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Abstract

We consider frictional contact problems in small strain elasticity discretized with finite elements and Nitsche
method. Both bilateral and unilateral contact problems are taken into account, as well as both Tresca and
Coulomb models for the friction. We derive residual a posteriori error estimates for each friction model, following
[Chouly et al, IMA J. Numer. Anal. (38) 2018, pp. 921-954]. For the incomplete variant of Nitsche, we prove
an upper bound for the dual norm of the residual, for Tresca and Coulomb friction, without any extra regularity
and without a saturation assumption. Numerical experiments allow to assess the accuracy of the estimates and
their interest for adaptive meshing in different situations.

Keywords: unilateral contact; Tresca friction; Coulomb friction; elasticity; Lagrange finite elements; Nitsche
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1 Introduction

For a wide range of systems in structural mechanics, it is crucial to consider account contact and friction
between rigid or elastic bodies. Among numerous applications, let us mention foundations in civil engineering,
metal forming processes, crash-tests of cars, design of car tires (see, e.g., [66]). Contact and friction conditions
are usually formulated with a set of inequalities and non-linear equations on the boundary of each body, with
corresponding unknowns that are displacements, velocities and surface stresses. Basically, contact conditions
allow to enforce non-penetration on the whole candidate contact surface, and the actual contact surface is
not known in advance. A friction law may be taken into account additionally, and various models exist that
correspond to different surface properties, the most popular one being Coulomb’s friction (see, e.g., [49] and
references therein).

Frictional contact problems can be formulated weakly within the framework of variational inequalities (see,
e.g., [26, 31, 49]). Those are the very basis of most existing Finite Element Methods (FEM), see, e.g., [33,
36, 40, 49, 52, 65, 66]. For numerical computations with the FEM, various techniques have been devised to
enforce contact and friction conditions at the discrete level, and the foremost are penalty methods (see, e.g.,
[12, 18, 49, 50, 58, 59]) and mixed methods (see, e.g., [7, 40, 42, 48, 51, 65]).

Nitsche’s method has been considered recently to discretize contact and friction conditions. The Nitsche
method orginally proposed in [57] aims at treating the boundary or interface conditions in a weak sense, with
appropriate consistent terms that involve only the primal variables. It differs in this aspect from standard
penalization techniques which are generally non-consistent [49]. Moreover, no additional unknown (Lagrange
multiplier) is needed and, therefore, no discrete inf–sup condition must be fulfilled, contrarily to mixed methods
(see, e.g., [40, 65]). Most of the applications of Nitsche’s method during the last two decades involved linear
conditions on the boundary of a domain or at the interface between sub-domains: see, e.g,. [63] for the Dirichlet
problem, [6] for domain decomposition with non-matching meshes and [38] for a global review. In some previous
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works [37, 41] it has been adapted for bilateral (persistent) contact, which still corresponds to linear boundary
conditions on the contact zone. We remark furthermore that an algorithm for unilateral contact which makes
use of Nitsche’s method in its original form is presented and implemented in [37], An extension to large strain
bilateral contact has been performed in [67]. In [17, 21] a new Nitsche-based FEM was proposed and analyzed for
Signorini’s problem, where a linear elastic body is in frictionless contact with a rigid foundation. Conversely to
bilateral (persistent) contact, Signorini’s problem involves non-linear boundary conditions associated to unilateral
contact, with an unknown actual contact region.

For this Nitsche-based FEM, optimal convergence in the H1(Ω)-norm of order O(hs−1) has been proved,
provided the solution has a regularity Hs(Ω), 3/2 < s ≤ 1 +k (k = 1, 2 is the polynomial degree of the Lagrange
finite elements). To this purpose there is no need of additional assumption on the contact/friction zone.

Moreover the Nitsche-based FEM encompasses symmetric and nonsymmetric variants depending upon a
parameter called θ. The symmetric case of [17] is recovered when θ = 1. When θ 6= 1 positivity of the contact
term in the Nitsche variational formulation is generally lost. Nevertheless some other advantages are recovered,
mostly from the numerical viewpoint. Namely, one of the variants (θ = 0) involves a reduced quantity of
terms, which makes it easier to implement and to extend to contact problems involving non-linear elasticity. In
addition, this nonsymmetric variant θ = 0 performs better in the sense that it requires less Newton iterations
to converge, for a wider range of the Nitsche parameter, than the variant θ = 1, see [61]. Concerning the
skew-symmetric variant θ = −1, the well-posedness of the discrete formulation and the optimal convergence
are preserved irrespectively of the value of the Nitsche parameter. Lately, various extensions of the method
proposed in [17, 21] have been carried out (see for instance [15] or [46] for overviews, as well as [10] for the link
between Nitsche and the augmented Lagrangian). Particularly, an extension to Tresca’s friction has been studied
in [13]. Optimal convergence in H1(Ω)-norm has been established as well, without any assumption other than
usual Sobolev regularity. An extension to (static) Coulomb’s friction has been formulated in [61] and tested
numerically using a generalized Newton algorithm. Later on, the existence of solutions for Coulomb friction
has been studied in [19, 20], and application to fracture mechanics has been considered in [4, 5]. The case of
contact between two elastic bodies is addressed in [22, 30, 55]. In [30] Nitsche’s method is combined with a
cut-FEM / fictitious domain discretization, in the small deformations framework. In [22, 55] an unbiased variant
implements the frictional contact between two elastic bodies without making any difference between master and
slave contact surfaces. The contact condition is the same on each surface. This is an advantage for treatment
of self-contact or multi-body contact. Residual-based a posteriori error estimates are presented in [16]. Upper
and lower bounds are proved under a saturation assumption, for frictionless contact and Tresca friction, and the
performance of the error estimates is investigated numerically for frictionless contact.

In this paper we focus on different friction models, namely Tresca friction and Coulomb friction, discretized
with Lagrange FEM and Nitsche’s method. We consider both unilateral and bilateral contact settings. For
these discrete friction problems, we provide residual based a posteriori error estimates. Moreover, for θ = 0, and
following some ideas of [25], we prove an upper bound for the dual norm of the corresponding residual, without
any extra regularity assumption or saturation assumption, and valid for both Tresca and Coulomb friction.
Numerical experiments allow to assess the performance of the error estimates. For Tresca friction discretized
with Nitsche-FEM, a residual based a posteriori error estimator has already been suggested in [16] (see the
Appendix page 951). Its reliability, under a saturation assumption, and its efficiency have been established.
Nevertheless, it has never been implemented and assessed numerically. For Coulomb friction with Nitsche, no a
posteriori error estimates exist to the best of our knowledge.

To put our work in perspective, let us mention that, in a recent contribution [35], another kind of residual
a posteriori error estimate has been designed for a stabilized mixed method close to the symmetric variant of
Nitsche’s method. Notably, thanks to additional terms, the authors of [35] manage to prove an upper bound
for this estimator without any saturation assumption. For frictionless (Signorini) contact, such a technique has
already been presented in [34] (in addition to an a priori error bound under minimal regularity assumption).
In the same manner, an upper bound for an a posteriori error estimator based on equilibrated fluxes has
been proven, without saturation assumption and for the scalar Signorini problem [11]. Still for an equilibrated
fluxes estimator and frictionless contact in elasticity, an upper bound has been established with a saturation
assumption in [25]. As well, for Tresca friction discretized with the Virtual Element Method (VEM), a new a
posteriori estimate has been designed in [24]. For Coulomb friction, the upper and lower bounds for residual a
posteriori error estimates are difficult to establish, see for instance [44] and references therein for mixed methods.
See also [47] for an estimator for Coulomb friction based on equilibrated fluxes. In fact, very few error estimators
with mathematical justification of robustness or efficiency have been proposed for Coulomb friction.

