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We consider the long time evolution of a population of charged particles, under strong magnetic fields and collision mechanisms. We derive a fluid model and justify the asymptotic behavior toward smooth solutions of this regime. In three space dimensions, a constraint ocurs along the parallel direction. For eliminating the corresponding Lagrange multiplier, we average along the magnetic lines.

Introduction

We consider a population of charged particles of charge q, mass m, whose density in the phase space (x, v) ∈ R 3 × R 3 , at time t ∈ R + , is denoted by f = f ( t, x, v). We concentrate on the long time behavior, that is f ( t, x, v) = f ε (t, x, v), t = ε t.

Here ε > 0 is a small parameter, related to the ratio between the cyclotronic period T ε c and the observation time T obs . The notation B ε = B ε e, B ε > 0, |e| = 1 stands for the magnetic field, assumed to be divergence free. We know that qB ε m ∼ ω ε c = 2π

T ε c and therefore we consider strong magnetic fields

B ε = B T ε c /T obs = B ε ,
where B is a reference magnetic field, corresponding to T obs , i.e., qB m = ω c = 2π T obs . The collision mechanism accounts for friction and diffusion effects and is described by Fokker-Planck operator

Q(f ) = 1 τ div v {σ∇ v f + vf },
where τ is the relaxation time and σ is the velocity diffusion, see [START_REF] Chandrasekhar | Brownian motion, dynamic friction and stellar dynamics[END_REF] for the introduction of this operator, based on the principle of Brownian motion. The self consistent electric field writes

E[f ] = -∇ x Φ[f ], Φ[f ] = q 4πϵ 0 R 3 n[f (x ′ , •)] |x -x ′ | dx ′ = q 4πϵ 0 R 3 R 3 f (x ′ , v ′ ) |x -x ′ | dv ′ dx ′ ,
where the potential Φ[f ] satisfies the Poisson equation

-ϵ 0 ∆ x Φ[f ] = q n[f ] = q R 3
f dv, and where n[f ] stands for the particle density. Here ϵ 0 is the electric permittivity of the vacuum. We obtain the Vlasov-Poisson-Fokker-Planck (VPFP) system, with external magnetic field

ε∂ t f ε +v•∇ x f ε + q m E[f ε ] + v ∧ Be ε •∇ v f ε = 1 τ div v (σ∇ v f ε +vf ε ), (t, x, v) ∈ R + ×R 3 ×R 3 , (1) 
E[f ε ] = -∇ x Φ[f ε ], -ϵ 0 ∆ x Φ[f ε ] = q n[f ε ] = q R 3 f ε dv. ( 2 
)
We complete the above system by the initial condition

f ε (0, x, v) = f ε in (x, v), (x, v) ∈ R 3 × R 3 . (3) 
There are many works dealing with the existence and uniqueness of solutions to the VPFP system, in the three dimensional setting. For the existence of weak solutions for the VPFP problem (1), ( 2) and (3) we refer to [START_REF] Carrillo | On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in L p spaces[END_REF][START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF]. Existence and uniqueness results for strong solutions of the VPFP problem can be found in [START_REF] Bouchut | Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimension[END_REF][START_REF] Bouchut | Smoothing effect for the nonliear Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimension[END_REF][START_REF] O'dwyer | On classocal solutions of the Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Rein | Generic global classical solutions of the Vlasov-Poisson-Fokker-Planck system in three dimensions[END_REF]].

The VPFP system (1), ( 2) and (3) describes the dynamic of charged particles under the action of strong magnetic field |B ε | → +∞, as ε ↘ 0, and also accounts for collisions between particles. The mathematical literature in this field, we refer interested readers to the works [START_REF] Abdallah | Diffusion and guiding center approximation for particle transport in strong magnetic fields[END_REF][START_REF] Bostan | Collisional models for strongly magnetized plasmas. The gyrokinetic Fokker-Planck equation[END_REF][START_REF] Bostan | Impact of strong magnetic fields on collision mechanism for transport of charged particles[END_REF]. Other asymptotic regimes for strongly magnetized plasmas, incorporating collision effects, are discussed in [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF][START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part II: the Fokker-Planck-Landau equation[END_REF][START_REF] Bostan | High magnetic field equilibria for the Fokker-Planck-Landau equation[END_REF].

We are interested in the asymptotic behavior of the problem (1), ( 2) and (3) as ε ↘ 0. This study is motivated by the description of tokamak plasma [START_REF] Delcroix | Physiquue des plasmas[END_REF]. In the large magnetic field regime, charged particles get trapped along the magnetic field lines and they rotate around these lines with small radius. This gyration radius of the particles, called the Larmor radius, is inversely proportional to the strength of the magnetic field. Therefore, charged particles are well-confined within the tokamak. However, numerically solving the kinetic equation in the presence of such large magnetic fields requires the resolution of small time steps (typycally smaller than ε 2 ) due to high oscillations in time of the particles around the magnetic lines, leading to a huge time computations cost. Hence, the question of deriving asymptotic model to reduce the cost of numerical simulation is of great importance. Many kinetic models with strong magnetic field have been studied, usually leading to the so-called guiding-center or gyro-kinetic models. We refer to [START_REF] Lee | Gyrokinetic approach in particle simulation[END_REF][START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF] for a physical references and [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF][START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF][START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF][START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler lomit[END_REF] for mathematical results on this topic.

We derive a new asymptotic model as ε ↘ 0. Let us now analyze the Vlasov-Fokker-Planck equation [START_REF] Abdallah | Diffusion and guiding center approximation for particle transport in strong magnetic fields[END_REF]. The dynamics of the charged particles are dominated by the transport in velocity along the magnetic force 1 ε (v∧Be)•∇ v , while the transport v•∇ x + q m E[f ε ]•∇ v and the collision operator Q(f ε ) are of the same order, leading to the guiding-center approximation as ε goes to 0. The limit distribution function is constant along the characteristic flow associated with the dominant advection field v ∧Be. It depends only on space, time and two components of the velocity, corresponding to the parallel component along the magnetic field line and the magnitude of the perpendicular velocity. Moreover, for collision plasma, the charged particles seem to reach a thermal equilibrium. By performing the balance of the free energy functional associated with the VPFP system

E[f ε ] = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ϵ 0 2m R 3 |E[f ε ]| 2 dx,
then the analysis of the dissipation term

D[f ε ] = R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdx,
which allows us to conclude that the limit distribution function f of the family (f ε ) ε>0 , as ε ↘ 0, is an equilibrium of the form of local Maxwellian distribution in velocity, parametrized by macroscopic quantities (particle concentration), for any (t, x) ∈ R + × R 3 , i .e., f (t, x, v) = n(t, x)M (v) = n(t, x) e -|v| 2 /2σ (2πσ

) 3/2 , (t, x, v) ∈ R + × R 3 × R 3 .
The concentration n(t, x) satisfies the following transport equation with a constraint

∂ t n + div x n E[n] ∧ e B -σ ∇ x ω c ∧ e ω 2 c -σ ∂ x ee ∧ e ω c + Be • ∇ x p = 0, (t, x) ∈ R + × R 3 , (4) 
Be • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n], (5) 
coupled to the Poisson equation

E[n] = -∇ x Φ[n], -ϵ 0 ∆ x Φ[n] = qn, (6) 
with initial condition n(0, x) = n in (x) =

R 3 f (0, x, v) dv,
where p is thought as a Lagrange multiplier associated to the constraint [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF]. At the limit, the concentration n is advected along the electric cross-field drift, magnetic gradient drift, and magnetic curvature drift. The model obtained in the three dimensional framework is much more complex in the two-dimensional one (see [START_REF] Bostan | Asymptotic behavior of the two-dimensional Vlasov-Poisson-Fokker-Planck equation with strong external magnetic field[END_REF]), since in this case, we need to handle extra constraints. The constraint [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF] arises from the perturbation of the limit particle densities f as ε ↘ 0, i.e., f ε ≃ f + εf 1 leading to the following equation

v • ∇ x f - q m ∇ x Φ[f ] • ∇ v f + q m (v ∧ Be) • ∇ v f 1 = 0. ( 7 
)
We want to find a closure for the dominant term f or the concentration n, so we need to eliminate the magnetic term of f 1 enters (7) as a Lagrange multiplier. In the absence of magnetic fields, equation [START_REF] Bostan | High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system[END_REF] becomes

v • ∇ x f - q m ∇ x Φ[f ] • ∇ v f = 0.
Substituting f (t, x, v) = n(t, x)M (v) in the previous equality, and by direct computations yield the following relation

∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n].
This constraint implies that the concentration n(t, x) has the form n(t, x) = Z(t)e -q mσ Φ[n(t)](x) , [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Nonlinear Oscillations[END_REF] which is the so-called Boltzmann-Gibbs relation, relating the electron density to the electric potential, cf. [START_REF] Bardos | The Maxwell-Boltzmann approximation for ion kinetic modeling[END_REF]. In the general case of the magnetic field B(x)e(x), we apply the average along the characteristic flow with respect to the operator (v ∧ e(x)) • ∇ v . Employing this method, we rigorously derive the constraint [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF] for the concentration n(t, x). Moreover, when the magnetic field is uniform i .e., Be = (0, 0, 1), the constraint (5) becomes

∂ x 3 k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n],
which leads to the concentration n(t, x) can be written as

n(t, x) = N (t, x ⊥ ) e -q mσ Φ[n(t)](x) R e -q mσ Φ[n(t)](x ⊥ ,x 3 ) dx 3 , (9) 
where x = (x ⊥ , x 3 ) ∈ R 2 × R, cf. [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF][START_REF] Negulescu | Kinetic Modelling of Strongly Magnetized Tokamak Plasmas with Mass Disparate Particles[END_REF]. It is worth noting that our limit model (4) is consistent with the limit model of the electron distribution function obtained in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF]. Indeed, in the case of a uniform magnetic field, the limit equation ( 4) becomes

∂ t n + div x (nE ∧ e) + ∂ x 3 p = 0.
Integrating in x 3 to eliminate the Lagrange multiplier p and using [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrkinetic models in plasma physics[END_REF] we obtain

∂ t N (t, x ⊥ ) + div x ⊥ N (t, x ⊥ ) ⊥ ∇ x ⊥ Φ = 0,
where Φ : R + × R 2 → R is an x 3 averaged of Φ[n] Φ(t, x ⊥ ) = mσ q ln R e -q mσ Φ[n(t)](x ⊥ ,x 3 ) dx 3 , which is exactly the limit model introduced in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF].

