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ABSTRACT: Land-use and land-cover changes (hereafter simply “land use”) alter climates biogeophysically by affecting
surface fluxes of energy and water. Yet, near-surface temperature responses to land use across observational versus model-
based studies and spatial-temporal scales can be inconsistent. Here we assess the prevalence of the historical land use signal
of daily maximum temperatures averaged over the warmest month of the year (tLU) using regularized optimal fingerprint-
ing for detection and attribution. We use observations from the Climatic Research Unit and Berkeley Earth alongside his-
torical simulations with and without land use from phase 6 of the Coupled Model Intercomparison Project to reconstruct
an experiment representing the effects of land use on climate. To assess the signal of land use at spatially resolved conti-
nental and global scales, we aggregate all input data across reference regions and continents, respectively. At both scales,
land use does not comprise a significantly detectable set of forcings for two of four Earth system models and their multimo-
del mean. Furthermore, using a principal component analysis, we find that tLU is mostly composed of the nonlocal effects
of land use rather than its local effects. These findings show that, at scales relevant for climate attribution, uncertainties in
Earth system model representations of land use are too high relative to the effects of internal variability to confidently
assess land use.

KEYWORDS: Principal components analysis; Regression analysis; General circulation models; Land surface model;
Climate variability; Trends

1. Introduction

Land-use and land-cover changes (referred to simply as
“land use”) affect climate biogeochemically and biogeophysi-
cally. The biogeochemical effects of land use on climate occur
through interactions in the carbon cycle, mostly moving car-
bon from land reserves to the atmosphere. Land use also in-
fluences climate biogeophysically by modulating energy and
water fluxes that vary between different vegetation types and
surface characteristics.

The biogeophysical effects of deforestation on near-surface
temperatures are controlled by evapotranspiration, surface
roughness and albedo (Jia et al. 2019; Pongratz et al. 2021).
As the sign of these effects varies across latitudinal bands and
time scales, they may counteract the biogeochemical cooling
effects of re/afforestation efforts. At an annual mean time

scale, deforestation may cool temperatures at high latitudes
(de Noblet-Ducoudré et al. 2012) and warm them in mid-
to-equatorial latitudes (Duveiller et al. 2018), yet for the sum-
mer season deforestation could ubiquitously lead to warming
(Lejeune et al. 2018). In the northern latitudes, this cooling is
understood to be caused by the increased albedo and reduced
available energy of deforested regions relative to their darker,
forested origins. Importantly, in the Northern Hemisphere
winter, this albedo effect is amplified. At this time, existing
forest cover traps outgoing radiation through multiple reflec-
tion within the canopy, and a reduced canopy exposes larger
areas of the land surface to snowfall (de Noblet-Ducoudré
et al. 2012). In lower latitudes, which are less energy-limited,
the temperature response of deforestation is dominated by
the reduced capacity of the land surface to lose heat through
turbulent fluxes. With losing vegetative cover, the lowered
canopy conductance of water from soil moisture reserves de-
creases evapotranspiration and the latent heat flux. As well, sur-
face roughness is reduced after deforestation, thereby reducing
the dissipation of energy from the surface through turbulent sensi-
ble and latent heat fluxes (Davin and de Noblet-Ducoudre 2010;
Winckler et al. 2019b). The latter of these warming mechanisms
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may also explain the boreal summer warming response to defor-
estation. In this case, the reduced turbulent heat fluxes from a
decrease in surface roughness forces a temperature increase, com-
pensating the albedo effect’s cooling (Bright et al. 2017; Duveiller
et al. 2018).

These biogeophysical temperature responses to deforesta-
tion, however, are inconsistent across modeling studies using
Earth system models (ESMs) (Lejeune et al. 2017, 2018). In
idealized and historical model simulations, modeled tempera-
ture responses differ in magnitude (Winckler et al. 2019c;
De Hertog et al. 2022) and in the latitudes where they switch
from a warming to a cooling signal (Boysen et al. 2020). This
is owed to uncertainties in our understanding of historical
land cover change, how land use change is implemented in
the models and resulting model-dependent physics for land–
atmosphere interactions (Pitman et al. 2009; Meier et al. 2019,
2022). These differences are evident in model discrepancies in
the simulated partitioning of net radiation into sensible and
latent heat flux in response to deforestation, for example,
even when they agree on the reduction of available energy
and the sign of change in temperature responses to deforesta-
tion (de Noblet-Ducoudré et al. 2012; Boysen et al. 2020).

Comparisons between modeled and observed biogeophysi-
cal temperature responses to deforestation are challenging.
Often, models may simulate cooling responses to deforestation
while observations show warming (Winckler et al. 2019a). This
difference stems from how model simulations at the grid scale
and observations taken at single points in the landscape are
characterizing the local and nonlocal responses of deforesta-
tion at different spatial scales. Local effects refer to atmo-
spheric changes at the site of a land disturbance. Yet, the
atmospheric conditions over a given plot of land may also be
affected by the atmospheric feedbacks of land use occurring in
other regions, i.e., the nonlocal effects. Some have used the
“space-for-time” concept to describe the trade-offs in the as-
sessment of this signal between models and observations. This
is because observational studies, by construction, sometimes
only include the local signal. For example, in situ and satellite
observations may compare a local plot of deforested land to
neighboring forests to assess this signal at a single point in
time. In this context, the effects of internal climate variabil-
ity, including their influence on the nonlocal atmospheric
interactions of land use, are constant across neighboring
sites and are therefore assumed to cancel (Lee et al. 2011).
These assumptions no longer hold in many studies assessing the
temperature response of deforestation from ESM simulations
with grid scales greater than 100 km. Comparisons of historical
simulations without land use against those with time-evolving
land use scenarios ingest both the local effects and the nonlo-
cal feedbacks of deforestation at the grid cell level. Further
observation-model discrepancies in the case of satellite as-
sessments stem from an inappropriate comparison of varia-
bles. Satellites measure surface temperatures, while most model
studies assess near-surface or 2-m air temperatures (Bright et al.
2017; Duveiller et al. 2018). Indeed, comparisons of modeled
surface and near-surface temperature responses to deforesta-
tion reveal a disagreement in their magnitudes and sometimes
in their sign of change (Winckler et al. 2019c; Breil et al. 2020;

Pongratz et al. 2021). Finally, Chen and Dirmeyer (2020)
reconcile these differences between observations and a
single model. In running offline simulations to avoid feed-
backs and by evaluating them to mimic the space-for-time con-
ditions of observational studies, they replicate the observed
warming in response to deforestation. It is thus likely that the
observation–model discrepancies in the temperature response
to land use are not only due to model imperfections, but also
because the nonlocal effects of land use are less accounted for
in the observations.

