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Graphical Abstract
Optimization of the measurement of residual stresses by the incremental hole drilling method.
Part I: numerical correction of experimental errors by a configurable numerical-experimental
coupling.
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ABSTRACT
The incremental hole drilling method is very effective in measuring the residual stress gradient in
composite laminates. However, its reliability depends on the accuracy with which the calibration
coefficients are determined. These coefficients are calculated using a finite element model. The sam-
ples’ features and the real experimental conditions must be taken into account in the simulation. Any
mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses.
Several calibration coefficients correction models exist for isotropic materials, but there is a lack of
information on this subject concerning composite laminates. In this paper, the influence of three major
experimental errors on the calibration coefficients is numerically investigated for composite laminates.
The sensitivity of the coefficients to these errors is highlighted and a numerical correction method is
proposed.

1. Introduction
Fiber reinforced composites arewell known for their good

specific properties [1], but they are particularly subject to
residual stresses due to their heterogeneity. Residual stresses
have different origins at different scales. On the microme-
chanical level, the mismatch in coefficient of thermal expan-
sion between fibers and matrix causes non-uniform volumet-
ric shrinkage during cooling [2, 3, 4] . On the ply-to-ply
scale, the anisotropic thermal behavior of the layers depend-
ing on the orientation of the fibers causes constrained shrink-
age [5]. Residual stresses also form at macroscopic level due
to temperature gradient through composite thickness during
cooling [6]. These multi-scale residual stresses influence the
behavior of composite materials and can generate geomet-
ric distortions, fiber buckling, and composite damage in the
form of micro-cracks and/or delamination [7]. This problem
also affects recent manufacturing techniques based on layer-
by-layer polymerization such as 3D printing.

There are many methods to measure residual stresses in
composite laminates and much research is being done to im-
prove them. Residual stresses can be measured by the cur-
vature method [8, 9] adapted for thin unsymmetrical lam-
inates. X-ray diffraction is a powerful method, which re-
quires the insertion of crystalline particles between layers,
but not easily performed [10]. Other methods exist like layer
removal [11] which gives the profile of residual stresses layer
by layer, compliance method [4] which measures relaxation
strains from slits in the thickness and incremental hole drilling
method [12]. Guo et al. [13] recently classified the main
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methods of measuring residual stresses by specifying their
advantages and limitations. The incremental hole drilling is
one of the most widely used method because of its reliabil-
ity, good accuracy, the availability of standard test procedure
[14] and its ability to take into account the non-uniformity of
residual stresses in the thickness without severely damaging
the material.

The incremental hole drilling is a semi-destructivemethod
which consists of drilling a step by step hole through the
thickness of the material. For each increment, relaxation de-
formations around the hole are measured and calibration co-
efficients are calculated using a finite element model to eval-
uate the gradient of residual stresses in the material. This
method is very sensitive to experimental errors. Any error
inmeasuring, conditioning equations or experimental device
design can lead to unreliable stress results. Several authors
have studied the influence of these errors on the measure-
ment of residual stresses in the case of isotropic materials.
Schajer and Altus [15] have shown how to calculate the de-
viation of residual stresses with a given probability from the
experimental errors. Ajovalasit [16] has proposed an an-
alytical correction of the eccentricity of the hole for thin
isotropic materials. More recently, Beghini et al. [17, 18]
introduced the influence functions to analytically correct the
eccentricity for blind hole in thick isotropic materials.

In this work, a configurable Python script is developed
to generate the needed finite element models. The capabil-
ity of the script to generate configurable models allowed to
perform a parametric study and to assess the influence of ex-
perimental errors on the calibration coefficients for compos-
ite laminates. Among them, a focus is done on three main
sources of errors : errors on increment depth, angular de-
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viation of the gages from their theoretical position and hole
eccentricity errors. A detailed analysis of the results is pre-
sented in section 4. Beyond the automation of the tasks and
the performance of parametric studies, the developed numer-
ical tools allowed to introduce a novel correction method
of the calibration coefficients. This numerical correction
method is adapted for thick composite laminates for which
the analytical approach is too complex. The method is for-
mulated to correct any errors that can be experimentallymea-
sured and numerically modelled.

2. Historical evolution of the hole-drilling
method
The hole drillingmethodwas originally proposed by Josef

Mathar [19] in 1933 for isotropicmaterials. Mathar usedme-
chanical extensometer to measure deformations in the vicin-
ity of the hole. This severely limited the accuracy and reli-
ability of the method. In 1950, Soete and Vancrombrugge
[20] introduced the use of strain gages in the application of
the hole method. This improved the measurement of defor-
mations around the hole. They also proposed an incremen-
tal approach that takes into account the non-uniformity of
residual stresses in material thickness. In 1966, Rendler and
Vigness [21] standardized the incremental hole method by
adopting a precise geometry of the strain gages and defining
calibration coefficients to link the relaxation deformations
to the residual stresses. They showed that the residual stress
calculation was repeatable. Their work later served as the
basis for ASTM E837. Bert and Thomson [22] used a sim-
ilar method to calculate the residual stresses in orthotropic
materials.
In the incremental hole method so far used, residual stresses
were considered uniform in a given increment regardless of
the geometric variation of the hole. In 1978, Bijak-Zochowski
[23] proposed a method called "integral method", which al-
lows to take into account the variation of residual stresses
in the same increment when the depth of the hole increases.
This method was initially poorly exploited because of the
complexity of experimentally determining calibration coeffi-
cients for each increment. In 1981, Schajer [24] showed that
it was possible to use finite element simulations to reliably
calculate calibration coefficients. He proposed the «power
series method» which is an approximation of the integral
method. With the evolution of finite element simulations,
authors such as Niku-Lari et al. [25] and Flaman and Man-
ning [26] have contributed to the improvement of the integral
method. In 1994, Schajer and Yang [27] showed, unlike Bert
and Thomson, that it was not possible to extend the equations
of Rendler and Vigness to orthotropic materials. They pro-
posed a new approach that takes into account the orthotropy
of the material.
The first numerical models used to determine calibration co-
efficients [24] were axisymmetric models. In 2002, Aoh and
Wei [28] used a 3D numerical model to calculate calibration
coefficients. Among other things, they showed the influence
of the thickness of the model on the values of the calibration