The asymptotic regime will be investigated by appealing to the relative entropy or modulated energy method, as introduced in [START_REF] Yau | relative entropy and hydrodynamics of Ginzburg-Landau models[END_REF]. By this technique one gets strong converges, provided that the solution of the limit system is smooth as well as the convergence of the initial data. Many asymptotic regimes were obtained using this technique, see [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF][START_REF] Brenier | Incompressible Euler and e-MHD scaling limits of the Vlasov-Maxwell system[END_REF][START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF][START_REF] Puel | Quasineutral limit for the relativistic Vlasov-Maxwell system[END_REF] for quasineutral regimes in collisionless plasma physics, [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler lomit[END_REF][START_REF] Berthelin | From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks[END_REF] for hydrodynamic limits in gaz dynamics, [START_REF] Goudon | Hydrodynamic limits for the Vlasov-Navier-Stokes equations. Part II: Fine particles regimes[END_REF] for fluid-particle interaction, [START_REF] Bostan | High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system[END_REF][START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF] for high electric or magnetic field limits in plasma physics.

Before writing our main result, we define the modulated energy

E[n ε (t)|n(t)] by E[n ε (t)|n(t)] = σ R 3 n(t)h n ε (t) n(t) dx + ϵ 0 2m R 3 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx,
where h : R + → R + is the convex function defined by h(s) = s ln s -s + 1, s ∈ R + . This quantity splits into the standard L 2 norm of the electric field plus the relative entropy between the particle density n ε of (1), ( 2) and (3) and the particle concentration n of the limit model (4), ( 5) and [START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF]. For any nonnegative integer k and p ∈ [1, ∞], W k,p = W k,p (R d ) stands for the k-th order L p Sobolev space. C k b stands for k times continuously differentiable functions, whose partial derivatives, up to order k, are all bounded and C k ([0, T ]; E) is the set of ktimes continuously differentiable functions from an interval [0, T ] ⊂ R into a Banach space E. L p (0, T ; E) is the set of measurable functions from an interval (0, T ) to a Banach space E, whose p-th power of the E-norm is Lebesgue measurable. The main result of this paper is the following

Theorem 1.1 Let B ∈ C 1 b (R 3 ) be a smooth magnetic field, such that inf x∈R 3 |B(x)| = B 0 > 0. Assume that the initial particle densities (f ε in ) ε>0 satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞ where M ε in := R 3 R 3 f ε in (x, v) dvdx, U ε in := R 3 R 3 |v| 2 2 f ε in (x, v) dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε in ]| 2 dx.
Let T > 0. We denote by (f ε ) ε>0 the solutions of (1), ( 2) and (3) in the sense of Definition 2.1 below on [0, T ]. We assume that n is a non-negative smooth solution of (4), ( 5) and

(6) on [0, T ] such that W [n] = e ωc ∧ ∇ x k[n] + pBe n belongs to W 1,∞ ((0, T ) × R 3 ), n in ≥ 0, n in ∈ L 1 (R 3 ), k[n in ] ∈ ker(Be • ∇ x ). We suppose that lim ε↘0 σ R 3 R 3 n ε in M (v)h f ε in n ε in M dvdx = 0, lim ε↘0 E[n ε in |n in ] = 0,
where

n ε in = R 3 f ε in dv, ε > 0. Then we have lim ε↘0 sup 0≤t≤T σ R 3 R 3 n ε (t)M (v)h f ε n ε M dvdx = 0, lim ε↘0 sup 0≤t≤T E[n ε (t)|n(t)] = 0, lim ε↘0 1 ετ T 0 R 3 R 3 |σ∇ v f ε + f ε v| 2 f ε dvdxdt = 0.
In particular we have the convergences

lim ε↘0 f ε = nM in L ∞ (0, T ; L 1 (R 3 × R 3 )) and lim ε↘0 ∇ x Φ[f ε ] = ∇ x Φ[n] in L ∞ (0, T ; L 2 (R 3 )).
Our paper is organized as follows. In Section 2, we establish some a priori estimates on the three dimensional VPFP system. In the next section, using Hilbert expansion, we derive the asymptotic model. The limit model is a transport equation that involves a Lagrange multiplier with a constraint in the direction of the magnetic field lines. Section 4 is devoted to finding an equivalent model by eliminating the Lagrange multiplier. The idea is to apply the average along the characteristic flow associated with the magnetic field. The new limit model, after averaging, needs analysis of the commutation property between the average operator and rot x . We establish a result for this commutation property for the special class of vector fields which present angle variables in Section 5. In particular, we apply this formula to tokamak magnetic fields in the next section. The convergence towards the asymptotic model is rigorously proved in Section 7 under the assumption that the solution of the limit problem is smooth. In the last section we investigate the well-posedness of the limit model obtained from Section 6.

Preliminaires

We start by introducing the concept of weak solution to the VPFP system (1), ( 2) and (3) for any fixed ε > 0.

Definition 2.1 Let T > 0. Given f ε in ∈ L 1 (R 3 × R 3 ) we will say that f ε is a weak solution of (1)-(3) on the time interval [0, T ] if (i) f ε ≥ 0, f ε ∈ L ∞ (0, T ; L 1 ∩ L ∞ (R 3 × R 3 )), (ii) for any ψ ∈ C ∞ ([0, T [×R 3 × R 3 ) T 0 R 3 R 3 f ε ε ∂ψ ∂t + v • ∇ x ψ + q m E[f ε ] + v ∧ Be ε • ∇ v ψ dvdxdt + T 0 R 3 R 3 1 τ f ε (σ∆ v ψ -v • ∇ v ψ)dvdxdt + R 3 R 3 εf ε in (x, v)ψ(0, x, v)dvdx = 0.
The global-in-time of weak solution for the nonlinear VPFP system (1)-( 3) comes from almost the same argument as presented in [START_REF] Carrillo | Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces[END_REF][START_REF] Choi | Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system[END_REF], we merely state the existence theorem for the solution and do not give any details on that here.

Theorem 2.1 Let B ∈ L ∞ (R 3 ). Suppose that the initial data f ε in satisfies f ε in ≥ 0, f ε in ∈ L 1 ∩ L ∞ (R 3 × R 3 ), (|x| 2 + |v| 2 + Φ[f ε in ])f ε in ∈ L 1 (R 3 × R 3 ).
Then, for any T > 0, there exists a global weak solution of the system (1)-( 3) in the sense of Definition 2.1 satisfying:

f ε ∈ L ∞ (0, T ; L 1 ∩ L ∞ (R 3 × R 3 )) and (|x| 2 + |v| 2 + Φ[f ε ])f ε ∈ L ∞ (0, T ; L 1 (R 3 × R 3 )).
The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation ( 1) when ε becomes small comes from the balance of the free energy functional

E[f ε ] = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ϵ 0 2m R 3 |E[f ε ]| 2 dx.
Multiplying the left hand side of (1) by σ(1

+ ln f ε ) + |v| 2 2 and integrating with respect to (x, v) ∈ R 3 × R 3 yield R 3 R 3 ε∂ t f ε + v • ∇ x f ε + q m E[f ε ] + v ∧ Be ε • ∇ v f ε σ(1 + ln f ε ) + |v| 2 2 dvdx = R 3 R 3 ε∂ t + v • ∇ x + q m E[f ε ] + v ∧ Be ε • ∇ v σf ε ln f ε + f ε |v| 2 2 dvdx - R 3 R 3 q m E[f ε ] • vf ε dvdx = ε d dt R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + q m R 3 ∇ x Φ[f ε ] • R 3 vf ε dv dx. ( 10 
)
Thanks to the continuty equation

ε∂ t n[f ε ] + div x R 3 vf ε dv = 0, we write q m R 3 ∇ x Φ[f ε ] • R 3 vf ε dv dx = ε q m R 3 Φ[f ε ]∂ t n[f ε ] dx (11) = - ϵ 0 ε m R 3 Φ[f ε ]∂ t ∆ x Φ[f ε ] dx = ϵ 0 ε 2m d dt R 3 |∇ x Φ[f ε ]| 2 dx.
Multiplying the right hand side of (1) by σ(1

+ ln f ε ) + |v| 2 2 and then integrating with respect to (x, v) ∈ R 3 × R 3 imply R 3 R 3 Q(f ε ) σ(1 + ln f ε ) + |v| 2 2 dvdx = - 1 τ R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdx (12) = - 1 τ R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdx,
where M stands for the Maxwellian equilibrium M (v) = (2πσ) -3/2 exp -|v| 2 2σ , v ∈ R 3 . Combining [START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF], [START_REF] Bostan | Collisional models for strongly magnetized plasmas. The gyrokinetic Fokker-Planck equation[END_REF] and ( 12) leads to the balance

ε d dt R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ]| 2 dx (13) + 1 τ R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdx = 0, or equivalently εE[f ε (t)] + 1 τ t 0 R 3 R 3 |σM ∇ v (f ε /M )| 2 f ε dvdxds = εE[f ε (0)].
Notice that weak solutions may only satisfy an inequality in the above relation that is enough for our purposes. At least formally, we deduce that f ε = f +O(ε), as ε ↘ 0, where the leading order density f satisfies

1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = 0, t ∈ R + .
Therefore we have f (t, x, v) = n(t, x)M (v), (t, x, v) ∈ R + ×R 3 ×R 3 and it remains to determine the time evolution of the concentration n = R 3 f dv. We establish uniform bounds for the kinetic energy.