This paper is outlined as follows. In Section 2 we introduce a frictional contact problem and its Nitsche
finite element approximation. Section 3 details the residual a posteriori error estimate. Section 4 presents an
upper bound for the dual norm of the residual and the incomplete variant of Nitsche. Section 5 reports different
numerical experiments with uniform and adaptive refinement, for contact with Tresca and Coulomb friction, in
order to assess the performance of the estimator in practice.

Let us introduce some useful notations. In what follows, bold letters like u,v, indicate vector or tensor valued
quantities, while the capital ones (e.g., V,K . . .) represent functional sets or operators involving vector fields.
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As usual, we denote by Hs(·), s ∈ R, the Sobolev spaces of real-valued functions, and Hs(·;Rd), s ∈ R, d ∈ N∗
the Sobolev spaces of vector-valued functions in Rd (see [1]). For D a domain, the standard scalar product (resp.
norm) of Hs(D;Rd) is denoted by (·, ·)s,D (resp. ‖ · ‖s,D) and we keep the same notation for all the values of d.
The letter C stands for a generic constant, independent of the discretization parameters.

2 Setting and Nitsche-FEM

In this section we first present the frictional contact problems under consideration and then their approximation
with Nitsche-FEM.

2.1 Frictional contact

We consider an elastic body whose reference configuration is represented by the domain Ω in Rd with d = 2 or
d = 3. Small strain assumption is made, as well as plane strain when d = 2. The boundary ∂Ω of Ω is polygonal
or polyhedral and we partition ∂Ω in three nonoverlapping parts ΓD, ΓN and the (potential) contact/friction
boundary ΓC , with meas(ΓD) > 0 and meas(ΓC) > 0. The contact/friction boundary is supposed to be a straight
line segment when d = 2 or a planar polygon when d = 3 to simplify. The normal unit outward vector on ∂Ω is
denoted n. The body is clamped on ΓD for the sake of simplicity. It is subjected to volume forces f ∈ L2(Ω;Rd)
and to surface loads fN ∈ L2(ΓN ;Rd).

The contact problem under consideration consists in finding the displacement field u : Ω→ Rd verifying the
equations and conditions (1)–(2)–(3):

divσ(u) + f = 0 in Ω, σ(u) = C ε(u) in Ω,

u = 0 on ΓD, σ(u)n = fN on ΓN ,
(1)

where σ = (σij), 1 ≤ i, j ≤ d, stands for the stress tensor field and div denotes the divergence operator of

tensor valued functions. The notation ε(v) = (∇v + ∇v
T

)/2 represents the linearized strain tensor field and
C is the fourth order symmetric elasticity tensor having the usual uniform ellipticity and boundedness property.
For any displacement field v and for any density of surface forces σ(v)n defined on ∂Ω we adopt the following
decomposition into normal and tangential components,

v = vnn + vt and σ(v)n = σn(v)n + σt(v).

where vn := v ·n and vt := v− vnn (the same applies for the vector σ(v)n). The contact conditions on ΓC are
formulated as:

σn = −[un − σn]C (2)

where [·]C is a projection operator onto a convex subset of R. Two special cases will be considered:

1. Unilateral contact conditions, for which [·]C is the positive part operator:

[x]
C

=
1

2
(x+ |x|)

for x ∈ R. Then condition (2) is equivalent to the Signorini conditions

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0.

2. Bilateral contact conditions, for which [·]C is the identity:

[x]
C

= x

for x ∈ R. Then condition (2) is the generalized Dirichlet condition:

un = 0.

The friction conditions on ΓC are given by
|σt(u)| ≤ S(u) if ut = 0, (i)

σt(u) =− S(u)
ut

|ut|
otherwise, (ii)

(3)

where | · | stands for the euclidean norm in Rd−1. The above formulation encompasses both Tresca and Coulomb
friction models. Indeed, for Tresca, we set S(u) = sT where sT ∈ L2(ΓC), s ≥ 0 is a given threshold. For
Coulomb friction, we set S(u) = −Fσn(u), where F ≥ 0 is the friction coefficient. Note that conditions (3)–(i)
and (3)–(ii) imply that |σt(u)| ≤ S(u) in all cases, and that if |σt(u)| < S(u), we must have ut = 0.
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For Coulomb friction, conditions (3) mean that, at a given contact point on ΓC , sliding can not occur while
the magnitude of the tangential stress |σt(u)| is strictly below the threshold −Fσn(u). When the threshold
−Fσn(u) is reached, sliding may happen, in a direction opposite to σt(u) (see, e.g., [49, Chapter 10]). Remark
that this static form of Coulomb friction is an adaptation of the quasi-static (or dynamic) Coulomb’s law, in
which the tangential velocity u̇t plays the same role as the displacement ut (see e.g., [3, 26, 28]). A formulation
such as (3) is obtained for instance when the quasi-static Coulomb’s law is discretized with a time-marching
scheme (see, e.g., [65]).

Remark 2.1. In the Tresca friction model (S(u) = sT in (3)), it is assumed that the amplitude of the normal
friction threshold is known (i.e., F |σn(u)| = sT , see, e.g., [49, Section 10.3]). The introduction of the Tresca
friction model is rather motivated by its mathematical simplicity than by physical reasons, though it can be of use
in special situations. For instance when a thin belt/tape is pressed against an elastic body, with a known pressure
(see, e.g., [49, Chapter 10]), or for persistent contact between solids with high intensity of contact pressures,
such as it may occur in earth sciences (see, e.g., [60]). Moreover, the Tresca friction model can be useful, for
instance, when Coulomb friction is approximated iteratively (see, e.g., [39] and [51, Section 9, Theorem 7]).

We introduce the Hilbert space V and the set K of admissible displacements which satisfy the condition on
the contact zone ΓC :

V :=
{

v ∈ H1(Ω;Rd) : v = 0 on ΓD
}
, K := {v ∈ V : [vn]C = 0 on ΓC} .

Define

a(u,v) :=

∫
Ω

σ(u) : ε(v) dΩ, L(v) :=

∫
Ω

f · v dΩ +

∫
ΓN

fN · v dΓ, j(u; v) :=

∫
ΓC

S(u)|vt| dΓ,

for any u and v in V, and u regular enough.
The weak formulation of Problem (1)–(2)–(3) as a (quasi-)variational inequality is (see, e.g., [26]):{

Find u ∈ K (regular enough) such that:
a(u,v − u) + j(u; v)− j(u; u) ≥ L(v − u), ∀v ∈ K.

(4)

In the case of Tresca friction (S(u) = s), the above weak formulation is a variational inequality of the second
kind that admits a unique solution (see, e.g., [32, Theorem 5.1, Remark 5.2, p.69]).

