behaviours, made up of elementary behaviours, will be the
subject of a future paper.

The next section aims to provide a common base by
presenting a unified, more specific definition of these
reference behaviours, from a historical point of view based
on past literature. Then, in section 3, we present our
classification system based on the methods that allow these
behaviours to appear. Section 4 is based on this classification
and proposes to analyse these different methods. From their
mechanisms, we investigate the collective behaviours that
could be considered as possible or impossible to obtain. In
section 5, we discuss the benefits and perspectives of this
classification system, and finally present our conclusions in
section 6.

2 Definition of behaviours

Earlier definitions of the behaviours studied in this article
are sometimes inconsistent across the past literature. The
same name can thus be used to qualify multiple different
behaviours (e.g. using the term “area coverage” for an
exploration behaviour), and behaviours may be defined or
interpreted differently by different authors. Therefore, in
order to be able to study the methods which lead up to these
behaviours, it is necessary to establish their boundaries. As a
result, four spatial behaviours of swarms were defined from
our analysis: aggregation, flocking, area coverage and pattern
formation.

2.1 Aggregation
Aggregation behaviour, observed in nature, has been studied
for many years by biologists, especially those studying

ecology, sociology and ethology (fields that analyse and
study the societies and organisation of living things).

Allee (1927) defines aggregation among animals as the
formation of “groups or clusters, more or less closely
associated, in which physical contact may, or may not,
occur”. This behaviour allows organisms to facilitate
their survival in hostile environments. For example, once
aggregated, they are able to act collectively to increase their
perceptions of the environment, regulate the temperature of
the group, or reproduce. This grouping can occur at specific
places of interest, defined by various favourable criteria, such
as humidity for cockroaches (Dambach & Goehlen, 1999) or
temperature for bees (Schmickl & Hamann, 2011).

In swarm intelligence, aggregation behaviour “constitutes
a pre-condition of most collective behaviours” (Şahin, 2004).
This has led to the development of multiple solutions for
reproducing and using this behaviour by applying it to
swarms of agents or robots.

Many definitions of aggregation behaviour are charac-
terised by the process of forming an aggregate, a cluster: “the
collecting of units or parts into a mass or whole” (Soysal &
Şahin, 2006), “the gathering of spatially distributed robots
into a single aggregate” (Arvin et al., 2014), “the gathering
of scattered robots to create a single aggregate” (Mısır et al.,
2020).

Another definition many authors agree on (Brambilla
et al., 2013; Trianni & Campo, 2015; Bayındır, 2016; Nedjah
& Junior, 2019; Olaronke et al., 2020; Schranz et al., 2020;
Cheraghi et al., 2021) states that aggregation is the grouping
of agents distributed in the environment so that they are
close enough to interact with each other. This definition
can be seen as more precise than the previous ones because
it provides a distance criterion that can be relied upon to
qualify an aggregate. The functional capacity of agents to
detect and interact with other agents is used as a distance for
considering two agents as aggregated.

With such a definition, we can identify two aggregated
agents and, by counting groups that match this criterion,
obtain the total number of aggregated agents. Nevertheless,
other metrics measuring the total distance between
agents (Soysal & Sahin, 2005; Mısır et al., 2020) can be
identified in the literature, with the aim of minimizing this
distance. These metrics show that it is sometimes necessary
to bring the agents of a swarm closer to each other, in
addition to being aggregated.

Allee (1927) proposed a distinction between two types
of aggregation. The first corresponds to social aggregations
without physical contact, which can be found among
birds (Emlen, 1952) and fish (Shaw, 1962). Agents are
close enough to interact but do not touch each other. When
agents are physically in contact with each other, he uses
the term “aggregation by physical contact”. The example
used to illustrate the complete expression of this aggregation
is that of organisms (such as Obelia, (Berrill, 1949)) that
grow in dense populations, physically connected to each
other throughout their lives. However, there are types of
organism that physically aggregate, if only temporarily, such
as emperor penguins (Gilbert et al., 2006).

We can thus define aggregation in the domain of swarm
intelligence as the grouping of agents spatially distributed in
the environment, so that they are at a sufficient distance to
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be able to interact. This definition covers specific cases of
aggregation such as aggregation by physical contact, or cue-
based aggregation requiring agents to be grouped together in
a particular location.

Aggregation can be defined as the grouping of agents
spatially distributed in the environment, so that they

are at an appropriate distance to interact.

2.2 Flocking

According to the Cambridge Dictionary*, to flock is defined
as “to move or gather together in large numbers”. This dual
meaning has caused an etymological confusion with the
use of ‘flock’ and ‘flocking’ in biology (Bajec & Heppner,
2009), and it is interesting to note that the same confusion
has remained in ichthyology with the terms ‘school’ and
‘schooling’ (Pavlov & Kasumyan, 2000). For example, what
we have just defined as aggregation (section 2.1) can
sometimes be expressed semantically by the use of flock
(of birds) and school (of fishes) (e.g. in Emlen, 1952). In
many cases, however, what is called flocking or schooling
refers to the observed capacity of individuals to remain
in the group and move in a coordinated and fluid way
without any contact (Shaw, 1962). Craig Reynolds (1987)
described ‘flocking’ as an aggregate motion, thus making the
distinction between aggregating birds and the movement of
aggregated birds.

These biological observations have led to the identification
of “social forces” in flocking (Emlen, 1952). An attractive
force brings organisms closer together. A repulsive force
keeps organisms away from each other, thus maintaining
a safe distance to avoid collisions. These two main forces
regulate the distance between the organisms in the aggregate.
Finally, an additional force allows the organisms to adjust
their velocity to that of their close neighbours.

Reynolds proposed the first realistic flocking
model (Reynolds, 1987), using agents called “Boids”
and “social forces” stated as rules (see section 3.2). This first
model opened a new branch of study of swarm intelligence.
The properties present in swarms of birds or schools of
fishes, for example, allow one to move a large number of
autonomous agents without losing any. A swarm can do
this despite obstacles on the way that may affect each unit
differently. As there are multiple biological inspirations, this
behaviour is often called “coordinated motion” (Brambilla
et al., 2013; Trianni & Campo, 2015; Schranz et al., 2020) or
“coordinated movement” (Nedjah & Junior, 2019; Cheraghi
et al., 2021). However, the term ‘flocking’ is still mostly
used in swarm intelligence (e.g. Hanada et al., 2007; Su
et al., 2009; Xiang et al., 2009; Liu et al., 2021b; Bezcioglu
et al., 2021), and represents the collective motion behaviours
of agents.

Flocking or coordinated motion can be defined as
the coordinated movement (i.e. similar speed

and direction) of an aggregate of autonomous agents.

According to Reynolds’ use of ‘flocking’, this definition
does not include the aggregation behaviour but focuses on
already aggregated individuals moving in a coordinated way.

2.3 Coverage
Area coverage is a behaviour that takes advantage of the
properties of agent swarms, with the objective of spatially
covering an area. Using several agents allows the swarm to
cover a larger area than a single agent could cover alone.