Lemma 2.1 Let T > 0. Assume that the initial particle densities (f ε in ) satisfy f ε in ≥ 0, M in := sup ε>0 M ε in < +∞, U in := sup ε>0 U ε in < +∞, where for any ε > 0 M ε in := R 3 R 3 f ε in (x, v) dvdx, U ε in := R 3 R 3 |v| 2 2 f ε in (x, v) dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε in ]| 2 dx.
We assume that (f ε ) ε>0 are weak solutions of (1), ( 2) and (3). Then we have

ε sup 0≤t≤T R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ]| 2 dx ≤ εU in + 3σ τ T M in and 1 τ T 0 R 3 R 3 |v| 2 f ε (t, x, v) dvdxdt ≤ εU in + 3σ τ T M in .
Proof.

We will establish the results for smooth solutions, and we observe that the same conclusions hold true in the framework of weak solutions by combining the formal arguments to be exposed here with the choice of an appropriate sequence of test functions in Definition 2.1 for every studied property (cf. [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF][START_REF] Bouchut | On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials[END_REF]). Multiplying (1) by |v| 2 2 and integrating with respect to

(x, v) ∈ R 3 × R 3 yield ε d dt R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ]| 2 dx = 3σ τ M ε in - 1 τ R 3 R 3 |v| 2 f ε dvdx
and therefore we obtain ε

R 3 R 3 |v| 2 2 f ε (t, x, v) dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ]| 2 dx + 1 τ t 0 R 3 R 3 |v| 2 f ε dvdxds = εU ε in + 3σ τ tM ε in ,
which yields the results.

Formal derivation of the limit model

This section is devoted to deriving the limit model for (1), ( 2) and (3) when ε becomes very small, using the properties of the average dominant operator transport. At the formal level, we initiate our analysis with a Hilbert expansion

f ε = f + εf 1 + ε 2 f 2 + ....
Plugging the above ansatz into the kinetic equation (1) yields

ε∂ t (f + εf 1 + ε 2 f 2 + ...) + v • ∇ x (f + εf 1 + ε 2 f 2 + ...) + q m E[f + εf 1 + ε 2 f 2 + ...] + v ∧ Be ε • ∇ v (f + εf 1 + ε 2 f 2 + ...) = Q(f + εf 1 + ε 2 f 2 + ...).
Identifying the contributions to any power of ε leads to

q m (v ∧ Be) • ∇ v f = 0. ( 14 
) v • ∇ x f + q m E[f ] • ∇ v f + q m (v ∧ Be) • ∇ v f 1 = Q(f ). ( 15 
)
∂ t f + v • ∇ x f 1 + q m E[f 1 ] • ∇ v f + q m (v ∧ Be) • ∇ v f 2 = Q(f 1 ). (16) 
Multiplying [START_REF] Bostan | Transport of Charged Particles Under Fast Oscillating Magnetic Fields[END_REF] by σ(1

+ ln f ) + |v| 2 2 and integrating with respect to (x, v) ∈ R 3 × R 3 yields R 3 R 3 v • ∇ x + q m E[f ] • ∇ v σf ln f + f |v| 2 2 dvdx + 1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = R 3 R 3 q m E[f ] • vf dvdx + R 3 R 3 f 1 q m (v ∧ Be) • σ∇ v f f dvdx. ( 17 
)
Integrating [START_REF] Bostan | Transport of Charged Particles Under Fast Oscillating Magnetic Fields[END_REF] with respect to v ∈ R 3 we deduce that div x R 3 vf dv = 0 and therefore we have

R 3 R 3 q m E[f ] • vf dvdx = - q m R 3 ∇ x Φ[f ] • R 3 vf dv dx = 0.
Using also [START_REF] Bostan | The Effective Vlasov-Poisson System for the Finite Larmor Radius Regime[END_REF], the last contribution in the right hand side of (17) cancels, and therefore we obtain

1 τ R 3 R 3 |σM ∇ v (f /M )| 2 f dvdx = 0, t ∈ R + ,
saying that f = nM , for some function n = n(t, x) to be determined. In that case, the constraint ( 14) is satisfied and (15) becomes

v • ∇ x f + q m E[f ] • ∇ v f ∈ Range((v ∧ e(x)) • ∇ v ), x ∈ R 3 .
For any e ∈ S 2 , we denote by R(θ, e) the rotation of angle θ around the axis e

R(θ, e) = cos θ(I 3 -e ⊗ e)v -sin θ(v ∧ e) + (v • e)e, v ∈ R 3 .
The characteristic flow of the field

(v ∧ e) • ∇ v dV dθ = V(θ; v) ∧ e, V(0; v) = v,
is given by

V(θ; v) = R(-θ, e)v = cos θ(I 3 -e ⊗ e)v + sin θ(v ∧ e) + (v • e)e, (θ, v) ∈ R × R 3 .
For any function g(v) = (v ∧ e) • ∇ v h in the range of the operator (v ∧ e) • ∇ v , we have

g(V(θ; v)) = d dθ h(V(θ; v)), (θ, v) ∈ R × R 3 ,
and by the periodicity of the flow we obtain

1 2π 2π 0 g(V(θ; v))dθ = 0, v ∈ R 3 .
Therefore, for any x ∈ R 3 , the average along the characteristic flow with respect to (v ∧ e(x))

• ∇ v of the function v • ∇ x f + q m E[f ] • ∇ v f vanishes. But v • ∇ x f + q m E[f ] • ∇ v f = (v • ∇ x n)M - q m (E[f ] • v)n M σ = n σ M v • ∇ x (σ ln n + q m Φ[f ]),
and since 1 2π

2π 0 M (V(θ; v))V(θ; v)dθ = M (v)(v • e)e,
finally we obtain the constraint

e • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n], x ∈ R 3 .
Here the potential Φ = Φ[n] writes

Φ[n(t)](x) = q 4πϵ 0 R 3 n(t, x ′ ) |x -x ′ | dx ′ , (t, x) ∈ R + × R 3 .
The time evolution for the concentration n comes by integrating [START_REF] Bostan | High magnetic field equilibria for the Fokker-Planck-Landau equation[END_REF] with respect to v ∈ R 3

∂ t n + div x R 3 vf 1 dv = 0. ( 18 
)
Multiplying ( 15) by v and integrating with respect to v ∈ R 3 we obtain

div x R 3 v ⊗ vf dv -n q m E[f ] - qB m R 3 vf 1 ∧ e dv = 0.
Since f is a Maxwellian equilibrium, we have R 3 v ⊗ vf dv = σnI 3 and the previous equality becomes

ω c R 3 vf 1 dv ∧ e = σ∇ x n -n q m E[f ],
or equivalently

ω c (I 3 -e ⊗ e) R 3 vf 1 dv = ne ∧ σ ∇ x n n - q m E[f ] = ne ∧ ∇ x (σ ln n + q m Φ[n]) = ne ∧ ∇ x k[n].
The divergence with respect to x of R 3 vf 1 dv writes

div x R 3 vf 1 dv = div x (I 3 -e ⊗ e) R 3 vf 1 dv + div x e ⊗ e R 3 vf 1 dv = div x ne ω c ∧ ∇ x k[n] + Be • ∇ x R 3 (v • e)f 1 B dv.
Coming back in [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF] we obtain the limit model

∂ t n + div x ne ω c ∧ ∇ x k[n] + Be • ∇ x p = 0, (19) 
for some function p such that the following constraint holds true

Be • ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n]. (20) 
The limit model involves a Lagrange multiplier p, associated to the constraint [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF]. One of the main difficulty is that the unknown is the concentration n, whereas the constraint relies on k[n]. Formally, we have the balances Proposition 3.1 Any non-negative smooth solution of the limit model [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field[END_REF], [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF] verifies the mass and free energy conservations

d dt R 3 n(t, x) dx = 0, d dt R 3 σn ln n + ϵ 0 2m |∇ x Φ[n]| 2 dx = 0.
Proof.

Clearly we have the total mass conservation. For the energy conservation, we multiply [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field[END_REF] by k[n] and integrate with respect to x ∈ R 3 , observing that

R 3 ∂ t nk[n] dx = d dt R 3 σn ln n + ϵ 0 2m |∇ x Φ[n]| 2 dx, R 3 div x ne ω c ∧ ∇ x k[n] k[n] dx = - R 3 ne ω c ∧ ∇ x k[n] • ∇ x k[n] dx = 0, R 3 Be • ∇ x pk[n] dx = - R 3 pBe • ∇ x k[n] dx = 0.
Recall the usual drift velocities when dealing with magnetic confinement: the electric field drift, the magnetic gradient drift, and the magnetic curvature drift

E ∧ e B , - m|v ∧ e| 2 2qB ∇ x B ∧ e B = - |v ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c , - m|v ∧ e| 2 qB ∂ x ee ∧ e = - (v • e) 2 ω c ∂ x ee ∧ e.
When working at the fluid level, the averages with respect to v ∈ R 3 of the above drift velocities become

v ∧D = R 3 E ∧ e B M dv = E ∧ e B , v GD = - R 3 |v ∧ e| 2 2 ∇ x ω c ∧ e ω 2 c M dv = -σ ∇ x ω c ∧ e ω 2 c , v CD = - R 3 (v • e) 2 ω c ∂ x ee ∧ eM dv = -σ ∂ x ee ∧ e ω c .
The flux in the limit model ( 19) also writes nV[n], where

V[n] = v ∧D + v GD + v CD .
Proposition 3.2 Any non-negative smooth function n satisfying

∂ t n + div x ne ω c ∧ ∇ x k[n] + Be • ∇ x p = 0, k[n] = σ(1 + ln n) + q m Φ[n],
also verifies

∂ t n + div x (nV[n]) + Be • ∇ x p = 0, V[n] = E ∧ e B -σ ∇ x ω c ∧ e ω 2 c -σ ∂ x ee ∧ e ω c ,
and p = p + σn Bωc (e • rot x e). Proof. Recall the formula div x (ξ ∧ η) = η • rot x ξ -ξ • rot x η, for any smooth vector fields ξ and η. Therefore we can write Finally we obtain

div x ne ω c ∧ ∇ x k[n] = div x ne ω c ∧ σ ∇ x n n - q m E = div x n E ∧ e B + div x σ e ω c ∧ ∇ x n = div x n E ∧ e B + σ rot x e ω c • ∇ x n = div x n E ∧ e B + σ div x n rot x e ω c = div x n E ∧ e B -σ div x n ∇ x ω c ∧ e ω 2 
div x ne ω c ∧ ∇ x k[n] = div x (nV[n]) + Be • ∇ x σn Bω c (e • rot x e) ,
and our conclusion follows.

