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Self-organisation in robot swarms can produce collective behaviours, particularly through spatial self-organisation. For example, it can be used to ensure that the robots in a swarm move collectively. However, from a designer's point of view, understanding precisely what happens in a swarm that allows these behaviours to emerge at the macroscopic level remains a difficult task. The same behaviour can come from multiple different controllers (i.e. the control algorithm of a robot) and a single controller can give rise to multiple different behaviours, sometimes caused by slight changes in self-organisation. To grasp the causes of these differences, it is necessary to investigate the relationships between the many methods of self-organisation that exist and the various behaviours that can be obtained. The work presented here addresses self-organisation in robot swarms by focusing on the main behaviours that lead to spatial self-organisation of the robots. First, we propose a unified definition of the different behaviours and present an original classification system highlighting ten self-organisation methods that each allow one or more behaviours to be performed. An analysis, based on this classification system, links the identified mechanisms with behaviours that could be considered as obtainable or not. Finally, we discuss some perspectives on this work, notably from the point of view of an operator or designer.

Introduction

The field of swarm intelligence studies complex systems composed of agents with low capabilities that reveal a so-called 'intelligent' behaviour once these agents are interacting. These systems have many particularly interesting properties including self-organisation, which is defined by De Wolf and Holvoet as "a dynamical and adaptive process where systems acquire and maintain structure themselves, without external control" [START_REF] De Wolf | Emergence and selforganisation: a statement of similarities and differences[END_REF].

Interest in these self-organising systems has led to the emergence of simulations that reproduce the selforganisation present in nature in order to: study and understand their mechanisms (e.g. in biology or physics), reuse them in engineering contexts to solve a precise problem, or even invent new self-organising systems. Swarm robotics is one result of the study of these self-organising systems. It adds new technical constraints to self-organising systems not found in nature but has its own unique benefits and uses, such as aiding in the exploration of dangerous environments (S ¸ahin, 2004).

Self-organisation in robot swarms can produce collective behaviours from the unique actions and interactions of the individual robots. However for designers, understanding what creates these behaviours at the macroscopic level remains a difficult task. On the one hand, very different controllers (i.e. the algorithm that controls the robot) can give rise to the same behaviour. On the other hand, a single controller can cause several different behaviours to emerge: by tuning one parameter, the behaviour of the swarm can change drastically.

The main objective of this work is to review and highlight the methods and mechanisms used in swarm selforganisation in order to offer a new perspective for their analysis. In this document, we define a mechanism as a basic element participating in self-organisation, such as an attraction or random movement. A method can be defined as a composition of several mechanisms, which can lead to the appearance of one or more collective behaviours. Finally, a collective behaviour is a way the swarm organises itself, with identifiable collective properties.

In swarm robotics, objective-based (e.g. flocking, foraging, etc.) and method-based (e.g. virtual forces, artificial evolution, etc.) classifications have been previously proposed [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF][START_REF] Trianni | Fundamental collective behaviors in swarm robotics[END_REF][START_REF] Bayındır | A review of swarm robotics tasks[END_REF][START_REF] Rossi | Review of multi-agent algorithms for collective behavior: a structural taxonomy[END_REF][START_REF] Nedjah | Review of methodologies and tasks in swarm robotics towards standardization[END_REF][START_REF] Olaronke | A systematic review of swarm robots[END_REF][START_REF] Schranz | Swarm robotic behaviors and current applications[END_REF][START_REF] Cheraghi | Past, present, and future of swarm robotics[END_REF]. Methods that are identical, but implemented differently or for different objectives, are usually split up into different categories. Similarly, the same method can be implemented in different ways, for example, with finite state machines or virtual forces. Moreover, these different classifications mix behaviours that are at different levels of complexity. In fact, some of these behaviours are an assembly of several elementary behaviours. These elementary behaviours can therefore be seen as building blocks, which can be used alone or in association with other building blocks to form complex behaviours [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF]. Complex behaviours allow the systems to complete higher-level and less abstract objectives. An example of such complex behaviours is foraging, which could be viewed as an assembly of exploration [START_REF] Nauta | Enhanced foraging in robot swarms using collective lévy walks[END_REF], path formation [START_REF] Vaughan | Blazing a trail: insect-inspired resource transportation by a robot team[END_REF][START_REF] Sperati | Self-organised path formation in a swarm of robots[END_REF] and sometimes collective transport [START_REF] Groß | Towards group transport by swarms of robots[END_REF] behaviours.

In this article, we propose an original classification system that brings together methods leading to similar types of self-organisation. Each category combines models and algorithms from past literature using the mechanisms that we identified as necessary for self-organisation. This categorisation does not take into account the type of implementation (virtual force, finite state machines, etc..). Instead, we focus on spatially self-organising systems applied to swarms of robots. Spatially self-organising systems are composed of elements that can organise themselves in space without external control, thus giving rise to static (e.g. an aggregate) and dynamic (e.g. an aggregation) spatial properties at the macroscopic level. In this work, we focus on the four spatial self-organisation behaviours we identified as building blocks based on past literature: aggregation, flocking, coverage and pattern formation. The study of the methods leading to complex behaviours, made up of elementary behaviours, will be the subject of a future paper.

The next section aims to provide a common base by presenting a unified, more specific definition of these reference behaviours, from a historical point of view based on past literature. Then, in section 3, we present our classification system based on the methods that allow these behaviours to appear. Section 4 is based on this classification and proposes to analyse these different methods. From their mechanisms, we investigate the collective behaviours that could be considered as possible or impossible to obtain. In section 5, we discuss the benefits and perspectives of this classification system, and finally present our conclusions in section 6.

Definition of behaviours

Earlier definitions of the behaviours studied in this article are sometimes inconsistent across the past literature. The same name can thus be used to qualify multiple different behaviours (e.g. using the term "area coverage" for an exploration behaviour), and behaviours may be defined or interpreted differently by different authors. Therefore, in order to be able to study the methods which lead up to these behaviours, it is necessary to establish their boundaries. As a result, four spatial behaviours of swarms were defined from our analysis: aggregation, flocking, area coverage and pattern formation.

Aggregation

Aggregation behaviour, observed in nature, has been studied for many years by biologists, especially those studying ecology, sociology and ethology (fields that analyse and study the societies and organisation of living things). [START_REF] Allee | Animal aggregations[END_REF] defines aggregation among animals as the formation of "groups or clusters, more or less closely associated, in which physical contact may, or may not, occur". This behaviour allows organisms to facilitate their survival in hostile environments. For example, once aggregated, they are able to act collectively to increase their perceptions of the environment, regulate the temperature of the group, or reproduce. This grouping can occur at specific places of interest, defined by various favourable criteria, such as humidity for cockroaches [START_REF] Dambach | Aggregation density and longevity correlate with humidity in firstinstar nymphs of the cockroach (blattella germanica l., dictyoptera)[END_REF] or temperature for bees (Schmickl & Hamann, 2011).

In swarm intelligence, aggregation behaviour "constitutes a pre-condition of most collective behaviours" (S ¸ahin, 2004). This has led to the development of multiple solutions for reproducing and using this behaviour by applying it to swarms of agents or robots.

Many definitions of aggregation behaviour are characterised by the process of forming an aggregate, a cluster: "the collecting of units or parts into a mass or whole" [START_REF] Soysal | A macroscopic model for self-organized aggregation in swarm robotic systems[END_REF], "the gathering of spatially distributed robots into a single aggregate" [START_REF] Arvin | Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method[END_REF], "the gathering of scattered robots to create a single aggregate" [START_REF] Mısır | Fuzzy-based self organizing aggregation method for swarm robots[END_REF].

Another definition many authors agree on [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF][START_REF] Trianni | Fundamental collective behaviors in swarm robotics[END_REF][START_REF] Bayındır | A review of swarm robotics tasks[END_REF][START_REF] Nedjah | Review of methodologies and tasks in swarm robotics towards standardization[END_REF][START_REF] Olaronke | A systematic review of swarm robots[END_REF][START_REF] Schranz | Swarm robotic behaviors and current applications[END_REF][START_REF] Cheraghi | Past, present, and future of swarm robotics[END_REF] states that aggregation is the grouping of agents distributed in the environment so that they are close enough to interact with each other. This definition can be seen as more precise than the previous ones because it provides a distance criterion that can be relied upon to qualify an aggregate. The functional capacity of agents to detect and interact with other agents is used as a distance for considering two agents as aggregated.