Contact with Coulomb friction in elastostatics remains a difficult problem, with still some open issues in
its mathematical analysis, both for the continuous and the discrete problems. In the continuous case, there is
indeed no complete characterization of existence and uniqueness when the friction coefficient is varied (see, e.g.,
[27, 28, 56] for existence results when the friction coefficient is small). Moreover it can be proved that uniqueness
is lost in some configurations and multiple solutions can be obtained, see, e.g., [3, 43].

2.2 The Nitsche-based finite element method

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [9, 23, 29]) indexed by h coming from a family
T h of triangulations of the domain Ω (h = maxT∈T h hT where hT is the diameter of T ). We suppose that the
family of triangulations is regular, i.e., there exists σ > 0 such that ∀T ∈ T h, hT /ρT ≤ σ where ρT denotes the
radius of the inscribed ball in T . Furthermore, we suppose that this family is conformal to the subdivision of the
boundary into ΓD, ΓN and ΓC (i.e., a face of an element T ∈ T h is not allowed to have simultaneous non-empty
intersection with more than one part of the subdivision). We choose a standard Lagrange finite element method
of degree k with k = 1 or k = 2, i.e.:

Vh :=
{

vh ∈ C 0(Ω;Rd) : vh| T ∈ Pk(T ;Rd), ∀T ∈ T h,vh = 0 on ΓD
}
. (5)

However, the analysis would be similar for any C 0-conforming finite element method.
Moreover, for any α ∈ R+, we introduce the notation [·]α for the orthogonal projection onto B(0, α) ⊂ Rd−1,

where B(0, α) is the closed ball centered at the origin 0 and of radius α. This operation can be defined
analytically, for x ∈ Rd−1 by:

[x]α =

{
x if |x| ≤ α,
α x
|x| otherwise.

The next result has been pointed out earlier in [2] (see as well [13, 17, 20] for detailed formal proofs).

Proposition 2.2. Let γ be a positive function defined on ΓC . The contact with friction conditions (2)–(3) can
be reformulated as follows:

σn(u) = − [γ un − σn(u)]
C
, (6)

σt(u) = − [γ ut − σt(u)]S(u) . (7)
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Remember that for Tresca friction, we have S(u) = sT where sT ∈ L2(ΓC), s ≥ 0 is a given threshold. For
Coulomb friction, we can use (6) to have two different expressions of the solution-dependent threshold:

S(u) = −Fσn(u) = F [γ un − σn(u)]
C
.

Let now θ ∈ R be a fixed parameter and γ a positive function defined on ΓC . The Nitsche method for
frictional contact is derived as follows [15, 46]. Let u be the solution to the frictional contact problem in its
strong form (1)–(2)–(3). We assume that u is sufficiently regular so that all the following calculations make
sense. From the Green formula and equation (1), we get for every v ∈ K:

a(u,v)−
∫

ΓC

σn(u) vn dΓ−
∫

ΓC

σt(u) · vt dΓ = L(v).

Note that

vn =
1

γ
(γvn − θσn(v)) +

θ

γ
σn(v),

vt =
1

γ
(γvt − θσt(v)) +

θ

γ
σt(v).

So:

a(u,v)−
∫

ΓC

θ

γ
σn(u) σn(v) dΓ−

∫
ΓC

1

γ
σn(u) (γvn − θσn(v)) dΓ

−
∫

ΓC

θ

γ
σt(u) · σt(v) dΓ−

∫
ΓC

1

γ
σt(u) · (γvt − θσt(v)) dΓ = L(v).

Finally, using conditions (6) and (7), we obtain:

a(u,v)−
∫

ΓC

θ

γ
σn(u) σn(v) dΓ +

∫
ΓC

1

γ
[γ un − σn(u)]

C
(γvn − θσn(v)) dΓ

−
∫

ΓC

θ

γ
σt(u) · σt(v) dΓ +

∫
ΓC

1

γ
[γ ut − σt(u)]S(u) · (γvt − θσt(v)) dΓ = L(v). (8)

Formula (8) is the starting point of the Nitsche-based formulation. We remark that it may have no sense at
the continuous level if u lacks of regularity (the only assumption u ∈ V is not sufficient to justify the above
calculations). Nevertheless we consider in what follows that γ is a positive piecewise constant function on the
contact and friction interface ΓC which satisfies

γ|T∩ΓC =
γ0

hT
, (9)

for every T that has a non-empty intersection of dimension d − 1 with ΓC , and where γ0 is a positive given
constant (the Nitsche parameter). Note that the value of γ on element intersections has no influence. Let us
introduce the discrete linear operators

Pn
θ,γ :

Vh → L2(ΓC)

vh 7→ γvhn − θσn(vh)
and Pt

θ,γ :
Vh → (L2(ΓC))d−1

vh 7→ γvht − θσt(vh)
.

Define as well the bilinear form:

Aθγ(uh,vh) := a(uh,vh)−
∫

ΓC

θ

γ
σ(uh)n · σ(vh)n dΓ.

The Nitsche-based method for frictional contact then reads:

Find uh ∈ Vh such that:

Aθγ(uh,vh) +

∫
ΓC

1

γ
[Pn

1,γ(uh)]C Pn
θ,γ(vh) dΓ

+

∫
ΓC

1

γ
[Pt

1,γ(uh)]
Sh(uh)

·Pt
θ,γ(vh) dΓ = L(vh), ∀ vh ∈ Vh.

(10)

For Tresca friction we take simply:
Sh(uh) = sT .

For Coulomb friction we preferably take:

Sh(uh) =

(
F
[
Pn

1,γ(uh)
]
C

)
.

For unilateral contact, it ensures that the threshold for the projection operator remains nonnegative. The
parameter θ can be set to some particular values, namely:
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1. for θ = 1 we recover a symmetric method.

2. for θ = 0 we recover a simple method close to penalty and to the augmented Lagrangian.

3. for θ = −1 the skew-symmetric method is well-posed irrespectively of the value of γ0 > 0.

Existence and uniqueness of solutions to the discrete problem (10) has been studied in [13] for Tresca friction:
in this case well-posedness is ensured provided that γ0 is large enough (γ0 > 0 for θ = 1). For Coulomb friction,
a fixed point argument allows to assess the existence of solutions to (10) for γ0 large enough, and every value of
the friction coefficient. Uniqueness can be recovered provided a restrictive condition, for friction small enough,
and dependent of the mesh size, see [20] for details. In [13] an optimal a priori error bound for Tresca friction
in the natural norm has been derived, for 2D and 3D problems, and for linear and quadratic FEM.

3 Residual-based a posteriori error estimate

An explicit residual-based a posteriori error estimate can be derived for Problem (10), that has been proposed
in [16] for frictionless contact and Tresca friction. We extend it here to the Coulomb friction model. This a
posteriori error estimate has its origin in [6] (see also, e.g., [64] for linear elasticity). We introduce standard
notations for this purpose:

• We define Eh the set of edges/faces of the triangulation and define Einth := {E ∈ Eh : E ⊂ Ω} as the set of
interior edges/faces of T h. We denote by ENh := {E ∈ Eh : E ⊂ ΓN} the set of Neumann edges/faces and
similarly ECh := {E ∈ Eh : E ⊂ ΓC} is the set of contact edges/faces.