The area coverage of a swarm of robots can thus be used
in many applications such as searching for victims (Cardona
& Calderon, 2019), detecting intruders (Gage, 1992), or
simply exploring areas that are dangerous or difficult to
access (Şahin, 2004).

Gage (1992) defines area coverage as the implementation
of a spatial organisation adapting to its environment. In his
study this allowed him to increase the chances of detecting
intruders. He proposes three types of area coverage; “Blanket
coverage” allowing robots to be dispersed in the environment
in a static way so that they cover the largest possible area,
“Barrier coverage” allowing robots to be aligned like a
barrier, and “Sweep coverage” allowing agents to move
across an area to cover it, similar to a mobile barrier.

Other authors (Ugur et al., 2007; Mathews et al., 2012;
Panerati et al., 2018; Bayert & Khorbotly, 2019; Nedjah &
Junior, 2019; Olaronke et al., 2020) define area coverage as
the dispersion of a swarm of agents in the environment with
the objective of covering the largest possible area without
losing the communication link with the rest of the group.
This definition has the advantage of including the properties
of the aggregation behaviour that aims to maintain social
contact between the agents composing the swarm while
keeping the agents as far away as possible from each other.
However, some authors (Howard et al., 2002; Rutishauser
et al., 2009a) do not mention the need to maintain contact
between agents. Instead they focus mainly on maximising the
area covered, which leads to the loss of collective behaviour.
Consequently, the definition that involves maintaining the
communication link between agents seems more appropriate
as it keeps the notion of collective behaviour in the swarm.

Coverage can be defined as the maximum expansion
of an aggregate of autonomous agents.

This definition is distinct from the aggregation behaviour,
just as the previous definition, and focuses on already
aggregated individuals distancing themselves from one
another.

2.4 Pattern formation
Among aggregation behaviours, there are spatial organi-
sation behaviours (observable in nature in bacteria, (Ben-
Jacob, 2003) or crystals, (Langer, 1980) for example) that
lead to the emergence of a global form identifiable by the
organisation of the different elements composing it. In bac-
teria and crystals, this organisation is structured and regular
since a repeating geometric pattern can be observed.

In swarm intelligence, this type of behaviour is called
‘pattern formation’. This type of formation can also
be found in other more complex behaviours such as
“morphogenesis” (O’Grady et al., 2009; O’Grady et al.,
2012), and allows agents of a swarm capable of ‘self-
assembly’ (i.e. they are able to cooperate physically and

∗https://dictionary.cambridge.org/dictionary/english/flock
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Figure 1. Sankey diagram of four emergent robot swarms’ spatial behaviours (left) that can be obtained through the use of
self-organisation methods (right)

assemble themselves) to adopt a particular group structure
ultimately forming a single entity. This is inspired by the
behaviour with the same name observed in nature.

Brambilla et al. (2013) define pattern formation as the
deployment of agents in a regular and repeated manner
to form the desired pattern. Schranz et al. (2020) define
pattern formation as the formation of an identifiable shape by
observing the swarm from a global perspective. Nedjah and
Junior (2019) define pattern formation as the emergence of
an identifiable overall shape from the organisation of agents
to form a regular and repeated structure.

In the swarm robotics literature, overall shape either
emerges from the local organisation of robots (Spears et al.,
2004), or is predefined and guides their behaviour (Ruben-
stein et al., 2014; Dong & Sitti, 2020; Li et al., 2019).

We can thus define a pattern as being a regular and
repeated spatial structure between the agents, resulting in a
global shape at the swarm level.

Pattern formation can be defined as
the establishment of a regular and repeated spatial

structure between agents, forming an overall shape.

With the behaviours and their limits now defined, the
algorithms for obtaining them can be identified and classified
according to the self-organisation they generate in a swarm.
The main mechanisms used by the algorithms will allow us
to identify the ten reference methods we present in the next
section.

3 Self-organisation methods

The existing classifications for the self-organisation mecha-
nisms of robot swarms do not allow a fine-scaled analysis
of their behaviours. For example, Brambilla et al. (2013)
propose two approaches: a classification based on design
methods and a classification based on collective behaviour.
These types of classifications group together methods that
exhibit similar behaviours but do this in different ways. For
example, current classifications group all flocking algorithms
using virtual forces within the same category. However, there
are different methods of flocking with virtual forces, and dif-
ferent underlying mechanisms. The well-known Reynolds’
Boids model (Reynolds, 1987) uses attraction and repulsion
mechanisms, which the Vicsek’s model (Vicsek et al., 1995)
does not. Yet, they both lead to a flocking behaviour (see
sections 3.2 and 3.4). In the same way, the Reynolds’ Boids
model, initially intended for flocking, can be used for area
coverage (Mathews et al., 2012) by correctly adjusting the
weight of the rules, thus placing it in at least two separate
categories. Hence, these classifications do not have the nec-
essary level of detail to allow for this type of analysis.

As a result, a new classification system based on self-
organisation methods is required. To establish the different
categories, we grouped together the controllers and models
that use the same mechanisms. We identified ten different
categories of methods that lead to the previously defined
spatial behaviours of robot swarms (see Figure 1).
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Figure 2. Diagram of the probabilistic finite state machine of
aggregation behaviour from (Soysal & Sahin, 2005).

3.1 Random movement and wait
Behaviours: aggregation

Implementation: finite state machine, fuzzy logic

Starting from an initial state where agents are out of
interaction range from each other, they then move randomly
through the environment. When an agent encounters another
agent, it stops and waits for a time related to a given
probability, the absence or the presence of detected
neighbours and/or their number. (Bayindir & Sahin, 2009)
(see Figure 2). After a while, the agents end up forming an
aggregate.

Extensions to this basic strategy aim to speed up
and reinforce the aggregation. For example, an agent’s
probability of waiting or moving again can be determined
by the number of close neighbours (Correll & Martinoli,
2007), reinforcing a positive feedback loop that favours
waiting over the more numerous groups. If the agents react
to and emit sounds proportional to the number of agents
aggregated, grouping can be facilitated (Soysal & Sahin,
2005). Rather than navigating randomly, the agents will
locate the largest sound source, which is made up of several
agents each emitting a sound, and then move towards it.
In addition, the behaviour can be optimised using artificial
evolution and a neural network connected to the sensors and
actuators (Soysal et al., 2007).

When a cue-based aggregation is required, extensions add
the constraint of waiting at a specific location. This location
can be symbolised in a variety of ways; for example, by a
colour on the ground (Garnier et al., 2005; Firat et al., 2018).
Finally, rather than using probabilities, the ‘Hop-Count’
strategy or ‘Trophallaxis-inspired’ strategy (Schmickl et al.,
2006) can use agent’s internal or external perceptions as
conditions to decide either to keep waiting or leave. These
strategies necessitate the use of inter-agent communication.
Simply put, agents have an internal value that varies
depending on the circumstances and the agent’s location. The
agent can then choose whether or not to move and in which
direction, or to remain stationary, based on this value. The
‘Hop-Count’ and ‘Trophallaxis-inspired’ strategies can be
distinguished via the process of obtaining, propagating and
using the internal value.