With such a definition, we can identify two aggregated agents and, by counting groups that match this criterion, obtain the total number of aggregated agents. Nevertheless, other metrics measuring the total distance between agents (Soysal & Sahin, 2005;[START_REF] Mısır | Fuzzy-based self organizing aggregation method for swarm robots[END_REF] can be identified in the literature, with the aim of minimizing this distance. These metrics show that it is sometimes necessary to bring the agents of a swarm closer to each other, in addition to being aggregated. [START_REF] Allee | Animal aggregations[END_REF] proposed a distinction between two types of aggregation. The first corresponds to social aggregations without physical contact, which can be found among birds [START_REF] Emlen | Flocking behavior in birds[END_REF] and fish [START_REF] Shaw | The schooling of fishes[END_REF]. Agents are close enough to interact but do not touch each other. When agents are physically in contact with each other, he uses the term "aggregation by physical contact". The example used to illustrate the complete expression of this aggregation is that of organisms (such as Obelia, [START_REF] Berrill | The polymorphic transformations of obelia[END_REF]) that grow in dense populations, physically connected to each other throughout their lives. However, there are types of organism that physically aggregate, if only temporarily, such as emperor penguins [START_REF] Gilbert | Huddling behavior in emperor penguins: dynamics of huddling[END_REF].

We can thus define aggregation in the domain of swarm intelligence as the grouping of agents spatially distributed in the environment, so that they are at a sufficient distance to be able to interact. This definition covers specific cases of aggregation such as aggregation by physical contact, or cuebased aggregation requiring agents to be grouped together in a particular location.

Aggregation can be defined as the grouping of agents spatially distributed in the environment, so that they are at an appropriate distance to interact.

Flocking

According to the Cambridge Dictionary * , to flock is defined as "to move or gather together in large numbers". This dual meaning has caused an etymological confusion with the use of 'flock' and 'flocking' in biology [START_REF] Bajec | Organized flight in birds[END_REF], and it is interesting to note that the same confusion has remained in ichthyology with the terms 'school' and 'schooling' [START_REF] Pavlov | Patterns and mechanisms of schooling behavior in fish: a review[END_REF]. For example, what we have just defined as aggregation (section 2.1) can sometimes be expressed semantically by the use of flock (of birds) and school (of fishes) (e.g. in [START_REF] Emlen | Flocking behavior in birds[END_REF]. In many cases, however, what is called flocking or schooling refers to the observed capacity of individuals to remain in the group and move in a coordinated and fluid way without any contact [START_REF] Shaw | The schooling of fishes[END_REF]. Craig [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] described 'flocking' as an aggregate motion, thus making the distinction between aggregating birds and the movement of aggregated birds.

These biological observations have led to the identification of "social forces" in flocking [START_REF] Emlen | Flocking behavior in birds[END_REF]). An attractive force brings organisms closer together. A repulsive force keeps organisms away from each other, thus maintaining a safe distance to avoid collisions. These two main forces regulate the distance between the organisms in the aggregate. Finally, an additional force allows the organisms to adjust their velocity to that of their close neighbours.

Reynolds proposed the first realistic flocking model [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF], using agents called "Boids" and "social forces" stated as rules (see section 3.2). This first model opened a new branch of study of swarm intelligence. The properties present in swarms of birds or schools of fishes, for example, allow one to move a large number of autonomous agents without losing any. A swarm can do this despite obstacles on the way that may affect each unit differently. As there are multiple biological inspirations, this behaviour is often called "coordinated motion" [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF][START_REF] Trianni | Fundamental collective behaviors in swarm robotics[END_REF][START_REF] Schranz | Swarm robotic behaviors and current applications[END_REF] or "coordinated movement" [START_REF] Nedjah | Review of methodologies and tasks in swarm robotics towards standardization[END_REF][START_REF] Cheraghi | Past, present, and future of swarm robotics[END_REF]. However, the term 'flocking' is still mostly used in swarm intelligence (e.g. [START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Su | A connectivitypreserving flocking algorithm for multi-agent systems based only on position measurements[END_REF][START_REF] Xiang | Algorithm for swarm robot flocking behavior[END_REF][START_REF] Liu | Selforganised flocking of robotic swarm in cluttered environments[END_REF][START_REF] Bezcioglu | Selforganised swarm flocking with deep reinforcement learning[END_REF], and represents the collective motion behaviours of agents.

Flocking or coordinated motion can be defined as the coordinated movement (i.e. similar speed and direction) of an aggregate of autonomous agents.

According to Reynolds' use of 'flocking', this definition does not include the aggregation behaviour but focuses on already aggregated individuals moving in a coordinated way.

Coverage

Area coverage is a behaviour that takes advantage of the properties of agent swarms, with the objective of spatially covering an area. Using several agents allows the swarm to cover a larger area than a single agent could cover alone.

The area coverage of a swarm of robots can thus be used in many applications such as searching for victims [START_REF] Cardona | Robot swarm navigation and victim detection using rendezvous consensus in search and rescue operations[END_REF], detecting intruders [START_REF] Gage | Command control for many-robot systems[END_REF], or simply exploring areas that are dangerous or difficult to access (S ¸ahin, 2004). [START_REF] Gage | Command control for many-robot systems[END_REF] defines area coverage as the implementation of a spatial organisation adapting to its environment. In his study this allowed him to increase the chances of detecting intruders. He proposes three types of area coverage; "Blanket coverage" allowing robots to be dispersed in the environment in a static way so that they cover the largest possible area, "Barrier coverage" allowing robots to be aligned like a barrier, and "Sweep coverage" allowing agents to move across an area to cover it, similar to a mobile barrier.

Other authors [START_REF] Ugur | Dispersion of a swarm of robots based on realistic wireless intensity signals[END_REF][START_REF] Mathews | Biologically inspired swarm robotic network ensuring coverage and connectivity[END_REF][START_REF] Panerati | From swarms to stars: Task coverage in robot swarms with connectivity constraints[END_REF][START_REF] Bayert | Robotic swarm dispersion using gradient descent algorithm[END_REF][START_REF] Nedjah | Review of methodologies and tasks in swarm robotics towards standardization[END_REF][START_REF] Olaronke | A systematic review of swarm robots[END_REF] define area coverage as the dispersion of a swarm of agents in the environment with the objective of covering the largest possible area without losing the communication link with the rest of the group. This definition has the advantage of including the properties of the aggregation behaviour that aims to maintain social contact between the agents composing the swarm while keeping the agents as far away as possible from each other. However, some authors [START_REF] Howard | Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem[END_REF]Rutishauser et al., 2009a) do not mention the need to maintain contact between agents. Instead they focus mainly on maximising the area covered, which leads to the loss of collective behaviour. Consequently, the definition that involves maintaining the communication link between agents seems more appropriate as it keeps the notion of collective behaviour in the swarm.

Coverage can be defined as the maximum expansion of an aggregate of autonomous agents.

This definition is distinct from the aggregation behaviour, just as the previous definition, and focuses on already aggregated individuals distancing themselves from one another.

Pattern formation

Among aggregation behaviours, there are spatial organisation behaviours (observable in nature in bacteria, [START_REF] Ben-Jacob | Bacterial self-organization: coenhancement of complexification and adaptability in a dynamic environment[END_REF] or crystals, [START_REF] Langer | Instabilities and pattern formation in crystal growth[END_REF] for example) that lead to the emergence of a global form identifiable by the organisation of the different elements composing it. In bacteria and crystals, this organisation is structured and regular since a repeating geometric pattern can be observed.

In swarm intelligence, this type of behaviour is called 'pattern formation'. This type of formation can also be found in other more complex behaviours such as "morphogenesis" [START_REF] O'grady | Swarmorph: multirobot morphogenesis using directional self-assembly[END_REF][START_REF] O'grady | Swarmorph: Morphogenesis with self-assembling robots[END_REF], and allows agents of a swarm capable of 'selfassembly' (i.e. they are able to cooperate physically and assemble themselves) to adopt a particular group structure ultimately forming a single entity. This is inspired by the behaviour with the same name observed in nature. [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF] define pattern formation as the deployment of agents in a regular and repeated manner to form the desired pattern. [START_REF] Schranz | Swarm robotic behaviors and current applications[END_REF] define pattern formation as the formation of an identifiable shape by observing the swarm from a global perspective. [START_REF] Nedjah | Review of methodologies and tasks in swarm robotics towards standardization[END_REF] define pattern formation as the emergence of an identifiable overall shape from the organisation of agents to form a regular and repeated structure.