• For an element T , we denote by ET the set of edges/faces of T and according to the above notation, we
set EintT := ET ∩ Einth , ENT := ET ∩ ENh , ECT := ET ∩ ECh .

• For an edge/face E of an element T , introduce νT,E the unit outward normal vector to T along E.
Furthermore, for each edge/face E, we fix one of the two normal vectors and denote it by νE . The jump
of some vector valued function v across an edge/face E ∈ Einth at a point y ∈ E is defined as[[

v
]]
E

(y) := lim
α→0+

v(y + ανE)− v(y − ανE).

• Let ωT be the union of all elements having a nonempty intersection with T . Similarly for a node x and an
edge/face E, let ωx := ∪T :x∈T T and ωE := ∪x∈E ωx.

• fT (resp. fN,E) is a computable quantity that approximates f on the element T ∈ T h (resp. fN on the edge
E ∈ ENh ).

The a posteriori error estimator is defined as follows.

Definition 3.1. For the unified formulation (10) the local error estimators ηT and the the global estimator η
are defined by

ηT :=

(
4∑
i=1

η2
iT

)1/2

,

η1T := hT ‖div σ(uh) + fT ‖0,T ,

η2T := h
1/2
T

 ∑
E∈Eint

T
∪EN

T

‖JE,n(uh)‖20,E

1/2

,

η3T := h
1/2
T

 ∑
E∈EC

T

∥∥∥∥∥σt(u
h)+

[
Pt

1,γ(uh)
]
Sh(uh)

∥∥∥∥∥
2

0,E

1/2

,

η4T := h
1/2
T

 ∑
E∈EC

T

∥∥∥∥σn(uh)+
[
Pn

1,γ(uh)
]
C

∥∥∥∥2

0,E

1/2

,

η :=

 ∑
T∈T h

η2
T

1/2

,

where JE,n(uh) means the constraint jump of uh in the normal direction, i.e.,

JE,n(uh) :=

{ [[
σ(uh)νE

]]
E
, ∀E ∈ Einth ,

σ(uh)νE − fN,E , ∀E ∈ ENh .
(11)
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The local and global approximation terms are given by

ζT :=

h2
T

∑
T ′⊂ωT

‖f − fT ′‖20,T ′ + hE
∑

E⊂EN
T

‖fN − fN,E‖20,E

1/2

,

ζ :=

 ∑
T∈T h

ζ2
T

1/2

.

4 An upper bound for the residual

In [16] a global upper bound, under a saturation assumption, and for regularity Hs(Ω), s > 3/2, of the solution
u, have been proven, for frictionless contact and also for Tresca friction. Local optimal lower bounds have been
established too.

We can try here to follow the idea of a recent work from Di Pietro et al [25] and to derive an upper bound
for the dual norm of the residual without any saturation assumption and with solely a regularity H1(Ω) for u.
This can be done for 2D and 3D problems, linear and quadratic finite elements, and above all for both friction
models: Tresca friction and Coulomb friction. As in [25], we focus on the incomplete version of Nitsche and set
θ = 0.

The residual R can be viewed as an application

R : Vh → V?

where V? is the topological dual of V. This application is defined, for wh ∈ Vh as:
〈R(wh),v〉

:=L(v)− a(wh,v)−
∫

ΓC

[Pn
1,γ(wh)]Cvn dΓ−

∫
ΓC

[Pt
1,γ(wh)]

Sh(uh)
· vt dΓ, ∀ v ∈ V.

(12)

We see here why it is not convenient to define a residual for θ 6= 0: in this situation the Nitsche boundary terms
may have no meaning in L2(ΓC), since we suppose only v ∈ H1(Ω;Rd). The dual norm of the residual is then
defined as

‖R(wh)‖∗ := sup
v∈V

〈R(wh),v〉
‖v‖1,Ω

.

The following result holds:

Proposition 4.1. Let us suppose that θ = 0, γ0 > 0 large enough and let uh ∈ Vh ⊂ V be a solution to
Nitsche formulation (10). Then the residual defined by (12) is bounded by the a posteriori error estimate and
the approximation terms of Definition 3.1 as follows

‖R(uh)‖∗ ≤ C (η + ζ)

where the constant C > 0 is independent of h.

Proof. Let uh ∈ Vh ⊂ V be a solution to Nitsche formulation (10), let v ∈ V be a test function, and let us
write first

〈R(uh),v〉 =L(v)− a(uh,v)−
∫

ΓC

[Pn
1,γ(uh)]Cvn dΓ−

∫
ΓC

[Pt
1,γ(uh)]

Sh(uh)
· vt dΓ.

Since uh solves (10), then there holds:
〈R(uh),vh〉 = 0,

for every test function vh ∈ Vh. So there holds also

〈R(uh),v〉
= 〈R(uh),v〉 − 〈R(uh),vh〉 = 〈R(uh),v − vh〉

= L(v − vh)− a(uh,v − vh)−
∫

ΓC

[Pn
1,γ(uh)]C (vn − vhn) dΓ−

∫
ΓC

[Pt
1,γ(uh)]

Sh(uh)
· (vt − vht ) dΓ.
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Now we can transform the above expression by integrating by parts on each triangle T , using the definition of
JE,n(uh) and splitting up the integrals on ΓC into normal and tangential components. As a result, we get:

〈R(uh),v〉 =
∑
T∈Th

∫
T

(div σ(uh) + f) · (v − vh) dΓ

−
∑
E∈EC

h

∫
E

(
[Pn

1,γ(uh)]C + σn(uh)
)

(vn − vhn) dΓ

−
∑
E∈EC

h

∫
E

(
[Pt

1,γ(uh)]
Sh(uh)

+ σt(u
h)
)
· (vt − vht ) dΓ

−
∑

E∈Eint
h
∪EN

h

∫
E

JE,n(uh) · (v − vh) dΓ

+
∑
E∈EN

h

∫
E

(fN − fN,E) · (v − vh) dΓ. (13)

We now need to estimate each term of this right-hand side. For that purpose, we take

vh = SZh(v), (14)

where SZh is the quasi-interpolation operator of Scott & Zhang, see [62] and [29].
We start with the integral term on simplices T . Cauchy-Schwarz’s inequality implies∑

T∈Th

∫
T

(div σ(uh) + f) · (v − vh) dΓ ≤
∑
T∈Th

‖div σ(uh) + f‖0,T ‖v − vh‖0,T ,

and it suffices to estimate ‖v − vh‖0,T for any simplex T . From the definition of vh and the approximation
properties of SZh, we get:

‖v − vh‖0,T = ‖v − SZhv‖0,T ≤ ChT ‖v‖1,ωT .

As a consequence ∣∣∣∣∫
Ω

(div σ(uh) + f) · (v − vh) dΓ

∣∣∣∣ ≤ C(η + ζ)‖v‖1,Ω.

For the interior and Neumann boundary terms in (13), the application of Cauchy-Schwarz’s inequality leads to∣∣∣∣∣∣
∑

E∈Eint
h
∪EN

h

∫
E

JE,n(uh) · (v − vh) dΓ

∣∣∣∣∣∣ ≤
∑

E∈Eint
h
∪EN

h

‖JE,n(uh)‖0,E‖v − vh‖0,E .

