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Abstract—In the machine learning field, the technique known
as ensemble learning aims at combining different base learners in
order to increase the quality and the robustness of the predictions.
Indeed, this approach has widely been applied to tackle, with
success, real world problems from different domains, including
computational biology. Nevertheless, despite their potential, en-
sembles combining results from different base learners have been
understudied in the context of gene regulatory network inference.
In this paper we applied genetic algorithms and frequent itemset
mining, to design small but effective ensembles of gene regulatory
network inference methods. These ensembles were evaluated
and compared to well-established single and ensemble methods,
on both real and synthetic datasets. Results showed that small
ensembles, consisting of few but diverse base learners, enhance
the exploration of the solution space, and compensate base
learners biases, outperforming state-of-the-art methods. Results
advocate for the use of such methods as gene regulatory network
inference tools.

Index Terms—Bioinformatics, Gene Regulatory Network In-
ference, Ensemble Learning

I. INTRODUCTION

Ensemble learning is a machine learning technique that
combines multiple algorithms, with the aim of leading to better
predictive performances than its constituent algorithms [1],
[2]. This approach has been used successfully to deal with
complex real world problems, from different domains, and thus
ensemble learning is recognized as a cutting-edge technique,
and it has received interest from the machine learning research
community [1], [2]. According to [3], ensemble learning meth-
ods have been used increasingly by the computational biology
community, to tackle different problems such as differential
gene expression analysis, and gene interaction identification.
Indeed, according to these studies, such technique allows to
deal effectively with common problems from the computa-
tional biology domain, such as high-dimensional data, and
small sample sizes.

An important issue addressed by the systems biology
community, consists in reverse-engineering Gene Regulatory
Networks (GRNs) [4], i.e. complex regulatory interactions
between regulators, being transcription factors (TFs), and
their target genes (TGs). This is a real challenge, since the
control exerted by GRNs on the gene expression, is key in
the regulation of important biological mechanisms, such as
organogenesis, development, cell death and the adaption to

changing environmental conditions [5]. Related to that, the
advent of high-throughput technologies (RNAseq, Microarray)
has motivated the development of several families of algo-
rithms that aim at inferring GRNs from those data [4]. Each
family of methods has its own advantages and drawbacks, each
being inclined to reveal some particular types of regulatory
interactions [6].

In order to overcome the inner biases of individual methods,
some previous works [6] have combined many available GRN
inference tools to form a large ensemble, and obtained better
and more robust results, across different datasets. Robustness
is particularly valuable in real world applications, since it
is not straightforward to determine a priori which method
should be used to analyze a dataset, given the differences
existing between organisms and the experimental conditions.
Nevertheless, large ensembles incorporating as many infer-
ence methods as possible are likely to require overwhelming
computational resources. Therefore, investigating the design
of smaller and efficient ensembles of GRN inference methods
seems an interesting research path, that has been under-studied
by the computational biology community. In order to tackle
this research question, in this work, we used a methodology
based on a genetic algorithm and frequent itemset mining to
design small, robust and competitive ensembles. We assessed
the effectiveness of our methodology by comparing our en-
sembles with respect to popular approaches, on benchmark
datasets described in [6]. Our study shows that our ensembles
are robust and valuable tools for the analysts, specially for
real world applications. For the sake of reproducibility, the
experiments and the ensembles implementations are available
online 1.

The rest of this article is structured as follows. Section II
describes state-of-the-art in the field. Section III introduces the
GRN inference problem, and describes the methodology, de-
veloped in this work, to design suitable ensembles of learners.
Section IV and V describe the experimental setup developed
in this work and the results, respectively. We conclude with a
summary and some perspectives.

1https://gitlab.com/bf2i/evening



II. STATE-OF-THE-ART

A. Gene regulatory network inference

Algorithms that aim at reverse-engineering GRNs from gene
expression data, have been categorized in three major families
[4], as described hereafter.

a) Model-Based methods: infer GRNs by fitting the
parameters of a pre-established model, with respect to experi-
mental data [7]. Then, calibrated models allow to simulate and
analyze the biological system in-silico. Some models, termed
Probabilistic Models are grounded in probability theory, and
they include approaches such as Bayesian networks and Gaus-
sian Graphical Models [4]. Other methods aim at modelling
the temporal changes in the expression of genes, through
Dynamical Models, including Boolean Networks, Dynamic
Bayesian Networks and Ordinal Differential Equations [4].

b) Data-Driven methods: analyze high-throughput
datasets, to score the level of dependency between each TF
and each possible TG [4]. Different measures have been
used to score the regulatory links. Some algorithms rely on
the assumption that the gene expression of a TG and its
TF should be correlated, and use correlation statistics or
more sophisticated information theory scores such as Mutual
Information, to score regulatory links. Other algorithms are
based on feature importance scores assigned by algorithms
that are trained to predict the levels of expression of a TG
from those of TFs. In practice, these approaches have mostly
used regression algorithms [4], but recently classification
algorithms have also been applied successfully [8].

c) Multi-Network methods: infer GRNs by considering
heterogeneous sources of data simultaneously [4]. Indeed,
besides using gene expression data, these methods also rely on
TF binding site patterns, or Chromatin Immuno-Precipitation
data. For example the so-called SCENIC method [9], analyzes
TF binding site motifs, in order to refine the results produced
by the GENIE3 data-driven method [10].