In the swarm robotics literature, overall shape either emerges from the local organisation of robots [START_REF] Spears | Distributed, physics-based control of swarms of vehicles[END_REF], or is predefined and guides their behaviour [START_REF] Rubenstein | Programmable self-assembly in a thousand-robot swarm[END_REF][START_REF] Dong | Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms[END_REF][START_REF] Li | Decentralized progressive shape formation with robot swarms[END_REF].

We can thus define a pattern as being a regular and repeated spatial structure between the agents, resulting in a global shape at the swarm level.

Pattern formation can be defined as the establishment of a regular and repeated spatial structure between agents, forming an overall shape.

With the behaviours and their limits now defined, the algorithms for obtaining them can be identified and classified according to the self-organisation they generate in a swarm. The main mechanisms used by the algorithms will allow us to identify the ten reference methods we present in the next section.

Self-organisation methods

The existing classifications for the self-organisation mechanisms of robot swarms do not allow a fine-scaled analysis of their behaviours. For example, [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF] propose two approaches: a classification based on design methods and a classification based on collective behaviour. These types of classifications group together methods that exhibit similar behaviours but do this in different ways. For example, current classifications group all flocking algorithms using virtual forces within the same category. However, there are different methods of flocking with virtual forces, and different underlying mechanisms. The well-known Reynolds' Boids model [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] uses attraction and repulsion mechanisms, which the Vicsek's model [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] does not. Yet, they both lead to a flocking behaviour (see sections 3.2 and 3.4). In the same way, the Reynolds' Boids model, initially intended for flocking, can be used for area coverage [START_REF] Mathews | Biologically inspired swarm robotic network ensuring coverage and connectivity[END_REF] by correctly adjusting the weight of the rules, thus placing it in at least two separate categories. Hence, these classifications do not have the necessary level of detail to allow for this type of analysis.

As a result, a new classification system based on selforganisation methods is required. To establish the different categories, we grouped together the controllers and models that use the same mechanisms. We identified ten different categories of methods that lead to the previously defined spatial behaviours of robot swarms (see Figure 1). 

Random movement and wait

Behaviours: aggregation Implementation: finite state machine, fuzzy logic

Starting from an initial state where agents are out of interaction range from each other, they then move randomly through the environment. When an agent encounters another agent, it stops and waits for a time related to a given probability, the absence or the presence of detected neighbours and/or their number. (Bayindir & Sahin, 2009) (see Figure 2). After a while, the agents end up forming an aggregate.

Extensions to this basic strategy aim to speed up and reinforce the aggregation. For example, an agent's probability of waiting or moving again can be determined by the number of close neighbours (Correll & Martinoli, 2007), reinforcing a positive feedback loop that favours waiting over the more numerous groups. If the agents react to and emit sounds proportional to the number of agents aggregated, grouping can be facilitated (Soysal & Sahin, 2005). Rather than navigating randomly, the agents will locate the largest sound source, which is made up of several agents each emitting a sound, and then move towards it. In addition, the behaviour can be optimised using artificial evolution and a neural network connected to the sensors and actuators [START_REF] Soysal | Aggregation in swarm robotic systems: Evolution and probabilistic control[END_REF].

When a cue-based aggregation is required, extensions add the constraint of waiting at a specific location. This location can be symbolised in a variety of ways; for example, by a colour on the ground [START_REF] Garnier | Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots[END_REF][START_REF] Firat | Selforganised aggregation in swarms of robots with informed robots[END_REF]. Finally, rather than using probabilities, the 'Hop-Count' strategy or 'Trophallaxis-inspired' strategy [START_REF] Schmickl | Collective perception in a robot swarm[END_REF] can use agent's internal or external perceptions as conditions to decide either to keep waiting or leave. These strategies necessitate the use of inter-agent communication. Simply put, agents have an internal value that varies depending on the circumstances and the agent's location. The agent can then choose whether or not to move and in which direction, or to remain stationary, based on this value. The 'Hop-Count' and 'Trophallaxis-inspired' strategies can be distinguished via the process of obtaining, propagating and using the internal value.

Another popular model called Beeclust [START_REF] Kernbach | Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system[END_REF]Schmickl & Hamann, 2011) falls within this category. It is based on the temperature regulation behaviour of [START_REF] Kernbach | Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system[END_REF].

bees that leads to a cue-based aggregation. Beeclust allows agents to aggregate at a location of interest characterised by luminance, representing the ideal temperature for bees. Agents move in a straight line while checking for the presence of another agent or an obstacle ahead. If an agent encounters another agent, it will measure the local luminance and wait. The higher the luminance, the longer the agent will wait. Once the wait is over, the agent turns around and goes straight ahead once more. When the agent encounters an obstacle, it will also turn around and go straight ahead (see Figure 3).

Beeclust has extensions to facilitate aggregation. For example, landmarks in the environment can be used to help agents orient themselves [START_REF] Amjadi | A selfadaptive landmark-based aggregation method for robot swarms[END_REF]. By giving the agents a temporary memory and communication capacity, they become able to compare past values of measured luminance with each other. Thus, they can obtain an overall perception of luminance in the environment [START_REF] Wahby | Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms[END_REF]. It is also possible to modify the waiting time of a stationary agent according to the density of neighbours it perceives [START_REF] Wahby | Collective change detection: Adaptivity to dynamic swarm densities and light conditions in robot swarms[END_REF]. By adding pheromones that agents release when they are in a waiting state (in combination with the method presented in section 3.8), they are able to attract other agents that encounter these pheromones [START_REF] Arvin | ϕ clust: Pheromone-based aggregation for robotic swarms[END_REF]. Sound can also be used to attract agents in a similar way [START_REF] Arvin | Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method[END_REF]. Finally, some variants of Beeclust propose adding a group of deviant agents preferring darkness [START_REF] Bodi | Interaction of robot swarms using the honeybee-inspired control algorithm beeclust[END_REF], testing several light zones [START_REF] Ramroop | A bio-inspired aggregation with robot swarm using real and simulated mobile robots[END_REF], or implementing Beeclust using fuzzy logic [START_REF] Mısır | Fuzzy-based self organizing aggregation method for swarm robots[END_REF][START_REF] Arvin | Cue-based aggregation with a mobile robot swarm: a novel fuzzy-based method[END_REF].

Attraction, Alignment and Repulsion

Behaviours: flocking, coverage, aggregation, pattern formation Implementation: virtual forces, finite state machine Craig Reynolds is known to have created the first computer-animated, realistic simulation of a flock of birds [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF]. Inspired by biologists' observations of bird flocks and schools of fish, his Boids (A 'Boid' is the name given to the agents in Craig Reynolds' flocking simulation) are directed by three elementary rules modifying their behaviour according to their close neighbours in a set area of scope (without taking into account Boids in their blind spot). The attraction rule of a Boid brings it closer to the average position of the Boids in a set area, allowing it to form a group. The alignment rule brings the Boid's velocity (containing information about the speed and orientation of the Boid) closer to the average velocity of its neighbours, allowing the Boids to move in the same direction and at the same speed. Finally, the repulsion rule keeps the Boid away from all the Boids in a set area, thus maintaining a minimum distance between Boids.

These three rules are the mechanisms necessary for selforganisation to appear. Combined with random movement, they allow the Boids in the simulation to encounter each other and stay in contact, leading to aggregation behaviour, before moving in a coordinated manner and causing flocking to emerge. An extra rule can be added to allow agents to move in environments with obstacles, allowing them to bypass obstructions in their path. Using these three mechanisms can even provide area coverage [START_REF] Mathews | Biologically inspired swarm robotic network ensuring coverage and connectivity[END_REF]. Here, repulsion keeps agents away from each other, while attraction maintains contact. Some controllers do not apply these three rules to all nearby agents. There are algorithms [START_REF] Fetecau | Collective behavior of biological aggregations in two dimensions: a nonlocal kinetic model[END_REF][START_REF] Yasuda | Self-organized flocking of a mobile robot swarm by topological distance-based interactions[END_REF][START_REF] Cheraghi | Robot swarm flocking on a 2d triangular graph[END_REF] using the three successive detection zones from the controller of [START_REF] Couzin | Collective memory and spatial sorting in animal groups[END_REF] work. Such algorithms can also be found in the controller simulating a school of fish in Aoki's simulation (1982). Each of the three zones corresponds to one of the three rules. The rules then apply only to the agents present in the corresponding zone (see Figure 4). Similarly, these three rules may be implemented while using finite state machines instead of virtual forces. Thus, the rules will then be called upon according to the information obtained by the sensors if they meet certain conditions corresponding to the three zones for the three rules (Wilensky, 1998;[START_REF] Moeslinger | A minimalist flocking algorithm for swarm robots[END_REF][START_REF] Moeslinger | Emergent flocking with low-end swarm robots[END_REF].