The local and nonlocal effects of deforestation have only
been separated in the model world. This is achieved by recon-
structing historical deforestation signals and by performing ide-
alized simulations. Reconstruction methods for assessing the
signals of historical deforestation have been designed in cases
where counterfactual historical simulations}those including all
historical forcings but which hold land use constant}were not
available to derive the land use signal. With modeled tempera-
ture and tree cover information, these applications use either
regressions (Winckler et al. 2019c; Lejeune et al. 2018; Thiery
et al. 2020) or mean differences between high and low tree
cover change grid cells (Kumar et al. 2013; Lejeune et al. 2017)
in a rolling window of grid cells to parse the temperature changes
owing to varying tree cover. Importantly, this also filters some
nonlocal effects under the assumption that they are shared in
each window. This is evidenced by the reduction of uncertainty
in the reconstructed temperature signal of deforestation when
compared to factorial derivations of the signal (i.e., a lowered in-
fluence of internal variability, which modulates nonlocal ef-
fects) (Lejeune et al. 2018). Idealized “checkerboard”-type
deforestation analyses apply a methodology to extract local
against nonlocal effects of deforestation by using composite
fields of forested and deforested grid cells (Winckler et al.
2017; De Hertog et al. 2022). These studies show that models
simulate summertime local warming and nonlocal cooling. Sim-
ilarly, in idealized deforestation studies that apply global defor-
estation rates not expected in any reasonable future land use
scenario, it is thought that the nonlocal cooling masks local
warming effects (Boysen et al. 2020). While evapotranspiration
efficiency and surface roughness changes drive the local re-
sponse (Winckler et al. 2017), albedo changes are thought to be
the causal factor behind this nonlocal cooling. Albedo changes
affect the temperature and humidity of the whole troposphere,
allowing for advection of these perturbed conditions to other
regions (Davin and de Noblet-Ducoudre 2010).

In addition to improving our process understanding of the
biogeophysical effects of land use, resolving the significance
of its contribution to historical climate change is of key impor-
tance. Yet this question of detection and attribution of the ef-
fects of land use on climate has received relatively little
attention (Christidis et al. 2013). Detection and attribution in-
volve assessing the significance of a signal in some aspect of
the climate, and then evaluating the roles of different climate
forcings that might affect it (Hegerl et al. 2006). This has been
undertaken extensively, for example, to evaluate the role of
anthropogenic greenhouse gas emissions in affecting target
variables like temperature and precipitation relative to natu-
ral forcings, such as volcanoes and solar activity (Zwiers et al.

J OURNAL OF CL IMATE VOLUME 361846

Unauthenticated | Downloaded 03/24/23 01:11 PM UTC



2011; Wan et al. 2015). Detection is defined as first demon-
strating that a target variable has changed in a statistically
significant way. This significance is defined relative to the dis-
tribution of possible changes in the target variable as forced
by internal climate variability. Therefore, a signal is detected
if it can be confidently determined that its probability of oc-
curring under internal climate variability is sufficiently small.
Upon detecting a signal, questions remain over which climate
forcings were responsible for its significant shift. Attribution
is then the process of determining the suspect forcings respon-
sible for this shift against other plausible explanations (Hegerl
et al. 2007).

One challenge in the context of detecting and attributing
the effects of land use on climate is the potential nonlocal
cooling response to deforestation. For locations and time
scales relevant to the nonlocal cooling response, this conflicts
with the spatially uniform carbon sequestration benefits of
re/afforestation mitigation efforts. Existing evidence implies
that this cooling may be forced by nonlocal processes linked
to internal climate variability. Therefore, exploring the signifi-
cance of the historical temperature response to land use in a
way that takes into account internal variability is helpful.
Methodologically, detection and attribution involves ensem-
ble sampling and optimization steps that reduce the influence
of internal climate variability on the historical land use signal.

Recent advances in land use scenarios (Hurtt et al. 2020)
and the availability of historical simulations with and without
land use change (Lawrence et al. 2016), which can dissect the
biogeophysical effects of land use in phase 6 of the Coupled
Model Intercomparison Project (CMIP6), merit a revisiting of
the detection and attribution of the overall land use signal.
Previously, a single-model study found an attributable cooling
of historical warmest day temperatures to land use (Christidis
et al. 2013). The researchers used an earlier generation
of UKESM that included a dynamic vegetation model that
ingested agricultural disturbance data from early land use
harmonization datasets (Hurtt et al. 2011). However, con-
sidering the discrepancies in modeled temperature re-
sponses to land use, a more complete estimate of the land
use signal’s detectability may only be achieved in a multimo-
del framework. Here we revisit the detection and attribution
of land use effects on climate by focusing on 2-m warmest
month temperatures (the locally highest annual value of
monthly means of daily maximum temperatures) for four
ESMs simulated under the updated protocol of CMIP6
(Eyring et al. 2016).

2. Data and methods

a. Models and observations

For detection and attribution, we require observations
and ESM simulations of historical and preindustrial climates
(Ribes et al. 2013). Model simulations come from the follow-
ing CMIP6 concentration-driven experiments: all historical
forcings (“historical,” hereafter HIST), all historical forcings
without land use (“hist-noLu,” hereafter HISTNL), and a
preindustrial control representing the effects of internal var-
iability (“piControl,” hereafter PIC) (Eyring et al. 2016).
Here, concentration-driven means that models are forced
by scenario-prescribed CO2 concentrations instead of calcu-
lating atmospheric CO2 explicitly within an ESM’s carbon
cycle. The use of simulations from concentration-driven ex-
periments isolates the biogeophysical effects of land use
(Lawrence et al. 2016). For observations, we use Berkeley
Earth monthly land temperature fields (BE; Rohde and
Hausfather 2020) and Climatic Research Unit gridded Time
Series version 4.04 (CRU; Harris et al. 2020), which span
the historical period and provide gridded temperature fields
for monthly means of daily maximum temperatures at
higher resolutions than the model fields (Table 1).

ESMs include the Canadian Earth System model version 5
(CanESM5; Swart et al. 2019), the second generation Earth
System model from CNRM-CERFACS (CNRM-ESM2-1;
Séférian et al. 2019), the Earth system model from the Institut-
Pierre-Simon Laplace (IPSL-CM6A-LR; Boucher et al. 2020)
and the U.K. Earth System model (UKESM1-0-LL; Sellar
et al. 2020). These models were selected on the basis of data
availability on the public Earth System Grid Federation repos-
itory. Each model must have at least three realizations avail-
able in both HIST and HISTNL experiments for monthly
means of daily maximum 2-m temperature. Hereafter, this var-
iable is referred to as tasmax, and the response of tasmax to
the forcings included in HIST and HISTNL experiments is de-
noted tHIST and tHISTNL, respectively. Multiple realizations are
required for computing individual model means to reduce the
effects of internal climate variability. Per model, the maxi-
mum number of realizations of tHIST and tHISTNL were in-
cluded (Table 1). For details on the guidance of land use
application in participating CMIP6 models, see Lawrence et al.
(2016), Hurtt et al. (2020). Many studies focus on warm rather
than annual mean or cold temperature responses to land use.
Typically, surface property changes drive a stronger radiative
response in the surface energy balance with more solar

TABLE 1. Observational and model-based dataset characteristics.