B. Ensemble Learning

Ensemble learning is a recognized machine learning tech-
nique, that has been applied in the context of supervised
learning (i.e., classification and regression), semi-supervised
learning, and unsupervised learning (i.e., feature selection and
clustering) [2]. Conceptually, this technique aims at training a
set of base learners, and then integrating their results, using
a voting scheme, to form a consensus solution. In practice,
four major kinds of procedures to train a set of learners have
been identified by [1]: 1) Input manipulation, each learner
is trained using a slightly modified version of dataset. 2)
Partitioning, each learner is trained using different subsets
(horizontal partitioning) or subspaces (vertical partitioning)
of the original dataset. 3) Learning algorithm manipulation,
each base model is trained with a different parameter setting,
or a different algorithm. 4) Ensemble hybridization, at least
two of the former strategies are used at once. Whereas,
regarding the integration of the base learners results, two
families of techniques were described in [1]: 1) Weighting

methods combine the individual results by assigning weights
to each base model, and applying a voting scheme 2) Meta-
learning methods feed a meta-learner model with the outputs
of the base learners, to produce a final integrated output.

It has been shown, that the performance of an ensemble
increases with the diversity, and the efficiency of its base
learners [1]. Indeed, the inherent diversity of ensemble ap-
proaches leads to a better exploration of the solution space
than single learners. Moreover, ensembles of diverse learners
can also extend the solution representations beyond the base
learners’ solution space, leading to more flexible and accurate
models. Finally, ensembles have also been used to lessen the
impact of well-known problems in machine learning, such as
the curse of dimensionality, class imbalance, and over-fitting
due to small datasets [1].

C. Ensemble learning in bioinformatics and GRN inference

Ensemble methods have been successfully used in many
real world applications from different fields, such as image
and speech analysis [11], or bioinformatics and medicine
[3]. Indeed, as reviewed in [3], ensemble learning has been
applied to deal with complex biological problems, such as
classifying gene expression datasets, identifying interaction
between genes and predicting regulatory elements from DNA
or protein sequences.

This technique has also been used to develop GRN inference
methods. For instance, GENIE3 [10] and GRNBoost2 [12], are
data-driven methods, based on well-known ensemble learning
algorithms, i.e., Random Forest regression [13] and Gradient
Boosting regression [14], respectively. Similarly, in [8], the
authors proposed data-driven methods based on well-known
classification ensemble algorithms, namely Random Forest
[13], Extremely Randomized Trees [15], Gradient Boosting
[14] and AdaBoost [16] . Another method called TIGRESS
[17], aims at training an ensemble of sparse linear regressors
on noisy versions a gene expression dataset, to infer GRNs. All
the previous methods use input manipulation, and partitioning
techniques to create ensembles, but rely on a unique kind
of base learner, which may induce method-specific biases in
predicting regulatory relationships [6].

In order to overcome this problem, a ranked voting proce-
dure was used in [6], to combine the outputs from 35 methods,
that participated in the DREAM5 challenge, forming a large
ensemble, which was termed “Community”. On average, the
Community exhibited better results than its base predictors,
and its performance revealed to be robust across all datasets,
unlike base methods.

III. MATERIALS AND METHODS

A. Overview

In order to build ensembles of methods that are robust
across datasets, a naive solution would consist in running as
many independent methods as possible and then integrating
their results. Nevertheless, including blindly more and more
methods, massively increases the computational requirements,
without ensuring gains in terms of quality.



In this work, we decided to explore small combinations
of methods that lead to suitable and robust results. To do
so, we used a genetic algorithm to explore the space of
ensembles (i.e., combinations of base learners), and select a
population of ensembles that exhibit high inference qualities.
Then, we conducted a frequent itemset mining exploration to
identify small subsets of base methods, that are frequently
selected together by the genetic algorithm, to form suitable
ensembles. This analysis aims at discovering, understanding
and then exploiting underlying principles that would allow
us to combine base learners to build efficient and robust
ensembles.

B. Definitions

a) Gene expression dataset: Let a matrix X ∈ RI×J

denote a gene expression dataset. The expression of gene i
in condition j is Xi,j , while Xi,. (resp. X.,j) represents the
vector of levels of expression of gene i (resp. condition j)
for all conditions (resp. genes). The number of genes (rows)
and conditions (columns) in X , are denoted I and J .

b) Gene Regulatory Networks: Let the set of all genes
of an organism be denoted as TG = {tg1, . . . , tgI}, and
let TF ⊆ TG be the subset of genes encoding TFs. The
set of regulatory links between TFs and their TGs is E ⊆
(TF × TG), such that (tf , tg) ∈ E means that tf regulates
the level of expression of tg . Then, a GRN is simply modeled
as an oriented graph G = ⟨TG,E⟩, its nodes representing
the organism’s genes, and its edges being the regulatory
interaction between TFs and their TGs.

c) Data-Driven GRN inference: Let us define a function
ω : RI×J , TF , TG → R that aims at computing a score
ω(X, tf , tg), to quantify the level of dependency between
genes tf and tg . Data-Driven GRN inference rely on such a
function, to score all possible regulatory links between TFs
and TGs (excluding self-loops), i.e., Efull = {(tf , tg) ∈
TF × TG | tf ̸= tg}. Finally, a subset of Efull is often
selected as the inferred GRN, by extracting the links with a
score above a given threshold, or selecting the top-k links.

d) Ensemble of GRN inference methods: Let us consider
a set of M GRN inference methods {m1,m2, . . . ,mM}, and
let ωm denote the scoring function of method m. Then,
Ω = {ωm1

, ωm2
, . . . , ωmM

} represents the set of scoring
functions of methods in M. Moreover, let V : RM → R
be an integration function, that receives as inputs the scores
ωm(X, tf , tg), ∀m ∈ M, and outputs a unique final score,
that quantifies the consensus level of dependency between tf
and tg , for a dataset X . Therefore, an ensemble of GRN
inference methods is defined as a pair ⟨Ω, V ⟩, containing a
set of base scoring functions Ω, and an integration function
V .