Extensions can then be added to this method. For example, the use of a leader (Leonard & Fiorelli, 2001;[START_REF] Fierro | Hybrid control of formations of robots[END_REF][START_REF] Payton | Pheromone robotics[END_REF], or informed agents [START_REF] Ferrante | Self-organized flocking with a mobile robot swarm: a novel motion control method[END_REF] can be incorporated to guide the direction of the swarm. The work of [START_REF] Payton | Pheromone robotics[END_REF] seems to be inspired by the Reynolds model, where only the attraction and repulsion mechanisms are used to allow the flock to be guided by a single leader. The leader has a greater repulsive force than the other agents, which forces it to distance itself from the group. However, the other agents have a weaker repulsion force and are, therefore, attracted to the leader when it moves away, which will then force the leader to move away again. This is how movement is created.

By adding collective decision making, agents can also consult each other to choose the direction to follow [START_REF] Ferrante | A self-adaptive communication strategy for flocking in stationary and non-stationary environments[END_REF]. It is also possible to strengthen the group against environments with obstacles disrupting communication between agents [START_REF] Bonnefond | Extension des modèles de flocking aux environnements avec obstacles et communications dégradées[END_REF], or to have agents not aligning themselves with others [START_REF] Stranieri | Selforganized flocking with an heterogeneous mobile robot swarm[END_REF].

The different rules, implemented using virtual forces, have weights that allow their intensity to be modified. For example, by increasing the weight of the attraction rule, attraction between neighbours is strengthened. Different techniques can, therefore, be used for choosing the value of the weights. The first is to arbitrarily choose the different weights to obtain the desired behaviour. Another solution is to use optimisation techniques such as reinforcement learning [START_REF] Hahn | Emergent escape-based flocking behavior using multi-agent reinforcement learning[END_REF] or artificial evolution [START_REF] Wood | Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model[END_REF][START_REF] Vásárhelyi | Optimized flocking of autonomous drones in confined environments[END_REF][START_REF] Ramos | Evolving flocking in embodied agents based on local and global application of reynolds' rules[END_REF] to obtain the optimal weights that best meet the desired optimisation function. The last solution allows the weights of the rules to be adapted during the simulation. For example, they can be adjusted to identify the priority rule depending on the number of elements detected in the environment [START_REF] Hoang | An adaptive weighting mechanism for reynolds rules-based flocking control scheme[END_REF].

Finally, [START_REF] Couzin | Collective memory and spatial sorting in animal groups[END_REF] have shown that a torus can be formed by modifying the radii of the different zones of repulsion, orientation and alignment. If we consider the torus as a pattern, it is then legitimate to consider that a limited pattern formation behaviour can be obtained with the 'Attraction, Alignment and Repulsion' method.

Preservation of connectivity

Behaviours: flocking, coverage, aggregation, pattern formation Implementation: graph theory, virtual forces, fuzzy logic Some emerging behaviours are explicitly based on connectivity preservation mechanisms [START_REF] Tanner | Stable flocking of mobile agents, part i: Fixed topology[END_REF]Tanner et al., 2003a). The creation of a virtual graph allows a swarm's various agents to define their relations to each other. The agents will then adjust their behaviour based on where their neighbours are in the graph. Two rules, which are the two mechanisms of this method, are applied to these agents. The first alignment rule is similar to the one in the 'Attraction, Alignment and Repulsion' method (section 3.2). The second rule combines the attraction and repulsion mechanisms into a single potential function that precisely controls the distance between the agents. The force generated by this rule is proportional to the difference between the desired distance and the distance between two agents. Unlike the 'Attraction, Alignment and Repulsion' method, where the distance between agents is determined by the equilibrium of attraction and repulsion, this rule keeps the distance between agents stable over time. We can see that attraction is applied to each of the neighbours, not just on their centre of mass. This is done by dissecting the potential function and comparing it to the attraction and repulsion of the 'Attraction, Alignment and Repulsion' method. Moreover, attraction will be stronger if the neighbour is far away, and almost null if it is close. Finally, the agent will get closer to the distant agents more easily. The repulsion rule is then applied to each neighbour, just as in the 'Attraction, Alignment and Repulsion' method. The distance between the agent and its neighbour is taken into account in this case and, consequently, if the agent is too close, it will be repelled exponentially. However, if it is far away, the intensity of the repulsion will be almost zero. As a result, the agent will prioritise moving away from agents too close to them, reducing the risk of collision. The swarm's movement differs from that observed in nature and in the 'Attraction, Alignment and Repulsion' method because the distance between agents remains stable and the risk of collision and swarm fracture is reduced (Tanner et al., 2003a).

The graph representing the relationships in the swarm can be static [START_REF] Tanner | Stable flocking of mobile agents, part i: Fixed topology[END_REF]) and defined at the start, but this increases the risk of collisions because two agents that are not directly linked in the graph can collide. It is, therefore, necessary that all agents are linked to each other. Consequently, the majority of controllers use dynamic graphs (Tanner et al., 2003a;[START_REF] Olfati-Saber | Flocking for multi-agent dynamic systems: Algorithms and theory[END_REF][START_REF] Tanner | Flocking in fixed and switching networks[END_REF][START_REF] Zavlanos | Flocking while preserving network connectivity[END_REF]McCook & Esposito, 2007;[START_REF] Su | A connectivitypreserving flocking algorithm for multi-agent systems based only on position measurements[END_REF][START_REF] Wen | A connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function[END_REF][START_REF] Ning | Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology[END_REF][START_REF] Dai | Swarm intelligence-inspired autonomous flocking control in uav networks[END_REF], modifying the relations between the agents of the swarm according to their actual neighbours, as for the 'Attraction, alignment and repulsion' method. Initially implemented with virtual forces, this method can also be implemented with fuzzy logic (Gu & Hu, 2008;[START_REF] Yu | Flocking with obstacle avoidance based on fuzzy logic[END_REF].

Notably used for flocking behaviours, this method can also be found in certain controllers that allow coverage and pattern formation. The agents are able to move away from each other without losing sight of each other and thus disperse in the environment by maintaining a structure among them that has the form of a communication graph [START_REF] Mclurkin | [END_REF]De Silva et al., 2005;[START_REF] Ugur | Dispersion of a swarm of robots based on realistic wireless intensity signals[END_REF][START_REF] Panerati | From swarms to stars: Task coverage in robot swarms with connectivity constraints[END_REF]. The method can be used to create patterns such as hexagons [START_REF] Spears | Distributed, physics-based control of swarms of vehicles[END_REF], or to aggregate the agents of the swarm [START_REF] Khaldi | Selforganization in aggregating robot swarms: A dw-knn topological approach[END_REF][START_REF] Khaldi | Improving robots swarm aggregation performance through the minkowski distance function[END_REF][START_REF] Berlinger | Implicit coordination for 3d underwater collective behaviors in a fish-inspired robot swarm[END_REF]. This aggregation is facilitated by making the intensity of the rules between agents dependent on the density of agents surrounding an agent's neighbour (Distance Weighted-K Nearest Neighbour algorithm). Thus, an agent will apply its potential function only on the first K agents with the highest densities.

Alignment and noise

Behaviours: flocking, aggregation

Implementation: virtual forces

This method, whose historical model is based on Vicsek's work [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF], is another method of selforganisation based on alignment and noise mechanisms. Thus, this method allows agents to move in dynamic aggregates, as for the flocking behaviour. Here, agents move at a constant speed and update their direction according to the average direction of the agents in their neighbouring area, with the addition of a noise factor corresponding to a random direction from a predefined interval. When a single agent encounters a group (or another single agent), it will align with the group, while also possibly influencing said group slightly, and thus join the aggregate. Consequently, this method is able to show aggregation behaviour. The distance between the agents in the aggregate changes slightly because there is no attraction or repulsion mechanism. However, the constant noise that each agent experiences can cause changes in the direction of the group. Without this constant noise, the grouped agents would always move straight forward.