coefficients. They concluded that a 3D model was more rep-
resentative of reality than an axisymmetric model. In 2003,
Sicot et al [29] adapted Bert and Thomson’s approach to the
integral method and extended it to the calculation of resid-
ual stresses in laminated composites. In 2007, Shokrieh and
Ghasemi [30] used the integral form of Schajer and Yang’s
approach, to determine residual stresses in laminated com-
posites. More recently, in 2016, Ghasemi and Mohammadi
[31] used the same method to determine residual stresses in
fiber-metal laminates. The incremental hole method contin-
ues to be the subject of several researches which make it in-
creasingly optimal. Barsanti et al. [32] proposed a solution
to counter the effect of hole eccentricity for isotropic materi-
als, Blödorn et al. [33] studied the effect of hole bottom ge-
ometry on residual stresses. In 2020, Schajer [34] introduced
a compact form of the calibration data to facilitate their use
and reduce computation time.

3. Calculation of the calibration coefficients
The incremental hole drilling method consists in drilling

a hole incrementally through the thickness of amaterial. The
strains around the hole are measured for each increment us-
ing three gages. These strains, which are measured on the
surface of the material, are the sum of the strains due to
all the increments. This is given by the following equation
[35]:

�ik =
3
∑

l=1

i
∑

j=1
(Cijkl�il) (1)

Where 0 < k ≤ 3 and 0 < l ≤ 3.
�ik: is the strain given by gage "k" when the depth of the holecorresponds to "i" increments
�il : are the residual stresses. "l" represents the stress compo-

nents (�1 = �x, �2 = �xy and �3 = �y)
Cijkl: is the matrix of calibration coefficients related to the

increment "j" when the total number of increments is "i".
This equation can be written in matrix form:

{�} = [C] {�} (2)
The expansion of Eq. 2 for three increments is presented

in Fig. 1a.
The number of necessary coefficients increases rapidly

with the increments. For 3 increments, 54 coefficients are
needed (Fig. 1a). For isotropic materials, Schajer, recently,
proposed a compact form for calibration data with only 15
numerical coefficients to be determined [34]. Such work for
anisotropic cases would reduce computation time and facil-
itate the use of calibration data.

To calculate residual stresses, the exact values of the cal-
ibration coefficients must be determined. These coefficients
depend on the radius of the hole and the geometry of the
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Increment 1 

Increment 1 

Increment 2 

Increment 1 

Increment 2 

Increment 3 

[C11kl] 

[C21kl] [C22kl] 

[C31kl] [C32kl] [C33kl] 

i=1,  j=1 

i=2,  j=1 i=2,  j=2 

i=3,  j=1 i=3,  j=2 i=3,  j=3 

(b)
Figure 1: (a) Expansion of the relation between residual
stresses and relaxation strains for three increments, (b) Load
cases to calculate the different matrices of calibration coeffi-
cients

gages used. To determine the coefficients, a known numer-
ical stress field is applied to the material (Fig. 1b) and the
relaxation strains around the hole are calculated. The com-
putation is done using a finite element model.
For increment 1:

�1k = C11kl�
1
l (3)

The three deformations �1k are experimentally measured
and C11kl are numerically calculated. �1l can, therefore, be
determined.
For increment 2:

�2k = C21kl�
1
l + C22kl�

2
l (4)

C21kl�1l and C22kl�2l are respectively the contribution ofthe residual stresses of the first and second increments to the
total strain measured at the surface �2k. Here, �2l can be cal-
culated. In the same way, the gradient of residual stresses in
the material is determined increment by increment up to the
limit depth of sensitivity of the gages.
Application 1:

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Hole 

Nominal length 

Mean radius 

Gage Figure 2: Definition of the mean radius and the nominal length
of the strain gage rosette modelled as strain extraction areas
in the numerical simulation

In this application, the different steps to calculate the cal-
ibration coefficients of a [02∕902

]

s carbon/epoxy composite
laminates are detailed. The material is modelled in 3D us-
ing the commercial finite element software ABAQUS. Each
layer has a thickness of 0.2 mm. EA-06-062RE-120 strain
gages, designed by Micro-Measurements, are modelled as
strain measuring areas. The mean radius of the strain-gage
rosette is rm= 2.57 mm and its nominal length is 1.59 mm
(Fig. 2). 2 increments per ply are simulated. The radius
of the hole is 1 mm and the material properties are given in
Table 1.