Using once again the approximation properties of SZh, we get:

‖v − vh‖0,E = ‖v − SZhv‖0,E . h1/2
E ‖v‖1,ωE ,

and we deduce that ∣∣∣∣∣∣
∑

E∈Eint
h
∪EN

h

∫
E

JE,n(uh) · (v − vh) dΓ

∣∣∣∣∣∣ ≤ Cη‖v‖1,Ω.
Moreover we can bound ∣∣∣∣∣∣

∑
E∈EN

h

∫
E

(fN − fN,E) · (v − vh) dΓ

∣∣∣∣∣∣ ≤ Cζ‖v‖1,Ω.
Let us focus now on the friction term:∣∣∣∣∣∣

∑
E∈EC

h

∫
E

(
[Pt

1,γ(uh)]
Sh(uh)

+ σt(u
h)
)
· (vt − vht ) dΓ

∣∣∣∣∣∣ ≤
∑
E∈EC

h

‖[Pt
1,γ(uh)]

Sh(uh)
+ σt(u

h)‖0,E‖v − vh‖0,E .

Still we use the quasi-interpolation properties of SZh and then we bound∣∣∣∣∣∣
∑
E∈EC

h

∫
E

(
[Pt

1,γ(uh)]
Sh(uh)

+ σt(u
h)
)
· (vt − vht ) dΓ

∣∣∣∣∣∣ ≤ Cη‖v‖1,Ω.
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We do exactly the same for the contact term:∣∣∣∣∣∣
∑
E∈EC

h

∫
E

(
[Pn

1,γ(uh)]C + σn(uh)
)
· (vn − vhn) dΓ

∣∣∣∣∣∣ ≤ Cη‖v‖1,Ω.
We combine all the previous results and get finally

〈R(uh),v〉 ≤ C(η + ζ)‖v‖1,Ω.

By definition of the dual norm, we conclude that

‖R(uh)‖∗ ≤ C(η + ζ).

and this ends the proof. �

Remark 4.2. In the frictionless case, one can recover from the above result an upper bound on the natural
norm of the discretization error (‖u−uh‖1,Ω), under a saturation assumption and with enough regularity on the
continuous solution u, see [25]. This is also the case for Tresca friction, and one then recovers the upper bound
stated in [16], in the case θ = 0. For Coulomb friction, the obtention of an upper bound on the natural norm of
the discretization error remains an open issue.

5 Numerical experiments

Contact and friction problems can be solved by using a generalized (semi-smooth) Newton method, which means
that Problem (10) is derived with respect to uh to obtain the tangent system. The term “generalized Newton’s
method” comes from the fact that the operators such as [·]

C
and [·]S(u) are not Gâteaux-differentiable at some

specific points. However, no special treatment is considered. If a point of non-differentiability is encountered,
the tangent system corresponding to one of the two alternatives (x < 0 or x > 0 for [·]

C
) is chosen arbitrarily.

Note that, for frictionless contact, the situation where the solution is non-differentiable at an integration point
is very rare and corresponds to what is called a “grazing contact” (both un = 0 and σn = 0).

Problem (10) is implemented within the open source finite element library FEniCS [54]. We took advantage
of the capabilities of FEniCS in terms of automatic symbolic differentiation: the weak form (10) is written
directly, and we did not need to specify explicitely the tangent problem.

First we present a first numerical test with Tresca friction and a manufactured solution, from [14]. Another
test, still for Tresca, is from a classical benchmark, originally presented in [8]. The last numerical experiment is
about Coulomb friction and comes from [53].

5.1 A manufactured solution

We first carry out some tests on the problem with a manufactured solution, presented in [14]. In this example
we consider Ω := (0, 1) × (0, 1), ΓC := (0, 1) × {0}, ΓD := ∂Ω \ ΓC . The Lamé coefficients are λ = 1000 and
µ = 2. The rhs f and the Dirichlet boundary condition uD are such that the exact solution is given by:

u := (u1, u2), where u1(x, y) :=

(
1 +

1

1 + λ

)
x ex+y, u2(x, y) :=

(
−1 +

1

1 + λ

)
y ex+y.

The friction thresold s, defined on ΓC , is given by

s(x) := µ

(
1 +

1

1 + λ

)
x ex.

Note that this setting is slightly different from Section 2, since there is no Neumann boundary, and a nonho-
mogeneous Dirichlet boundary condition. Lagrange finite elements of order Pk are used (k = 1, 2). Nitsche’s
parameter is set as γ0 = λ when θ = −1 and θ = 0. For the symmetric variant θ = 1, it is set as γ0 = 4λ for
k = 1 and γ0 = 6λ for k = 2.

5.1.1 Uniform refinement

Problem (10) is solved on a sequence of 7 structured meshes, with uniform refinement: the mesh size is divided
by 2 each time. This allows to check the convergence properties of the error estimate.

For the skew-symmetric variant (θ = −1), results are presented in Table 1, Table 2, Table 3 and Table 4. For
Table 1 (order k = 1) and Table 3 (order k = 2), we detail the error in the L2-norm, H1 semi-norm and norm
and the value of the residual error estimate η. The empirical convergence rates are denoted by r2, rs1, r1 and

9



rη, for the L2-norm, the H1 semi-norm, the H1 norm and η, respectively. The efficiency index is denoted by E
and defined, as usual, as:

E :=
η

‖u− uh‖1,Ω
.

As it can be seen in Table 1 for order k = 1, the errors in L2 and H1 norm are reduced with a rate higher than
expected. This slight superconvergence phenomenon is unexplained. The a posteriori error estimate η decreases
with the expected rate of approximately 1. The efficiency index E is large.

For order k = 2 we can observe from Table 3 that similar conclusions hold than for k = 1, still with a slight
superconvergence for the a priori error rates. Note however, that the convergence rate of the residual estimator
η is slightly below the theoretical rate of 2. The efficiency index is still large.

For Table 2 (order k = 1) and Table 4 (order k = 2), we report the value of the different components of η
and their convergence rates. As in [16], we observe that the components η1 and η2 (residual and jumps on the
edges) that are, roughly speaking, related to the elasticity equations, are predominent, and converge with the
expected rate of approximately 1, for linear finite elements. The components related to Tresca friction and to
unilateral contact, respectively η3 and η4, are of smaller magnitude, and converge faster, with a rate around
1.5. We have no explanation for this phenomenon. Remark also that the estimator related to Tresca friction is
even smaller than the estimator for contact. For order k = 2, we can draw similar conclusions from Table 4.
Moreover we remark that for η1 and η2 the convergence order is below 2, whereas the components η3 and η4 for
friction and contact converge much faster, with rates around 2.5. Remark also that the component related to
Tresca friction is smaller than the one for contact. These results are in agreement with the previous ones for
frictionless contact, reported in [16].
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h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.190873 – 1.729627 – 1.740127 – 2286.60 – 1314.0
0.157 0.160036 0.25 1.480559 0.22 1.489183 0.22 1209.89 0.91 812.4
0.078 0.080972 0.98 0.894973 0.72 0.898628 0.72 635.38 0.92 707.0
0.039 0.033845 1.25 0.437086 1.03 0.438394 1.03 334.63 0.92 763.3
0.019 0.011733 1.52 0.175056 1.32 0.175449 1.32 174.46 0.93 994.3
0.009 0.003487 1.75 0.060809 1.52 0.060909 1.52 89.39 0.96 1467.7
0.004 0.000940 1.89 0.018999 1.67 0.019022 1.67 45.21 0.98 2376.9