Another popular model called Beeclust (Kernbach et al.,
2009; Schmickl & Hamann, 2011) falls within this category.
It is based on the temperature regulation behaviour of

Figure 3. Diagram of the Finite state machine of the
aggregation behaviour of Beeclust from (Kernbach et al., 2009).

bees that leads to a cue-based aggregation. Beeclust allows
agents to aggregate at a location of interest characterised
by luminance, representing the ideal temperature for bees.
Agents move in a straight line while checking for the
presence of another agent or an obstacle ahead. If an agent
encounters another agent, it will measure the local luminance
and wait. The higher the luminance, the longer the agent
will wait. Once the wait is over, the agent turns around and
goes straight ahead once more. When the agent encounters
an obstacle, it will also turn around and go straight ahead
(see Figure 3).

Beeclust has extensions to facilitate aggregation. For
example, landmarks in the environment can be used to help
agents orient themselves (Amjadi et al., 2021). By giving the
agents a temporary memory and communication capacity,
they become able to compare past values of measured
luminance with each other. Thus, they can obtain an overall
perception of luminance in the environment (Wahby et al.,
2019). It is also possible to modify the waiting time of
a stationary agent according to the density of neighbours
it perceives (Wahby et al., 2019). By adding pheromones
that agents release when they are in a waiting state (in
combination with the method presented in section 3.8),
they are able to attract other agents that encounter these
pheromones (Arvin et al., 2018). Sound can also be used to
attract agents in a similar way (Arvin et al., 2014). Finally,
some variants of Beeclust propose adding a group of deviant
agents preferring darkness (Bodi et al., 2012), testing several
light zones (Ramroop et al., 2018), or implementing Beeclust
using fuzzy logic (Mısır et al., 2020; Arvin et al., 2014).

3.2 Attraction, Alignment and Repulsion
Behaviours: flocking, coverage, aggregation, pattern for-
mation

Implementation: virtual forces, finite state machine

Craig Reynolds is known to have created the first
computer-animated, realistic simulation of a flock of
birds (Reynolds, 1987). Inspired by biologists’ observations
of bird flocks and schools of fish, his Boids (A ‘Boid’ is
the name given to the agents in Craig Reynolds’ flocking
simulation) are directed by three elementary rules modifying
their behaviour according to their close neighbours in a set
area of scope (without taking into account Boids in their
blind spot). The attraction rule of a Boid brings it closer to
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Figure 4. Diagram of the flocking model from Couzin et
al.(2002) applying the three rules on three distinct zones: ‘zor’
repulsion zone, ‘zoo’ orientation zone and ‘zoa’ attraction zone.

the average position of the Boids in a set area, allowing it to
form a group. The alignment rule brings the Boid’s velocity
(containing information about the speed and orientation of
the Boid) closer to the average velocity of its neighbours,
allowing the Boids to move in the same direction and at the
same speed. Finally, the repulsion rule keeps the Boid away
from all the Boids in a set area, thus maintaining a minimum
distance between Boids.

These three rules are the mechanisms necessary for self-
organisation to appear. Combined with random movement,
they allow the Boids in the simulation to encounter each
other and stay in contact, leading to aggregation behaviour,
before moving in a coordinated manner and causing flocking
to emerge. An extra rule can be added to allow agents
to move in environments with obstacles, allowing them
to bypass obstructions in their path. Using these three
mechanisms can even provide area coverage (Mathews et al.,
2012). Here, repulsion keeps agents away from each other,
while attraction maintains contact.

Some controllers do not apply these three rules to all
nearby agents. There are algorithms (Fetecau, 2011; Yasuda
et al., 2014; Cheraghi et al., 2020) using the three successive
detection zones from the controller of Couzin et al’s. (2002)
work. Such algorithms can also be found in the controller
simulating a school of fish in Aoki’s simulation (1982).
Each of the three zones corresponds to one of the three
rules. The rules then apply only to the agents present in
the corresponding zone (see Figure 4). Similarly, these three
rules may be implemented while using finite state machines
instead of virtual forces. Thus, the rules will then be called
upon according to the information obtained by the sensors
if they meet certain conditions corresponding to the three
zones for the three rules (Wilensky, 1998; Moeslinger et al.,
2009; Moeslinger et al., 2010).

Extensions can then be added to this method. For example,
the use of a leader (Leonard & Fiorelli, 2001; Fierro et al.,
2001; Payton et al., 2001), or informed agents (Ferrante
et al., 2012) can be incorporated to guide the direction of
the swarm. The work of Payton et al. (2001) seems to be
inspired by the Reynolds model, where only the attraction
and repulsion mechanisms are used to allow the flock to be
guided by a single leader. The leader has a greater repulsive
force than the other agents, which forces it to distance itself
from the group. However, the other agents have a weaker

repulsion force and are, therefore, attracted to the leader
when it moves away, which will then force the leader to move
away again. This is how movement is created.

By adding collective decision making, agents can also
consult each other to choose the direction to follow (Ferrante
et al., 2014). It is also possible to strengthen the group against
environments with obstacles disrupting communication
between agents (Bonnefond et al., 2021), or to have agents
not aligning themselves with others (Stranieri et al., 2011).

The different rules, implemented using virtual forces,
have weights that allow their intensity to be modified. For
example, by increasing the weight of the attraction rule,
attraction between neighbours is strengthened. Different
techniques can, therefore, be used for choosing the value of
the weights. The first is to arbitrarily choose the different
weights to obtain the desired behaviour. Another solution
is to use optimisation techniques such as reinforcement
learning (Hahn et al., 2019) or artificial evolution (Wood
& Ackland, 2007; Vásárhelyi et al., 2018; Ramos et al.,
2019) to obtain the optimal weights that best meet the desired
optimisation function. The last solution allows the weights of
the rules to be adapted during the simulation. For example,
they can be adjusted to identify the priority rule depending on
the number of elements detected in the environment (Hoang
et al., 2021).

Finally, Couzin et al. (2002) have shown that a torus can
be formed by modifying the radii of the different zones
of repulsion, orientation and alignment. If we consider the
torus as a pattern, it is then legitimate to consider that a
limited pattern formation behaviour can be obtained with
the ‘Attraction, Alignment and Repulsion’ method.