For a given increment, the calibration coefficients are
calculated from Eq. 5 using 3 different load cases:

1
√

ExEy

⎡

⎢

⎢

⎣

cij11 cij12 cij13
cij21 cij22 cij23
cij31 cij32 cij33

⎤

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩

�ix
�ixy
�iy

⎫

⎪

⎬

⎪
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=

⎧

⎪

⎨

⎪

⎩

�i1
�i2
�i3

⎫

⎪

⎬

⎪

⎭

(5)

cijkl = Cijkl
√

ExEy

Ex andEy are Young’s moduli following the main direc-
tions of the composite.

Load 1: longitudinal uni-axial tensile stress to determine
cij11, cij21 and cij31 (Fig. 3a):

1
√

ExEy

⎡

⎢

⎢

⎣
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⎧

⎪

⎨

⎪

⎩
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�i2
�i3

⎫

⎪

⎬

⎪

⎭

(6)

Load 2: transverse uni-axial tensile stress to determine
cij13, cij23 and cij33 (Fig. 3b):

1
√

ExEy

⎡

⎢

⎢

⎣

cij11 cij12 cij13
cij21 cij22 cij23
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⎤

⎥

⎥

⎦

⎧

⎪
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⎩

0
0
�iy
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=

⎧

⎪

⎨

⎪

⎩

�i1
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�i3

⎫

⎪

⎬

⎪

⎭

(7)

Load 3: shear stress to determine cij12, cij22 and cij32
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Table 1
Mechanical properties of the carbon/epoxy used in the numerical simulations [36]

E1(MPa) E2(MPa) E3(MPa) G12(MPa) G13(MPa) G23(MPa) �12 �13 �23
229000.00 12000.00 12000.00 5140.00 5140.00 4080.00 0.32 0.32 0.49

Printed using Abaqus/CAE on: Mon Mar 23 14:11:25 Paris, Madrid 2020

(a)

Printed using Abaqus/CAE on: Mon Mar 23 14:21:46 Paris, Madrid 2020

(b)

Printed using Abaqus/CAE on: Mon Mar 23 14:23:15 Paris, Madrid 2020

(c)
Figure 3: Material deformations associated with the 3 load cases (through-the-thickness hole in this illustration): (a) deformation
associated with the longitudinal uni-axial tensile stress, (b) deformation associated with the transverse uni-axial tensile stress and
(c) deformation associated with the shear stress

(Fig. 3c):

1
√

ExEy
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⎩

0
�ixy
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⎪

⎬
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⎪
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⎪

⎩

�i1
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�i3

⎫

⎪

⎬

⎪

⎭

(8)

When an increment "i" is numerically drilled (removal
of elements), the 3 load cases are successively applied to the
different increments j, 0 ≤ j ≤ i. For example, to calculate
the matrix [

c32kl
], the loads must be applied to the second

increment (j=2) when i=3, see Fig. 1b. If gage 1 is oriented
in on-axis direction of the first layer then cij12 and cij32 arealways equal to zero.

The three loads are applied on the wall of the hole. A
change from Cartesian coordinate system to cylindrical is
therefore necessary.

{

�rr = �x(cos �)2 + �y(sin �)2 + �xy sin(2�)

��r =
�y − �x

2
sin(2�) + �xy cos(2�)

(9)

Load 1: �x = �; �y = �xy = 0
{

�rr = �(cos �)2
��r = −� sin(�) cos(�) (10)

Load 2: �y = �; �x = �xy = 0
{

�rr = �(sin �)2
��r = � sin(�) cos(�) (11)

Load 3: �xy = �; �x = �y = 0
{

�rr = � sin(2�)
��r = � cos(2�) (12)

Meshing is a key step of the simulation. The better the
mesh, the more accurate the results. The model is meshed
with 8-node linear brick isoparametric elements (C3D8R).
The mesh is configured in such a way as to guarantee its
quality whatever the geometric parameters. To have themost
uniform mesh, the model is partitioned along its diagonals
and its two axes of symmetry. The elements sizes depend
on the geometric parameters of the model. In addition, a
circular partition around the hole delimits an area of inter-
est where the mesh is refined (Fig. 4a). In the thickness,
the elements size is defined by the choice of the number of
elements per increment (Fig. 4b).

Gage 1 is oriented at 0 degrees, gage 2 at 225 degrees and
gage 3 at 90 degrees with respect to the on-axis direction of
the first layer (Fig. 4a). For the first increment, one obtains:

[

c11kl
]

=
⎡

⎢

⎢

⎣

−0.0291 0 0.0008
−0.0106 −0.0713 −0.0268
−0.0014 0 −0.0545

⎤

⎥

⎥

⎦

(13)

4. Numerical investigation on the most
influential experimental errors
The incremental hole drilling methodmust be performed

with great care to have reliable results. The experimental
errors can be divided into 2 categories, according to their
sources. Category 1 concerns strainmeasurement errors which
may occur due to additional thermal strains, instrument cal-
ibration errors, additional residual stresses caused by hole
drilling [15]. These errors affect the left side of Eq. 2. They
are independent of the initial state of residual stresses within
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Printed using Abaqus/CAE on: Tue Mar 24 11:13:20 Paris, Madrid 2020

Gage 1

Gage 3

Gage 2

(a)
Printed using Abaqus/CAE on: Thu Aug 26 10:37:05 Paris, Madrid (heure d’été) 2021