C. Preprocessing

Applying standardisation techniques is an important pre-
liminary step in gene expression data analysis, as in many
machine learning tasks [18]. In this work we applied the
well-known Z-score rows standardization, that ensures that the

levels of expression of the different genes are comparable.
More formally, each entry Xi,j of the gene expression matrix
is replaced by Xi,j−µi

σi
, where µi =

1
J

∑
j Xi,j is the average

gene expression of gene i and σi =
√

1
(J−1)

∑
j(Xi,j − µi)2

represents its standard deviation.
As suggested in [8], the continuous expression vector of

each TG was discretized into K levels (classes), using the
Row-Kmeans method. This method aims at applying the well-
known K-means algorithm [19] to cluster the expression values
of the TG into K groups. Then cluster memberships are used
as discrete gene expressions. More formally, ∀j ∈ {1, . . . , J}
the gene expression values Xi,j of gene i, are clustered in K
clusters, hence Ck denotes the k-th cluster, µk is its centroid,
and cluster indexes are set according to the centroid location,
i.e., µ1 < µ2, < · · · < µK . Finally, if Xi,j ∈ Ck then Xi,j is
discretized by taking its cluster index k. As in [8], the number
of classes was set to k = 5. This value was determined in
[8], for the DREAM5 datasets, by identifying the elbow in
a plot representing, for different number of clusters, the sum
of squared euclidean distance between each gene’s expression
vector and its cluster centroid.

In practice, the z-score and Row-Kmeans implementations
from the GReNaDIne [20] Python package were used.

D. Ensembles of GRN inference methods

1) Base learners training: In order to study ensembles of
GRN inference methods, we relied on the GReNaDIne [20]
open source Python library, that implements many data-driven
gene regulatory network inference methods, that were used
here as base learners. In practice, GReNaDIne implements
4 methods based on classical statistical measures, namely
Pearson (Pcorr) and Spearman (Scorr) correlations, Kendall-
tau (Ktau) and Mutual Information score (MI). Moreover, this
package incorporates two methods based on Support Vector
Machines (one based on classifiers and one on regressors), and
eight methods based on AdaBoost (AB), Gradient Boosting
(GB), Random Forest (RF) and eXtreme Randomized Trees
(XRT), for both classifiers (c) and regressors (r). This package
also includes an implementation of TIGRESS [17] as well as
another similar method based on stability randomized lasso
(SRLr). Finally, GReNaDIne includes a method based on
Bayesian Ridge Regression (BRr).

The parameters of these methods were set as in [8], [20], to
the default values, that leaded to suitable results. Similarly, for
all the algorithms based on decision trees (i.e. ABc, ABr, GBc,
GBr, RFc, RFr, XRTc, XRTr), the number of base estimators,
a major parameter, was set to 100 trees. This value ensured a
good trade-off between quality, and the execution time (both
measures tend to increase with the number of predictors).

2) Integration scheme: In this work, we used a rather sim-
ple integration scheme: first we made the scores distributions
comparable between methods, by standardizing them using a
z-score, and then we derived the final scores, by averaging the
base predictors’ standardized scores. This integration scheme
does not require to recompute base learners’ inferences, and



thus it is possible to compute base learners’ inferences only
once to test many combinations of base methods, saving
important computational resources.

More formally, let Sm = {ωm(X, tf , tg), ∀(tf , tg) ∈
Efull}, be the set of scores of all possible regula-
tory links between TFs and TGs, assigned by method
m ∈ M, M denoting the set of base methods. More-
over, let µSm =

∑
(tf,tg)∈Efull ωm(X,tf ,tg)

|Efull| and σSm =√∑
(tf,tg)∈Efull (ωm(X,tf ,tg)−µSm )2

|Efull|−1
be the average and the

standard deviation of scores in Sm respectively. Then, for
each regulatory link (tf , tg) ∈ Efull, the ensemble score is
simply the average of standardized base method scores, i.e.,
ωM(X, tf , tg) = 1/|M| ×

∑
m∈M

ωm(X,tf ,tg)−µSm

σSm

E. Evolution of ensemble candidates

In order to explore the space of combinations of base
methods, and select a set of efficient ensembles, we relied
in this work on a genetic algorithm. The overall idea is to
evolve a population of candidate ensembles, i.e. subsets of the
available GRN inference methods, in order to maximize their
fitness, i.e., the quality of their inferred GRNs.