3.3 Preservation of connectivity
Behaviours: flocking, coverage, aggregation, pattern for-
mation

Implementation: graph theory, virtual forces, fuzzy logic

Some emerging behaviours are explicitly based on
connectivity preservation mechanisms (Tanner et al., 2003b;
Tanner et al., 2003a). The creation of a virtual graph allows
a swarm’s various agents to define their relations to each
other. The agents will then adjust their behaviour based on
where their neighbours are in the graph. Two rules, which
are the two mechanisms of this method, are applied to these
agents. The first alignment rule is similar to the one in the
‘Attraction, Alignment and Repulsion’ method (section 3.2).
The second rule combines the attraction and repulsion
mechanisms into a single potential function that precisely
controls the distance between the agents. The force generated
by this rule is proportional to the difference between the
desired distance and the distance between two agents. Unlike
the ‘Attraction, Alignment and Repulsion’ method, where the
distance between agents is determined by the equilibrium
of attraction and repulsion, this rule keeps the distance
between agents stable over time. We can see that attraction is
applied to each of the neighbours, not just on their centre
of mass. This is done by dissecting the potential function
and comparing it to the attraction and repulsion of the
‘Attraction, Alignment and Repulsion’ method. Moreover,
attraction will be stronger if the neighbour is far away,
and almost null if it is close. Finally, the agent will get
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closer to the distant agents more easily. The repulsion rule
is then applied to each neighbour, just as in the ‘Attraction,
Alignment and Repulsion’ method. The distance between
the agent and its neighbour is taken into account in this
case and, consequently, if the agent is too close, it will
be repelled exponentially. However, if it is far away, the
intensity of the repulsion will be almost zero. As a result, the
agent will prioritise moving away from agents too close to
them, reducing the risk of collision. The swarm’s movement
differs from that observed in nature and in the ‘Attraction,
Alignment and Repulsion’ method because the distance
between agents remains stable and the risk of collision and
swarm fracture is reduced (Tanner et al., 2003a).

The graph representing the relationships in the swarm
can be static (Tanner et al., 2003b) and defined at the start,
but this increases the risk of collisions because two agents
that are not directly linked in the graph can collide. It
is, therefore, necessary that all agents are linked to each
other. Consequently, the majority of controllers use dynamic
graphs (Tanner et al., 2003a; Olfati-Saber, 2006; Tanner
et al., 2007; Zavlanos et al., 2007; McCook & Esposito,
2007; Su et al., 2009; Wen et al., 2012; Ning et al., 2017; Dai
et al., 2019), modifying the relations between the agents
of the swarm according to their actual neighbours, as for
the ‘Attraction, alignment and repulsion’ method. Initially
implemented with virtual forces, this method can also be
implemented with fuzzy logic (Gu & Hu, 2008; Yu et al.,
2010).

Notably used for flocking behaviours, this method can
also be found in certain controllers that allow coverage
and pattern formation. The agents are able to move
away from each other without losing sight of each other
and thus disperse in the environment by maintaining a
structure among them that has the form of a communication
graph (McLurkin & Smith, 2004; De Silva et al., 2005; Ugur
et al., 2007; Panerati et al., 2018). The method can be used
to create patterns such as hexagons (Spears et al., 2004), or
to aggregate the agents of the swarm (Khaldi et al., 2018;
Khaldi et al., 2020; Berlinger et al., 2021). This aggregation
is facilitated by making the intensity of the rules between
agents dependent on the density of agents surrounding an
agent’s neighbour (Distance Weighted-K Nearest Neighbour
algorithm). Thus, an agent will apply its potential function
only on the first K agents with the highest densities.

3.4 Alignment and noise
Behaviours: flocking, aggregation

Implementation: virtual forces

This method, whose historical model is based on Vicsek’s
work (Vicsek et al., 1995), is another method of self-
organisation based on alignment and noise mechanisms.
Thus, this method allows agents to move in dynamic
aggregates, as for the flocking behaviour. Here, agents move
at a constant speed and update their direction according to
the average direction of the agents in their neighbouring area,
with the addition of a noise factor corresponding to a random
direction from a predefined interval. When a single agent
encounters a group (or another single agent), it will align
with the group, while also possibly influencing said group
slightly, and thus join the aggregate. Consequently, this

method is able to show aggregation behaviour. The distance
between the agents in the aggregate changes slightly because
there is no attraction or repulsion mechanism. However, the
constant noise that each agent experiences can cause changes
in the direction of the group. Without this constant noise, the
grouped agents would always move straight forward.

Extensions for this approach exist for anticipating the
change of direction of the neighbours according to their
current spin direction (Morin et al., 2015) and using adaptive
rules to accelerate the convergence of the direction of the
agents (Xiao et al., 2020; Liu et al., 2021a). Long-range
perception allows agents to observe distant agents in order to
adapt their behaviour. This seems to lead to longer navigation
before the group scatters (Zumaya et al., 2018). This solution
was applied to the Vicsek model, but can also be applied to
the Couzin et al. model (Couzin et al., 2002) and probably
to any other method that adapts the behaviour of agents
according to their neighbours.

3.5 Active Elastic Sheet
Behaviours: flocking

Implementation: virtual forces

The Active Elastic Sheet (AES) method provides
coordinated motion behaviour in a swarm. Unlike the
‘Alignment and noise’ method (section 3.4), which relies
solely on an alignment mechanism, this method employs
both attraction and repulsion mechanisms, but no explicit
alignment mechanism.

The different agents of the swarm are self-propelled
forward and connected by virtual elastic links, forming a
kind of stretchable membrane (Ferrante et al., 2013; Ban
et al., 2020; Liu et al., 2021b). Connections and distances
between agents are static and defined at initialisation
according to the position of the agents in relation to each
other. These connections do not break, no matter how much
tension the swarm may experience. These elastic links allow
a certain distance to be maintained between agents, pushing
away agents that are too close and attracting agents that
are too far. In the same way, unlike the ‘Preservation of
connectivity’ method in section 3.3, the rotation of an agent
will cause tension attracting or repelling the connected
agents. This maintains a consistent distance and alignment
in the swarm. Thus, the swarm will move and rotate like a
solid body around a barycentre. As a result of the distance
separating them from the barycentre, agents close to it must
slow, allowing agents further away to accelerate and cover
a greater distance. Reinforcement learning can also be used
to improve the behaviour of the agents that implement this
method (Bezcioglu et al., 2021).

3.6 Exploration and Beaconing
Behaviours: coverage, pattern formation

Implementation: gradient

The ‘Exploration and Beaconing’ (Payton et al., 2001;
Ludwig & Gini, 2006; Hoff et al., 2010; Bayert & Khorbotly,
2019) method mainly allows a swarm of agents to disperse
and explore an unknown environment while maintaining
communication with the rest of the group, resulting in a
coverage behaviour.
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Figure 5. Diagram describing various positioning techniques: (a) unit-center, (b) leader and (c) neighbour from (Balch & Arkin,
1998).

Figure 6. Diagram describing how flocking can emerge with Heroes and Cowards model. (I) All agents are cowards. Agent a
wants to avoid c hiding behind b. Agent b wants to avoid c hiding behind a. Agent c wants to avoid b hiding behind a. (II) The
agents end up aligning themselves. Each one wants to go ahead of the others at the same speed, so they end up going in a straight
line. (III) Another example of a potential flocking situation, with a hero agent (agent c), wanting to stand between the other two
agents, who are already moving in a straight line to avoid agent c.