Observations
and models Nominal resolution

tHIST

samples
tHISTNL

samples
Dynamic
vegetation

Land use
frequency

Plant functional
types

BE 360 3 180 } } } } }

CRU 720 3 360 } } } } }

CanESM5 500 km (128 3 64) 35 7 No Annual 9
CNRM-ESM2-1 250 km (256 3 128) 11 3 No Annual 16
IPSL-CM6A-LR 250 km (144 3 143) 32 4 No Annual 15
UKESM1-0-LL 250 km (192 3 144) 16 4 Yes Annual 9
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insolation (Bright et al. 2017; Duveiller et al. 2018; Hirsch
et al. 2015; Lejeune et al. 2018). We therefore opt for tas-
max over other temperature indices, as this expresses a
stronger signal and enriches existing daily warm tempera-
ture attribution to land use (Christidis et al. 2013). Using
the monthly frequency is necessary due to data availability
constraints. Note that tasmax should respond to land use the
strongest at the daily frequency, yet few ESMs had sufficient
outputs at daily frequency for both HIST and HISTNL to con-
sider within this analysis (see section 4).

b. Preprocessing

We compute the mean representation of individual ESM
experiments before space-time aggregation. For each ESM,
we compute the mean tHIST and tHISTNL time series across
available realizations (Table 1). Reconstructing an experi-
ment for the effects of land use (LU) on tasmax (tLU) is then
derived by subtracting the mean tHIST by the mean tHISTNL.
For capturing internal climate variability, we gather as many
nonoverlapping PIC realizations as possible that match the
length of our study period. These PIC realizations are taken
from all CMIP6 models with simulations of our target variable
(tPIC). From 39 models and 25 893 years of PIC data, this
yielded 498 realizations of tPIC. This developed from originally
confining the sampling of tPIC from only the ESMs in Table 1.
However, this limited the quality of internal variability esti-
mates in the regression due to small sample sizes. We there-
fore opt for a compromise; assuming that all CMIP6 models
adequately simulate preindustrial internal variability and
that the sample across many models suitably represents the
internal variability in the simulations of our four ESMs, we
improve the quality of internal variability estimates in our
analysis.

We select the most recent 50 years of the CMIP6 historical
period (1965–2014) from all observed and modeled input data.
This invokes a trade-off in our analysis; although 1915–64
would more strongly express the effects of land use relative to
other historical forcings, selecting the more recent period im-
proves the reliability of the observations and land use trajecto-
ries in the Land-Use Harmonization project (LUH2) (Hurtt
et al. 2020). Time series for 1965–2014 are then resampled to
5-yr nonoverlapping block means.

In anticipation of the different ESM responses to land use
and in hope of preserving the local features of these re-
sponses, we avoid regridding all models and observations to a
common resolution. Instead, we regrid observations to match
the spatial resolution of the individual models. This avoids
otherwise (i) promoting redundancy in ESM tLU patterns by
interpolating coarser model fields to the finer observational
resolutions, or (ii) dampening the ESM signal expression of
tLU through resampling all model and observational fields to a
coarse resolution (Lejeune et al. 2017). This means that for in-
dividual ESM detection and attribution results, the observa-
tions have been regridded to match the resolution of the
ESM’s simulations. For the multimodel mean results and for
pooling tPIC data across many models, space–time aggregation

is done before computing ensemble averages, thereby neglect-
ing regridding.

Spatial preprocessing of all model and observational data
is undertaken for coarsening inputs to detection and attribu-
tion to best express the signal to noise ratios of land use
forced temperature changes. All input data points to the regres-
sion are confined to land regions, excluding Greenland, the
Sahara, and Antarctica. The data points are area-weighted spa-
tial averages that are bounded depending on the spatial scale of
the detection and attribution result. A first set of weights takes
into account different grid cell areas by scaling their contribu-
tions to the regional average by the cosine of their latitude. At
the continental scale}where separate detection results are
achieved for North America, South America, Europe, Asia,
Africa, and Australia}inputs are aggregated according to the
Sixth IPCC Assessment Report reference land regions (AR6;
Iturbide et al. 2020). This contains the local effects of land use
to regions of consistent climatological characteristics. Note
that we include some regions that have undergone no land use
on the basis that they may experience the nonlocal effects of
land use. For assessing global detectability, to lower the di-
mensionality of the regression, spatial averages are computed
per continent, excluding Antarctica. At both the continental-
and global-scale regressions, we therefore use input vectors or
fingerprints that capture space–time characteristics at a finer
spatial resolution than the detection result. This allows for the
estimated inverse variance–covariance matrix to optimize in-
put vectors to the regression by emphasizing regions of low
variability. As these subregions have different land areas, we
additionally weight their data points (the area-weighted spatial
averages) based on the areas of the subcontinental AR6 or
continental regional domains (Fig. 1). We confine our study to
land regions to avoid the influence of less certain nonlocal ef-
fects via atmospheric feedbacks over the oceans (Davin and
de Noblet-Ducoudre 2010).

The space-time dimensionality reduction yields observed
and model-based input vectors of size n 5 10 (time steps) 3 6
(continents) for performing the regression analysis on a global
basis. For the continental-scale detection results, n varies ac-
cording to the continent being assessed. Here, n is therefore
of size 10 3 AR6c. Before the regression, we temporally cen-
ter each region’s time series by removing its mean across
time.

c. Regularized optimal fingerprinting

We perform detection and attribution analyses on the bio-
geophysical effects of land use on tasmax (tLU) using using
regularized optimal fingerprinting (ROF) with an ordinary
least squares regression type (Ribes et al. 2013). With a gener-
alized linear regression model, this involves decomposing ob-
served patterns of tasmax as a linear combination of tasmax
response patterns simulated under different groups of forc-
ings, taking into account internal variability. In this way, the
presence of modeled response patterns, otherwise known as
“fingerprints,” is evaluated in the observations by making in-
ferences on their resulting regression parameters. These re-
gression parameters}which are slopes in the 1D case}are
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hereby referred to as “scaling factors” as they scale response
patterns to fit the observations. This hinges on the following
assumptions: (i) that models correctly represent the response
patterns to different forcings, (ii) that estimates of internal
variability from the models are representative of the observa-
tions, and (iii) that the fingerprints of different forcings can be
reliably summed to achieve a net effect of all climate forcings
in assessment of an observed change (Allen and Stott 2003).
We perform this analysis for global and continental scales in
both one-way and two-way regressions. The two-way regres-
sion decomposes observations as a linear combination of
tHISTNL and tLU, yielding insights on the significance of tLU in
the observations. Analyses for the one-way regression case
are performed separately for tHIST and tHISTNL, communicat-
ing whether the presence of tLU changes the overall detect-
ability of the historical climate change signal for this variable.