The Genetic Algorithm evolves a population of SizePop
individuals. Each individual genome encodes an ensemble
candidate, and it is represented as a boolean vector with a size
equal to the number of the available GRN inference meth-
ods (here the 17 GReNaDIne methods presented in Section
III-D1 are considered). Then, the i-th element of the boolean
vector encodes the presence of the i-th base method, in the
corresponding ensemble candidate. More formally, let L =
(m1,m2, . . . ,mL) be an arbitrarily ordered list of L methods,
and let B = (b1, b2, . . . , bL) | ∀b ∈ B, b ∈ {0, 1}, be a
boolean vector of size L. The candidate model encoded by
vector B contains a set of methods M = {m ∈ L}, such
that mi ∈ M only if bi = 1. All individuals of a population
are initialized randomly by setting each element to 1 with
a probability pinit (the higher pinit is, the more methods are
integrated in the first generation). At each generation, children
may mutate with a probability pIndivMut. Here, a mutation
simply picks randomly one element of the boolean vector with
a probability pGeneMut, and flips it. And during reproduction,
two individuals can undergo a classic two points crossing-
over operation with a probability pcross. The parents of the
new generation are selected, according to their fitness, using a
tournament selection scheme, i.e., TournSize individuals are
randomly picked to compete, and the best one is selected to
produce TournSize children. The fitness of an individual is
computed by evaluating its inferred GRN with respect to a gold
standard GRN. More precisely, the fitness of the individual is
simply the AUROC evaluation score of the inferred GRN. The
AUROC is computed with the procedure described in Section
IV-B. Finally the algorithm iterates a mutation step and a
selection step, for a number NbGenerations of iterations.

In practice, the genetic algorithm was programmed using
the DEAP Python library [21], and the meta-parameters were
set as follows. The population size was set to SizePop = 100

individuals. The mutation probability was set to pIndivMut =
0.1 (10% of the population), and pGeneMut = 1/|B| (in
average 1 gene is affected). The cross-over probability was
set to pcross = 0.5, so each new child has a probability
of 0.5 to undergo a cross-over. The number of individuals
involved in a tournament was set to TournSize = 5. Finally,
six values have been explored for pinit, namely 0.1, 0.2, 0.3,
0.4, 0.5, 0.6 as starting points for the algorithm. Then for
each dataset, and each value of pinit, 10 populations were
evolved independently. For each run, the best individual of
the last generation, supposedly the best of all, was kept as
a suitable ensemble candidate. Evolving the population for
NbGenerations = 10 revealed to be sufficient to reach
high scores w.r.t. those obtained by base learners, as shown
Figure 1. Since our goal is simply to explore the space of
promising ensemble candidates, to subsequently mine frequent
associations of methods, instead of retrieving the optimal
ensemble per dataset, optimizing the meta-parameters was not
necessary in this work.
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Fig. 1: Empirical cumulative distributions for the last popula-
tions average scores (blue) and the base learners ones (orange),
for each DREAM5 dataset

F. GRN inference association rules

In order to detect sets of methods that are frequently
selected together to form suitable ensemble candidates, we
used a frequent itemset mining procedure. In this context,
each base method m is considered as an item, and a can-
didate ensemble comprised of a subset of methods M, is
an itemset or transaction. Then, the set of candidate en-
sembles is a transactions dataset T = {M1,M2, . . . ,MT }
The support supp(M, T ) of an itemset M in T , is simply
the frequency of itemsets in T that are supersets of M,
i.e., supp(M, T ) = |{Mt∈T | M⊆Mt}|

|T | . A transaction M
is called a frequent itemset if supp(M, T ) > MinSupp,
where MinSupp is a threshold defined beforehand. Moreover,
a frequent itemset M is said to be maximal if there is
no frequent itemset that is a superset of M, i.e., ∄M′ ∈
T | M ⊂ M′ and supp(M′, T ) > MinSupp.



With this aim, we used the FP-max [22], a variant of the
popular FP-growth algorithm [23], to extract maximal frequent
itemsets, from the ensemble candidates dataset. In order, to
extract only the most interesting combinations, we set the
minimal support threshold to MinSupp = 0.2 (i.e., one out
of five ensemble candidates should incorporate the itemset).
In practice, we used the MLxtend [24] implementation of the
FP-max algorithm.

IV. EXPERIMENTAL SETUP

A. Datasets

In order to investigate and assess the use of ensembles
of GRN inference methods, we relied on the DREAM5
benchmark data [6]. This benchmark contains three datasets
obtained from real organisms, namely E. coli, S. aureus and
S. cerevisiae, and an In silico simulated dataset. Each dataset
contains a gene expression matrix, a list of TFs, and a gold
standard GRN, i.e., a list of known regulatory links between
TFs and their TGs. Important characteristics of these datasets
are reported in table I.

The gene expression matrices for E. coli, S. aureus and
S. cerevisiae are Affymetrix Microarray datasets, downloaded
from Gene Expression Omnibus (GEO)2 platform. According
to [6], these datasets underwent a normalization and filtering
procedure that includes: Robust Multichip Averaging back-
ground adjustment (RMA), quantile normalization, probeset
median polishing and logarithmic transformation.

In order to determine the TFs lists for E. coli, S. aureus
and S. cerevisiae, the authors conducted Gene Ontology (GO)
annotation analysis [6]. Then, they completed E. coli and
S. cerevisiae lists including information retrieved from a
manually curated TFs list included in the RegulonDB 6.8
database [25] for E. coli and a list of TFs provided in [26] for
S. cerevisiae, respectively.