The different agents in the swarm have two roles: beacons
and explorers. Beacons are immobile agents positioned in
the environment. They are used as landmarks to allow the
explorers to orient themselves. Thus, the explorers try to get
as far away from the beacons as they can without losing
communication. When an explorer has moved far enough
away from the beacons, and therefore recognises that it has
reached a correct position, it stops and becomes a beacon
itself. By becoming a beacon, the agent then obtains a
gradient value that all beacons have. This value represents
the distance separating the beacon from the origin of the
swarm and is dependent on the values of the neighbouring
beacons. The explorers can orient themselves and move away
in the right direction using the values communicated by the
beacons.

This mechanism can also be found in pattern formation
controllers, where agents have a gradient value and rely
on the gradient values of their stationary neighbours to
move and stop at the right moment. The computation of
each gradient value is determined by the predefined shape.
This method has been implemented by Kilobots (Rubenstein
et al., 2014), which are robots that only perceive other robots
when they are in contact with them. The pattern formation
proceeds as follows: four robots are initially placed forming
the origin of the shape and providing a reference frame (x,y).
The other robots will then move in turn along the other
robots in a clockwise direction. A robot stops and integrates
into the shape depending on one of two conditions: either
it reaches an edge of the shape, or it meets a neighbour
having the same gradient value as its own. There is an
extension (Wang & Zhang, 2021) that can accelerate the
formation of the shape by using several starting groups. An
older version of this method can also be found using cellular
automata to form three-dimensional shapes (Støy, 2003).
Pattern formation can also be obtained by proposing patterns

based on circles (Mamei et al., 2004). Here, all the agents are
explorers, except for those called barycentres. These agents
propagate a gradient value through the swarm. By reading
its gradient value, an agent is able to estimate whether it
is too far from the barycentre or not and then move closer
accordingly.

3.7 Relative position
Behaviours: pattern formation, flocking

Implementation: graph theory, virtual forces

It is possible to obtain different shapes in the swarm and
thus perform pattern formation by precisely positioning
the agents in relation to one another. In this approach, it
is sufficient to tell each agent just its graph neighbours’
positions, as well as its relative position and orientation
with respect to them, once the predefined final form has
been converted into a graph whose nodes represent the
swarm’s agents. The agents will search for their partners
and correctly position themselves in relation to them (Desai
et al., 2001; Shiell & Vardy, 2016; Li et al., 2017; Li
et al., 2019). It is also possible to define the position of
close neighbours without defining agents specifically. Thus,
the agents will try to arrange themselves with respect to
their neighbours’ conditions (Coppola et al., 2019) or their
polarities (Poulton et al., 2004). One can even obtain similar
results by positioning the agents relative to the centre of
mass of the group or to a leader (see Figure 5) rather
than to predefined neighbours (Balch & Arkin, 1998; Güzel
et al., 2017). Pattern formation can also be obtained by
allowing each agent to choose several nearby agents and
maintain a predefined position with respect to them in order
to form patterns like repeating triangles (Hanada et al.,
2007; Xiang et al., 2009). This approach allows the swarm
to move in a structured way to reach a goal position (Ge
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& Fua, 2005; Hanada et al., 2007; Xiang et al., 2009) as
a flocking behaviour without prior establishment of any
particular relationship between the agents.

This method is used in the ‘Heroes and Cowards’ (Wilen-
sky & Rand, 2015) model, which positions each agent in
a specific manner in relation to the positions of two other
agents chosen at initialisation. One will be considered a
friend, and the other an enemy. If the agent plays the role of
hero, it will place itself between its friend and its enemy. If
the agent plays the role of coward, it will place itself behind
its friend relative to its enemy. Thus, aggregation, flocking
(see Figure 6) and several other behaviours can be observed.
However, these behaviours are not systematic because they
are dependent on the perception capacities of the agents and
on their initial state (i.e. their position, their role and their
choice of agents).

3.8 Stigmergy
Behaviours: coverage

Implementation: finite state machine

Stigmergy is an indirect coordination mechanism through-
out an environment. An agent leaves a trace in the environ-
ment that will impact the actions of other agents upon discov-
ering the trace. This mechanism can be observed in nature,
notably the recruitment mechanism of ants that explore
the environment in search of food by leaving pheromones
on the path between the food and the nest and attracting
other ants thus forming a chain. This is also known as
foraging (Bonabeau et al., 1999).

It is possible to achieve area coverage using this method.
While moving, agents lay virtual pheromones and avoid
the pheromones of other agents. The agents can move
randomly (Hunt et al., 2019) or by making circles with
their direction changing if the agent comes into contact
with a virtual pheromone (Ranjbar-Sahraei et al., 2012). As
agents try to permanently avoid the pheromones released
by the other agents, the swarm will end up dispersing.
This allows the swarm to accomplish several goals, e.g.
dynamically covering an area or exploring. However, with
random movement (Hunt et al., 2019), the agents end up
dispersing without remaining in a group, which is contrary
to the definition of coverage in section 2.3. In contrast, when
agents form circles, they move away from each other in a
predefined manner and stop moving when they no longer
encounter pheromones. Thus, the agents thus remain at the
edge of their neighbours’ perception, keeping them grouped
together.

3.9 Machine learning
Behaviours: flocking, aggregation, pattern formation

Implementation: neural network, artificial evolution, deep
reinforcement learning

Machine learning is a field with many techniques for
optimising and/or generating solutions automatically, thus
simplifying the obtention of certain collective behaviours.
Several examples use neural networks associated with
artificial evolution or deep reinforcement learning to induce
self-organisation in a swarm, allowing the desired behaviour
to appear.

Figure 7. Diagram describing a neural network connecting the
robot’s sensors and actuators, from Baldassarre et al. (2003).

Using this approach, the neural network of an agent
receives input values from the sensors and generates an
output value for the actuators (see Figure 7). Thus, the
agent’s perceptions will modify its behaviour. However, in
order for the behaviour to be coherent, and to generate
the desired collective behaviour, it is necessary to carry
out an artificial evolution or a deep reinforcement learning
process (Bäck & Schwefel, 1993).

The artificial evolution process involves a fitness function,
determined beforehand, that represents the quality of the
expected behaviour. For example, the quality of aggregation
may be measured with the number of aggregated agents, or
the time needed to obtain one aggregate. A fitness function
can focus on the quality of flocking by measuring whether
the agents are aligned or the number of groups. Once the
fitness function has been determined, the neural network will
evolve through a process of mutation and selection until the
desired result is achieved. For this reason, this process may
be used to obtain aggregation (Trianni et al., 2003; Bahgeçi
& Sahin, 2005; Gauci et al., 2014) or flocking (Baldassarre
et al., 2003; La et al., 2010) behaviours.

The deep reinforcement learning process combines
reinforcement learning and deep learning (Azar et al.,
2021). Thus, it involves rewards usually generated by the
environment, that each robot tries to maximize by adapting
its behaviour through trial and error. Deep learning is used to
help the robot find the best policy by representing this policy
with a neural network of which the weights are adjusted
through time. Flocking (Salimi & Pasquier, 2021) and
pattern formation (Sharma et al., 2022) are two examples of
collective behaviours that can be obtained with this method
and process.