(b)
Figure 4: Mesh strategy using 8-node linear brick isoparametric
elements: (a) Mesh refinement area, gage 1 is oriented in the
direction of the fibers which corresponds to the x-axis, (b)
Structured mesh in the thickness, the number of elements per
increment is configurable

the material and their effect is additive. The category 1 er-
rors are difficult to assess and to correct. Category 2 (cate-
gory 2-5 type errors of reference [15]) concerns errors in the
experimental parameters such as errors on increment depth,
misalignment of the gages with respect to the fibers, hole
eccentricity errors, hole diameter measurement errors. The
effects of these errors are proportional to the initial state of
residual stresses (Eq. 2). For example, if a material without
residual stresses is considered, whatever the errors on the
increment depth no additional residual stresses will be mea-
sured. The category 2 errors affect the right side of Eq. 2
and they can be measured and corrected. The overall errors
on the measured residual stresses are the sum of the category
1 and category 2 errors. This paper focuses on the study of
category 2 errors.

The residual stresses errors caused by category 2 errors
are due to the mismatches between the numerical simula-
tion and the experimental procedure of the incremental hole
drilling method. In general, there are three scenarios. These
scenarios apply to all category 2 errors, but, for the sake of
understanding, they are detailed below using the example of
errors on increment depth (Fig. 5a).

• Scenario 1:
The residual stresses are determined using the cali-
bration coefficients calculated for the desired experi-
mental parameters (dmodel, Fig. 5a) and the relaxationstrains measured for the desired experimental param-
eters (dmodel). There is no mismatch between the ex-

perimentation and the numerical simulation ⇒ ideal
experimental device.

• Scenario 2:
The residual stresses are determined using the cali-
bration coefficients calculated for the desired exper-
imental parameters (dmodel) and the relaxation strains
measured for the real experimental parameters (dexp).There is a mismatch between the experimentation and
the numerical simulation ⇒ standard error.

• Scenario 3:
The calibration coefficients are corrected by taking into
account the experimental errors in the simulation. The
residual stresses are determined using the corrected
calibration coefficients (dexp) and the relaxation strainsmeasured for the real experimental parameters (dexp).There is no more mismatch between the experimenta-
tion and the simulation⇒ numerical correction of the
calibration coefficients.

In practice, Scenario 2 is always carried out. Scenario 3
is detailed in section 5.
4.1. Development of a configurable numerical

model
Program scripts are commonly used to automate the post-

processing of incremental hole drilling simulation results.
Here, in addition to post-processing, the modeling and sim-
ulation steps are also automated using a Python script. This
script is configured to create different sample sizes, different
material properties, different types of gages, different types
of stratifications, different drilling strategies, different types
of meshes, different load cases depending on the input data.
The Python program is used with the commercial finite el-
ement software ABAQUS. Once all the input data are pro-
vided and the program is executed, it performs the follow-
ing tasks: creation of the model on ABAQUS, simulation of
the incremental hole drilling, extraction of the output data,
namely the radial strains, in the areas corresponding to the
gages and finally calculation and storage of the calibration
coefficients in a file (Fig. 6). The configurable aspect of the
developed model allowed to perform a numerical investiga-
tion to assess the sensitivity of the calibration coefficients to
the main sources of category 2 errors : error on increment
depth, angular deviation of the gages from their theoretical
position and hole eccentricity errors (Fig. 5). The correction
method presented in section 5 is also based on the developed
configurable numerical model.
4.2. Errors on increment depth

Inaccuracies in the depth of increments are generally caused
by the positioning uncertainties of themotor driving the spin-
dle advance and by geometric defects of the experimental de-
vice. Due to these inaccuracies, the drilled increment depth
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Figure 5: Presentation of the studied errors: (a) errors on increment depth, (b) Angular deviation of the gages from their
theoretical position, (c) Radial (ec) and angular (�c) eccentricity of the hole
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Figure 6: The different steps of the configurable numerical
model developed for the custom calculation of calibration co-
efficients and the execution of parametric studies

dexp is different from the desired increment depth dmodel (Fig.5a). This is one of the main sources of error whenmeasuring
residual stresses.

dexp = dmodel ± �dmodel (14)
Where �dmodel is the error on increment depth.
All calibration coefficients cijkl are calculated for the de-sired increment depth dmodel. To determine the correct resid-

ual stresses, relaxation strains must be experimentally mea-
sured for the exact same increment depth. However, the ex-
perimentally measured strains correspond to the drilled in-
crement depths (dexp). This leads to errors in the calculationof residual stresses (Scenario 2).

From Eq. 5, one can write:

�ix = (k1�i1 + k2�
i
3)
√

ExEy (15)

�iy = (k3�i1 + k4�
i
3)
√

ExEy (16)

�ixy = (k5�i1 + k6�
i
2 + k7�

i
3)
√

ExEy (17)

The expressions of all the coefficients kp, 1 ≤ p ≤ 16,
and Kp, 1 ≤ p ≤ 15, are given in the appendix.

Considering category 2 errors, the non-correction of the
calibration coefficients leads to errors on the residual stresses
given by:

��ix = (K1�
i
1 +K2�

i
3)
√

ExEy (18)

��iy = (K3�
i
1 +K4�

i
3)
√

ExEy (19)

��ixy = (K5�
i
1 +K6�

i
3)
√

ExEy (20)

Depth perturbations �dmodel are introduced in the numer-
ical model in order to study the variations of the coefficients
cijkl . The results are presented in the form of a table which
gives the value of the calibration coefficients for the differ-
ent errors on increment depth (Table 2) and in the form of
2 graphs, one giving the variation of the calibration coeffi-
cients in percentage (Fig. 7a) and the other giving the vari-
ation of the coefficients Kp, 1 ≤ p ≤ 6, of Eq.18-20 (Fig.
7b).