Reformulation of the limit model

We intend to find an equivalent formulation for [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field[END_REF], [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF] by eliminating the Lagrange multiplier p which appears in [START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field[END_REF]. For doing that, we will average along the characteristic flow of the magnetic field cf. [START_REF] Bogoliubov | Asymptotic Methods in the Theory of Nonlinear Oscillations[END_REF][START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrkinetic models in plasma physics[END_REF][START_REF] Bostan | The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime[END_REF][START_REF] Bostan | Gyrokinetic Vlasov Equation in Three Dimensional Setting. Second Order Approximation[END_REF][START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasma[END_REF][START_REF] Bostan | The Effective Vlasov-Poisson System for the Finite Larmor Radius Regime[END_REF][START_REF] Bostan | Transport of Charged Particles Under Fast Oscillating Magnetic Fields[END_REF]. Let us recall briefly the definition of the average operators along a characteristic flow for functions and vector fields cf. [START_REF] Bostan | Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime[END_REF]. Consider a smooth, divergence free vector field b = b(y

) : R m → R m b ∈ W 1,∞ loc (R m ), div y b = 0, (21) 
with at most linear growth at infinity

∃C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ R m . (22) 
We denote by Y (s; y) the characteristic flow associated to b

dY ds = b(Y (s; y)), Y (0; y) = y, s ∈ R, y ∈ R m .
Under the above hypothese, this flow has the regularity Y ∈ W 1,∞ loc (R × R m ) and is measure preserving. We concentrate on periodic characteristic flows (the tokamak characteristic flows are periodic, with uniform period) that is:

∃S > 0 such that Y (S; y) = y, y ∈ R m .
For any function u = u(y) : R m → R we define the average ⟨u⟩ along the flow of b • ∇ y by

⟨u⟩ (y) = 1 S S 0 u(Y (s; y)) ds, y ∈ R m .
When applied to L 2 (R m ) functions, the above operator coincides with the orthogonal projection in L 2 (R m ), over the subspace of constant functions along the flow of b • ∇ y , cf. [START_REF] Bostan | Transport equations with disparate advection fields. Application to the gyrkinetic models in plasma physics[END_REF]. Indeed, it is easily seen that for any 

y ∈ R m , h ∈ R ⟨u⟩ (Y (h; y)) = 1 S S 0 u(Y (s; Y (h; y)))ds = 1 S S 0 u(Y (s + h; y))ds = ⟨u⟩ (y),
for any function ψ which is constant along the flow Y and

⟨a • ∇θ⟩ = a • ∇ ⟨θ⟩ , (24) 
for any vector field a which is in involution with respect to b, that is, their Poisson bracket vanishes

[a, b] := (a • ∇ y )b -(b • ∇ y )a = 0. Indeed, as ψ(Y (s; •)) = ψ, s ∈ R, we have t ∂Y (s; y)(∇ψ)(Y (s; y)) = ∇ψ(y), s ∈ R and therefore ⟨c⟩ • ∇ψ = 1 S S 0 ∂Y (-s; Y (s; •))c(Y (s; •)) ds • ∇ψ = 1 S S 0 ∂Y (-s; Y (s; •))c(Y (s; •)) • t ∂Y (s; •)(∇ψ)(Y (s; •)) ds = 1 S S 0 (c • ∇ψ)(Y (s; •)) ds = ⟨c • ∇ψ⟩ .
In the previous computations, we utilized the equality Y (-s; Y (s; y)) = y, y ∈ R m which, upon differentiation with respect to y, implies

∂ y Y (-s; Y (s; •)∂ y Y (s; •) = I m .
Similarly, the condition [a, b] = 0 expresses the commutation between the flows associated to the vector fields a and b

Z(h; Y (s; y)) = Y (s; Z(h; y)), h, s ∈ R, y ∈ R m , (25) 
where Z(h; y) denotes the characteristic flow associated to a

d dh Z(h; y) = a(Z(h; y)), (h, y) ∈ R × R m .
Taking the derivative of ( 25) with respect to h at h = 0 we obtain

a(Y (s; y)) = d dh | h=0 Z(h; Y (s; y)) = d dh | h=0 Y (s; Z(h; y)) = ∂ y Y (s; y)a(y), (s, y) ∈ (R × R m ).
Hence we have

⟨a • ∇θ⟩ = 1 S S 0 a(Y (s; •)) • (∇θ)(Y (s; •)) ds = 1 S S 0 a • t ∂ y Y (s; •)(∇θ)(Y (s; •)) ds = 1 S S 0 a • ∇(θ(Y (s; •))) ds = a • ∇ ⟨θ⟩ .
We come back to the limit model ( 19), ( 20) and we consider a smooth magnetic field Be • ∇ x , whose characteristic flow is periodic, with a uniform period S. The properties of the average along the magnetic field lines are investigated in the mathematical literature, cf. [START_REF] Negulescu | Kinetic Modelling of Strongly Magnetized Tokamak Plasmas with Mass Disparate Particles[END_REF]. If we denote by X = X(s; x) the flow of the magnetic field, we have by S periodicity

⟨Be • ∇ x p⟩ = 1 S S 0 (Be • ∇ x p)(X(s; •)) ds = 1 S S 0 d ds {p(X(s; •))} ds = 0.
Therefore the Lagrange multiplier p can be eliminated, by taking the average in ( 19)

∂ t ⟨n⟩ + div x ne ω c ∧ ∇ x k[n] = 0. ( 26 
)
The difficulty task is how to express the average of the divergence term, with respect to ⟨n⟩, such that we get a model for the new unknown ⟨n⟩.

Proposition 4.1

For any zero average function α, and constant along the flow X function ψ, we have

div x αe B ∧ ∇ψ = 0.
Proof.

We are done if we prove that for any constant along the flow function θ we have

R 3 div x αe B ∧ ∇ψ θ(x) dx = 0. ( 27 
)
As e • ∇ψ = 0, e • ∇θ = 0, therefore we have (I 3 -e ⊗ e)(∇θ ∧ ∇ψ) = 0. The vector field ∇θ ∧ ∇ψ is divergence free

div x (∇θ ∧ ∇ψ) = ∇ψ • rot x (∇θ) -∇θ • rot x (∇ψ) = 0,
and therefore there is a constant function λ along the flow X such that ∇θ ∧ ∇ψ = λBe. We deduce that

R 3 div x αe B ∧ ∇ψ θ(x) dx = - R 3 αe B ∧ ∇ψ • ∇θ dx = R 3 (∇θ ∧ ∇ψ) • αe B dx = R 3 λBe • αe B dx = R 3 λα dx = R 3
λ ⟨α⟩ dx = 0, and therefore [START_REF] Brenier | Convergence of the Vlasov-Poisson system to the incompressible Euler equations[END_REF] holds true.

Applying Proposition 4.1 with the function k[n], which is constant along the flow of Be • ∇ x , we obtain

div x ne ω c ∧ ∇ x k[n] = div x ⟨n⟩ e ω c ∧ ∇ x k[n] .
We also need to express k

[n] = σ(1 + ln n) + q m Φ[n]
, with respect to ⟨n⟩, where the concentration n is such that the constraint (20) holds true.

Lemma 4.1

The first variation of the free energy

E[n] = R 3 σn ln n + ϵ 0 2m |∇ x Φ[n]| 2 dx is k[n] = σ(1 + ln n) + q m Φ[n].
For any concentration n, n 0 ≥ 0 we have

E[n] -E[n 0 ] - R 3 k[n 0 ](n -n 0 ) dx = σ R 3 n 0 n n 0 ln n n 0 - n n 0 + 1 dx + ϵ 0 2m R 3 |∇ x Φ[n] -∇ x Φ[n 0 ]| 2 dx ≥ 0,
with equality iff n = n 0 .

Proof.

By direct computations one gets

E[n] -E[n 0 ] - R 3 k[n 0 ](n -n 0 ) dx = σ R 3 {n ln n -n 0 ln n 0 -(1 + ln n 0 )(n -n 0 )} dx + R 3 ϵ 0 2m |∇ x Φ[n]| 2 - ϵ 0 2m |∇ x Φ[n 0 ]| 2 - q m Φ[n 0 ](n -n 0 ) dx = σ R 3 {n ln n -n + n 0 -n ln n 0 } dx + R 3 ϵ 0 2m |∇ x Φ[n]| 2 - ϵ 0 2m |∇ x Φ[n 0 ]| 2 - ϵ 0 m ∇ x Φ[n 0 ] • (∇ x Φ[n] -∇ x Φ[n 0 ]) dx = σ R 3 n 0 n n 0 ln n n 0 - n n 0 + 1 dx + ϵ 0 2m R 3 |∇ x Φ[n] -∇ x Φ[n 0 ]| 2 dx ≥ 0 which equality iff n = n 0 . Obviously we have lim h→0 E[n 0 + hz] -E[n 0 ] -h R 3 k[n 0 ]z dx h = lim h→0 σ h R 3 n 0 n 0 + hz n 0 ln n 0 + hz n 0 - n 0 + hz n 0 + 1 dx + lim h→0 ϵ 0 2mh R 3 h 2 |∇ x Φ[z]| 2 dx = 0, saying that lim h→0 h -1 (E[n 0 + hz] -E[n 0 ]) = R 3 k[n 0 ]z dx.
Thanks to the previous lemma we deduce that there is at most one concentration n with a given average, such that Be

• ∇ x k[n] = 0. Lemma 4.2 Let n 1 , n 2 be two concentrations such that ⟨n 1 ⟩ = ⟨n 2 ⟩ and Be • ∇ x k[n 1 ] = Be • ∇ x k[n 2 ].
Therefore we have n 1 = n 2 . In particular, for a given average, there is at most one concentration n such that Be • ∇ x k[n] = 0.

Proof.