With this method, however, even if the behaviours at the
swarm level are identifiable, the behaviour of the agents
is like a black box, making it difficult to identify the
mechanisms.

3.10 Environmental constraints
Behaviours: coverage, pattern formation

Implementation: virtual forces, Voronoı̈, graph theory

The ‘Environmental constraints’ method uses the evolving
environment to add new constraints to the agents. These
constraints then influence the agents’ behaviour, which will
lead to changes in the self-organisation of the swarm and,
thus, create a new organisation. The environment is not
modified by the agents in this section, as could be done using
the ‘Stigmergy method’ in section 3.8. Here, the environment
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Figure 8. Diagram of the decomposition of an area into Voronoı̈
cells, from Yang et al. (2015). Each point is an agent allocated
to a cell.

is modified by an external control, but the organisation of the
system remains autonomous.

Using this approach, the behaviour of a swarm may be
influenced through the environment. For example by taking
inspiration from sea currents, the earth’s topography, or the
wind. Thus, it is possible to cover the environment with
virtual forces, usually exerted by an external control. An
agent moving in the environment will experience a force
that modifies its trajectory. This force has a direction and
an intensity, and changes according to the position of the
agent in the environment. Then, by drawing an overall shape
in the environment using virtual forces, the agents will be
attracted into the shape or its outline, making a solid or
hollow shape emerge, respectively (Mong-ying & Kumar,
2006; Hsieh et al., 2008; Barnes, 2008; Dong & Sitti, 2020).
In the same way, these forces can be used to avoid obstacles,
repelling agents that approach them (Howard et al., 2002).
Further examples of the application of environmental virtual
forces on particles can be found in the amorphous computing
programming paradigm (Kolling et al., 2015; Bachrach et al.,
2010), which requires a high density of particles to be
effective.

Furthermore, by using knowledge of the environment,
different breakdowns of an environment can be used to
assign a position to the agents. The breakdowns provided
by Voronoı̈ cells (Aurenhammer, 1991) make it possible to
divide an area into several smaller zones allocated to the
agents of the swarm (Yang et al., 2015) (see Figure 8). The
agents can then move freely in the zone that was allocated to
them, or simply remain stationary.

Moreover, by exploring an environment, a swarm of
agents can break it down and represent it in the form of
a graph, formed as a result of each agent’s contribution.
The agents will then disperse into the environment by
spreading out on this virtual graph and moving along the
links between the nodes (Rutishauser et al., 2009a). Breaking
down a predefined shape rather than the environment can
also allow the agents to position themselves into a pattern
formation (Spletzer & Fierro, 2005; Turpin et al., 2013).
This breakdown can be done with Voronoı̈ cells (Alonso-
Mora et al., 2011) or with a graph (Liu & Shell, 2014).

4 Analysis

In section 3, we presented different self-organisation
methods, each leading to one or several reference spatial
behaviours. The aim of this section is to identify any
associations between mechanisms and collective behaviours,
as we have defined these in section 2, which have been
asserted from our methods. On the one hand, connections
that may be considered impossible due to the intrinsic
principles of the mechanisms: for example, the wait
mechanism of the ‘Random movement and wait’ method
seems to prevent the formation of a coordinated movement
of aggregated agents. On the other hand, to the best of
our knowledge, there are methods that have not yet been
proposed in the literature for obtaining specific collective
behaviours, despite the fact that they may be suited to it.
Each of the methods identified in this article is examined
in this section and summarised in Table 1, which also
includes past articles studied in relation to the methods
and used to outline specific emergent behaviours. This
section and Table 1 pave the way for the production of a
future ‘design guide’, useful to any designer looking for
a specific behaviour, stating the different existing solutions
for obtaining this behaviour, and presenting the constraints
for each solution. In addition, this section and Table 1 can
be used as a starting point for investigating solutions that
have not yet been studied. We discuss this point further in
section 5.

4.1 Random movement and wait
As seen in past literature, the ‘Random movement and wait’
method can be used for the aggregation (Bayindir & Sahin,
2009) of agents distributed in an environment. Flocking
should not be possible with this method because agents move
randomly and synchronise with other agents by forming an
immobile aggregate. It is critical that agents move in groups
in order for flocking to occur. Here, when the agents are
grouped together, they are immobile. Moreover, when they
move, it is individually and randomly. Pattern formation
should be possible within a cue-based aggregation, where the
shape projected on the environment (e.g. with light) guides
the agents. The mechanisms of this method do not seem to
prevent the formation of a coverage behaviour. However, the
only article we found in the literature mentioning coverage,
and using a similar version of this method, applies to a very
specific environment and does not seem to fit our definition
of coverage (Rutishauser et al., 2009b).

4.2 Attraction, Alignment and Repulsion /
Alignment and noise

As shown in the literature, the ‘Attraction, Alignment and
Repulsion’ method can be used for flocking (Reynolds,
1987), aggregation (Reynolds, 1987) and coverage (Mathews
et al., 2012). Meanwhile, the ‘Alignment and noise’ method
allows flocking and aggregation (Vicsek et al., 1995).
Unlike the ‘Attraction, Alignment and Repulsion’ method,
the ‘Alignment and noise’ method lacks a mechanism for
adjusting the distance between agents, meaning that they
cannot be moved further apart for area coverage or moved
precisely relatively to each other for pattern formation.
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4.3 Preservation of connectivity
From the literature we can see that the ‘Preservation of
connectivity’ method can be used for aggregation (Khaldi
et al., 2018), flocking (Tanner et al., 2003a), area cov-
erage (McLurkin & Smith, 2004) and pattern forma-
tion (Spears et al., 2004) where the shape emerges from
the interactions between robots. Given the strength of the
links between agents and the fact that the swarm can be
represented as a graph, it should also be possible to predefine
a shape and break it down to be represented by a graph where
each node is represented by an agent. When the agents begin
to move to their corresponding node positions, they should
form the shape. However, one drawback of this method is
the problem presented by Tanner et al. (2003b), involving
collisions between agents that are not direct neighbours in
the static graph. It can be hypothesised that a new rule could
be applied to these agents to solve this issue.

4.4 Active Elastic Sheet
The ‘AES’ method mechanisms consist in relatively strong
attraction and repulsion, carried by static virtual links
created in the initial state. Adding self-propulsion of agents
allows flocking (Ferrante et al., 2013). These mechanisms
alone lead to an immutable structure, thus preventing the
integration of isolated agents, the increase of distance
between them to cover an area, and the emergence of a
pattern.

However, if the length of the virtual links were modifiable
at any time, this method could perform coverage and pattern
formation. One could imagine that increasing the length of
all the links to the perception limit of each agent would lead
to coverage. If the agents are placed in a particular pattern in
the initial state, they should be able to maintain that pattern.
On the contrary, to obtain an emergent pattern, one could take
inspiration from the ‘Relative position’ method and use the
distances between linked agents to place them. This would
require making each virtual link modifiable by the agents
independently of the other link lengths.