For the different depth perturbations �dmodel, the coef-
ficients have the same direction of variation. If �dmodel ispositive, the absolute values of the coefficients increase and
if it is negative, their absolute values decrease. The variation
of all the coefficients is quasi-linear, they are proportional to
the relaxation strains (Eq. 6-8). As seen in Eq. 1, the re-
laxation strains depend on the increment depth, so, if dexp isgreater than dmodel, the strains are overestimated and if dexpis less than dmodel, they are underestimated. The influence
on residual stresses is more directly reflected by the varia-
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Table 2
variation of the calibration coefficients c11kl for different errors on increment depth �dmodel (increment depth dmodel = 100�m).

�dmodel∕dmodel c1111 c1121 c1131 c1122 c1113 c1123 c1133
0 -0.0291 -0.0106 -0.0014 -0.0713 0.0008 -0.0268 -0.0545
-10% -0.0265 -0.0095 -0.0013 -0.0641 0.0006 -0.0236 -0.0508
+10% -0.0326 -0.0120 -0.0015 -0.0793 0.0011 -0.0287 -0.0614
+25% -0.0385 -0.0147 -0.0016 -0.0925 0.0014 -0.0340 -0.0693
+50 -0.0485 -0.0181 -0.0017 -0.1107 0.0019 -0.0400 -0.0854
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Figure 7: Variation of the calibration coefficients c11kl (a) and the coefficients Kp (b) for different errors on increment depth
�dmodel ranging from −10% to 50% of the desired increment depth dmodel

tion of coefficients Kp, 1 ≤ p ≤ 6 (Eq.18-20). K1 and K4which appear respectively in the expression of ��x and ��yare the most sensitive to errors on increments depth.
The same study is done at the 0/90 interface which corre-

spond to fours increment. The variations of the coefficients
cijkl are presented in Fig. 8a and those of coefficients Kp,
1 ≤ p ≤ 6 are presented in Fig 8b. It can be seen that
there are coefficients whose variations present a change of
slope at the interface and those whose variations are linear.
The coefficients c4411, c4421 and c4431, which are calculated
from the first load case (longitudinal uni-axial tensile stress,
Eq.6), vary linearly. This is due to the fact that one goes from
a 0-degree oriented layer with a higher longitudinal Young’s
modulus to a 90-degree oriented layer with a lower longitu-
dinal Young’s modulus, there is therefore no sudden varia-
tion in relaxation deformations at the beginning of the tran-
sition. In the contrary, for coefficients c4413, c4423 and c4433,which are calculated from load case 2 (transverse uni-axial
tensile stress, Eq.7), as soon as the layer oriented at 90 de-
grees is drilled, there is a non-linear change of the Young’s
modulus in the transverse direction. Similarly, there is a non-
linear increase in the shear modulus at the 0/90 interface,
this is the reason why the variation of the coefficient c4422presents a change of slope.

For composite laminates, it is difficult to model precisely
the location of the different ply-ply interfaces because of the
uncertainties on the layers’ thickness. Generally, the mean
thickness of the layers are considered in finite element simu-
lations, however this can causemismatches between the sim-
ulation and the experimentation of the hole drilling process
and cause deviations on the calibration coefficients similar
to those presented on Fig. 8a and 8b. For example, due to
the uncertainties on the layers’ thickness, one can go from
a layer to the next in the experimentation without reaching
the interface in the simulation or vice versa. To avoid such
errors, the real thickness of each layer must be considered
in the numerical simulation, unfortunately, such information
can only be accessed precisely by cutting and observing the
sample at the hole location.
4.3. Angular deviation of the gages from their

theoretical position
In Eq. 5, coefficients c12 and c32 are always equal to

zero if the gage 1 is oriented in on-axis direction of the first
layer. But, if there is an angular offset when gluing the gages
(Fig. 5b), the calibration coefficients vary. c12 and c32 are
no longer equal to zero. Not taking these variations into ac-
count in the calculations leads to errors on residual stresses
determination.
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Figure 8: Variation of the calibration coefficients c44kl (a) and the coefficients Kp (b) for different errors on increment depth
�dmodel ranging from −15% to 50% of the desired increment depth dmodel at the 0/90 interface

Table 3
variation of the calibration coefficients c11kl for different angular deviations in the counter-clockwise direction

Angular deviation c1111 c1121 c1131 c1112 c1122 c1132 c1113 c1123 c1133
0 degrees -0.0291 -0.0106 -0.0014 0.0000 -0.0713 0.0000 0.0008 -0.0268 -0.0545
2 degrees -0.0292 -0.0092 -0.0014 -0.0024 -0.0696 0.0020 0.0007 -0.0287 -0.0548
5 degrees -0.0296 -0.0070 -0.0014 -0.0064 -0.0655 0.0061 0.0004 -0.0321 -0.0556
10 degrees -0.0301 -0.0040 -0.0016 -0.0153 -0.0557 0.0122 -0.0004 -0.0361 -0.0549

Different angular deviations, in the counter-clockwise di-
rection, are introduced in the numerical model to study vari-
ations of calibration coefficients (Table 3).