Table 1: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial degree
k = 1. Nitsche parameters γ0 = λ and θ = −1.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 1352.65 – 1843.12 – 1.683 – 42.243 – 2286.60 –
0.157 680.34 0.99 1000.26 0.88 0.742 1.18 20.934 1.01 1209.89 0.91
0.078 340.44 0.99 536.43 0.89 0.184 2.00 7.414 1.49 635.38 0.92
0.039 170.25 0.99 288.06 0.89 0.060 1.59 2.815 1.39 334.63 0.92
0.019 85.13 0.99 152.28 0.91 0.026 1.18 1.056 1.41 174.46 0.93
0.009 42.56 0.99 78.61 0.95 0.009 1.51 0.390 1.43 89.39 0.96
0.004 21.28 0.99 39.89 0.97 0.002 1.75 0.142 1.45 45.21 0.98

Table 2: Problem with a manufactured solution. Components of the estimator η and their respective
convergence order. Polynomial degree k = 1. Nitsche parameters γ0 = λ and θ = −1.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.009256 – 0.190779 – 0.191004 – 122.42 – 640.9
0.157 0.001242 2.89 0.055794 1.77 0.055808 1.77 26.89 2.18 481.8
0.078 0.000162 2.94 0.016672 1.74 0.016673 1.74 7.54 1.83 452.3
0.039 0.000021 2.97 0.004534 1.87 0.004534 1.87 2.33 1.69 515.2
0.019 0.000002 3.18 0.001023 2.14 0.001023 2.14 0.70 1.72 690.7
0.009 0.000000 3.41 0.000198 2.36 0.000198 2.36 0.19 1.83 1000.4
0.004 0.000000 3.50 0.000036 2.45 0.000036 2.45 0.05 1.91 1452.6

Table 3: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial order
k = 2. Nitsche parameters γ0 = λ and θ = −1.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 116.60 – 37.28 – 0.055925 – 1.533677 – 122.42 –
0.157 25.37 2.19 8.88 2.06 0.020291 1.46 0.406656 1.91 26.89 2.18
0.078 7.20 1.81 2.24 1.98 0.003910 2.37 0.086384 2.23 7.54 1.83
0.039 2.21 1.70 0.74 1.59 0.000838 2.22 0.015668 2.46 2.33 1.69
0.019 0.65 1.75 0.25 1.52 0.000146 2.52 0.002847 2.46 0.70 1.72
0.009 0.18 1.85 0.07 1.70 0.000021 2.77 0.000526 2.43 0.19 1.83
0.004 0.04 1.93 0.02 1.85 0.000003 2.79 0.000096 2.45 0.05 1.91

Table 4: Problem with a manufactured solution. Components of the estimator η and their respective
convergence order. Polynomial order k = 2. Nitsche parameters γ0 = λ and θ = −1.
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h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.198267 – 1.731564 – 1.742878 – 2274.84 – 1305.22
0.157 0.160284 0.30 1.474357 0.23 1.483044 0.23 1208.74 0.91 815.04
0.078 0.081131 0.98 0.890005 0.72 0.893695 0.73 634.99 0.92 710.53
0.039 0.033877 1.25 0.435946 1.02 0.437260 1.03 334.49 0.92 764.98
0.019 0.011734 1.52 0.174749 1.31 0.175143 1.31 174.43 0.93 995.93
0.009 0.003487 1.75 0.060711 1.52 0.060811 1.52 89.38 0.96 1469.91
0.004 0.000940 1.89 0.018970 1.67 0.018994 1.67 45.21 0.98 2380.42

Table 5: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial order
k = 1. Nitsche parameters γ0 = λ and θ = 0.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 1352.65 – 1825.32 – 1.763916 – 115.923480 – 2274.84 –
0.157 680.34 0.99 997.98 0.87 0.732652 1.26 47.342641 1.29 1208.74 0.91
0.078 340.44 0.99 535.70 0.89 0.163662 2.16 18.499760 1.35 634.99 0.92
0.039 170.25 0.99 287.83 0.89 0.049425 1.72 7.065624 1.38 334.49 0.92
0.019 85.13 0.99 152.22 0.91 0.020210 1.29 2.609322 1.43 174.43 0.93
0.009 42.56 0.99 78.59 0.95 0.006700 1.59 0.948872 1.45 89.38 0.96
0.004 21.28 0.99 39.88 0.97 0.001919 1.80 0.342196 1.47 45.21 0.98

Table 6: Problem with a manufactured solution. Components of the estimator η and their respective
convergence order. Polynomial order k = 1. Nitsche parameters γ0 = λ and θ = 0.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.009667 – 0.191831 – 0.192074 – 124.93 – 650.47
0.157 0.001273 2.92 0.055813 1.78 0.055827 1.78 26.98 2.21 483.38
0.078 0.000165 2.94 0.016654 1.74 0.016655 1.74 7.55 1.83 453.35
0.039 0.000021 2.96 0.004530 1.87 0.004530 1.87 2.33 1.69 515.95
0.019 0.000002 3.16 0.001023 2.14 0.001023 2.14 0.70 1.72 691.21
0.009 0.000000 3.35 0.000198 2.36 0.000198 2.36 0.19 1.83 1000.83
0.004 0.000000 3.38 0.000036 2.45 0.000036 2.45 0.05 1.91 1452.91

Table 7: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial order
k = 2. Nitsche parameters γ0 = λ and θ = 0.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 118.99 – 36.93 – 0.070056 – 9.276328 – 124.93 –
0.157 25.51 2.22 8.69 2.08 0.021140 1.72 1.248022 2.89 26.98 2.21
0.078 7.21 1.82 2.22 1.96 0.003731 2.50 0.218437 2.51 7.55 1.83
0.039 2.21 1.70 0.74 1.58 0.000799 2.22 0.042261 2.36 2.33 1.69
0.019 0.65 1.75 0.25 1.51 0.000138 2.52 0.008389 2.33 0.70 1.72
0.009 0.18 1.85 0.07 1.70 0.000020 2.76 0.001601 2.38 0.19 1.83
0.004 0.04 1.93 0.02 1.85 0.000003 2.78 0.000294 2.44 0.05 1.91

Table 8: Problem with a manufactured solution. Components of the estimator η and their respective
convergence order. Polynomial order k = 2. Nitsche parameters γ0 = λ and θ = 0.
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h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.196380 – 1.719563 – 1.730740 – 2306.40 – 1332.61
0.157 0.158883 0.30 1.455742 0.24 1.464386 0.24 1213.42 0.92 828.62
0.078 0.080869 0.97 0.884652 0.71 0.888341 0.72 635.71 0.93 715.62
0.039 0.033718 1.26 0.434487 1.02 0.435793 1.02 334.61 0.92 767.82
0.019 0.011686 1.52 0.174424 1.31 0.174815 1.31 174.44 0.93 997.88
0.009 0.003476 1.74 0.060645 1.52 0.060744 1.52 89.38 0.96 1471.55
0.004 0.000937 1.89 0.018957 1.67 0.018980 1.67 45.21 0.98 2382.16