ROF follows a generalized linear regression model of the
form, y 5 Xb 1 «. Here, y is a vector of observations (BE or
CRU), X is a matrix of m column vectors of model mean sim-
ulated response patterns matching the length of y (m 5 1;
one-way for tHIST or tHISTNL, m 5 2; two-way for tHISTNL and

tLU), b is a vector of scaling factors of lengthm and « is the re-
gression residual, representing the internal variability in y.
Solving this equation for b requires separate covariance ma-
trix estimates C1, from which a Ledoit and Wolf (2004) regu-
larized estimate is computed for prewhitening (optimizing) all
input vectors to unit variance and for computing b, and C2,
for estimating the variance in b and its 90% confidence inter-
vals (CI; Ribes et al. 2013). For each regression, the collection
of processed tPIC series described above is split into two inde-
pendent samples for calculating C1 and C2. The reliability of
this analysis is largely dependent on the quality of tPIC noise
samples for precise prewhitening, that is, properly weighting
the input vectors. Therefore, we iterate this analysis 500 times
by shuffling the full sample of tPIC series before halving it into
subsamples for calculating C1 and C2. Our final results for
b and its confidence intervals use the median of these 500
iterations.

Inferences for detecting the signal of a fingerprint, f, from X

in y operate under the null hypothesis that bf 6 90% CI 5 0,
or that f is indistinguishable from internal climate variability.
Rejecting this null hypothesis is therefore achieved when
bf 6 90% CI . 0, implying an emergent signal of f in y rela-
tive to background climate noise. Upon detection, the general
requirements of attributing a causal factor to this observed
change are that the observations are consistent with model
simulations including the factor and inconsistent with other
plausible simulations excluding the factor. In the context of
assessing tLU as f, this would require that btLU

6 90%CI addi-
tionally overlaps with 1 in the two-way regression case.

d. EOF-fingerprinting tree cover change in tLU

For each ESM, tLU contains forced responses to land
use}both locally and nonlocally}as well as the influences of
residual internal variability from the model means of the tHIST

and tHISTNL. The nonlocal effects of land use, however, must
co-occur to some extent with internal variability as, for exam-
ple, a column of perturbed air from deforestation would be
advected in the direction of ongoing weather patterns. This
merits further exploration of the strength of local effects of
land use versus the nonlocal effects, which has the side effect
of assessing the noise contamination of tLU. We therefore
compare trends in tLU against trends in tree cover (with the
CMIP6 variable treeFrac) and compute the correlations be-
tween their time series (see appendix). Finally, we apply a sig-
nal to noise ratio (S/N) assessment of the fingerprint of tree
cover change in tLU.

Another detection and attribution methodology compli-
ments the regression-based studies from which ROF was
developed, wherein fingerprints are generated through a prin-
cipal component analysis (PCA; Marvel et al. 2019; Santer
et al. 2007, 2011, 2018). Whereas regression-based detection
and attribution methods assess the significance of a simulated
forced response in observed changes, here, PCA can evaluate
the pattern similarity between ESM treeFrac and tLU. This ex-
plores how tLU is composed of local or nonlocal responses to
land use to further understand this simulated forced response
(see below). In the conventional application of this approach,

FIG. 1. Regions used for spatial aggregation and their relative
weights. (a) Continental detection analyses, yielding results sepa-
rately for North America, South America, Europe, Asia, Africa,
and Australia, use aggregated data for land-based grid cells based
on the IPCC AR6 reference regions within each continent (conti-
nental domains are outlined additionally in black), wherein each
region is given a relative weight. This splits Africa north of the Sa-
hara, as the Mediterranean AR6 region belonging to Europe en-
compasses land regions of both Europe and Africa. (b) For global
detection analyses, yielding a single result, spatial aggregation is
contained according to ESRI definitions of continental bounds,
while also excluding Greenland, the Sahara and Antarctica. For
the global scale, the northern tip of Africa is not considered a part
of Europe but is included in the area-weighted average for data
over Africa.
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a fingerprint is taken as the leading empirical orthogonal func-
tion (EOF) of a multimodel mean estimate of the target cli-
mate variable. For a multimodel mean estimate of dimensions
longitude 3 latitude 3 time, its EOF fingerprint has dimen-
sions longitude3 latitude. The statistical meaning of a leading
EOF translates suitably to the climate change context. An
EOF communicates the contribution or “loading” of each
grid cell to the primary mode of variability in the data, the
first principal component (PC). In applying PCA to climate
simulations, wherein the overall shift in the data is due to
historical climate change, the leading EOF therefore pro-
vides a response pattern or fingerprint of the climate change
forcings in the model simulations. The presence of this finger-
print is then evaluated in an observational series of the same di-
mensions by projecting the observations onto the fingerprint,
yielding a 1D pseudoprincipal component (pseudoPC) time se-
ries matching the length of the observed series. The pseudoPC,
also known as the projection time series, measures how the ob-
servations project onto the patterns of the fingerprint. Sections
of the pseudoPC with positive slopes communicate the increas-
ing presence of the fingerprint in the observations, and vice
versa. Trends of varying lengths in the pseudoPCs are therefore
used to assess the signal S of a fingerprint in observations. Tak-
ing samples of likewise computed trends, but from substituting
observations with independent preindustrial control simulations
in the projection step, allows one to characterize noise N
through assessing the standard deviation of the trends in its
pseudoPCs. This allows for an estimation of S/N.