Here, Eq. 15, 16 and 17 become:

�ix = (k8�i1 + k9�
i
2 + k10�

i
3)
√

ExEy (21)

�iy = (k11�i1 + k12�
i
2 + k13�

i
3)
√

ExEy (22)

�ixy = (k14�i1 + k15�
i
2 + k16�

i
3)
√

ExEy (23)
And, Eq. 18, 19 and 20 become:

��ix = (K7�
i
1 +K8�

i
2 +K9�

i
3)
√

ExEy (24)

��iy = (K10�
i
1 +K11�

i
2 +K12�

i
3)
√

ExEy (25)

��ixy = (K13�
i
1 +K14�

i
2 +K15�

i
3)
√

ExEy (26)
The analysis of the radial strain field shows that, for an

angular shift of 0-10 degrees, the absolute values of �i1 (gage1) increase, those of �i2 (gage 2) decrease and those of �i3(gage3) are almost constant for load case 1, 3 and 2 respec-

tively (Eq. 6-8). Consequently, the absolute values of the
coefficient c11 increase, those of the coefficient c22 decreaseand those of c33 vary very lightly (table 3 ref). However,
this variation is not monotonous and is reversed with larger
angles since the distribution of the radial strain around the
hole is globally sinusoidal. c13 is small in terms of value,
but is the most sensitive to angular deviations (Fig. 9a). The
variation of coefficients c21, c22, c23, depends on the devia-
tion direction.

The influence of the angular deviations on residual stresses
calculation can be observed by the variation of coefficients
Kp, 7 ≤ p ≤ 15 (Fig. 9b) of Eq. 24-26. K8 is particularlysensitive to this error. The angular deviation of the gages is
a frequent error because of the difficulty to locally orient the
gage 1 of the rosette in the direction of the fibers. However,
as shown in this section, an accurate calculation of residual
stress uncertainties needs a rigorous control of the angular
offset of the gages.
4.4. Hole eccentricity errors

Centering the spindle, in relation to the hole, is a deli-
cate operation that must be performed with great care. Any
eccentricity ec , �c (Fig. 5c) of the hole leads to errors in thevalues of the calibration coefficients.
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Figure 9: Variation of the calibration coefficients c11kl (a) and the coefficients Kp (b) for different angular deviations of the gages
from their ideal position ranging from 0 to 10 degrees in the counter-clockwise direction

Table 4
variation of the calibration coefficients c11kl for different radial eccentricities of the hole along x-axis

ec∕rm c1111 c1121 c1131 c1122 c1113 c1123 c1133
0 -0.0291 -0.0106 -0.0014 -0.0713 0.0008 -0.0268 -0.0545
-2% -0.0268 -0.0138 -0.0015 -0.0782 -0.0003 -0.0258 -0.0546
-5% -0.0232 -0.0190 -0.0018 -0.0891 -0.0021 -0.0247 -0.0565
-10% -0.0175 -0.0283 -0.0026 -0.1059 -0.0054 -0.0225 -0.0526
2% -0.0315 -0.0074 -0.0015 -0.0643 0.0019 -0.0274 -0.0559
5% -0.0356 -0.0032 -0.0018 -0.0529 0.0034 -0.0277 -0.0542
10% -0.0424 0.0031 -0.0025 -0.0359 0.0061 -0.0303 -0.0519

The study of hole eccentricity errors on calibration co-
efficients is decoupled into a study of the influence of radial
eccentricity (Table 4) and a study of the influence of angular
eccentricity (Table 5). The variations of coefficients Kp arepresented in Fig. 10b and 10d.
Influence of radial eccentricity: �c = 0 and ec varies alongx-axis

The coefficients vary linearlywith radial eccentricity (Fig.
10a). The absolute values of coefficients c1111 and c1113(which are calculated from the strain of gage 1) increase with
positve values of ec and decrease with negative values of
ec . This is explained by the fact that the closer the hole is
to the gage 1, the greater the strains measured by this gage
whether the load is in the longitudinal or transverse (Pois-
son effect) direction. The strain measured from the partition
corresponding to gage 3 is similar for positive and negative
values of ec , thus, the variations of the coefficients calcu-
lated from this gage, i.e. c1131 and c1133, are symmetrical
with respect to the y axis.
The variation of coefficients Kp, 1 ≤ p ≤ 6, depends on
the chosen radial direction. Here, only the results along the
x-axis are presented. The coefficients K1 and K5

in the ex-
pression of ��x and ��xy are the most sensitive to the radial
eccentricity along x-axis (Fig. 10b).

Influence of angular eccentricity: ec∕rm = 5% and �cvaries in the counter-clockwise direction
The radial eccentricity is fixed to 5% of rm (i.e. 0.12

mm here) and the angular eccentricity is varied from 0 to 10
degrees in the counter-clockwise direction. The coefficient
c31 is the most sensitive to the angular eccentricities (Fig.
10c). In fact, the larger the angular eccentricity, the closer
the hole is to the gage 3 and the greater the Poisson effect for
load case 1 . CoefficientsK11,K14 andK12 have a relativelylarge deviation between �c = 0 degrees and �c = 2 degrees.
However, between �c = 2 degrees and �c = 10 degrees,
the coefficients Kp vary little (Fig. 10d). It is important to
note the appearance of two non-null coefficients in the ma-
trix [

ckl
]. If �c ≠ 0, c12 ≠ 0 and c32 ≠ 0, except for small

angles (�c ≤ 2 degrees ) for which c12 ≃ 0 (Table 5).
Like the errors studied previously, hole eccentricity er-

rors can be minimized but not be avoided. Given the devia-
tions generated on the coefficients Kp, one cannot calculatethe residual stresses accurately without taking into account
the experimental errors. A precise measurement of these er-
rors makes it possible to calculate the uncertainties on the
residual stresses or even to correct their effects.
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Figure 10: Variation of the calibration coefficients c11kl (a) and the coefficients Kp (b) for different radial eccentricities of the
hole along x-axis, Variation of the calibration coefficients c11kl (c) and the coefficients Kp (d) for a radial eccentricity fixed to
5% of the mean radius (0.12 mm) and for different angular eccentricities varying from 0 to 10 degrees in the counter-clockwise
direction