We have by Lemma 4.1

E[n 1 ] -E[n 2 ] - R 3 k[n 2 ](n 1 -n 2 ) dx = σ R 3 n 2 n 1 n 2 ln n 1 n 2 - n 1 n 2 + 1 dx + ϵ 0 2m R 3 |∇ x Φ[n 1 ] -∇ x Φ[n 2 ]| 2 dx,
and

E[n 2 ] -E[n 1 ] - R 3 k[n 1 ](n 2 -n 1 ) dx = σ R 3 n 1 n 2 n 1 ln n 2 n 1 - n 2 n 1 + 1 dx + ϵ 0 2m R 3 |∇ x Φ[n 2 ] -∇ x Φ[n 1 ]| 2 dx, implying that R 3 (k[n 1 ] -k[n 2 ])(n 1 -n 2 ) dx = σ R 3 (n 1 -n 2 ) ln n 1 n 2 dx + ϵ 0 m R 3 |∇ x Φ[n 2 ] -∇ x Φ[n 1 ]| 2 dx. Since Be • ∇ x (k[n 1 ] -k[n 2 ]) = 0, ⟨n 1 -n 2 ⟩ = 0, we deduce R 3 (k[n 1 ] -k[n 2 ])(n 1 -n 2 ) dx = 0,
and thus

n 1 = n 2 .
If n is such that Be • ∇ x k[n] = 0, then for any concentration n having the same average as n we have

E[n] ≥ E[n] + R 3 k[n](n -n) dx = E[n],
saying that for any given average a, the unique concentration n such that ⟨n⟩ = a and Be

• ∇ x k[n] = 0, satisfies E[n] = min ⟨n⟩=a E[n].
We denote by F the application which maps a ∈ ker(Be

• ∇ x ) to n such that ⟨n⟩ = a, Be • ∇ x k[n] = 0. Lemma 4.3
The application a ∈ ker(Be

• ∇ x ) → E[n = F (a)] is convex and its first variation is a → k[n = F (a)]. Proof. Consider a 1 , a 2 ∈ ker(Be • ∇ x ) and λ 1 , λ 2 ∈ [0, 1] such that λ 1 + λ 2 = 1. We have λ 1 E[F (a 1 )] + λ 2 E[F (a 2 )] ≥ E[λ 1 F (a 1 ) + λ 2 F (a 2 )]
since E is convex and

E[F (λ 1 a 1 + λ 2 a 2 )] = min ⟨n⟩=λ 1 a 1 +λ 2 a 2 E[n] ≤ E[λ 1 F (a 1 ) + λ 2 F (a 2 )] because ⟨λ 1 F (a 1 ) + λ 2 F (a 2 )⟩ = λ 1 ⟨F (a 1 )⟩ + λ 2 ⟨F (a 2 )⟩ = λ 1 a 1 + λ 2 a 2 . Consider now a, z ∈ ker(Be • ∇ x ) and h ∈ R. The convexity of E implies E[F (a + hz)] -E[F (a)] ≥ R 3 k[F (a)][F (a + hz) -F (a)] dx = R 3 k[F (a)] ⟨F (a + hz) -F (a)⟩ dx = R 3 k[F (a)][⟨F (a + hz)⟩ -⟨F (a)⟩] dx = R 3 k[F (a)][(a + hz) -a] dx = h R 3 k[F (a)]z(x) dx.
Passing to the limit when h ↘ 0 and h ↗ 0 we deduce that

lim h→0 E[F (a + hz)] -E[F (a)] h = R 3 k[F (a)]z dx.
Combining the results in Proposition 4.1, Lemma 4.3, the limit model ( 19), [START_REF] Bostan | Finite Larmor radius approximation for collisional magnetic confinement. Part I: the linear Boltzmann equation[END_REF] becomes

∂ t a + div x ae ω c ∧ ∇ x k[F (a)] = 0, n = F (a).
As k[F (a)] ∈ ker(Be • ∇ x ), we obtain by ( 23)

div x ae ω c ∧ ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)],
and therefore the previous limit model also writes

∂ t a + rot x ae ω c • ∇ x k[F (a)] = 0, n = F (a). ( 28 
)

A commutation formula for angular vector fields

The last step will concern a commutation formula between the operators ⟨•⟩ and rot x . We establish this formula for the special class of vector fields which present angle variables. In particular, this formula will apply for tokamak magnetic fields. We start with a very simple example. Consider the vector field b(y)

• ∇ y = y 2 ∂ y 1 -y 1 ∂ y 2 , y = (y 1 , y 2 ) ∈ R 2 , whose characteristic flow is 2π-periodic Y (s; y) = R(-s)y = cos s sin s -sin s cos s y, (s, y) ∈ R × R 2 .
The gradient of any invariant function ψ, that is a function satisfying ψ(Y (s;

•)) = ψ, s ∈ R, verifies t ∂Y (s; •)(∇ψ)(Y (s; •)) = ∇ψ, s ∈ R. ( 29 
)
There are other vector fields verifying similar properties. Let us consider the angle θ = θ(y) ∈ [0, 2π[ given by

y 1 = |y| cos θ(y), y 2 = |y| sin θ(y), y ∈ R 2 \ {(0, 0)} . The function θ is smooth in D = R 2 \(R + × {0}
) and we have

∇ y θ = - (y 2 , -y 1 ) |y| 2 = - b(y) |y| 2 , y ∈ D. The function θ is discontinuous across R ⋆ + × {0} lim y 1 →z 1 ,y 2 ↘0
θ(y) = 0, lim

y 1 →z 1 ,y 2 ↗0 θ(y) = 2π, z 1 > 0,
but its gradient, which is well defined on D is the restriction of a smooth vector field on

R 2 \ {(0, 0)} ν(y) = - (y 2 , -y 1 ) |y| 2 , y ∈ R 2 \ {(0, 0)} .
For any y ∈ D and |s| small enough we have

d ds θ(Y (s; y)) = b(Y (s; y)) • (∇θ)(Y (s; y)) = -1,
implying that θ(Y (s; y)) = θ(y) -s, y ∈ D and |s| small enough. Taking the gradient with respect to y we obtain t ∂Y (s; y)(∇θ)(Y (s; y)) = ∇θ(y),

or t ∂Y (s; y)ν(Y (s; y)) = ν(y), y ∈ D, |s| small enough. ( 30 
)
Actually it is easily seen that the previous formula holds true for any y ∈ R 2 \ {(0, 0)} and s ∈ R. The vector field ν also satisfies div y t ν(y) = 0, but it is not the gradient of a smooth function θ on R 2 \ {(0, 0)}, because, in that case, for any y ∈ R 2 \ {(0, 0)}, we would obtain 

-1 = 1 2π 2π 0 (b • ν)(Y (s; y)) ds = 1 2π 2π 0 (b • ∇ θ)(Y (s; y)) ds = 1 2π
⟨∇ y α ∧ η⟩ = ∇ y ⟨α⟩ ∧ η in D. (31) 
In particular, if α ∈ ker(b

• ∇ y ), then (∇ y α ∧ η) • ∇ y is in involution with respect to b • ∇ y in D.
We will use the following lemmas. 

v → e ∧ v, v ∈ R 3 , that is M [e]v = e ∧ v, v ∈ R 3 .
For any e ∈ S 2 , and ξ, η ∈ R 3 such that ξ • e = 0, we have 

ξ ∧ η = (e ⊗ M [e]ξ -M [e]ξ ⊗ e)η.
v → e ∧ v, v ∈ R 3 , that is M [e]v = e ∧ v, v ∈ R 3 .
Then, for any function u such that u ∈ ker(b • ∇ y ), we have the equality

(I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s )(∇u) s = M [e s ] |b s | (∇u) s , e = b |b| .
Proof.

For any invariant functions α = α(y), β = β(y) with respect to the flow Y we have ∇ y α ∧ ∇ y β ∈ Re and div y (∇ y α∧∇ y β) = 0. Therefore there is λ ∈ ker(b•∇ y ) such that ∇ y α∧∇ y β = λb, saying that the vector field ∇ y α ∧ ∇ y β is in involution with respect to b • ∇ y . We have As α and β are left invariant by the flow Y , we have

∂Y (s; •)∇α ∧ ∇β = (∇α) s ∧ (∇β) s .
∇α = ∇(α s ) = t ∂Y (s; •)(∇α) s , ∇β = ∇(β s ) = t ∂Y (s; •)(∇β) s , implying that ∂Y (s; •)(e ⊗ M [e] t ∂Y (s; •)(∇α) s ) t ∂Y (s; •)(∇β) s = (e s ⊗ M [e s ](∇α) s )(∇β) s .
Observe that

∂Y (s; •)e = ∂Y (s; •)b |b| = b s |b| = |b s | |b| e s , since [b, b] = 0,
and therefore we obtain Taking the scalar product by ν(y), y ∈ D, we obtain

e s ⊗ ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s (∇β) s = e s ⊗ M [e s ](∇α) s |b s | (∇β) s , or equivalently ∂Y (s; •)M [e] t ∂Y (s; •) |b| - M [e s ] |b s | (∇α) s ∈ Re s .
0 = ⟨c⟩ (y) • ν(y) = λ(y)b(y) • ν(y) = λ(y)C, y ∈ D.
Since C ∈ R ⋆ , we deduce that λ vanishes in D and 1 D ⟨c⟩ = 0.

We are ready to prove the commutation formula [START_REF] Carrillo | On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in L p spaces[END_REF].

Proof. (of Proposition 5.1) All the computations are performed in D.