We adapt this approach to assess the agreement between
changes in treeFrac and tasmax, accounting for potentially
different cooling or warming responses of tasmax to defores-
tation. Because the units of treeFrac (grid-scale fraction) and
tasmax (Kelvin) are different, we first standardize the data to
avoid the influence of the different magnitudes of their ranges
(Wilks 2019). For each ESM, given its data for treeFrac span-
ning 1965–2014, we take its fingerprint by conducting PCA us-
ing weights for latitude to find its leading EOF. We define a
signal of treeFrac in tLU, S, as the trend in the 50-year pseudoPC
computed by projecting the ESM’s mean tLU onto the finger-
print of treeFrac, revealing the agreement or disagreement of
tasmax responses to land use with patterns of forest cover in the
treeFrac fingerprint. Reprojecting for each sample of tPIC simu-
lated by each of our four ESMs, we define noise N for an indi-
vidual ESM, as the standard deviation of the resulting SPIC
samples from the tPIC pseudoPCs. For a given ESM,N therefore
captures the dispersion in the signal of treeFrac due to internal
climate variability. We use N from the tPIC projections to com-
pute both S/N for the projection of tLU onto the fingerprint of
treeFrac as well as for each SPIC. The distribution of SPIC/N de-
rived from individual ESM samples of tPIC realizations defines
the spurious likeness between patterns of tree cover change and
changes in tasmax due to internal climate variability, thereby
acting as a null distribution or control against which to compare
the S/N derived from tLU.

In other studies using this method, the shared variable across
the fingerprint and observations chosen for projection means
that a positive loading for a grid cell in the fingerprint will agree
with positive trends in the observations, thereby contributing to

a positive slope in the projection series. The response of tLU to
DtreeFrac, however, does not consistently occur with the same
sign of change (see section 1). Therefore, we separate the tree-
Frac fingerprinting for tropical to temperate-south (508S–238N),
temperate-north (238–508N), and boreal (508–908N) regions. To
additionally account for the different model responses of tLU to
DtreeFrac, we also analyze inverted treeFrac datasets by scaling
them by 21. This creates oppositely loaded EOFs which will
capture agreements in cases where the treeFrac EOF has loca-
tions anticorrelated with trends in tLU, effectively yielding signals
in absolute terms and conservatively testing for the presence of
treeFrac in tLU or tPIC.

3. Results

a. Detection and attribution

1) THEDETECTABILITY OF tLU IN THE TWO-WAY

REGRESSION

The response of tasmax to land use forcings, tLU, is incon-
sistently detectable in observations (BE) across ESMs at both
continental and global scales, but its detectability is internally
consistent across scales for specific ESMs (Fig. 2). For Can-
ESM5, only South America contains a detectable tLU signal
(Fig. 2b), and at the global scale tLU is undetected and indis-
tinguishable from internal climate variability (Fig. 2c). Like-
wise, for UKESM1-0-LL, Africa is the only continent with a
detectable signal (Fig. 2k), yet, globally, tLU is undetectable
(Fig. 2l). Across ESMs, Africa is the most consistent continent
with a detectable tLU signal, as all but CanESM5 simulate a
detectable signal there. CNRM-ESM2-1 and IPSL-CM6A-LR
have the most detectable signal of tLU. At the global scale,
their scaling factors are consistent with unity (Figs. 2f,i), which
is apparent in their continental scale results in that they both
simulate a detectable tLU signal in at least four of six conti-
nents (Fig. 2e). The inconsistency in the signal of tLU across
ESMs is confirmed in the multimodel mean case (Figs. 2m–o),
where no continents contain a significant expression of tLU
and its signal is undetectable globally. All other forcings
(tHISTNL) are nearly unanimously detected in all continents,
across scales and ESMs. When repeating the analysis with CRU
as an alternative set of observations, some of the continents and
ESMs with detectable signals are different (Fig. A1), where, for
example, IPSL-CM6A-LR loses its detectability of tLU. However,
the same outcomes around (i) inconsistent signals across ESMs,
(ii) internally consistent signals propogating through continental
and global scales for individual ESMs and (iii) null results for the
multimodel mean case all remain true.

2) DOES tLU AFFECT THE DETECTABILITY OF THE

HISTORICAL CLIMATE CHANGE SIGNAL?

The response patterns of tasmax to the forcings in HIST
and HISTNL, tHIST and tHISTNL, represent alternative finger-
prints of the historical climate with and without the effects of
land use, and their consistency with observations (BE) is
sometimes affected by the presence of tLU in tHIST (Fig. 3).
All ESMs produce tHIST and tHISTNL signals that are detect-
able in the observations at the global scale, and Australia is
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the only continent where, in some instances, these signals are
not detected. For the ESMs that produce a detectable signal
of tLU in the two-way regression, the presence of tLU in tHIST

improves the detectability of tHIST relative to tHISTNL for
some continents in CNRM-ESM2-1 (Figs. 3d,e), IPSL-
CM6A-LR (Figs. 3g,h), and UKESM1-0-LL (Figs. 3j,k). How-
ever, for the multimodel mean results at both continental and
global scales, there are no differences in the detectability of
tHIST and tHISTNL. This feature is consistent for analyses with
both observational datasets (Figs. 3m–o, A2 m–o).

b. S/N of treeFrac in tLU

The S/N of treeFrac in tLU is generally weak (Fig. 4). The
S/N for tLU exists mostly around the center of SPIC/N distribu-
tions (the control), and, with the exception of the tropics in

CanESM5, they only reach so far as the 66th percentile of the
control distribution. CNRM-ESM2-1 and IPSL-CM6A-LR
have the best pattern similarity between treeFrac and tLU, as
the S/N for tLU always exceeds the 66% percentile of the con-
trol distribution (Figs. 4b,c), which is consistent with these
ESMs simulating tLU with the best detectability using ROF
for detection and attribution. In line with the two-way regres-
sion results, CanESM5, IPSL-CM6A-LR and UKESM1-0-LL
have the best pattern matching between treeFrac and tLU in
the tropics to temperate-south latitude band (Figs. 4a,d),
which contains the continents for which they report detection
using both BE and CRU as observations (with exception to
detecting UKESM1-0-LL in CRU). In all ESMs except for
CNRM-ESM2-1, the tropical to temperate-south latitude
band shows the likeliest signal of treeFrac in tLU, implying that

FIG. 2. Continental and global detection and attribution results for two-way analyses with observations from Berkeley Earth. The conti-
nental scale detectability of (a),(d),(g),(j),(m) tHISTNL (purple) and (b),(e),(h),(k),(n) tLU (green) fingerprints. Light colors represent scal-
ing factor results implying detection (bf 6 90% CI . 0), dark colors represent scaling factor results consistent with unity
(bf 6 90%CI ∋ 1), and gray implies an undetected signal. (c),(f),(i),(l),(o) The global detectability of tHISTNL (purple; x axes) and tLU fin-
gerprints (green; y axes) through their scaling factors and confidence intervals. In these panels, dark, hashed lines are drawn to mark unity
and light gray lines mark 0. Multimodel mean results are labeled as “mmm”.
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the local effects of land use are most strongly expressed in
these regions. For the tropical to temperate-south latitude
band, it is contradictory that CNRM-ESM2-1 produces the
lowest S/N of treeFrac in tLU while tLU for this ESM is also con-
sistently detectable in southern continents across observational
datasets using ROF (see section 4). Since CNRM-ESM2-1 has
the smallest sample of tPIC realizations from which to compute
N, it is possible that the sampled N is considerably larger than
its true value, suppressing S/N for this ESM. In the other lati-
tude bands, the lesser pattern similarity between treeFrac and
tLU may imply that noise or nonlocal effects of land use are
dominant. Overall, these results emphasize the weak signal
case of tLU because the treeFrac S/N is consistent with prein-
dustrial control runs, namely that tLU probably contains spuri-
ous trends from internal climate variability.