Extensions for this approach exist for anticipating the change of direction of the neighbours according to their current spin direction [START_REF] Morin | Collective motion with anticipation: Flocking, spinning, and swarming[END_REF] and using adaptive rules to accelerate the convergence of the direction of the agents [START_REF] Xiao | Accelerating the emergence of order in swarming systems[END_REF]Liu et al., 2021a). Long-range perception allows agents to observe distant agents in order to adapt their behaviour. This seems to lead to longer navigation before the group scatters [START_REF] Zumaya | Delay in the dispersal of flocks moving in unbounded space using long-range interactions[END_REF]. This solution was applied to the Vicsek model, but can also be applied to the Couzin et al. model [START_REF] Couzin | Collective memory and spatial sorting in animal groups[END_REF] and probably to any other method that adapts the behaviour of agents according to their neighbours.

Active Elastic Sheet

Behaviours: flocking

Implementation: virtual forces

The Active Elastic Sheet (AES) method provides coordinated motion behaviour in a swarm. Unlike the 'Alignment and noise' method (section 3.4), which relies solely on an alignment mechanism, this method employs both attraction and repulsion mechanisms, but no explicit alignment mechanism.

The different agents of the swarm are self-propelled forward and connected by virtual elastic links, forming a kind of stretchable membrane [START_REF] Ferrante | Collective motion dynamics of active solids and active crystals[END_REF][START_REF] Ban | Selforganised flocking with simulated homogeneous robotic swarm[END_REF][START_REF] Liu | Selforganised flocking of robotic swarm in cluttered environments[END_REF]. Connections and distances between agents are static and defined at initialisation according to the position of the agents in relation to each other. These connections do not break, no matter how much tension the swarm may experience. These elastic links allow a certain distance to be maintained between agents, pushing away agents that are too close and attracting agents that are too far. In the same way, unlike the 'Preservation of connectivity' method in section 3.3, the rotation of an agent will cause tension attracting or repelling the connected agents. This maintains a consistent distance and alignment in the swarm. Thus, the swarm will move and rotate like a solid body around a barycentre. As a result of the distance separating them from the barycentre, agents close to it must slow, allowing agents further away to accelerate and cover a greater distance. Reinforcement learning can also be used to improve the behaviour of the agents that implement this method [START_REF] Bezcioglu | Selforganised swarm flocking with deep reinforcement learning[END_REF].

Exploration and Beaconing

Behaviours: coverage, pattern formation

Implementation: gradient

The 'Exploration and Beaconing' [START_REF] Payton | Pheromone robotics[END_REF][START_REF] Ludwig | Robotic swarm dispersion using wireless intensity signals[END_REF][START_REF] Hoff | Two foraging algorithms for robot swarms using only local communication[END_REF][START_REF] Bayert | Robotic swarm dispersion using gradient descent algorithm[END_REF] method mainly allows a swarm of agents to disperse and explore an unknown environment while maintaining communication with the rest of the group, resulting in a coverage behaviour. The different agents in the swarm have two roles: beacons and explorers. Beacons are immobile agents positioned in the environment. They are used as landmarks to allow the explorers to orient themselves. Thus, the explorers try to get as far away from the beacons as they can without losing communication. When an explorer has moved far enough away from the beacons, and therefore recognises that it has reached a correct position, it stops and becomes a beacon itself. By becoming a beacon, the agent then obtains a gradient value that all beacons have. This value represents the distance separating the beacon from the origin of the swarm and is dependent on the values of the neighbouring beacons. The explorers can orient themselves and move away in the right direction using the values communicated by the beacons.

This mechanism can also be found in pattern formation controllers, where agents have a gradient value and rely on the gradient values of their stationary neighbours to move and stop at the right moment. The computation of each gradient value is determined by the predefined shape. This method has been implemented by Kilobots [START_REF] Rubenstein | Programmable self-assembly in a thousand-robot swarm[END_REF], which are robots that only perceive other robots when they are in contact with them. The pattern formation proceeds as follows: four robots are initially placed forming the origin of the shape and providing a reference frame (x,y). The other robots will then move in turn along the other robots in a clockwise direction. A robot stops and integrates into the shape depending on one of two conditions: either it reaches an edge of the shape, or it meets a neighbour having the same gradient value as its own. There is an extension [START_REF] Wang | A self-organizing area coverage method for swarm robots based on gradient and grouping[END_REF] that can accelerate the formation of the shape by using several starting groups. An older version of this method can also be found using cellular automata to form three-dimensional shapes [START_REF] Støy | Emergent control of self-reconfigurable robots[END_REF]. Pattern formation can also be obtained by proposing patterns based on circles [START_REF] Mamei | Selforganizing spatial shapes in mobile particles: The tota approach[END_REF]. Here, all the agents are explorers, except for those called barycentres. These agents propagate a gradient value through the swarm. By reading its gradient value, an agent is able to estimate whether it is too far from the barycentre or not and then move closer accordingly.

Relative position

Behaviours: pattern formation, flocking

Implementation: graph theory, virtual forces

It is possible to obtain different shapes in the swarm and thus perform pattern formation by precisely positioning the agents in relation to one another. In this approach, it is sufficient to tell each agent just its graph neighbours' positions, as well as its relative position and orientation with respect to them, once the predefined final form has been converted into a graph whose nodes represent the swarm's agents. The agents will search for their partners and correctly position themselves in relation to them [START_REF] Desai | Modeling and control of formations of nonholonomic mobile robots[END_REF][START_REF] Shiell | A bearing-only pattern formation algorithm for swarm robotics[END_REF][START_REF] Li | Self-adaptive pattern formation with battery-powered robot swarms[END_REF][START_REF] Li | Decentralized progressive shape formation with robot swarms[END_REF]. It is also possible to define the position of close neighbours without defining agents specifically. Thus, the agents will try to arrange themselves with respect to their neighbours' conditions [START_REF] Coppola | Provable self-organizing pattern formation by a swarm of robots with limited knowledge[END_REF] or their polarities [START_REF] Poulton | Directed self-assembly of 2-dimensional mesoblocks using top-down/bottom-up design[END_REF]. One can even obtain similar results by positioning the agents relative to the centre of mass of the group or to a leader (see Figure 5) rather than to predefined neighbours [START_REF] Balch | Behavior-based formation control for multirobot teams[END_REF][START_REF] Güzel | An adaptive pattern formation approach for swarm robots[END_REF]. Pattern formation can also be obtained by allowing each agent to choose several nearby agents and maintain a predefined position with respect to them in order to form patterns like repeating triangles [START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Xiang | Algorithm for swarm robot flocking behavior[END_REF]. This approach allows the swarm to move in a structured way to reach a goal position [START_REF] Ge | Queues and artificial potential trenches for multirobot formations[END_REF][START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Xiang | Algorithm for swarm robot flocking behavior[END_REF] as a flocking behaviour without prior establishment of any particular relationship between the agents.

This method is used in the 'Heroes and Cowards' (Wilensky & Rand, 2015) model, which positions each agent in a specific manner in relation to the positions of two other agents chosen at initialisation. One will be considered a friend, and the other an enemy. If the agent plays the role of hero, it will place itself between its friend and its enemy. If the agent plays the role of coward, it will place itself behind its friend relative to its enemy. Thus, aggregation, flocking (see Figure 6) and several other behaviours can be observed. However, these behaviours are not systematic because they are dependent on the perception capacities of the agents and on their initial state (i.e. their position, their role and their choice of agents).

Stigmergy

Behaviours: coverage Implementation: finite state machine Stigmergy is an indirect coordination mechanism throughout an environment. An agent leaves a trace in the environment that will impact the actions of other agents upon discovering the trace. This mechanism can be observed in nature, notably the recruitment mechanism of ants that explore the environment in search of food by leaving pheromones on the path between the food and the nest and attracting other ants thus forming a chain. This is also known as foraging [START_REF] Bonabeau | Swarm Intelligence: From Natural to Artificial Systems[END_REF].