The gold standard E. coli GRN includes only regulatory
links with strong experimental evidence, from the RegulonDB
6.8 database [25]. The gold standard S. cerevisiae GRN,
includes regulatory interactions that were determined in [27],
through the study of ChIP-chip datasets and the query for
conserved TF binding sites motifs. Regarding S. aureus, the
authors included the prokaryotic regulatory interactions re-
ported in the RegPrecise database [28], as a proxy of a gold
standard GRN, since no experimentally validated GRN was
available for this organism [6].

Unlike the previous datasets, the in silico dataset was
generated using the GeneNetWeaver software [29]. According
to [6], the In silico GRN structure is a randomized version
of the RegulonDB E. coli GRN, that includes 10% of new
random regulatory links. This GRN, was used to generate a
gene expression matrix, using a dynamical system of ordinary
differential equations (ODE), based on multiplicative regula-
tory interactions models.

2http://www.ncbi.nlm.nih.gov/geo

TABLE I: Benchmark datasets summary

Dataset Data # cond. # genes # TFs # Links
Egold

E
full
gold

In silico Simulated 805 1,643 195 4,012 0.014
S. aureus Microarray 160 2,810 99 515 0.028

E. coli Microarray 805 4,511 334 2,066 0.013
S. cerevisiae Microarray 536 5,950 333 3,940 0.017

B. Evaluation

a) General procedure: The evaluation of the GRN infer-
ence methods, against gold standards, was conducted follow-
ing the procedure described in [6]. In this procedure, GRN
inference is assessed as a binary classification task, where
possible regulatory links are classified as true of false. All
the links reported in the gold standards are taken as true
interactions, for the binary classification. Nevertheless, all
the links missing in the gold standards should be considered
as false interactions. Indeed, according to [6], an organism’s
GRN gold standard only contains the experimentally tested
subset of all its true regulatory interactions. Therefore, in order
to avoid penalizing methods for detecting true interactions
remaining experimentally untested, any link involving a TF
or a TG that was not studied experimentally is excluded from
the assessment [6]. Only pairs missing from the gold standard
list, and involving both a TF and a TG experimentally studied,
are taken as false interactions.

b) Formal definition: Let TG and TF ⊂ TG be respec-
tively a set of genes and the subset of genes encoding TFs. Let
the oriented graph Ggold = ⟨TFgold∪TGgold, Egold⟩ be a gold
standard GRN, with TFgold ⊆ TF and TGgold ⊆ TG being
respectively the set of experimentally studied TFs and TGs,
and Egold ⊆ Efull

gold being the set of true regulatory links among
the set of possible links Efull

gold = TFgold × TGgold. Links in
Efull

gold \ Egold are considered as false regulatory links, while
links in (TF × TG) \Efull

gold are not taken into account in the
evaluation. The fraction of true regulatory links Egold/E

full
gold ,

reported in Table I shows that the datasets exhibit a strong
class imbalance.

c) Evaluation measures: As in [6] we assessed the meth-
ods using standard evaluation measures for binary classifica-
tion, from the machine learning community, namely the Area
Under the Receiver Operating Characteristic curve (AUROC)
[30], and the Area Under the Precision Recall curve (AUPR)
[31] values.

C. Experimental protocol

a) Comparison with DREAM5 ensemble: In order to
assess the ensemble candidates studied and proposed in this
paper, we compared their AUROC and AUPR scores, with
respect to those obtained by the ensemble of DREAM5 partic-
ipants. The performance measures obtained by the DREAM5
ensemble, on each benchmark dataset, as defined in Section
IV-B, have been made available by [6]. The single GRN
inference methods implemented in GReNaDIne [20] as well
as the ensemble candidates presented here were executed on
the DREAM5 benchmark datasets, and the consecutive results



were assessed against the gold standards networks, following
the procedure described in Section IV-B.

b) Base learners diversity exploration: According to [1],
[6], the performance and the robustness of ensembles increase
when the base learners are diverse. In order to study the
similarities between GReNaDIne predictors, we have selected
Etop, the regulatory interactions that were among the top
50,000 links of at least one base predictor in one dataset,
yielding a total of |Etop| = 419, 904 links, from the different
datasets. Then each link was represented in the base predictors
rank space: let Rtop be a matrix with |M| columns, and |Etop|
rows, such that element Rtop

i,j denotes the ranking of the score
assigned by method j to the link i (rank 1 being assigned to
the highest score). Finally, the Rtop matrix was standardized
using a column z-score, and then we applied the principal
component analysis [32], to represent the methods in the two
first Principal Components (PC) space.

To study the similarities between GReNaDIne predictors,
we have also computed, for each dataset, the Jaccard sim-
ilarity coefficient [33], to compare the sets of top 100,000
links selected by each method, and then averaged the results
obtained on the different datasets. More formally, let Ed

m be
the set of ntop = 100, 000 top edges inferred by method
m on dataset d, the Jaccard index between the results ob-
tained by methods m and m′ is defined as the size of the
intersection divided by the size of the union of two sets of
edges Jaccard(Ed

m, Ed
m′) =

|Ed
m∩Ed

m′ |
|Ed

m∪Ed
m′ |

. Finally, the similarity
between two methods is defined as their average Jaccard index
over the different datasets.

c) Alternative integration schemes exploration: In this
work, we also studied alternative integration schemes based
on z-score and ranked voting procedure.