4. Discussion and conclusions

We find (i) a null detection and attribution result for
tLU}the response of the local warmest monthly mean of daily

maximum temperature to land-use and land-cover changes
(land use)}using regularized optimal fingerprinting (ROF) in
a two-way regression and (ii) no evidence that land use im-
proves the detection of the historical forced response pattern.
Even though results vary across ESMs, for the multimodel
mean analysis, tLU is consistently undetected and indistin-
guishable from internal climate variability in both two-way
and one-way regressions and across observational datasets.
CNRM-ESM2-1 is the exceptional model in the ensemble. If
taken alone as a means of communicating the significance of
the tLU signal, its detectability across scales and observational
datasets, reinforced to a minor degree by its pattern matching
in the EOF-fingerprinting exercise, might be convincing evi-
dence of detection. Alongside its detection results, opposite
to CanESM5, the tLU response pattern of CNRM-ESM2-1 is
the most aligned with treeFrac changes north of the tropical
to temperate-south latitude band. Altogether, this may imply
a greater expression of local effects of land use in this ESM,
thus agreeing with earlier assessments of the scale depen-
dence of the land use signal (Chen and Dirmeyer 2020).

FIG. 3. As in Fig. 2, but for one-way analysis results reported separately for tHIST (browns) and tHISTNL (blue-greens).
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Notably, excluding IPSL-CM6A-LR, ESMs in our ensemble
simulate above average mean cooling responses to an ideal-
ized deforestation experiment (Table 1; Boysen et al. 2020).
However, as discussed below, the tLU response pattern for
CNRM-ESM2-1, like the rest of the ensemble, should be
viewed with caution given the difficulties in assessing why its
parameterization scheme should be trusted over others for
computing surface water and energy fluxes due to land use.

We also caution against extending comparisons between
the results of our ROF detection and attribution and the
EOF-fingerprinting analyses, as these methods address differ-
ent questions. ROF for detection and attribution asks whether
or not tLU is significantly detectable in observed changes in
tasmax. EOF-fingerprinting, however, seeks to test how pat-
terns of change in in treeFrac agree with tLU. Although we
can infer from a strong S/N of treeFrac in tLU that this could

FIG. 4. (a)–(d) Signal-to-noise ratios (S/N) of (e)–(h) EOF fingerprints of treeFrac in tLU vs tPIC realizations
for each model. Histograms showing the distribution of SPIC/N across boreal, temperate-north, and tropical to
temperate-south latitudinal bands are plotted behind S/N for tLU. The SPIC/N ratios derived from tPIC are sam-
pled for each latitude band across all four models in the detection and attribution analysis for computing the fol-
lowing quantiles for signal detectability: 66th, 90th, and 99th.
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imply better signal detectability of tLU in ROF, this only
comments on the potential signal expression in tLU. It says
nothing about tHISTNL, the observations, and how they are ex-
pressed after space–time truncation and optimization with tPIC
variance–covariance matrices. As well, this inference assumes
that land use will have a stronger signal relative to all of histor-
ical climate change if it is mostly made up of local rather than
nonlocal effects. This assumption may not be true in ROF if
regions with strong nonlocal effects are not aligned with those
of high variance in tPIC simulations from the entire CMIP6
ensemble.

The null outcome of this analysis is acceptable for a number
of reasons. For some ESMs, the inclusion of tLU in tHIST in the
one-way regression analysis improves the consistency of mod-
eled response patterns with observations. The opposite does
not occur, wherein the inclusion of tLU reduces the likeness
between observations and models (Fig. 3, Fig. A2). Yet, the
cancellation of tLU signals in the multimodel mean under-
scores model uncertainties that are too high for this set of
forcings relative to internal climate variability to allow for

formal detection and attribution, yielding null results across
scales and observational datasets. This questions the assump-
tion that these models are all valid in representing land use.
The weak S/N assessment of treeFrac in tLU and the fact that
the regions with the strongest trends in tLU do not consistently
align with regions of high land use (Figs. 4, B1) supports that
factorial estimates of tLU may be dominated by nonlocal pro-
cesses and/or internal climate variability. The tLU response
pattern in our study period is a weak signal in comparison to
the earlier historical period due to the stronger effects of land
use relative to other forcings in the early twentieth century. This
is apparent in more consistent correlations and slightly greater
S/N when repeating these analyses for 1915–64 (Figs. B2, B3).
Finally, we tested multiple other approaches to our detection
and attribution analysis, which all provided similar results. These
tested alternatives included (i) separately assessing summer and
winter seasonal tasmax; (ii) making selections of regions of high
land use with respect to LUH2-prescribed tree cover change be-
fore aggregating with AR6-weighted means for continental anal-
yses; (iii) limiting the inclusion of AR6 regions to those of

FIG. A1. As in Fig. 2, but for observations from CRU.
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considerable land use; (iv) testing other temporal aggregation
methods, such as either computing 10-yr means or eliminating
the temporal dimension of the analysis altogether by represent-
ing each region by its difference between the means of 1965–89
and 1990–2014; and (v) restricting our tPIC samples to those sim-
ulated by the four ESMs involved in this study.

Relative to the analysis of daily temperature extremes in
Christidis et al. (2013), it is understandable that we find a
weaker signal case using the monthly time scale. As they discuss
regarding their attribution of warm day extremes relative to the
insignificant effect of land use on cold and night extremes, am-
ple solar insolation is required to drive the expression of the ra-
diative effects of land use that control temperature changes.
This includes albedo controlling the available energy and the
partitioning of this energy into turbulent heat fluxes. Therefore,
on the one hand, in dulling the temporal scale of this analysis
from daily to monthly resolution, the peak assessment of these
radiative effects on near-surface temperatures is lost, effectively
weakening our version of the land use signal. On the other
hand, the signal to noise ratio of tLU in our study is benefited by

analyzing the monthly resolution, which is less influenced by in-
ternal variability than daily temperatures. However, compari-
sons between this study and Christidis et al. (2013) can never be
perfect. We isolated spatial aggregations to land regions and
avoided ocean domains, while they used a T4 truncation that in-
cluded ocean domains. Repeating our analysis to include the
oceans, however, invites potentially greater inconsistencies in
ESM-specific advection processes and ocean–atmospheric cou-
pling. Although we choose a likewise 50-yr-long study period,
ours begins 15 years later, which means we are including differ-
ent land use trends in some regions. This study is therefore not
a correction to their detection and attribution results, but rather
an addition to the outlook of the detectability of land use on
warm temperature indices.