We assume for the moment that α ∈ ker(b • ∇ y ) and we prove that ∇α ∧ η is in involution with respect to b • ∇ y . We have by Lemma 5.1 and Lemma 5.2

∂Y (s; •)(∇α ∧ η) = ∂Y (s; •)(e ⊗ M [e]∇α -M [e]∇α ⊗ e)η = b s ⊗ ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s - ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s ⊗ b s η s = b s ⊗ (I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s )(∇α) s -(I 3 -e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (I 3 -e s ⊗ e s )(∇α) s ⊗ b s η s = (e s ⊗ M [e s ](∇α) s -M [e s ](∇α) s ⊗ e s )η s = (∇α) s ∧ η s ,
where we have used that

b s ⊗ (-e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s + (e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| (∇α) s ⊗ b s η s = 0.
Assume now that ⟨α⟩ = 0 and we prove that ⟨∇α ∧ η⟩ = 0. If η = ∇β for some function β, which is left invariant by Y in D we have

∂Y (-s; Y (s; •))η s ∧ (∇α) s = ∂Y (-s; Y (s; •))(e s ⊗ M [e s ](∇β) s -M [e s ](∇β) s ⊗ e s )(∇α) s = b ⊗ ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | ∇β - ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | ∇β ⊗ b ∇(α s ) = b ⊗ (I 3 -e ⊗ e) ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | (I 3 -e ⊗ e)∇β -(I 3 -e ⊗ e) ∂Y (-s; Y (s; •))M [e s ] t ∂Y (-s; Y (s; •)) |b s | (I 3 -e ⊗ e)∇β ⊗ b ∇α s = b ⊗ M [e] |b| ∇β - M [e] |b| ∇β ⊗ b ∇α s = (e ⊗ M [e]∇β -M [e]∇β ⊗ e)∇α s = ∇β ∧ ∇α s ,
where we used the following formulas in the calculations above

∂Y (s; •)b = b s ⇔ b = ∂Y (-s; Y (s, •))b s ,
and

∇(α s ) = t ∂Y (s; •)(∇α) s ⇔ t ∂Y (-s; Y (s; •))∇(α s ) = (∇α) s , ∇β = ∇(β s ) = t ∂Y (s; •)(∇β) s ⇔ t ∂Y (-s; Y (s; •))∇β = (∇β) s .
We obtain

⟨∇β ∧ ∇α⟩ = 1 S S 0 ∇β ∧ ∇α s ds = ∇β ∧ ∇ ⟨α⟩ = 0.
If η is an angular vector field ν in D, we appeal to Lemma 5.3. Obviously we have ⟨(∇α ∧ ν) • ν⟩ = 0 and for any function u such that

1 D u ∈ ker(b • ∇ y ), we can write since (∇ y u ∧ ν) • ∇ y is in involution with b • ∇ y in D cf.
the first part of this proof, and thanks to ( 24)

⟨(∇ y α ∧ ν) • ∇ y u⟩ = -⟨(∇ y u ∧ ν) • ∇ y α⟩ = -(∇ y u ∧ ν) • ∇ y ⟨α⟩ = 0.
Therefore we deduce that ⟨∇α ∧ ν⟩ = 0.

Finally, for any function α we have

⟨∇α ∧ η⟩ = ⟨∇ ⟨α⟩ ∧ η⟩ + ⟨∇(α -⟨α⟩) ∧ η⟩ = 1 S S 0 ∂Y (-s; Y (s; •))(∇ ⟨α⟩) s ∧ η s ds = 1 S S 0 ∂Y (-s; Y (s; •))∂Y (s; •)(∇ ⟨α⟩ ∧ η) ds = 1 S S 0 ∇ ⟨α⟩ ∧ η ds = ∇ ⟨α⟩ ∧ η.

Tokamak magnetic fields

In this section we apply the previous results to some examples of magnetic fields. We start by a simplified framework, that of a magnetic field, whose magnetic lines wind on cylindrical surfaces.

Cylindrical case

We consider the magnetic field

B = Be = B 0 x 2 R 0 , - x 1 R 0 , 1 , x = (x 1 , x 2 , x 3 ) = (x, x 3 ) ∈ R 3 ,
where B 0 , R 0 are some reference values for the magnetic field and length. The characteristic flow is given by ( X(s; x), X 3 (s;

x 3 )) = R -s B 0 R 0 x, x 3 + sB 0 , (s, x, x 3 ) ∈ R × R 3 ,
where

R(θ) = cos θ -sin θ sin θ cos θ , θ ∈ R.
We have two angular vector fields

ν θ = (x 2 , -x 1 , 0) x 2 1 + x 2 2
, x ̸ = 0, ν ∥ = (0, 0, 1).

All the functions are supposed periodic with respect to x 3 . Taking S = 2πR 0 /B 0 , we define the average operator for a function u by

⟨u⟩ (x) = 1 S S 0 u( X(s; x), X 3 (s; x 3 )) ds = 1 S S 0 u R -s 2π S x, x 3 + s 2π S R 0 ds,
and for a vector field c

• ∇ x = c • ∇ x + c 3 ∂x 3 by ⟨c⟩ (x) = 1 S S 0   R(s 2π S ) 0 0 0 0 1   c R -s 2π S x, x 3 + s 2π S R 0 ds = 1 S S 0 R(s 2π S )c R -s 2π S x, x 3 + s 2π S R 0 c 3 R -s 2π S x, x 3 + s 2π S R 0 ds.
We use the following decomposition of Be

• ∇ x Be = B 0 R 0 |x| 2 ν θ + B 0 ν ∥ , |x| > 0.
Thanks to Proposition 5.1, we compute the term rot x ae ω c appearing in the limit model [START_REF] Brenier | Incompressible Euler and e-MHD scaling limits of the Vlasov-Maxwell system[END_REF]. Observe that

rot x ae ω c = rot x a Bω c B 0 R 0 |x| 2 ν θ + B 0 ν ∥ = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥ ,
and therefore

rot x ae ω c = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥ = ∇ x aB 0 |x| 2 Bω c R 0 ∧ ν θ + ∇ x aB 0 Bω c ∧ ν ∥ = rot x ae ω c ,
since the functions a, Bω c and |x| 2 belong to ker(Be • ∇ x ). We obtain

rot x ae ω c • ∇ x k[F (a)] = rot x ae ω c • ∇ x k[F (a)] = div x ae ω c ∧ ∇ x k[F (a)] .
In that case, the vector field rot x ae ωc is in involution with Be • ∇ x , and (28) becomes

∂ t a + div x ae ω c ∧ ∇ x k[F (a)] = 0, n = F (a).
In this case we work in the 2πR 0 -periodic domain with respect to x 3 , R 2 × T 1 , where T 1 = R/(2πR 0 Z). The potential Φ solves the Poisson equation

-ϵ 0 ∆ x Φ = qn, x ∈ R 2 × T 1 ,
with the boundary condition

lim |x|→∞ Φ(x, x 3 ) = 0, x 3 ∈ T 1 .
The Jacobian matrix of the flow X(s, x) = ( X(s; x), X 3 (s; x 3 )) is orthogonal

∂ x X(s; x) =   R(-s B 0 R 0 ) 0 0 0 0 1   ,
which implies that the Laplace operator commutes with the translations along the flow, that is

∆ x u s = (∆ x u) s ,
for any smooth function u. Indeed, for any

ψ ∈ C 1 c (R 2 × T 1 ) we have R 2 ×T 1 ∆ x u s ψ s dx = - R 2 ×T 1 ∇ x u s • ∇ x ψ s dx = - R 2 ×T 1 t ∂X(s; x)(∇u) s • t ∂X(s; x)(∇ψ) s dx = - R 2 ×T 1 (∇u) s • (∇ψ) s dx = - R 2 ×T 1 ∇u • ∇ψ dx = R 2 ×T 1 ∆ x u ψ dx = R 2 ×T 1 (∆ x u) s ψ s dx, saying that ∆ x u s = (∆ x u) s . If Φ[n]
is the potential corresponding to the 2πR 0 -periodic concentration n with respect to x 3 , then

-ϵ 0 ∆ x (Φ[n]) s = -ϵ 0 (∆ x Φ[n]) s = qn s ,
for any x 3 we have

lim |x|→+∞ Φ[n](X(s; x)) = lim |x|→+∞ Φ[n]( X(s; x), X 3 (s; x 3 )) = 0, because | X(s, x)| = |x|, and (Φ[n]) s is 2πR 0 -periodic with respect to x 3 Φ[n]( X(s; x), X 3 (s; x 3 + 2πR 0 )) = Φ[n]( X(s; x), X 3 (s; x 3 ) + 2πR 0 ) = Φ[n]( X(s; x), X 3 (s; x 3 )) = (Φ[n]) s (x). Therefore we have (Φ[n]) s = Φ[n s ]. In particular, if n ∈ ker(Be•∇ x ) then Φ[n] ∈ ker(Be•∇ x ). By construction n = F (a) is the unique concentration such that ⟨n⟩ = a, Be • ∇ x k[n] = 0.
Clearly we have ⟨a⟩ = a and k[a] = σ(1 + ln a) + q m Φ[a] ∈ ker(Be • ∇ x ) and thus n = F (a) = a for any a ∈ ker(Be • ∇ x ). The constraint in (20) is automatically satisfied. In that case, our limit model simply writes

∂ t n + div x ne ω c ∧ ∇ x k[n] = 0, (t, x) ∈ R + × R 2 × T 1 . ( 32 
)
Remark 6.1

The equation [START_REF] Csiszár | Information-type measures of difference of probability distributons and indirect observation[END_REF] propagates the constraint Be • ∇ x n = 0. When the magnetic field is uniform i .e., Be = (0, 0, 1), it is not difficult to check that if Be • ∇ x n(t, x) = 0 holds at t = 0, then it will do so for all time in which the solution exists. Thus, the constraint (20) can be understood as a mere constraint on the initial data.

Since we know that at any time t, n(t) belongs to ker(Be • ∇ x ), we can reduce the above model to a two dimensional problem. We appeal to the invariants of the flow X

R X 3 (s; x 3 ) R 0 X(s; x) = R x 3 + sB 0 R 0 R -s B 0 R 0 x = R x 3 R 0 x.
We introduce the new unknown function N = N (t, ȳ = (y 1 , y 2 )) such that

n(t, x) = N (t, ȳ = R(x 3 /R 0 )x),
and we are looking for the model satisfied by N = N (t, ȳ).

Lemma 6.1

Let us consider a smooth function

U = U (ȳ), ȳ ∈ R 2 , and u(x) = U (R(x 3 /R 0 )x), x ∈ R 2 ×T 1 .
We have

∆ x u = div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU (ȳ = R(x 3 /R 0 )x).
Proof.