Table 5
variation of the calibration coefficients c11kl for a radial eccentricity fixed to 5% of the mean radius (ec∕rm = 5%) and for
different angular eccentricities varying from 0 to 10 degrees in the counter-clockwise direction

�c c1111 c1121 c1131 c1112 c1122 c1132 c1113 c1123 c1133
0 degrees -0.0356 -0.0032 -0.0018 0.0000 -0.0529 0.0000 0.0034 -0.0277 -0.0542
2 degrees -0.0355 -0.0032 -0.0015 0.0000 -0.0519 -0.0146 0.0035 -0.0272 -0.0539
5 degrees -0.0356 -0.0035 -0.0013 0.0011 -0.0486 -0.0131 0.0036 -0.0267 -0.0574
10 degrees -0.0354 -0.0040 -0.0007 -0.0006 -0.0508 -0.0155 0.0034 -0.0263 -0.0586

5. Numerical correction of the calibration
coefficients for composite laminates
The experimental errors can be minimized by optimiz-

ing the used experimental device but they cannot be avoided
(Scenario 2 of section 4). One solution is to propose amethod
to correct the effect of these errors on the results. Some re-
searchers have shown that residual stresses can be reliably
calculated from relaxation strains measured with category 2
errors [16, 32, 33, 15]. For this, the calibration coefficients

must be adequately corrected. For thin isotropic materials,
for which residual stresses are considered uniform in thick-
ness, Ajovalasit [16] proposed the theory of eccentric-hole
method. This theory consists in correcting the calibration
coefficients by introducing the eccentricity of the hole in the
equations. Finite element simulations was used by Blödorn
et al. [33] to correct the effect of hole bottom chamfer and
by Barsanti et al. [32] to correct eccentricity of the hole but
they limited their work to isotropic materials.
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In this work, a numerical approach is proposed which
consists in taking into account experimental errors in the
numerical model to correct the calibration coefficients (Fig.
11). This allow to remove the mismatches between the nu-
merical simulation and the experimental process (Scenario
3 of section 4). The correction method requires a numer-
ical model that has the flexibility to take into account dif-
ferent category 2 errors, hence the interest of developing a
configurable model (section 4.1, Fig. 6) . However, this
numerical-experimental coupling requires an accurate ex-
perimental measurement of the considered error. Consider a
reference test for which the parameters have been optimized
to minimize errors (Eq. 27), a test with at least one cate-
gory 2 error introduced (Eq. 28) and the corrected residual
stresses (Eq. 29).

{

�il
}

ref =
[

Cii
]−1
ref

{

�ik
}′

ref (27)
{

�il
}

error =
[

Cii
]−1
ref

{

�ik
}′

error (28)
{

�il
}

corr =
[

Cii
]−1
corr

{

�ik
}′

error (29)
1 ≤ l ≤ 3, 1 ≤ k ≤ 3

Where {�il
}

ref ,
{

�il
}

error and
{

�il
}

corr are respectivelythe reference residual stresses, the residual stresses calcu-
lated with the error and the corrected residual stresses of in-
crement i.
[

Cii
]−1
ref and [Cii

]−1
corr are respectively the inverse of the ma-

trix of the initial and corrected calibration coefficients of in-
crement ij (j=i).
{

�ik
}′

ref and {

�ik
}′

error are respectively the reference relax-
ation strains and the relaxation strain measured with the er-
ror for increments i exclusively. The relaxation strains ex-
clusively due to increment i are the subtraction of the total
strains measured at the surface ({�ik

}) and the strains due to
the previous increments : {�ik

}′
=
{

�ik
}

−
∑i−1
j=1

[

Cij
]

{

�jl
}

.

The correction must be made in such a way as to obtain
ideally {�il

}

corr =
{

�il
}

ref .
{

�il
}

corr =
{

�il
}

ref ⇒
[

Cii
]−1
corr

{

�ik
}′

error =
[

Cii
]−1
ref

{

�ik
}′

ref
(30)

The expansion of Eq. 30, for a considered increment,
gives a system of three equations which are satisfied by con-
sidering a term by term equality for each equation. Thus, the
inverse of the matrix of the corrected calibration coefficients
is given by Eq. 31.