Table 9: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial order
k = 1. Nitsche parameters γ0 = 4λ and θ = 1.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 1349.43 – 1856.37 – 1.862072 – 228.896586 – 2306.40 –
0.157 679.94 0.98 1001.31 0.89 0.682431 1.44 86.362286 1.40 1213.42 0.92
0.078 340.39 0.99 535.91 0.90 0.126684 2.42 32.581834 1.40 635.71 0.93
0.039 170.25 0.99 287.81 0.89 0.037613 1.75 11.864399 1.45 334.61 0.92
0.019 85.13 0.99 152.20 0.91 0.014332 1.39 4.211949 1.49 174.44 0.93
0.009 42.56 0.99 78.58 0.95 0.004429 1.69 1.493011 1.49 89.38 0.96
0.004 21.28 0.99 39.88 0.97 0.001218 1.86 0.530160 1.49 45.21 0.98

Table 10: Problem with a manufactured solution. Components of the estimator η and their respec-
tive convergence order. Polynomial order k = 1. Nitsche parameters γ0 = 4λ and θ = 1.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1 η reta E

0.314 0.024923 – 0.278289 – 0.279403 – 153.61 – 549.79
0.157 0.005953 2.06 0.080538 1.78 0.080757 1.79 28.79 2.41 356.56
0.078 0.001476 2.01 0.021749 1.88 0.021799 1.88 7.74 1.89 355.44
0.039 0.000370 1.99 0.005696 1.93 0.005708 1.93 2.37 1.70 415.87
0.019 0.000093 1.99 0.001339 2.08 0.001342 2.08 0.71 1.73 531.84
0.009 0.000023 1.99 0.000293 2.19 0.000294 2.18 0.19 1.84 677.35
0.004 0.000006 2.00 0.000065 2.17 0.000065 2.17 0.05 1.92 806.11

Table 11: Problem with a manufactured solution. Errors for a uniform refinement. Polynomial
order k = 2. Nitsche parameters γ0 = 6λ and θ = 1.

h η1 r1 η2 r2 η3 r3 η4 r4 η rη

0.314 141.37 – 51.50 – 0.133297 – 30.925213 – 153.61 –
0.157 26.60 2.40 10.30 2.32 0.026320 2.34 3.915698 2.98 28.79 2.41
0.078 7.32 1.86 2.43 2.07 0.005198 2.34 0.687062 2.51 7.74 1.89
0.039 2.23 1.70 0.77 1.66 0.001231 2.07 0.161259 2.09 2.37 1.70
0.019 0.66 1.75 0.26 1.55 0.000237 2.37 0.039925 2.01 0.71 1.73
0.009 0.18 1.86 0.07 1.72 0.000036 2.73 0.008839 2.17 0.19 1.84
0.004 0.04 1.93 0.02 1.86 0.000005 2.90 0.001740 2.34 0.05 1.92

Table 12: Problem with a manufactured solution. Components of the estimator η and their respec-
tive convergence order. Polynomial order k = 2. Nitsche parameters γ0 = 6λ and θ = 1.
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5.1.2 Adaptive refinement

We now provide numerical results when mesh adaptation driven by the local components of η is carried out.
Figure 1 depicts the initial mesh and the final adapted mesh. We check that the refinement occurs in the
expected region at the top right corner of the square. On Figure 2 we observe that the final adapted solution is
undistinguishable from the exact solution, contrarily to the solution on the initial mesh.

Figure 1: Problem with a manufactured solution. Mesh refinement. Initial mesh (left) and final
adapted mesh (right). Polynomial order k = 1 and symmetric variant (θ = 1).

Figure 2: Problem with a manufactured solution. Solution for the initial mesh (left), for final
adapted mesh (center), and exact solution (right). Polynomial order k = 1 and symmetric variant
(θ = 1).
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5.2 A test case from Bostan & Han

We reproduce here the test case described in Bostan & Han [8] for Tresca friction with stick and slip transition.
In this example, we set Ω := (0, 8) × (0, 4), ΓD := (0, 8) × {4}, ΓN := {0} × (0, 4) ∪ {8} × (0, 4). The contact
boundary is located at the bottom: ΓC :=]0, 8[×{0}. The Lamé coefficients are λ := 576.9 and µ := 384.6. The
source term is f := 0. The Dirichlet and Neumann boundary conditions are given, respectively, by:

uD := 0, and σ(u)n = g, with g = (400, 0)T .

The friction thresold s, defined on ΓC , is constant, and given by

s(x) := 150.

Note that in this case we do not dispose of an analytical solution. Figure 3 depicts the initial and the final
adapted meshes. Figure 4 depicts the final solution and the deformed adapted mesh. As expected, refinement
occurs at corners, and, more interestingly, near the transition point between slip and stick. The results are in
good agreement with [8].

Figure 3: Test from Bostan & Han. Initial mesh (left) and final adapted mesh (right). Polynomial
order k = 1. Skew-symmetric Nitsche method (θ = −1).

Figure 4: Test from Bostan & Han. Solution obtained using the final adapted mesh (left) and
deformed final adapted mesh (right). Polynomial order k = 1. Skew-symmetric Nitsche method
(θ = −1).

5.3 Coulomb friction

Finally, we reproduce the test case from [44, 53] to test the behavior of the residual error estimate η in the case
of Coulomb friction. In this example, we set Ω := (0, 1)× (0, 1) with ΓD := {0} × (0, 1), ΓC := {1} × (0, 1) and
ΓN := (0, 1) × ({0} ∪ {1}). The Young modulus and Poisson ratio are respectively EY := 106 and ν := 0.3.
The rhs source term is given by f := (0,−76518). The Dirichlet and Neumann boundary conditions are given,
respectively, by:

uD := 0, and σ(u)n = 0

The friction coefficient F , defined on ΓC , is F := 0.2. Note that in this case we do not dispose of an analytical
solution yet we will use as reference a P1 solution computed on a highly uniform refined mesh of 800 · 000
triangles. The computed solution, obtained with the symmetric Nitsche method and linear Lagrange finite
elements is depicted Figure 5, Figure 6 and Figure 7. The results are in good agreement with those of [53]
obtained with a mixed method.
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Figure 5: Coulomb friction. Magnitude of the computed solution. Polynomial order k = 1 and
symmetric Nitsche (θ = 1).