It is possible to achieve area coverage using this method. While moving, agents lay virtual pheromones and avoid the pheromones of other agents. The agents can move randomly [START_REF] Hunt | Testing the limits of pheromone stigmergy in high-density robot swarms[END_REF] or by making circles with their direction changing if the agent comes into contact with a virtual pheromone [START_REF] Ranjbar-Sahraei | A multi-robot coverage approach based on stigmergic communication[END_REF]. As agents try to permanently avoid the pheromones released by the other agents, the swarm will end up dispersing. This allows the swarm to accomplish several goals, e.g. dynamically covering an area or exploring. However, with random movement [START_REF] Hunt | Testing the limits of pheromone stigmergy in high-density robot swarms[END_REF], the agents end up dispersing without remaining in a group, which is contrary to the definition of coverage in section 2.3. In contrast, when agents form circles, they move away from each other in a predefined manner and stop moving when they no longer encounter pheromones. Thus, the agents thus remain at the edge of their neighbours' perception, keeping them grouped together. Using this approach, the neural network of an agent receives input values from the sensors and generates an output value for the actuators (see Figure 7). Thus, the agent's perceptions will modify its behaviour. However, in order for the behaviour to be coherent, and to generate the desired collective behaviour, it is necessary to carry out an artificial evolution or a deep reinforcement learning process [START_REF] Bäck | An overview of evolutionary algorithms for parameter optimization[END_REF].

Machine learning

The artificial evolution process involves a fitness function, determined beforehand, that represents the quality of the expected behaviour. For example, the quality of aggregation may be measured with the number of aggregated agents, or the time needed to obtain one aggregate. A fitness function can focus on the quality of flocking by measuring whether the agents are aligned or the number of groups. Once the fitness function has been determined, the neural network will evolve through a process of mutation and selection until the desired result is achieved. For this reason, this process may be used to obtain aggregation [START_REF] Trianni | Evolving aggregation behaviors in a swarm of robots[END_REF][START_REF] Bahgec ¸i | Evolving aggregation behaviors for swarm robotic systems: A systematic case study[END_REF][START_REF] Gauci | Evolving aggregation behaviors in multi-robot systems with binary sensors[END_REF] or flocking [START_REF] Baldassarre | Evolving mobile robots able to display collective behaviors[END_REF][START_REF] La | Hybrid system of reinforcement learning and flocking control in multirobot domain[END_REF] behaviours.

The deep reinforcement learning process combines reinforcement learning and deep learning [START_REF] Azar | Drone deep reinforcement learning: A review[END_REF]. Thus, it involves rewards usually generated by the environment, that each robot tries to maximize by adapting its behaviour through trial and error. Deep learning is used to help the robot find the best policy by representing this policy with a neural network of which the weights are adjusted through time. Flocking [START_REF] Salimi | Deep reinforcement learning for flocking control of uavs in complex environments[END_REF] and pattern formation [START_REF] Sharma | Collisionless pattern discovery in robot swarms using deep reinforcement learning[END_REF] are two examples of collective behaviours that can be obtained with this method and process.

With this method, however, even if the behaviours at the swarm level are identifiable, the behaviour of the agents is like a black box, making it difficult to identify the mechanisms.

Environmental constraints

Behaviours: coverage, pattern formation Implementation: virtual forces, Voronoï, graph theory

The 'Environmental constraints' method uses the evolving environment to add new constraints to the agents. These constraints then influence the agents' behaviour, which will lead to changes in the self-organisation of the swarm and, thus, create a new organisation. The environment is not modified by the agents in this section, as could be done using the 'Stigmergy method' in section 3.8. Here, the environment is modified by an external control, but the organisation of the system remains autonomous.

Using this approach, the behaviour of a swarm may be influenced through the environment. For example by taking inspiration from sea currents, the earth's topography, or the wind. Thus, it is possible to cover the environment with virtual forces, usually exerted by an external control. An agent moving in the environment will experience a force that modifies its trajectory. This force has a direction and an intensity, and changes according to the position of the agent in the environment. Then, by drawing an overall shape in the environment using virtual forces, the agents will be attracted into the shape or its outline, making a solid or hollow shape emerge, respectively [START_REF] Mong-Ying | Pattern generation with multiple robots[END_REF][START_REF] Hsieh | Decentralized controllers for shape generation with robotic swarms[END_REF][START_REF] Barnes | A potential field based formation control methodology for robot swarms[END_REF][START_REF] Dong | Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms[END_REF]. In the same way, these forces can be used to avoid obstacles, repelling agents that approach them [START_REF] Howard | Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem[END_REF]. Further examples of the application of environmental virtual forces on particles can be found in the amorphous programming paradigm [START_REF] Kolling | Human interaction with robot swarms: A survey[END_REF][START_REF] Bachrach | Composable continuous-space programs for robotic swarms[END_REF], which requires a high density of particles to be effective. Furthermore, by using knowledge of the environment, different breakdowns of an environment can be used to assign a position to the agents. The breakdowns provided by Voronoï cells [START_REF] Aurenhammer | Voronoi diagrams-a survey of a fundamental geometric data structure[END_REF]) make it possible to divide an area into several smaller zones allocated to the agents of the swarm [START_REF] Yang | Area coverage searching for swarm robots using dynamic voronoibased method[END_REF] (see Figure 8). The agents can then move freely in the zone that was allocated to them, or simply remain stationary.

Moreover, by exploring an environment, a swarm of agents can break it down and represent it in the form of a graph, formed as a result of each agent's contribution. The agents will then disperse into the environment by spreading out on this virtual graph and moving along the links between the nodes (Rutishauser et al., 2009a). Breaking down a predefined shape rather than the environment can also allow the agents to position themselves into a pattern formation [START_REF] Spletzer | Optimal positioning strategies for shape changes in robot teams[END_REF][START_REF] Turpin | Trajectory planning and assignment in multirobot systems[END_REF]. This breakdown can be done with Voronoï cells (Alonso-Mora et al., 2011) or with a graph [START_REF] Liu | Multi-robot formation morphing through a graph matching problem[END_REF].

Analysis

In section 3, we presented different self-organisation methods, each leading to one or several reference spatial behaviours. The aim of this section is to identify any associations between mechanisms and collective behaviours, as we have defined these in section 2, which have been asserted from our methods. On the one hand, connections that may be considered impossible due to the intrinsic principles of the mechanisms: for example, the wait mechanism of the 'Random movement and wait' method seems to prevent the formation of a coordinated movement of aggregated agents. On the other hand, to the best of our knowledge, there are methods that have not yet been proposed in the literature for obtaining specific collective behaviours, despite the fact that they may be suited to it. Each of the methods identified in this article is examined in this section and summarised in Table 1, which also includes past articles studied in relation to the methods and used to outline specific emergent behaviours. This section and Table 1 pave the way for the production of a future 'design guide', useful to any designer looking for a specific behaviour, stating the different existing solutions for obtaining this behaviour, and presenting the constraints for each solution. In addition, this section and Table 1 can be used as a starting point for investigating solutions that have not yet been studied. We discuss this point further in section 5.

Random movement and wait

As seen in past literature, the 'Random movement and wait' method can be used for the aggregation (Bayindir & Sahin, 2009) of agents distributed in an environment. Flocking should not be possible with this method because agents move randomly and synchronise with other agents by forming an immobile aggregate. It is critical that agents move in groups in order for flocking to occur. Here, when the agents are grouped together, they are immobile. Moreover, when they move, it is individually and randomly. Pattern formation should be possible within a cue-based aggregation, where the shape projected on the environment (e.g. with light) guides the agents. The mechanisms of this method do not seem to prevent the formation of a coverage behaviour. However, the only article we found in the literature mentioning coverage, and using a similar version of this method, applies to a very specific environment and does not seem to fit our definition of coverage [START_REF] Rutishauser | Collaborative coverage using a swarm of networked miniature robots[END_REF].

Attraction, Alignment and Repulsion / Alignment and noise

As shown in the literature, the 'Attraction, Alignment and Repulsion' method can be used for flocking [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF], aggregation [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] and coverage [START_REF] Mathews | Biologically inspired swarm robotic network ensuring coverage and connectivity[END_REF]. Meanwhile, the 'Alignment and noise' method allows flocking and aggregation [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. Unlike the 'Attraction, Alignment and Repulsion' method, the 'Alignment and noise' method lacks a mechanism for adjusting the distance between agents, meaning that they cannot be moved further apart for area coverage or moved precisely relatively to each other for pattern formation.