4.5 Exploration and Beaconing
The ‘Exploration and Beaconing’ method can be used
for area coverage (Ludwig & Gini, 2006) and pattern
formation (Rubenstein et al., 2014). It is conceivable that
a pattern could eventually be obtained, as the agents are
placed at homogeneous distances from each other. However,
flocking may not be possible because the agents eventually
stop and do not move in groups. Meanwhile, even though
most algorithms start from an initial state where the agents
are aggregated, it should be possible to achieve aggregation if
the agents are scattered beforehand. The random movement
mechanism (a priori present in the method) should allow
agents to explore the environment until they encounter a
beacon. They should then be expected to maintain contact
with these beacons.

4.6 Relative position
The ‘Relative position’ method can be used for pattern
formation (Hanada et al., 2007; Desai et al., 2001) and
flocking (Ge & Fua, 2005). By increasing the distance

Figure 9. Finite state machine of an agent’s behaviour with the
combination of the ‘Random movement and wait’ method and
‘Stigmergy’ method, from Arvin et al. (2018).

between the agents of an aggregate, it is even possible to
perform area coverage. Finally, the method allows contact
between agents to be maintained. Thus, when encountering
a group, agents are able to join it. Except in particular cases
where agents are only linked to a set group of other agents,
this means they are able to form an aggregate.

4.7 Stigmergy

The ‘Stigmergy’ method is mostly used to attract or
repel agents, depending on the information carried by the
pheromones. As such, it can be used for coverage (Ranjbar-
Sahraei et al., 2012), when pheromones repel other agents.
When the agents release pheromones that attract other
agents, it becomes possible to facilitate the gathering of
the swarm. In this way, Arvin et al. (2018) have shown
that combining this method with the ‘Random movement
and wait’ method leads to a (faster) aggregation: the agents
follow the pheromone gradient when they are detected,
guiding their random movement, and drop pheromone when
they wait (see Figure 9).

However, to the best of our knowledge, in the literature
the ‘Stigmergy’ method alone has not been proved to be a
successful way to obtain aggregation. Likewise, we could
not find any articles demonstrating the use of this method
to obtain flocking or pattern formation. Because agents
communicate through their environment, it is not impossible
to imagine a strategy for coordinating agents so that they can
perform these behaviours.

4.8 Machine learning

The ‘Machine learning’ method can be used for aggrega-
tion (Trianni et al., 2003), flocking (Baldassarre et al., 2003;
Salimi & Pasquier, 2021) and pattern formation (Sharma
et al., 2022). It is reasonable to assume that the other
behaviours can be obtained with the right fitness func-
tion or the correct reward mechanism. Several difficulties
remain to be overcome, including finding the right fitness
function or decomposing the overall reward into individual
rewards (Brambilla et al., 2013). Additionally, there is no
guarantee that the artificial evolution will converge to a
solution, despite its computational cost.
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Table 1. Summary table of self-organisation methods leading to the apparition of collective behaviour. The symbol ‘?’ indicates that
the behaviour may be conceivable with this method, whereas the symbol ‘ø’ indicates that the behaviour does not seem to be
obtainable, based on the analysis of methods in section 4.

Self-
organisation

methods
Aggregation Flocking Coverage Pattern formation

Random
movement
and wait

(Bayindir & Sahin, 2009; Correll &
Martinoli, 2007; Soysal & Sahin,

2005; Soysal et al., 2007; Garnier
et al., 2005; Firat et al.,
2018; Schmickl et al.,
2006; Kernbach et al.,

2009; Schmickl & Hamann,
2011; Amjadi et al., 2021; Wahby

et al., 2019; Arvin et al.,
2018; Arvin et al., 2014; Bodi et al.,
2012; Ramroop et al., 2018; Mısır

et al., 2020)

ø ? ?

Attraction,
Alignment and

Repulsion
(Reynolds, 1987)

(Reynolds, 1987; Fetecau,
2011; Yasuda et al.,

2014; Cheraghi et al.,
2020; Couzin et al., 2002; Aoki,

1982; Wilensky, 1998; Moeslinger
et al., 2009; Moeslinger et al.,

2010; Leonard & Fiorelli,
2001; Fierro et al., 2001; Ferrante

et al., 2012; Ferrante et al.,
2014; Bonnefond et al.,

2021; Stranieri et al., 2011; Hahn
et al., 2019; Wood & Ackland,

2007; Vásárhelyi et al.,
2018; Ramos et al., 2019; Hoang

et al., 2021)

(Mathews et al., 2012) (Couzin et al., 2002)

Preservation
of connectivity

(Khaldi et al., 2018; Khaldi et al.,
2020; Berlinger et al., 2021)

(Tanner et al., 2003b; Tanner et al.,
2003a; Olfati-Saber, 2006; Tanner

et al., 2007; Zavlanos et al.,
2007; McCook & Esposito,

2007; Su et al., 2009; Wen et al.,
2012; Ning et al., 2017; Dai et al.,
2019; Gu & Hu, 2008; Yu et al.,

2010)

(McLurkin & Smith, 2004; De Silva
et al., 2005; Ugur et al.,

2007; Panerati et al., 2018)
(Spears et al., 2004)

Alignment and
noise (Vicsek et al., 1995)

(Vicsek et al., 1995; Morin et al.,
2015; Zumaya et al., 2018; Xiao

et al., 2020; Liu et al., 2021a)
ø ø

AES ?
(Ferrante et al., 2013; Ban et al.,
2020; Liu et al., 2021b; Bezcioglu

et al., 2021)
? ø

Exploration
and

Beaconing
? ø

(Ludwig & Gini, 2006; Hoff et al.,
2010; Bayert & Khorbotly,
2019; Payton et al., 2001)

(Rubenstein et al., 2014; Wang &
Zhang, 2021; Mamei et al.,

2004; Støy, 2003)

Relative
position ? (Ge & Fua, 2005; Hanada et al.,

2007; Xiang et al., 2009) ?

(Hanada et al., 2007; Xiang et al.,
2009; Desai et al., 2001; Shiell &

Vardy, 2016; Poulton et al.,
2004; Balch & Arkin, 1998; Güzel

et al., 2017; Li et al., 2017; Li et al.,
2019; Coppola et al., 2019)

Stigmergy ? ? (Ranjbar-Sahraei et al., 2012; Hunt
et al., 2019) ?

Machine
learning

(Trianni et al., 2003; Bahgeçi &
Sahin, 2005; Gauci et al., 2014)

(Baldassarre et al., 2003; La et al.,
2010) ? (Sharma et al., 2022)

Environmental
constraints ? ? (Howard et al., 2002; Yang et al.,

2015; Rutishauser et al., 2009a)

(Mong-ying & Kumar, 2006; Hsieh
et al., 2008; Barnes, 2008; Dong &

Sitti, 2020; Spletzer & Fierro,
2005; Turpin et al.,

2013; Alonso-Mora et al., 2011; Liu
& Shell, 2014)

4.9 Environmental constraints

The ‘Environmental constraints’ method can be used
for pattern formation (Mong-ying & Kumar, 2006) and
coverage (Howard et al., 2002). However, as this method’s
inspirations come from sea currents or topology, one could
imagine that flocking and aggregation could be obtained.
One of the difficulties lies in correctly designing the
environment for the external control that will be applied on
the autonomous robots. This can be seen as a top-down-like
approach, with all the implied uncertainties arising from the
complex nature of swarms.