Consider Ψ ∈ C 1 c (R 2 ) and ψ(x) = Ψ(R(x 3 /R 0 )x), x ∈ R 2 × T 1 .
Integrating by parts, thanks to the x 3 -periodicity, one gets

R 2 ×T 1 ∆ x u ψ(x) dx = - R 2 ×T 1 ∇ x u • ∇ x ψ dx = - R 2 ×T 1 t ∂ ȳ ∂x (∇ ȳU )(R(x 3 /R 0 )x) • t ∂ ȳ ∂x (∇ ȳΨ)(R(x 3 /R 0 )x) dx = - R 2 ×T 1 ∂ ȳ ∂x t ∂ ȳ ∂x (∇ ȳU )(R(x 3 /R 0 )x) • (∇ ȳΨ)(R(x 3 /R 0 )x) dx,
where ∂ ȳ ∂x is the Jacobian matrix of the apllication x → R(x 3 /R 0 )x

∂ ȳ ∂x = R(x 3 /R 0 ), R(x 3 /R 0 + π/2) x R 0 ∈ M 2,3 (R). The matrix product ∂ ȳ ∂x t ∂ ȳ ∂x writes ∂ ȳ ∂x t ∂ ȳ ∂x = I 2 + R x 3 R 0 ⊥ x R 0 ⊗ R x 3 R 0 ⊥ x R 0 , ⊥ x = (x 2 , -x 1 ),
and we obtain

R 2 ×T 1 ∆ x u ψ(x) dx = - R 2 ×T 1 I 2 + R x 3 R 0 ⊥ x R 0 ⊗ R x 3 R 0 ⊥ x R 0 (∇ ȳU )(R( x 3 R 0 )x) • (∇ ȳΨ)(R( x 3 R 0 )x) dx = - T 1 R 2 I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU (ȳ) • ∇ ȳΨ(ȳ)dȳ dx 3 = 2πR 0 R 2 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU Ψ(ȳ)dȳ = R 2 ×T 1 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3 R 0 x ψ(x) dx.
The previous computation shows that ∆ x u -

div ȳ I 2 + ⊥ ȳ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3
R 0 x is orthogonal on ker(Be • ∇ x ). But this function belongs to ker(Be • ∇ x ), because u belongs to ker(Be • ∇ x ), together with ∆ x u, since the Laplace operator commutes with the flow X. Finally we obtain

∆ x u = div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳU ȳ = R x 3 R 0 x . Lemma 6.2 Let us consider two smooth functions U = U (ȳ), W = W (ȳ), ȳ ∈ R 2 and u(x) = U (R(x 3 /R 0 )x), w(x) = W (R(x 3 /R 0 )x), x ∈ R 2 × T 1 . We have div x ue ω c ∧ ∇ x w = div ȳ U ω 0 R(π/2)∇ ȳW ȳ = R x 3 R 0 x , ω 0 = qB 0 m .

Proof.

As before, we perform the computation in distribution sense. We already know that the vector field rot x ue ωc • ∇ x is in involution with Be • ∇ x , and therefore

div x ue ω c ∧ ∇ x w = rot x ue ω c • ∇ x w ∈ ker(Be • ∇ x ), it is enough to consider test functions ψ(x) = Ψ(R(x 3 /R 0 )x), Ψ ∈ C 1 c (R 2 ) R 2 ×T 1 div x ue ω c ∧ ∇ x w ψ(x) dx = - R 2 ×T 1 ue ω c ∧ ∇ x w • ∇ x ψ(x) dx = - R 2 ×T 1 u ω c M [e]∇ x ω • ∇ x ψ dx = - R 2 ×T 1 U (R(x 3 /R 0 )x) ω c ∂ ȳ ∂x M [e] t ∂ ȳ ∂x (∇ ȳW )(R(x 3 /R 0 )x) • (∇ ȳΨ)(R(x 3 /R 0 )x) dx.
By direct computations we obtain

1 ω c ∂ ȳ ∂x M [e] t ∂ ȳ ∂x = 1 ω 0 R π 2 , ω 0 = qB 0 m ,
and therefore the previous calculations lead to

R 2 ×T 1 div x ue ω c ∧ ∇ x w ψ(x) dx = 2πR 0 R 2 U (ȳ) ω 0 ⊥ ∇ ȳW • ∇ ȳΨdȳ = -2πR 0 R 2 div ȳ U (ȳ) ω 0 ⊥ ∇ ȳW Ψ(ȳ)dȳ = - R 2 ×T 1 div ȳ U (ȳ) ω 0 ⊥ ∇ ȳW ȳ = R x 3 R 0 ψ(x) dx.
We deduce that

div x ue ω c ∧ ∇ x w = div ȳ U ω 0 ⊥ ∇ ȳW .
Combining Lemma 6.1 and Lemma 6.2 we derive the limit model with respect to the new unknown N . The potential Φ = ϕ[n] writes ϕ(t, x) = Φ(t, ȳ = R(x 3 /R 0 )x) where Φ(t, ȳ) solves the elliptic equation

-ϵ 0 div ȳ I 2 + ⊥ ȳ ⊗ ⊥ ȳ R 2 0 ∇ ȳΦ(t, ȳ) = qN (t, ȳ), ȳ ∈ R 2 .
We supplement this elliptic equation by the condition lim |ȳ|→+∞ Φ(t, ȳ) = 0 and we denote by Φ[N ] the solution corresponding to the concentration N . We introduce

K[N ] = σ(1 + ln N ) + q m Φ[N ].
The time evolution for the concentration N is given by

∂ t N + div ȳ N ω 0 R π 2 ∇ ȳK[N ] = 0, (t, ȳ) ∈ R + × R 2 ,
and the initial condition

N (0, ȳ) = N in (ȳ), ȳ ∈ R 2 ,
where

n in (x) = N in (R(x 3 /R 0 )x), x ∈ R 2 × T 1 .

The toroidal case

We consider now a magnetic field whose magnetic lines wind on toroidal surfaces (called magnetic surface). We denote by φ the toroidal angle in the plan x 1 Ox 2 , by θ the poloidal angle and R 0 is the mean radius of the torus, as shown in Figure 1 x 1 = (R 0 + r cos θ) cos φ, x 2 = (R 0 + r cos θ) sin φ, x 3 = r sin θ.

The magnetic field writes cf. [START_REF] Lutz | Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétique pour la simulation d'un plasma de Tokamak[END_REF] Figure 1: Toroidal and poloidal coordinates (Source: FusionWiki)

Be = B 0 r f q (R 0 + r cos θ) e θ + B 0 e φ , r < r 0 < R 0 ,
where e φ and e θ stand the unit vectors of toroidal and poloidal coordinates system

e φ = ∂ ∂φ ∂ ∂φ = (-sin φ, cos φ, 0) = (-x 2 , x 1 , 0) x 2 1 + x 2 2 , e θ = ∂ ∂θ ∂ ∂θ = (-sin θ cos φ, -sin θ sin φ, cos θ) = - (x 3 x 1 , x 3 x 2 ) r x 2 1 + x 2 2 , x 2 1 + x 2 2 -R 0 r , with ∂ ∂φ = (-(R 0 + r cos θ) sin φ, (R 0 + r cos θ) cos φ, 0), ∂ ∂θ = (-r sin θ cos φ, -r sin θ sin φ, r cos θ).
Here f q is the quality factor, that is the number of toroidal winds of a magnetic line, corresponding to one poloidal wind. The magnetic field lines are either closed or dense on magnetic surface, depending whether the quality factor f q is rational, (i .e., f q = n/m, m, n are integers) or not. If f q is rational, the field line is closed otherwise the field line is dense on a magnetic surface. It is obvious that a field line on a magnetic surface with f q = n/m closes itself after traveling n toroidal turns and m poloidal turns.

In Cartesian coordinates, the magnetic field writes

Be B 0 = -x 2 x 2 1 + x 2 2 , x 1 x 2 1 + x 2 2 , 0 + 1 f q r x 2 1 + x 2 2 -x 3 x 1 r x 2 1 + x 2 2 , -x 3 x 2 r x 2 1 + x 2 2 , x 2 1 + x 2 2 -R 0 r .
Both the fields e φ • ∇ x , e θ • ∇ x leave invariant the function

r 2 = ( x 2 1 + x 2 2 -R 0 ) 2 + x 2
3 and therefore we have Be • ∇ x r = 0. We denote by X(s; x) the characteristic flow of Be • ∇ x . We have r cos θ

dθ ds = dX 3 ds = Be • e 3 = B 0 r cos θ f q (R 0 + r cos θ) , implying that dθ ds = B 0 f q (R 0 + r cos θ) . (33) 
In order to determine the evolution of the toroidal angle φ, we write -r sin θ dθ ds cos φ -(R 0 + r cos θ) sin φ dφ ds = dX 1 ds = -B 0 sin φ -B 0 r sin θ cos φ f q (R 0 + r cos θ) ,

leading to dφ ds = B 0 R 0 + r cos θ . (34) 
The differential equation ( 33) also writes

d ds (R 0 θ + r sin θ) = B 0 f q , (35) 
and thus we obtain

R 0 θ(s) + r sin θ(s) = R 0 θ(0) + r sin θ(0) + s B 0 f q .
As R 0 + r cos θ ≥ R 0 -r ≥ R 0 -r 0 > 0, the poloidal angle θ is increasing and there is S > 0 such that θ(S) = θ(0) + m2π, m ∈ Z\ {0}. The number S comes by the above equality that

R 0 m2π = R 0 (θ(S) -θ(0)) = S B 0 f q ,
and thus S = f q m2πR 0 B 0 . By [START_REF] Chandrasekhar | Brownian motion, dynamic friction and stellar dynamics[END_REF] and [START_REF] Choi | Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system[END_REF] we have d ds (φ -f q θ) = 0, implying that

φ(S) -φ(0) = f q (θ(S) -θ(0)) = f q m2π.
Therefore the magnetic lines wind f q times along the toroidal angle while doing one wind along the poloidal angle. As r is left invariant by the flow X, we have r(S) = r(0) and thus

X(S; x) = X(0; x) = x if f q = n m , n ∈ Z\ {0}, saying that the characteristic flow is S-periodic. Observe that div x -x 2 x 2 1 + x 2 2 , x 1 x 2 1 + x 2 2 , 0 = 0, div x -x 3 x 1 x 2 1 + x 2 2 , -x 3 x 2 x 2 1 + x 2 2 , x 2 1 + x 2 2 -R 0 x 2 1 + x 2 2 = 0,
and therefore the magnetic field Be • ∇ x is divergence free. We are looking for angular vector fields. Motivated by [START_REF] Degond | Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimension[END_REF], we consider

ν θ = R 0 ∇ x θ + r cos θ∇ x θ + sin θ∇ x r.
Since d ds φ = f q d ds θ, we also have from ( 35) that d ds {R 0 φ + f q r sin θ} = B 0 and we take ν φ = R 0 ∇ x φ + f q r cos θ∇ x θ + f q sin θ∇ x r. Proposition 6.1

The vector fields ν φ , ν θ are angular. The magnetic field Be • ∇ x writes

Be = α φ ν φ + α θ ν θ + α r ∇ x r, with α φ = B 0 |x| R 0 , α θ = B 0 r 2 f q |x| 2 -B 0 f q |x| -R 0 R 0 , α r = -B 0 x 3 r f q |x| 2 + f q r .