In addition to the integration scheme presented in Section
III-D2, termed Z-score-full, we also studied two alternative
integration schemes based on z-scores, denoted as Z-score-TG
and Z-score-TF. These three methods aim at making compa-
rable the scores obtained by different methods, by computing
a z-score at a general level, or at the levels of each regulated
gene (Z-score-TG) or at the level of each regulator (Z-score-
TF), and then deriving the final scores by averaging the base
predictors’ standardized scores. Moreover, we have also tested
variants of such integration schemes based on ranked voting
procedure [6], instead of z-scores. These variants are termed
Rank-full, Rang-TG and Rank-TF respectively.

Let Sm = {ωm(X, tf , tg), ∀(tf , tg) ∈ Efull}, be the set
of scores of all possible regulatory links between TFs and TGs,
assigned by method m ∈ M, where M denotes the set of base
methods. Let us describe these methods more formally.

• Z-score-full: µSm =
∑

(tf,tg)∈Efull ωm(X,tf ,tg)

|Efull| and

σSm =

√∑
(tf,tg)∈Efull (ωm(X,tf ,tg)−µSm )2

|Efull|−1
denote re-

spectively the average and the standard deviation of
scores in Sm. Then, the integrated score for each reg-
ulatory link (tf , tg) ∈ Efull is simply the average of

standardized base method scores, i.e., ωM(X, tf , tg) =

1/|M| ×
∑

m∈M
ωm(X,tf ,tg)−µSm

σSm

• Z-score-TG: µtg
Sm

=
∑

tf∈TF \{tg} ωm(X,tf ,tg)

|TF \{tg}| and σtg
Sm

=√∑
tf∈TF \{tg}(ωm(X,tf ,tg)−µtg

Sm
)2

|TF \{tg}|−1 represent the average
and the standard deviation of scores of all regula-
tory links entering tg . The integrated score for each
link (tf , tg) is then ωM(X, tf , tg) = 1/|M| ×∑

m∈M
ωm(X,tf ,tg)−µtg

Sm

σtg
Sm

.

• Z-score-TF: µtf
Sm

=
∑

tg∈TG\{tf} ωm(X,tf ,tg)

|TG\{tf }| and σtf
Sm

=√∑
tg∈TG\{tf}(ωm(X,tf ,tg)−µtf

Sm
)2

|TG\{tf }|−1 are the average and
the standard deviation of scores of regulatory links leav-
ing tf . Then, the ensemble score for each link (tf , tg)

is ωM(X, tf , tg) = 1/|M| ×
∑

m∈M
ωm(X,tf ,tg)−µtf

Sm

σtf
Sm

.

• Rank-full: Let Rm(tg, tf ) ∈ N∗ be the rank
corresponding to the score, assigned by method
m ∈ M, to edge (tg, tf ) ∈ Efull, ranging
from 1 (for the highest score) to |Efull| (for the
lowest one), i.e., Rm(tg, tf ) = |{(tg∗, tf∗) ∈
Efull | ωm(X, tf∗, tg∗) ≥ ωm(X, tf , tg)}|.
Then, the integrated score for each link (tf , tg) is
ωM(X, tf , tg) = 1/|M| ×

∑
m∈M 1/Rm(tg, tf ).

• Rank-TG: Let RTG
m (tg, tf ) ∈ N∗ be the rank corre-

sponding to the score, assigned by method m ∈ M,
to edge (tg, tf ) ∈ TF \ {tg} × {tg}, ranging from 1
(for the highest score) to |TF \ {tg}| (for the lowest
one). Then, the integrated score for each link (tf , tg) is
ωM(X, tf , tg) = 1/|M| ×

∑
m∈M 1/RTG

m (tg, tf ).
• Rank-TF: Let RTF

m (tg, tf ) ∈ N∗ be the rank corre-
sponding to the score, assigned by method m ∈ M,
to edge (tg, tf ) ∈ {tf } × TG \ {tf }, ranging from 1
(for the highest score) to |TG \ {tf }| (for the lowest
one). Then, the integrated score for each link (tf , tg) is
ωM(X, tf , tg) = 1/|M| ×

∑
m∈M 1/RTF

m (tg, tf ).
All experiments were executed on a Intel(R) Xeon(R)

2.40GHz CPU, running Debian GNU/Linux 10, with a 120
Go RAM capacity.

V. RESULTS

Following the aforementioned experimental protocol, seven
maximal frequent itemsets, denoting suitable combinations
of base methods, were detected among the best ensem-
ble candidates. Three out of these combinations, denoted
BRSr•SVMr•Trees, are composed of BRSr, SVMr and a tree-
based approach (i.e., RFc, XRTc, ABr), three other maximal
frequent itemsets are combinations of tree-based methods (i.e.,
ABR•GBr, GBc•XRTr and ABr•GBc), and the last one is the
combination of BRSr and SVMc.