Preservation of connectivity

From the literature we can see that the 'Preservation of connectivity' method can be used for aggregation [START_REF] Khaldi | Selforganization in aggregating robot swarms: A dw-knn topological approach[END_REF], flocking (Tanner et al., 2003a), area coverage [START_REF] Mclurkin | [END_REF] and pattern formation [START_REF] Spears | Distributed, physics-based control of swarms of vehicles[END_REF] where the shape emerges from the interactions between robots. Given the strength of the links between agents and the fact that the swarm can be represented as a graph, it should also be possible to predefine a shape and break it down to be represented by a graph where each node is represented by an agent. When the agents begin to move to their corresponding node positions, they should form the shape. However, one drawback of this method is the problem presented by [START_REF] Tanner | Stable flocking of mobile agents, part i: Fixed topology[END_REF], involving collisions between agents that are not direct neighbours in the static graph. It can be hypothesised that a new rule could be applied to these agents to solve this issue.

Active Elastic Sheet

The 'AES' method mechanisms consist in relatively strong attraction and repulsion, carried by static virtual links created in the initial state. Adding self-propulsion of agents allows flocking [START_REF] Ferrante | Collective motion dynamics of active solids and active crystals[END_REF]. These mechanisms alone lead to an immutable structure, thus preventing the integration of isolated agents, the increase of distance between them to cover an area, and the emergence of a pattern. However, if the length of the virtual links were modifiable at any time, this method could perform coverage and pattern formation. One could imagine that increasing the length of all the links to the perception limit of each agent would lead to coverage. If the agents are placed in a particular pattern in the initial state, they should be able to maintain that pattern. On the contrary, to obtain an emergent pattern, one could take inspiration from the 'Relative position' method and use the distances between linked agents to place them. This would require making each virtual link modifiable by the agents independently of the other link lengths.

Exploration and Beaconing

The 'Exploration and Beaconing' method can be used for area coverage [START_REF] Ludwig | Robotic swarm dispersion using wireless intensity signals[END_REF] and pattern formation [START_REF] Rubenstein | Programmable self-assembly in a thousand-robot swarm[END_REF]. It is conceivable that a pattern could eventually be obtained, as the agents are placed at homogeneous distances from each other. However, flocking may not be possible because the agents eventually stop and do not move in groups. Meanwhile, even though most algorithms start from an initial state where the agents are aggregated, it should be possible to achieve aggregation if the agents are scattered beforehand. The random movement mechanism (a priori present in the method) should allow agents to explore the environment until they encounter a beacon. They should then be expected to maintain contact with these beacons.

Relative position

The 'Relative position' method can be used for pattern formation [START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Desai | Modeling and control of formations of nonholonomic mobile robots[END_REF] and flocking [START_REF] Ge | Queues and artificial potential trenches for multirobot formations[END_REF]. By increasing the distance between the agents of an aggregate, it is even possible to perform area coverage. Finally, the method allows contact between agents to be maintained. Thus, when encountering a group, agents are able to join it. Except in particular cases where agents are only linked to a set group of other agents, this means they are able to form an aggregate.

Stigmergy

The 'Stigmergy' method is mostly used to attract or repel agents, depending on the information carried by the pheromones. As such, it can be used for coverage [START_REF] Ranjbar-Sahraei | A multi-robot coverage approach based on stigmergic communication[END_REF], when pheromones repel other agents. When the agents release pheromones that attract other agents, it becomes possible to facilitate the gathering of the swarm. In this way, [START_REF] Arvin | ϕ clust: Pheromone-based aggregation for robotic swarms[END_REF] have shown that combining this method with the 'Random movement and wait' method leads to a (faster) aggregation: the agents follow the pheromone gradient when they are detected, guiding their random movement, and drop pheromone when they wait (see Figure 9). However, to the best of our knowledge, in the literature the 'Stigmergy' method alone has not been proved to be a successful way to obtain aggregation. Likewise, we could not find any articles demonstrating the use of this method to obtain flocking or pattern formation. Because agents communicate through their environment, it is not impossible to imagine a strategy for coordinating agents so that they can perform these behaviours.

Machine learning

The 'Machine learning' method can be used for aggregation [START_REF] Trianni | Evolving aggregation behaviors in a swarm of robots[END_REF], flocking [START_REF] Baldassarre | Evolving mobile robots able to display collective behaviors[END_REF][START_REF] Salimi | Deep reinforcement learning for flocking control of uavs in complex environments[END_REF] and pattern formation [START_REF] Sharma | Collisionless pattern discovery in robot swarms using deep reinforcement learning[END_REF]. It is reasonable to assume that the other behaviours can be obtained with the right fitness function or the correct reward mechanism. Several difficulties remain to be overcome, including finding the right fitness function or decomposing the overall reward into individual rewards [START_REF] Brambilla | Swarm robotics: a review from the swarm engineering perspective[END_REF]. Additionally, there is no guarantee that the artificial evolution will converge to a solution, despite its computational cost. Alignment and noise [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]) [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF][START_REF] Morin | Collective motion with anticipation: Flocking, spinning, and swarming[END_REF][START_REF] Zumaya | Delay in the dispersal of flocks moving in unbounded space using long-range interactions[END_REF][START_REF] Xiao | Accelerating the emergence of order in swarming systems[END_REF]Liu et al., 2021a) ø ø AES ? [START_REF] Ferrante | Collective motion dynamics of active solids and active crystals[END_REF][START_REF] Ban | Selforganised flocking with simulated homogeneous robotic swarm[END_REF][START_REF] Liu | Selforganised flocking of robotic swarm in cluttered environments[END_REF][START_REF] Bezcioglu | Selforganised swarm flocking with deep reinforcement learning[END_REF] ? ø

Exploration and Beaconing ? ø [START_REF] Ludwig | Robotic swarm dispersion using wireless intensity signals[END_REF][START_REF] Hoff | Two foraging algorithms for robot swarms using only local communication[END_REF][START_REF] Bayert | Robotic swarm dispersion using gradient descent algorithm[END_REF][START_REF] Payton | Pheromone robotics[END_REF]) [START_REF] Rubenstein | Programmable self-assembly in a thousand-robot swarm[END_REF][START_REF] Wang | A self-organizing area coverage method for swarm robots based on gradient and grouping[END_REF][START_REF] Mamei | Selforganizing spatial shapes in mobile particles: The tota approach[END_REF][START_REF] Støy | Emergent control of self-reconfigurable robots[END_REF] Relative position ? [START_REF] Ge | Queues and artificial potential trenches for multirobot formations[END_REF][START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Xiang | Algorithm for swarm robot flocking behavior[END_REF] ? [START_REF] Hanada | Adaptive flocking of a swarm of robots based on local interactions[END_REF][START_REF] Xiang | Algorithm for swarm robot flocking behavior[END_REF][START_REF] Desai | Modeling and control of formations of nonholonomic mobile robots[END_REF][START_REF] Shiell | A bearing-only pattern formation algorithm for swarm robotics[END_REF][START_REF] Poulton | Directed self-assembly of 2-dimensional mesoblocks using top-down/bottom-up design[END_REF][START_REF] Balch | Behavior-based formation control for multirobot teams[END_REF]G üzel et al., 2017;[START_REF] Li | Self-adaptive pattern formation with battery-powered robot swarms[END_REF][START_REF] Li | Decentralized progressive shape formation with robot swarms[END_REF][START_REF] Coppola | Provable self-organizing pattern formation by a swarm of robots with limited knowledge[END_REF] Stigmergy ? ? [START_REF] Ranjbar-Sahraei | A multi-robot coverage approach based on stigmergic communication[END_REF][START_REF] Hunt | Testing the limits of pheromone stigmergy in high-density robot swarms[END_REF] ?

Machine learning [START_REF] Trianni | Evolving aggregation behaviors in a swarm of robots[END_REF][START_REF] Bahgec ¸i | Evolving aggregation behaviors for swarm robotic systems: A systematic case study[END_REF][START_REF] Gauci | Evolving aggregation behaviors in multi-robot systems with binary sensors[END_REF]) [START_REF] Baldassarre | Evolving mobile robots able to display collective behaviors[END_REF][START_REF] La | Hybrid system of reinforcement learning and flocking control in multirobot domain[END_REF] ? [START_REF] Sharma | Collisionless pattern discovery in robot swarms using deep reinforcement learning[END_REF] Environmental constraints ? ? [START_REF] Howard | Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem[END_REF][START_REF] Yang | Area coverage searching for swarm robots using dynamic voronoibased method[END_REF]Rutishauser et al., 2009a[START_REF] Mong-Ying | Pattern generation with multiple robots[END_REF][START_REF] Hsieh | Decentralized controllers for shape generation with robotic swarms[END_REF][START_REF] Barnes | A potential field based formation control methodology for robot swarms[END_REF][START_REF] Dong | Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms[END_REF][START_REF] Spletzer | Optimal positioning strategies for shape changes in robot teams[END_REF][START_REF] Turpin | Trajectory planning and assignment in multirobot systems[END_REF][START_REF] Alonso-Mora | Multi-robot system for artistic pattern formation[END_REF][START_REF] Liu | Multi-robot formation morphing through a graph matching problem[END_REF] 4.9 Environmental constraints

The 'Environmental constraints' method can be used for pattern formation [START_REF] Mong-Ying | Pattern generation with multiple robots[END_REF] and coverage [START_REF] Howard | Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem[END_REF]. However, as this method's inspirations come from sea currents or topology, one could imagine that flocking and aggregation could be obtained. One of the difficulties lies in correctly designing the environment for the external control that will be applied on the autonomous robots. This can be seen as a top-down-like approach, with all the implied uncertainties arising from the complex nature of swarms.