Our detection and attribution analysis has a number of limi-
tations. Our observational datasets, CRU and BE, likely do
not fully ingest historical tasmax responses to land use. By
convention, weather stations do not measure areas before and
after land use transitions such as deforestation. Moreover, in
CRU, tasmax is estimated using daily mean temperature and

FIG. A2. As in Fig. 3, but for observations from CRU.
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the diurnal temperature range (Thiery et al. 2020). The same
occurs on the model side, wherein daily tasmax is computed
at the model time step. As these time steps do not necessarily
align with the timing of the peak temperature, the daily maxi-
mum temperature might be underestimated by the ESMs.
However, as ESM time steps typically are between 30 min
and 1 h, we assume that the potential effect is limited.
Model data availability constraints also limit the quality of
this analysis. There are too few ESMs involved in this study
to robustly assess tLU detectability across the full CMIP6 en-
semble. As our four-ESM ensemble displays weak and spa-
tially varying trends in tLU and different applications of land
use (Figs. B1, B2), encompassing all CMIP6 model outcomes
could provide a more reliable understanding of the signifi-
cance of land use as a historical forcing. A limited availability
of ensemble members for the HISTNL experiment leaves our
estimate of tLU contaminated by internal variability (Table 1).
Similarly, restricting preindustrial control runs to only those
simulated by the ESMs involved in this study would cover too
few years for adequately sampling the space-time variance
possible via internal climate variability. Therefore, we increase
this sample size as a compromise for potentially including in-
ternal variability estimates that are ill-fitted to our four ESMs.
In this way, the assumed internal variability is representative
of a CMIP6 multimodel mean variability, although that inter-
nal variability varies largely among CMIP6 models in terms of
amplitude and characteristics (Ribes et al. 2021). Accounting

for these between-model differences may inflate the variance
of internal climate variability for some regions, thereby reduc-
ing the likelihood of detection and making our detection test
more conservative. Finally, we apply an earlier subset of the
ROF regression toolbox by using an ordinary least squares
(OLS) fitting of model predictands to observed predictors. In
the detection and attribution context, this ignores uncertainty
in the model fingerprints by minimizing the vertical distances
of the residuals in the regression, which is best imagined in the
one-way case (Fig. 2; Allen and Stott 2003). Methodological
advances from Allen and Stott (2003) came by the use of total
least squares (TLS) fitting, which assumes the fingerprints to
be a noised version of their true pattern and involves fitting
the regression by minimizing distances perpendicular to the
best fit line. In our case, the OLS regression acts as a conserva-
tive approach to searching for a weak signal. Our inability to
reject the null hypothesis that tLU is indistinguishable from
noise in the multimodel mean case using OLS implies that fur-
ther work with the more robust TLS fitting is not yet
necessary.

Our EOF-fingerprinting analysis demonstrates the presence
of internal climate variability and/or nonlocal effects of land
use in tLU and benefits from its basis in the treeFrac finger-
print. This approach lends a pattern assessment framework
from earlier studies assessing the presence of modeled finger-
prints in observations for the same variable (Marvel et al.
2019; Santer et al. 2018). We deviate from this by evaluating

FIG. B1. Trends in (a),(d),(g),(j) 5-yr mean tLU and (b),(e),(h),(k) treeFrac and (c),(f),(i),(l) the correlations between tLU and treeFrac for
1965–2014.
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the likeness between the tree cover fingerprint, a prominent
variable in the land use forcing (Lejeune et al. 2017), and tLU.
In the context of the effects of land use}originating local to
the site of land perturbation yet affecting other regions due to
advection and nonlocal feedbacks (Winckler et al. 2017)}the
pseudoPC series from projecting tLU onto the treeFrac finger-
print indicates the degree to which patterns of change in tLU
match those of tree cover. Therefore, this also indicates if our
tasmax metric for 1965–2014 is dominated by local or nonlocal
processes. Since the S/N of treeFrac in tLU is mostly consistent
with the control distribution, it cannot be claimed that tLU is
composed mostly of local responses to land use. Instead, tLU
is likely influenced by internal climate variability or the nonlo-
cal effects of land use. Importantly, tLU also contains forced
responses to other types of land use, such as agricultural ex-
pansion and urbanization. Therefore, features in tLU that
might appear to be nonlocal feedbacks to forest cover change
will sometimes be local responses to other land perturbations.
However, tree cover changes are known to produce a stronger
climatic signal than crop cover expansion (Lejeune et al.
2017), and our results did not change much when testing this
approach for cropFrac. The presentation style of these results
is typical in detection and attribution studies. A metric de-
rived from different scenarios, be it trends in or correlations
between response patterns and a historical mean series, is
compared against a control distribution derived from prein-
dustrial control simulations (Qian and Zhang 2015; Padrón

et al. 2020; Grant et al. 2021). However, applying the same ap-
proaches in this study would not achieve much given the
weak and inconsistent signal of tLU. In our approach, despite
that there is also implicit uncertainty behind the land cover
change data that the ESMs apply, on an individual ESM level,
the patterns of the treeFrac fingerprints act as concrete basis
against which to assess tLU.

There are many sources of uncertainty in tLU which control
its inconsistency across ESMs. ESMs respond differently at
the local scale to land use, owing to their individual systems
for representing vegetation (Sellar et al. 2020; Séférian et al.
2019; Swart et al. 2019; Boucher et al. 2020) and for comput-
ing surface flux exchanges for water and energy cycles
(de Noblet-Ducoudré et al. 2012; Lejeune et al. 2020). For ex-
ample, it is interesting to note that the models without dy-
namic vegetation schemes have the best expressed signals of
land use. These local responses to land use are then propa-
gated nonlocally by model-specific advection and atmospheric
feedback processes, which are inconsistent across ESMs in
this study and in earlier research (Pitman et al. 2009; Winckler
et al. 2019c; Hirsch et al. 2015). One such process includes
cloud cover simulation, a known limitation to modern ESMs
which has a demonstrated cooling bias from overestimating
cloud shortwave radiative effects (Miao et al. 2021). Future
work could distinguish the drivers of model uncertainties be-
tween their surface flux responses or atmospheric feedbacks
by comparing the coupled simulations applied here to the

FIG. B2. As in Fig. B1, but for 1915–64.
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historical Land Use Model Intercomparison Project land-only
simulations with and without land use (Lawrence et al. 2016).
Meanwhile, it is beyond the scope of this study to assess what
drives these differences in temperature outcomes in detail.
This would require factorial experiments with incremental
changes to understand at a process level what may drive dif-
ferences between ESMs, a challenging task due to cascading
interactions. Finally, the basis for these tLU response patterns,
the land use patterns themselves, are differently applied in
the models owing to model-dependent land parameterization
and tiling schemes. This includes how the number of PFTs
vary between the land surface schemes and whether or not

they include land management. The background information
from LUH2, which prescribes the locations and timing of his-
torical land use, also has demonstrated uncertainties and limi-
tations (Hartung et al. 2021; Prestele et al. 2017).