[

Cii
]−1
corr =

[

Cii
]−1
ref

[

Sii
] (31)

Where [Sii
] is the correction matrix:

[

Sii
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�i′1
�i′1(err)

0 0

0
�i′2
�i′2(err)

0

0 0
�i′3
�i′3(err)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

Experimentally, only the relaxation strains for the real
parameters �i′k(err) are known (Scenario 2 of section 4). There-fore, the correction is based on a numerical estimation of the
matrix [

Sii
]. For the first increment, the corrected calibra-

tion coefficients can be written from Eq. 31:

C11kl(corr) = C11kl(ref )

�1k(err)
�1k

(33)

From Eq. 6-8, one can write:

C11kl(ref ) =
�1k
�0

(34)

Where �0 is the magnitude of the load cases.
Then, Eq. 33 becomes:

C11kl(corr) =
�1k(err)
�0

(35)

By comparing Eq. 35 to Eq. 6-8, one understands that,
for the first increment, the numerical correction simply con-
sists in recalculating the calibration coefficient with the con-
ventional method (Eq. 6-8) by taking in to account the errors
of interest in the simulation.
Application 2: numerical validation of the correctionmethod

In this application, the incremental hole drilling method
is numerically simulated with a hole eccentricity of 10% of
rm (i.e. 0.257mm) . The obtained numerical residual stresses
are corrected using the method described in section 5 and
compared to the reference residual stresses (simulation with-
out eccentricity). The results are presented in Table 6. The
same stress profile is applied to the 2 simulations as ini-
tial state of residual stresses (input). The same material and
gages geometry as application 1 (Section 3) are used.
The results presented in Table 6 show that residual stresses
calculated numerically with a hole eccentricity of 10% of rmcan be corrected by determining the appropriate [Sii]matrix.
All the data used to calculate the results presented in Table
6 are given in the appendix B. Results with other category 2
errors, other initial stress profiles and the [Sii]matrices used
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Figure 11: Numerical correction of the calibration coefficients
by a configurable experimental-numerical coupling

are also given in the appendix. As expected, the corrected
values are equal to the reference values. This is explained
by the fact that the reference values and those with errors
are known which allows to calculate the exact [Sii] matri-
ces. Experimentally, the reference values are not known, the
correction is therefore based on a numerical estimation of
the real [Sii] matrices. Here, the results only validate the
mathematical approach of the proposed method. Qualitative
and quantitative experimental testing data are needed to ex-
perimentally validate the method.

6. Conclusion
In this work, the influence of three main experimental er-

rors on the accuracy of the incremental hole drilling method,
for a [

02∕902
]

s carbon/epoxy composite laminates, is nu-
merically investigated . These errors are the errors on in-
crement depth, the angular deviation of the gages from their
theoretical position and the eccentricity of the hole with re-
spect to the strain-gage rosette. A precise determination of
the calibration coefficients is crucial to ensure the reliability
of the residual stresses. A detailed analysis of the sensitiv-
ity of the calibration coefficients to the studied errors is pre-
sented. This paper introduces a novel approach based on a
configurable numerical-experimental coupling to correct the
calibration coefficients for composite laminates.

The analysis of the sensitivity of the calibration coeffi-
cients showed that they are very sensitive to experimental
errors, particularly radial eccentricity of the hole. A radial
eccentricity equal to 10% of the mean radius of the gages
(i.e. 0.257 mm for EA-06-062RE-120 strain gages) along
the x-axis causes 130% error on the coefficient c1121 and up
to 673% error on c1113. The matrix diagonal coefficients,
c11kk, k = l, are more sensitive to errors on increment depth.
The angular deviation of the gages from their theoretical po-
sition is one of the most frequent error. However, the coeffi-

Table 6
Numerical validation of the proposed correction method: com-
parison between the reference residual stresses, the corrected
residual stresses and residual stresses with an eccentric hole ob-
tained by numerical simulations of the incremental hole drilling
for the considered initial residual stress profile.

Residual stresses Reference Eccentric hole, Corrected
(MPa) 10% of rm (MPa)

(MPa)

�1
x -5.79 -7.93 -5.79
�1
xy 0.35 1.23 0.35
�1
y -3.28 -3.06 -3.28

�2
x -223.50 -276.71 -223.50
�2
xy 14.11 52.96 14.11
�2
y -38.76 -34.90 -38.76

�3
x -1372.29 -1478.10 -1372.29
�3
xy 62.68 258.19 62.68
�3
y -227.58 -220.03 -227.58

�4
x 28.66 181.57 28.66
�4
xy 15.07 -40.18 15.07
�4
y -72.10 -62.45 -72.10

�5
x -300.24 -239.31 -300.24
�5
xy -19.91 7.17 -19.91
�5
y -359.27 -353.64 -359.27

�6
x 533.35 639.62 533.35
�6
xy -115.81 -232.50 -115.81
�6
y -739.31 -693.20 -739.31

cientsKp, 7 ≤ p ≤ 15which are in the expression of residual
stress errors (��li ) are less sensitive to this error.

The calibration coefficients can be corrected by calculat-
ing the matrix [Sii] which is given by the ratios of the refer-ence relaxation strains (optimized experimental parameters)
and the relaxation strains measured with errors. However, in
practice, if a correction is needed, then only the relaxation
strains measured with errors are available. Thus, the matrix
[Sii] must be approximated by numerical simulations. For
this, precise measurements of the experimental errors is re-
quired. The proposed correction method (its mathematical
approach) is numerically validated by numerical simulations
of the incremental hole drilling method. However, further
work is needed to validate the method experimentally with
qualitative testing data.

By contributing to improve the calibration coefficients
calculation accuracy, this work contributes to determine resid-
ual stresses more reliably in composite laminates. This will
permit to estimate more precisely the mechanical properties
of such materials and therefore, to better adapt their func-
tionalities.
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