Figure 6: Coulomb friction. Deformed mesh obtained using the computed solution. Polynomial
order k = 1 and symmetric Nitsche (θ = 1).
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Figure 7: Coulomb friction. Normal displacement (blue) and tangential displacement (red) on the
contact boundary ΓC . Polynomial order k = 1 and symmetric Nitsche (θ = 1).
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Table 13 presents the a priori error in L2 and H1 norms with their respective convergence rates, for the
skew-symmetric variant (θ = −1). The computed rates are slightly suboptimal (around 1.6 in the L2 norm
and 0.7 in the H1 norm, in comparison with the expected optimal rates of 2 and 1, respectively). Note that,

for Coulomb friction, the best theoretical a priori error bounds are in O(h
1
2 ) [45], for mixed methods, but it is

not known still if these theoretical rates can be improved or not. For Nitsche method, there is no theoretical
a priori error estimate available for the moment. The limitation in the convergence rate may come from the
limited regularity of the solution. For comparison purpose, rates of 1.12 and 0.95 were obtained in [19], but for
a different test case with a solution expected to be smoother.

The different components of the estimator are reported Table 14. Suboptimal rates can be observed, and
a global convergence rate of approximately 0.7 can be deduced for the overall estimator as well as for the
components η2 associated with jumps on internal and Neumann edges. Notably the components η3 and η4

associated with friction and contact have a low, suboptimal rate of 0.5. This is in contrast with previous results
for Tresca friction, were superconvergence was observed. Moreover, in this situation the relative magnitude of
the components associated with contact and friction is high. The convergence rates are close to those of the a
priori error in the H1 norm, and the efficiency remains poor. Remark finally that the rate of 0.7 is in agreement
with the rate reported in [44] and [53] for a mixed method and another error estimator. It seems to indicate a
limited regularity of the continuous solution.

Results for the incomplete variant θ = 0 are reported Table 15 and Table 16. Conclusions similar as in
the previous case θ = −1 can be drawn, except that better overall convergence rates can be observed, with,
for instance, a rate slightly above 0.8 for the H1-norm. Surprisingly, the components of the estimator η3 and
η4 associated with friction and contact converge with rates much better than in the case θ = −1, with even a
superconvergence for η3. Results for the symmetric variant θ = 1 are reported Table 17 and Table 18, and are
very similar to those obtained for the skew-symmetric variants. Finally, we carried out tests for larger values of
the friction coefficient F = 0.4, 0.6, 0.8. We do not report the details but the same conclusions hold as for the
case F = 0.2. Particularly, the difference of convergence rates for the components η3 and η4, for the specific
value θ = 0 in comparison to the variants θ = −1, 1 is persisting.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1

0.353 0.010331 – 0.029722 – 0.031466 –
0.176 0.004172 1.30 0.014970 0.98 0.015540 1.01
0.088 0.001375 1.60 0.007838 0.93 0.007957 0.96
0.044 0.000468 1.55 0.004608 0.76 0.004632 0.78
0.022 0.000151 1.62 0.002833 0.70 0.002837 0.70
0.011 0.000049 1.61 0.001751 0.69 0.001751 0.69
0.005 0.000016 1.62 0.001051 0.73 0.001051 0.73

Table 13: Coulomb friction. Errors for a uniform refinement and their respective convergence orders.
Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = −1.

h η1 r1 η2 r2 η3 r3 η4 r4 η r

0.353 27053.19 – 61579.44 – 5257.79 – 11427.64 – 68426.16 –
0.176 13526.59 1.00 42257.54 0.54 2783.30 0.91 7965.37 0.52 45164.84 0.59
0.088 6763.29 1.00 25874.90 0.70 1308.64 1.08 6127.21 0.37 27468.31 0.71
0.044 3381.64 1.00 15384.52 0.75 655.60 0.99 4374.37 0.48 16361.06 0.74
0.022 1690.82 1.00 9190.32 0.74 406.23 0.69 3091.68 0.50 9851.11 0.73
0.011 845.41 1.00 5568.05 0.72 271.77 0.57 2179.60 0.50 6045.04 0.70
0.005 422.70 1.00 3430.46 0.69 189.68 0.51 1538.49 0.50 3788.10 0.67

Table 14: Coulomb friction. Components of the error estimator η for a uniform refinement and their
respective convergence order. Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = −1.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1

0.353 0.010154 – 0.028469 – 0.030225 –
0.176 0.004236 1.26 0.013869 1.03 0.014502 1.05
0.088 0.001490 1.50 0.006825 1.02 0.006986 1.05
0.044 0.000523 1.51 0.003757 0.86 0.003793 0.88
0.022 0.000177 1.56 0.002153 0.80 0.002160 0.81
0.011 0.000059 1.58 0.001239 0.79 0.001240 0.80
0.005 0.000017 1.75 0.000688 0.84 0.000689 0.84

Table 15: Coulomb friction. Errors for a uniform refinement and their respective convergence order.
Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = 0.

18



h η1 r1 η2 r2 η3 r3 η4 r4 η r

0.353 27053.19 – 60948.11 – 6567.94 – 10762.72 – 67863.99 –
0.176 13526.59 1.00 40792.63 0.57 2755.17 1.25 2498.26 2.10 43137.45 0.65
0.088 6763.29 1.00 24828.46 0.71 1063.29 1.37 629.45 1.98 25762.79 0.74
0.044 3381.64 1.00 14611.70 0.76 385.29 1.46 334.65 0.91 15006.59 0.77
0.022 1690.82 1.00 8537.63 0.77 149.61 1.36 247.77 0.43 8708.26 0.78
0.011 845.41 1.00 5016.40 0.76 55.82 1.42 138.35 0.84 5089.32 0.77
0.005 422.70 1.00 2970.76 0.75 22.24 1.32 66.85 1.04 3001.51 0.76

Table 16: Components of the error estimator η for a uniform refinement and their respective con-
vergence order. Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = 0.

h ‖u− uh‖0,Ω r2 |u− uh|1,Ω rs1 ‖u− uh‖1,Ω r1

0.353 0.010008 – 0.028979 – 0.030658 –
0.176 0.004328 1.20 0.015067 0.94 0.015677 0.96
0.088 0.001600 1.43 0.007955 0.92 0.008114 0.95
0.044 0.000577 1.47 0.004657 0.77 0.004693 0.78
0.022 0.000202 1.51 0.002856 0.70 0.002863 0.71
0.011 0.000068 1.57 0.001767 0.69 0.001769 0.69
0.005 0.000018 1.90 0.001065 0.73 0.001066 0.73

Table 17: Coulomb friction. Errors for a uniform refinement and their respective convergence order.
Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = 1.

h η1 r1 η2 r2 η3 r3 η4 r4 η r

0.353 27053.19 – 63388.12 – 8399.56 – 15577.33 — 71155.71 –
0.176 13526.59 1.00 42236.24 0.58 3446.07 1.28 10013.60 0.63 45596.23 0.64
0.088 6763.29 1.00 25992.38 0.70 1557.03 1.14 6491.10 0.62 27674.99 0.72
0.044 3381.64 1.00 15545.69 0.74 788.78 0.98 4487.18 0.53 16548.75 0.74
0.022 1690.82 1.00 9299.40 0.74 484.59 0.70 3170.96 0.50 9981.36 0.72
0.011 845.41 1.00 5640.33 0.72 324.71 0.57 2244.53 0.49 6137.70 0.70
0.005 422.70 1.00 3480.77 0.69 225.48 0.52 1588.37 0.49 3855.93 0.677

Table 18: Components of the error estimator η for a uniform refinement and their respective con-
vergence order. Polynomial order k = 1. Nitsche parameters γ0 = 10λ and θ = 1.
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