To conclude, our detection and attribution analysis found an
insignificant influence of biogeophysical land use on the daily
maximum temperatures averaged over the warmest month, tLU.
This temperature metric is the best available climate variable
across CMIP6 ESMs for expressing the influence of this set of
forcings on warm temperatures given the data requirements of a
detection and attribution exercise. A null result was found confi-
dently by assessing tLU across different observational datasets,

FIG. B3. As in Fig. 4, but for 1915–64.
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ESMs, spatial scales and analytical approaches to detection and
attribution. This result, when viewed through the lens of the ex-
tensive research showing the difficulty of representing land use
impacts in ESMs, is not necessarily surprising. This study clarifies
that, given existing model imperfections, it is not yet possible to
find a significant fingerprint of the effects of land use on warm
temperatures via traditional detection and attribution methods
that rely on accurately modeled response patterns.

Acknowledgments. L. Grant and W. Thiery designed the
analysis. L. Grant performed the analysis and wrote the
manuscript. L. Gudmundsson and A. Ribes guided the de-
tection and attribution methodology. D. M. Lawrence is a
primary coordinator of the Land Use Model Intercompari-
son Project. All authors provided guidance on the analysis
and contributed to writing the manuscript. D. M. Lawrence
is supported by the National Center for Atmospheric Research,
which is a major facility sponsored by the NSF under Coopera-
tive Agreement 1852977, and by the U.S. Department of
Energy, Office of Biological and Environmental Research Grant
DE-FC03-97ER62402/A0101. R. Séférian acknowledges the Eu-
ropean Union’s Horizon 2020 research and innovation program
under grant agreement No. 101003536 (ESM2025}Earth Sys-
tem Models for the Future). This study was supported by the
LAMACLIMA project, part of AXIS, an ERA-NET initiated
by JPI Climate, and funded by BELSPO (BE, Grant No.
B2/181/P1) with co-funding by the European Union (Grant No.
776608). E. Robertson is supported by the Joint U.K. BEIS/
Defra Met Office Hadley Centre Climate Programme
(GA01101). IPSL-CM6A-LR experiments were run on
the HPC resources of TGCC under the allocations 2016-
A0030107732, 2017-R0040110492 and 2018-R0040110492
(project gencmip6) provided by GENCI (Grand Équipe-
ment National de Calcul Intensif) to conduct CMIP6 proj-
ects at IPSL. The computational resources and services
used in this work were provided by the VSC (Flemish Super-
computer Center), funded by the Research Foundation}
Flanders (FWO) and the Flemish Government}department
EWI.

Data availability statement. Data from models is available
under the CMIP6 archive on the Earth System Grid Federa-
tion search engine here: https://esgf-data.dkrz.de/search/esgf-
dkrz/. Observations from Berkeley Earth can be found here:
http://berkeleyearth.org/data/. Observations from the Climatic
Research Unit can be found here: https://catalogue.ceda.ac.uk/
uuid/c26a65020a5e4b80b20018f148556681. Code for this analysis
is here: https://github.com/VUB-HYDR/2022_Grant_etal_JOC.

APPENDIX A

Further Detection and Attribution Results

For detection and attribution with ROF, the sensitivity of
our results to different observational datasets was tested. While
individual models differed in their signal detectability with
CRU as an observational reference product, the multimodel
mean produced consistent results as with BE (Figs. A1, A2).

APPENDIX B

Trends and Correlations

There is little consistency in the trends in tLU across
ESMs, and in some regions of model agreement there has
been no land use (Fig. B1). CNRM-ESM2-1 and IPSL-
CM6A-LR have similar patterns of strong nonlocal cooling
and warming trends in northern Eurasia along the border
of the Arctic Ocean (Fig. B1d,g), yet these regions are con-
siderably north of grid cells with treeFrac changes
(Fig. B1e,h). In the same region, however, UKESM1-0-LL
has opposite trends in tLU (Fig. B1j). Alternatively, the same
models disagree in northern Canada, a region likewise void of
land use, where IPSL-CM6A-LR shows the strongest warm-
ing trends among all models and CNRM-ESM2-1 simulates
cooling in the east of the country. Generally, CanESM5 has
the smallest trends in tLU (Fig. B1a).

Modeled treeFrac change acts as the best indicator of
land use in the ESMs because of the historical dominance
of converting forested land to agriculture, therefore reflecting
a rough composite of cropland trends (Fig. B1). Generally,
the ESMs simulate a reciprocal regrowth of forests in the
Northern Hemisphere and deforestation in the Southern
Hemisphere, with exceptions in East Asia (Figs. B1b,e,h,k)
and, for UKESM1-0-LL, the Great Plains in North America
(Fig. B1k). However, modeled patterns of tLU do not share this
reciprocity, which is evident in the mixed, regional correlation
and anticorrelation across ESMs (Figs. B1c,f,i,l). The regions of
best consistency in the correlation between tLU and treeFrac are
eastern North America and Europe. In Africa, the ESM appli-
cation of treeFrac change is as inconsistent as the tLU responses;
ISPL-CM6A has the most widespread deforestation in central
Africa, producing moderate warming centrally and cooling in
southern Africa (Figs. B1g,h), yet here the remainder of the
models simulate lesser deforestation and variable tLU responses.

As mentioned in section 2b, the relative strength of the
LULCC forcing compared to other historical forcings is
likely enhanced in an earlier period covered by our obser-
vational datasets (1915–64). This is evident in some models’
higher regional consistency in correlations between tLU and
treeFrac, such as UKESM1-0-LL (Fig. B2l). Similarly, when
repeating the S/N analysis of EOF fingerprints of treeFrac
in tLU for 1915–64, CanESM5 and UKESM1-0-LL show im-
proved S/N, implying a stronger pattern similarity between
treeFrac and tLU for this period (Figs. B3a,d).
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