Discussion

This classification system presented in section 3 highlights the unique aspects of each method, showing their differences and their specificities. One of the outcomes of the analysis of the methods in section 4 is the identification of those methods that have not yet been used to obtain a specific collective behaviour. This opens up the possibility to explore potential solutions, represented with a '?' in Table 1, such as the use of the 'Stigmergy' and 'Environmental constraints' methods to obtain flocking. The same approach could be used to further explore the capabilities of existing methods.

Taking the 'Active Elastic Sheet' method as an example, this method is known to be capable of generating flocking behaviour. It would be interesting to further explore the identified potential behaviours this method could produce based on Table 1, such as aggregation or coverage. We also believe that this classification system facilitates the comprehension of the mechanisms of the studied methods. This comprehension and the resulting analysis should make it easier to imagine the methods that could be combined in order to obtain a specific collective behaviour. For example, the mechanisms of the 'Stigmergy' or the 'Environmental constraints' method could be used as additions to other methods since they allow information to be communicated to agents via the environment, and can influence the behaviour of an agent without necessarily replacing it. In fact, such combination already exists and can be observed, for example, in the work of Arvin et al. (2018) where the robot's behaviour based on the 'Random movement and wait' method is extended with the use of pheromones ('Stigmergy' method) to facilitate aggregation, as detailed in section 4.7.

The production of a future 'design guide' is one of the direct perspectives of this work. A formal study with a systemic approach, for example, could help to confirm the behaviours that can or cannot be obtained by each method. To illustrate the role of such a guide, let us imagine a hypothetical use case where a designer must achieve a pattern formation behaviour in a swarm simulating a flock of birds. Using the guide based on Table 1, six solutions can be easily and quickly identified for pattern formation. However, there are not many methods that can simulate realistic bird flight behaviour. Consequently, the designer decides to use a model based on the 'Attraction, Alignment and Repulsion' method such as Reynolds' Boids model or the Couzin model, which are known for their ability to realistically simulate bird flight. Another use case could be a designer seeking to achieve a flocking behaviour with a swarm of UAVs. The guide based on Table 1 would state that six different methods can lead to flocking. However, this swarm must maintain a stable formation and avoid collisions among its agents. Based on the description of each method in section 3, the designer could quickly see which methods could be used and which methods to dismiss. As an example, a relevant choice could be to implement the 'Preservation of connectivity' (see 3.3) method, which would meet the requirements given.

In addition, this document showcases different studied behaviours according to their self-organisation methods. We found that a single method can be used to generate many different behaviours, sometimes just by changing a single parameter. Because of such factors, it is difficult to predict which behaviour a method will produce, or if a collective behaviour will appear at all [START_REF] Gravagne | Emergent behaviors of protector, refugee, and aggressor swarms[END_REF]. Moreover, even if the desired behaviour is obtained, there is no guarantee that it will remain consistent. Depending on the circumstances, the behaviour could display a change in its properties or result in a completely new behaviour altogether. From these revelations, the questions arise of how we could predict the evolving behaviour of a swarm and how we could assist the operator in understanding it.

From the definitions presented in section 2, it is possible to break down the various behaviours studied into simple properties by which they can be characterised. This can enable us to sort these basic properties with metrics and represent them quantitatively. For example, flocking is defined by the property "agents move in the same direction". The 'Order' metric [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF] is often used in the literature to evaluate this property. Thus, when this metric gives a value close to one, the group moves in the same direction. On the contrary, when it is close to zero, the agents go in different directions. Moreover, since this metric is not binary, it can offer a fairly precise characterisation of the swarm's current state. By reproducing this approach for the different properties of each studied behaviour, we can then obtain a set of indicators to characterise the state of the swarm.

Finally, facilitating the comprehension of the mechanisms of the studied methods should also provide a greater understanding of their dynamics. It is, thus, possible to imagine future designers or operators being able to analyse a swarm's dynamics in real time by combining the various data collected here. This analysis could then be used to propose indicators for an observer, for identifying the essential information needed to create a mental model of the swarm and communicating it effectively and simply to others. As a result, the observer could build a mental model that would allow them to interpret changes in the swarm without having to observe the swarm's agents one by one [START_REF] Kolling | Human interaction with robot swarms: A survey[END_REF]. These indicators could, for example, convey the stability of the swarm, or the risks that the swarm is facing, such as the splitting up of an aggregate.

Conclusion

In swarm intelligence, it is difficult to understand how selforganisation leads to the emergence of collective behaviours. The classification system proposed in this document offers a new perspective by highlighting the methods of selforganisation of a robot swarm. This new perspective led us to perform an analysis to better understand the mechanisms that give rise to different elementary spatial behaviours. Complex behaviours, made up of elementary behaviours, will be the subject of a future classification and analysis. The presented cross-analysis also paves the way for defining metrics that allow external observers to better understand the underlying mechanisms of self-organisation, thus aiding further development of self-organised systems.

Declaration of conflicting interests

The Authors declare that there is no conflict of interest.

Figure 1 .

 1 Figure 1. Sankey diagram of four emergent robot swarms' spatial behaviours (left) that can be obtained through the use of self-organisation methods (right)

Figure 2 .

 2 Figure 2. Diagram of the probabilistic finite state machine of aggregation behaviour from (Soysal & Sahin, 2005).

Figure 3 .

 3 Figure 3. Diagram of the Finite state machine of the aggregation behaviour of Beeclust from[START_REF] Kernbach | Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system[END_REF].

Figure 4 .

 4 Figure 4. Diagram of the flocking model from Couzin et al.(2002) applying the three rules on three distinct zones: 'zor' repulsion zone, 'zoo' orientation zone and 'zoa' attraction zone.

Figure 5 .

 5 Figure 5. Diagram describing various positioning techniques: (a) unit-center, (b) leader and (c) neighbour from[START_REF] Balch | Behavior-based formation control for multirobot teams[END_REF].

Figure 6 .

 6 Figure 6. Diagram describing how flocking can emerge with Heroes and Cowards model. (I) All agents are cowards. Agent a wants to avoid c hiding behind b. Agent b wants to avoid c hiding behind a. Agent c wants to avoid b hiding behind a. (II) The agents end up aligning themselves. Each one wants to go ahead of the others at the same speed, so they end up going in a straight line. (III) Another example of a potential flocking situation, with a hero agent (agent c), wanting to stand between the other two agents, who are already moving in a straight line to avoid agent c.

  Behaviours: flocking, aggregation, pattern formation Implementation: neural network, artificial evolution, deep reinforcement learning Machine learning is a field with many techniques for optimising and/or generating solutions automatically, thus simplifying the obtention of certain collective behaviours. Several examples use neural networks associated with artificial evolution or deep reinforcement learning to induce self-organisation in a swarm, allowing the desired behaviour to appear.

Figure 7 .

 7 Figure 7. Diagram describing a neural network connecting the robot's sensors and actuators, from Baldassarre et al. (2003).

Figure 8 .

 8 Figure 8. Diagram of the decomposition of an area into Voronoï cells, from Yang et al. (2015). Each point is an agent allocated to a cell.

Figure 9 .

 9 Figure 9. Finite state machine of an agent's behaviour with the combination of the 'Random movement and wait' method and 'Stigmergy' method, from Arvin et al. (2018).

Table 1 .

 1 Summary table of self-organisation methods leading to the apparition of collective behaviour. The symbol '?' indicates that the behaviour may be conceivable with this method, whereas the symbol 'ø' indicates that the behaviour does not seem to be obtainable, based on the analysis of methods in section 4.
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