Combinations of tree-based methods were mostly selected
in the In silico dataset, while other combinations were selected
in real datasets, as show the itemset supports per dataset
depicted in Figure 2. Moreover, tree-based ensembles exhibit
better AUROC and AUPR scores, for the In silico dataset,



and mediocre results for the real datasets, while the remaining
combinations exhibit decent results for the In silico dataset,
and among the best results for the real datasets, as shown in
Figure 2. BRSr•SVMr•Trees revealed to be the most interest-
ing combination, that dominates the individual methods, as
well as the other combinations, as depicted Figure 3. Thus,
even small ensembles of three methods may be sufficient to
have efficient and robust performances. Regarding evaluation
scores, all the methods, including single ones, exhibit lower
AUPR than AUROC scores, as shown in Figure 3. This may
be due to the datasets class imbalance since, in this context,
AUCROC is less sensitive than AUPR [31].

In order to understand the efficiency of the
BRSr•SVMr•Tree ensembles, we investigated the relatedness
between base learners, using the Principal Component
Analysis (PCA), and the Jaccard similarity coefficients, as
described in the previous section. As shown in Figure 4a, the
two highest principal components reveal clusters of methods
based on: 1) MI or correlation measures, 2) ensembles of
trees, or ensembles of regularized linear regressors 3) SVMs
4) BRSr as an outlier. Similar results are exhibited in the
clustermap Figure 4b. The dendrogram computed, on the
pairwise Jaccard indices, using the Average linkage method
and the Euclidean distance, shows that clusters correspond to
1) MI or correlation methods, 2) ensembles of regularized
linear regressors and ensembles of trees, 3) the SVM based
methods, BRSr and ABc exhibit low similarity with other
methods, and form a cluster of rather dissimilar methods.
The methods belonging to the same cluster are likely to
share the same intrinsic biases [6]. Thus, including one
method from each cluster, is likely to produce an ensemble
with a high inner diversity, that would compensate the base
learners biases. And this is likely to be the reason behind the
efficiency of BRSr•SVMr•Tree ensembles.

In order to assess this hypothesis, we computed the AU-
ROC and AUPR scores for ensemble containing BRSr, an
SVM-based method, and an ensemble based method (termed
BRSr•SVM•Ens), as well as for ensembles containing one
base learner from each of cluster of methods, including
a correlation-based method (termed BRSr•SVM•Ens•Corr).
Then, for each dataset, two-sided non-parametric Mann-
Whitney-Wilcoxon tests with Bonferroni correction were
applied to compare SVM•BRS•Ens ensembles against
SVM•BRS•Ens•Corr ones and single methods respectively.
As shown in Figure 6, including one extra method from the
correlation-based family, does not have a significant impact on
the scores quality for most datasets, but could be beneficial
to deal with other datasets. While ensembles of methods
mostly exhibit significantly better results than base learners
and than the DREAM5 ensemble for the real datasets, and
comparable results for the In silico dataset. Therefore, the
efficiency of the BRSr•SVMr•Tree ensembles, detected using
the itemset mining technique, seems to be explained by this
general principle. Interestingly, the ensembles built using the
itemset mining technique, tend to exhibit average runtimes per
TG processing, that are comparable to tree-based methods,
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Fig. 2: Support, AUROC and AUPR scores for the maximal
itemsets extracted, computed for each dataset. Ensembles that
include SVMr, BRSc and a method based on decision trees
are represented in green, and other combinations in red.

as shown for instance in Figure 5, on 1000 random TGs of
the S. aureus DREAM5 dataset (other datasets exhibit similar
results). Indeed, BRSr and SVM-based methods do not require
significant more time resources, compared to the tree-based
methods. Thus, significantly better results can be obtained
with limited impact on runtimes, using the small and efficient
ensembles presented in this paper.

In order to compare the SVM•BRSr•Tree methods we

speignier

speignier



In silico E.  coli S.  aureus S.  cerevisiae
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

Single
Other Ensemble
SVM BRSr Trees

In silico E.  coli S.  aureusS.  cerevisiae
0.0

0.1

0.2

0.3

0.4

0.5

AU
PR

Single
Other Ensemble
SVM BRSr Trees

Fig. 3: AUROC and the AUPR scores obtained by each
GRN inference algorithm from GReNaDIne, on the DREAM5
dataset (gray). Single methods parallel plots and boxplots
are represented in gray, while BRSr•VSMr•Trees ensembles
parallel plots are depicted in red, and other ensembles in blue.

represented in Figure 7, the ranking of each combination
regarding its AUROC and AUPR score on each dataset, rank
1 being assigned to the best method, and rank 16 to the worst
one. According to these results, the most suitable and robust
ensembles, combine BRSr, SVMr and one of the following
tree-based methods: RFr, RFc, XRTc or ABr.

In order to compare the different base learners integration
schemes, described in section III-D2, we represent, in Figure
8, the AUROC and AUPR scores of all SVM•BRSr•Tree
ensembles, using each integration method aforementioned, on
all DREAM5 dataset. The integration methods are ordered
increasingly with respect to their average AUROC and AUPR
scores. And we applied a paired-samples Wilcoxon test with
Bonferroni correction, to compare the results of each pair of
subsequently ordered integration methods. All the different
integration schemes exhibit rather suitable results, however
Rank-TF and Z-score-TF tend to exhibit statistically signifi-
cant lower results than Z-score-TG, Rank-full, Z-score-full and
Rank-TG, and thus these last methods should be preferred.