5 Discussion

This classification system presented in section 3 highlights
the unique aspects of each method, showing their differences
and their specificities. One of the outcomes of the analysis
of the methods in section 4 is the identification of those
methods that have not yet been used to obtain a specific
collective behaviour. This opens up the possibility to explore
potential solutions, represented with a ‘?’ in Table 1, such as
the use of the ‘Stigmergy’ and ‘Environmental constraints’
methods to obtain flocking. The same approach could be
used to further explore the capabilities of existing methods.

Prepared using sagej.cls



A. Hénard et al. 13

Taking the ‘Active Elastic Sheet’ method as an example,
this method is known to be capable of generating flocking
behaviour. It would be interesting to further explore the
identified potential behaviours this method could produce
based on Table 1, such as aggregation or coverage.

We also believe that this classification system facilitates
the comprehension of the mechanisms of the studied
methods. This comprehension and the resulting analysis
should make it easier to imagine the methods that could
be combined in order to obtain a specific collective
behaviour. For example, the mechanisms of the ‘Stigmergy’
or the ‘Environmental constraints’ method could be used
as additions to other methods since they allow information
to be communicated to agents via the environment, and
can influence the behaviour of an agent without necessarily
replacing it. In fact, such combination already exists and
can be observed, for example, in the work of Arvin et
al. (2018) where the robot’s behaviour based on the ‘Random
movement and wait’ method is extended with the use of
pheromones (‘Stigmergy’ method) to facilitate aggregation,
as detailed in section 4.7.

The production of a future ‘design guide’ is one of the
direct perspectives of this work. A formal study with a
systemic approach, for example, could help to confirm the
behaviours that can or cannot be obtained by each method.
To illustrate the role of such a guide, let us imagine a
hypothetical use case where a designer must achieve a
pattern formation behaviour in a swarm simulating a flock of
birds. Using the guide based on Table 1, six solutions can be
easily and quickly identified for pattern formation. However,
there are not many methods that can simulate realistic bird
flight behaviour. Consequently, the designer decides to use
a model based on the ‘Attraction, Alignment and Repulsion’
method such as Reynolds’ Boids model or the Couzin model,
which are known for their ability to realistically simulate
bird flight. Another use case could be a designer seeking to
achieve a flocking behaviour with a swarm of UAVs. The
guide based on Table 1 would state that six different methods
can lead to flocking. However, this swarm must maintain
a stable formation and avoid collisions among its agents.
Based on the description of each method in section 3, the
designer could quickly see which methods could be used and
which methods to dismiss. As an example, a relevant choice
could be to implement the ‘Preservation of connectivity’
(see 3.3) method, which would meet the requirements given.

In addition, this document showcases different studied
behaviours according to their self-organisation methods. We
found that a single method can be used to generate many
different behaviours, sometimes just by changing a single
parameter. Because of such factors, it is difficult to predict
which behaviour a method will produce, or if a collective
behaviour will appear at all (Gravagne & Marks, 2007).
Moreover, even if the desired behaviour is obtained, there is
no guarantee that it will remain consistent. Depending on the
circumstances, the behaviour could display a change in its
properties or result in a completely new behaviour altogether.
From these revelations, the questions arise of how we could
predict the evolving behaviour of a swarm and how we could
assist the operator in understanding it.

From the definitions presented in section 2, it is possible
to break down the various behaviours studied into simple

properties by which they can be characterised. This can
enable us to sort these basic properties with metrics and
represent them quantitatively. For example, flocking is
defined by the property “agents move in the same direction”.
The ‘Order’ metric (Vicsek et al., 1995) is often used in the
literature to evaluate this property. Thus, when this metric
gives a value close to one, the group moves in the same
direction. On the contrary, when it is close to zero, the agents
go in different directions. Moreover, since this metric is not
binary, it can offer a fairly precise characterisation of the
swarm’s current state. By reproducing this approach for the
different properties of each studied behaviour, we can then
obtain a set of indicators to characterise the state of the
swarm.

Finally, facilitating the comprehension of the mechanisms
of the studied methods should also provide a greater
understanding of their dynamics. It is, thus, possible to
imagine future designers or operators being able to analyse a
swarm’s dynamics in real time by combining the various data
collected here. This analysis could then be used to propose
indicators for an observer, for identifying the essential
information needed to create a mental model of the swarm
and communicating it effectively and simply to others. As a
result, the observer could build a mental model that would
allow them to interpret changes in the swarm without having
to observe the swarm’s agents one by one (Kolling et al.,
2015). These indicators could, for example, convey the
stability of the swarm, or the risks that the swarm is facing,
such as the splitting up of an aggregate.

6 Conclusion
In swarm intelligence, it is difficult to understand how self-
organisation leads to the emergence of collective behaviours.
The classification system proposed in this document offers
a new perspective by highlighting the methods of self-
organisation of a robot swarm. This new perspective led us
to perform an analysis to better understand the mechanisms
that give rise to different elementary spatial behaviours.
Complex behaviours, made up of elementary behaviours,
will be the subject of a future classification and analysis.
The presented cross-analysis also paves the way for defining
metrics that allow external observers to better understand
the underlying mechanisms of self-organisation, thus aiding
further development of self-organised systems.
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Bäck, T. & Schwefel, H.-P. (1993). An overview of
evolutionary algorithms for parameter optimization.
Evolutionary computation, 1(1), 1–23.
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Güzel, M. S., Gezer, E. C., Ajabshir, V. B. & Bostancı,
E. (2017). An adaptive pattern formation approach for
swarm robots. In 2017 4th International Conference
on Electrical and Electronic Engineering (ICEEE) (pp.
194–198).

Hahn, C., Phan, T., Gabor, T., Belzner, L. & Linnhoff-
Popien, C. (2019). Emergent escape-based flocking
behavior using multi-agent reinforcement learning.
arXiv preprint arXiv:1905.04077.

Hanada, Y., Lee, G. & Chong, N. Y. (2007). Adaptive
flocking of a swarm of robots based on local interactions.
In 2007 IEEE Swarm Intelligence Symposium (pp. 340–
347).

Hoang, D. N., Tran, D. M., Tran, T.-S. & Pham, H.-A.
(2021). An adaptive weighting mechanism for reynolds
rules-based flocking control scheme. PeerJ Computer
Science, 7, e388.

Hoff, N. R., Sagoff, A., Wood, R. J. & Nagpal, R. (2010).
Two foraging algorithms for robot swarms using only
local communication. In 2010 IEEE International
Conference on Robotics and Biomimetics (pp. 123–130).
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