In practice, the integration scheme has an impact on the
inferred GRN topology. Indeed, the Z-score-TG and the Rank-
TG (respectively Z-score-TF and the Rank-TF) methods tend
to make comparable the scores distributions at the TG level
(respectively TF level), and then the number of links regu-
lating each TG (respectively being regulated by each TF) are
expected to exhibit low variability. While the Z-score-full and
Rank-full simply make the scores for each single method com-
parable with each other, without changing the relative scores
distributions. These characteristics are illustrated in Figure 9a
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(b) Average Jaccard similarity between single methods

Fig. 4: Single methods represented along the first and second
Principal components, and Jaccard similarity between top
100,000 edges inferred by single method for the DREAM5
datasets.

for the Z-score-TG, Z-score-TF and Z-score-full integration
schemes only, but similar results were obtained with Rank-
TG, Rank-TF and Rank-full. These images illustrate the five
largest connected components within the top-500 edges GRN
inferred by the BRSr•SVMr•RFc ensemble on the In silico
dataset (similar results observed for other datasets and other
ensembles).

In Figure 9a, the Z-score-TG integration scheme has gen-
erated a regulon-like topology, with homogeneous in-degree
(mostly one link per TG), and relatively few TFs with
heterogenous out-degrees, while in Figure 9c, the network
generated by the Z-score-TF scheme exhibits more TFs, with
a more homogeneous out-degree, and longer chains of regu-
latory interactions. Finally Figure 9b shows that the network
generated by the Z-score-full scheme exhibits an in-between
topology.

In order to deepen our understanding of the impact of
such integration methods on the organization of the inferred
GRNs, we have characterized the topology of the top-100,000
edges inferred GRNs by each BRSr•SVMr•RFc ensemble
with the different integration methods, on each DREAM5
dataset. To do so, we have computed well-known network
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AUROC and the AUPR obtained by SVM•BRS•Ens ensembles
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DIne methods (gray) and the DREAM5 community (red line).
For each test, the significance of P-value p is represented using
the following convention, ”ns” (i.e., non-significant difference)
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10−3 < p ≤ 5 · 10−2, ”***” for 10−4 < p ≤ 5 · 10−3 and
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topology metrics, namely the clustering coefficient [34], the
degree–degree assortativity Pearson correlation [35] and the
average shortest path length between the GRN largest con-
nected component nodes [34]. Boxplots representing each
metric, for all SVM•BRSr•Tree ensembles and each datasets,
as a function of the different integration schemes sorted in
increasing order, are represented Figure 10. Interestingly, the
inferred GRNs have two major characteristics that have been
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Fig. 9: Five largest connected components within the top-500
edges GRN inferred by the BRSr•SVMr•RFc ensemble for the
In silico dataset. Networks 9a, 9b and 9c were respectively
obtained using the Z-score-TG, Z-score-full and Z-score-TF
integration schemes.

observed in small-world networks: low average shortest path
length (here two nodes are separated on average by less
than three edges), and relatively high clustering coefficient
(between 0.1 and 0.4). This so-called small-world network
topology is a well-known characteristic of biological networks
in general and also of GRNs [36]. Moreover, the inferred
GRNs, and particularly those generated by the Rank-full and
the Z-score-full integration schemes, exhibit a disassortative
topology, i.e., a negative degree–degree assortativity Pearson
correlation. This is a characteristic that has been observed in
several technological and biological networks [37], [38] and
could be an important characteristic related to the network
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Fig. 10: Boxplots representing, for each DREAM5 dataset,
the clustering coefficient, degree–degree assortativity Pearson
correlation coefficient, and average shortest path length for
the top-100,000 edges GRN obtained by each SVM•BRS•Tree
ensembles, with different integration techniques.

robustness to perturbations [37]. Considering both the network
topology and the evaluation scores, Z-score-full or Rank-
full seem good integration schemes to be applied in further
inference projects.

VI. CONCLUSION

This paper explored the use of ensemble learning, as a
robust and efficient approach to infer GRNs, from gene expres-
sion data. In practice, ensemble predictions were computed
by averaging the results from single GRN inference methods,
implemented in the GReNaDIne framework [20]. Efficient
combinations of methods were designed using a genetic algo-
rithm and a frequent itemset mining procedure. The resulting
ensemble family, termed BRSr•SVMr•Tree, revealed to be
efficient and robust across different datasets, outperforming
single methods as well as the robust community method
presented in [6]. A subsequent analysis revealed that the
effectiveness of BRSr•SVMr•Tree is due to the inner diversity
of its base learners. This result is coherent, with a well known



ensemble learning principle, that affirms that increasing the
diversity of base methods tends to improve the ensemble
quality, through the compensation of base learners biases [1],
and a better exploration of the solution space, that is extended
beyond the base learners’ solution spaces. In this work we
explored different integration schemes, and we showed that
these different schemes produce suitable results in terms of
evaluation scores, but may lead to differences in terms of
network topology regarding the inferred GRNs. Finally, further
explorations of the inferred GRN topology has shown that such
networks, and particularly those generated using the Rank-full
and Z-score-full integration schemes, exhibit characteristics
common to other biological networks and GRNs, namely,
dissortative and small-network topology.

Future work perspectives include studying: i) internal single
methods biases, to retrieve specific patterns, and how can
ensembles reduce the biases ii) strategies to deal with class
imbalance iii) genetic algorithm and frequent itemset param-
eters sensitivity.
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