Proof.

It is easily seen that the vector ν φ and ν θ are angular fields. For the decomposition of magnetic field Be, notice that, in the definition of ν φ , ν θ , the gradients of the angles φ, θ are understood as the continuous vector fields

∇ x φ = (-sin φ, cos φ, 0) = -x 2 x 2 1 + x 2 2 , x 1 x 2 1 + x 2 2
, 0 , and

∇ x θ = 1 r (-sin θ cos φ, -sin θ sin φ, cos θ) = 1 r -x 3 x 1 r x 2 1 + x 2 2 , -x 3 x 2 r x 2 1 + x 2 2 , x 2 1 + x 2 2 -R 0 r .
By direct computations we have

|∇ x φ| 2 = 1 x 2 1 + x 2 2 , |∇ x θ| 2 = 1 r 2 , |∇ x r| 2 = 1, ∇ x φ • ∇ x θ = ∇ x φ • ∇ x r = ∇ x θ • ∇ x r = 0, and Be • ∇ x φ = B 0 x 2 1 + x 2 2 , Be • ∇ x θ = B 0 f q |x| , Be • ∇ x r = 0, and ν φ • ∇ x φ = R 0 |∇ x φ| 2 = R 0 |x| 2 , ν φ • ∇ x θ = f q r cos θ|∇ x θ| 2 = f q cos θ r , ν φ • ∇ x r = f q sin θ|∇ x r| 2 = f q sin θ, ν θ • ∇ x φ = 0, ν θ • ∇ x θ = |x| 2 |∇ x θ| 2 = |x| r 2 , ν θ • ∇ x r = sin θ|∇ x r| 2 = sin θ.
Taking the scalar product with ∇ x φ, ∇ x θ, ∇ x r we obtain the coefficients α φ , α θ , α r in the decomposition of the magnetic field Be • ∇ x . By Proposition 6.1, we have

rot x ae ω c = rot x a Bω c (α φ ν φ + α θ ν θ + α r ∇ x r) = ∇ x aα φ Bω c ∧ ν φ + ∇ x aα θ Bω c ∧ ν θ + ∇ x aα r Bω c ∧ ν r ,
and thanks to Proposition 5.1, we obtain

rot x ae ω c = ∇ x aα φ Bω c ∧ ν φ + ∇ x aα θ Bω c ∧ ν θ + ∇ x aα r Bω c ∧ ν r = rot x aα φ Bω c ν φ + aα θ Bω c ν θ + aα r Bω c ν r .
We can write

rot x ae ω c • ∇ x k[F (a)] = rot x a α φ Bω c ν φ + α θ Bω c ν θ + α r Bω c ν r • ∇ x k[F (a)],
and the limit model ( 26) becomes

∂ t a + div x a α φ Bω c ν φ + α θ Bω c ν θ + α r Bω c ν r ∧ ∇ x k[F (a)] = 0, n = F (a).

Convergence result

We concentrate now on the asymptotic behavior as ε ↘ 0 of the family of weak solutions (f ε , E[f ε ]) ε>0 of the Vlasov-Poisson-Fokker-Planck system (1), (2), and (3) and we establish rigorously the connection to the fluid model ( 4), [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF], and [START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF].

We are looking a model for the concentration n ε = n[f ε ] = R 3 f ε dv, similar to the equation (4) of the limit concentration n and we perform the balance of the relative entropy between n ε and n. As usual, these computations require the smoothness of the solution for the limit model. We justify the asymptotic behavior of (f ε , E[f ε ]) ε>0 when ε ↘ 0, provided that there is a smooth solution (n, E[n] = -∇ x Φ[n]) for the fluid model ( 4), [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF], and (6). We do not concentrate on the well posedness of this fluid model, nevertheless we refer to Section 6.1 for some examples of smooth solutions. We are working with weak solutions (f ε , E[f ε ]) ε>0 .

The balance for the number of particles writes

∂ t n ε + 1 ε div x j ε = 0, j ε = j[f ε ] = R 3 f ε v dv. ( 36 
)
We are using the balance momentum as well

ε∂ t j ε + div x R 3 f ε v ⊗ v dv - q m n ε E[f ε ] - ω c ε j ε ∧ e = - j ε τ , (37) 
which allows us to express the orthogonal component of j ε

j ε -(j ε • e)e ε = n ε e ω c ∧ σ ∇ x n ε n ε + q m ∇ x Φ[f ε ] + e ω c ∧ div x R 3 (σ∇ v f ε + vf ε ) ⊗ v dv + ε∂ t j ε + j ε τ = n ε e ω c ∧ ∇ x k[n ε ] + e ω c ∧ F ε ,
where we denote

F ε = div x R 3 (σ∇ v f ε + vf ε ) ⊗ v dv + ε∂ t j ε + j ε τ ,
and in the above computation, we have used that div

x R 3 σ∇ v f ε ⊗ v dv = -σ∇ x n ε . Observe that 1 ε div x j ε = div x j ε -(j ε • e)e ε + div x (j ε • e)Be Bε = div x n ε e ω c ∧ ∇ x k[n ε ] + div x e ω c ∧ F ε + Be • ∇ x (j ε • e) Bε ,
and finally, thanks to [START_REF] Degond | On the Asymptotic Limit of the Three Dimensional Vlasov-Poisson System for Large Magnetic Field: Formal Derivation[END_REF], we obtain a similar model for n ε , as in ( 4)

∂ t n ε + div x n ε e ω c ∧ ∇ x k[n ε ] + div x e ω c ∧ F ε + Be • ∇ x p ε = 0, p ε = j ε • e Bε . ( 38 
)
We are also looking for a equation, analogous to [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF], in order to complete the evolution equation ( 38), involving the Lagrange multiplier p ε . Considering the parallel component in the momentum balance [START_REF] Delcroix | Physiquue des plasmas[END_REF], we obtain

σe • ∇ x n ε + q m n ε e • ∇ x Φ[n ε ] + e • F ε = 0.
Thanks to [START_REF] Bonilla | Asymptotic behaviour of the initial boundary value problem for the three dimensional Vlasov-Poisson-Fokker-Planck system[END_REF], the above equation also writes

e • ∇ x σ n ε -n n + q m (Φ[n ε ] -Φ[n]) + e n • F ε = q m (n ε -n)(E[n ε ] -E[n]) n • e. (39) 
We intend to estimate the modulated energy of n ε with respect to n by writing E[n ε |n] as

E[n ε |n] = σ R 3 nh n ε n dx + ϵ 0 2m R 3 |∇ x Φ[n ε ] -∇ x Φ[n]| 2 dx = R 3 (σn ε ln n ε + ϵ 0 2m |∇ x Φ[n ε ]| 2 ) dx - R 3 (σn ln n + ϵ 0 2m |∇ x Φ[n]| 2 ) dx - R 3 σ(1 + ln n) + q m Φ[n] (n ε -n) dx := E[n ε ] -E[n] - R 3 k[n](n ε -n) dx. ( 40 
)
We introduce as well the modulated energy of f ε with respect to n ε M , given by σ

R 3 R 3 n ε M h f ε n ε M dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ] -∇ x Φ[n ε M ]| 2 =0 dx = σ R 3 R 3 f ε ln f ε -f ε ln n ε + f ε ln(2πσ) 3/2 + f ε |v| 2 2σ dvdx = R 3 R 3 σf ε ln f ε + f ε |v| 2 2 dvdx + ϵ 0 2m R 3 |∇ x Φ[f ε ]| 2 dx - R 3 σn ε ln n ε dx - ϵ 0 2m R 3 |∇ x Φ[n ε ]| 2 dx + σ ln(2πσ) 3/2 R 3 R 3 f ε dvdx = E[f ε ] -E[n ε ] + σ ln(2πσ) 3/2 R 3 R 3 f ε dvdx.
Thanks to the free energy balance [START_REF] Bostan | The effective Vlasov-Poisson system for strongly magnetized plasma[END_REF] and mass conservation of (1) one gets

E[n ε (t)] -E[n ε (0)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx (41) -σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx = - 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds.
Thanks to Proposition 3.1 and combining ( 40), [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field in quasineutral regime[END_REF] leads to

E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx - t 0 d ds R 3 k[n](n ε -n) dxds. ( 42 
)
The next task is to evaluate the time derivative of

R 3 k[n](n ε -n) dx.
Notice that for any smooth concentration n, we can write

ne ω c ∧ ∇ x k[n] = ne ω c ∧ σ ∇ x n n + q m ∇ x Φ[n] = σe ω c ∧ ∇ x n + ne B ∧ ∇ x Φ[n] = nV [n] -σrot x ne ω c ,
where

V [n] = σrot x e ωc + e∧∇xΦ[n] B
. Clearly, we have

div x ne ω c ∧ ∇ x k[n] = div x (nV [n]). ( 43 
)
Proposition 7.1 With the notations in (4), ( 5), ( 38) and (39) we have the equality

d dt R 3 k[n(t)](n ε (t, x) -n(t, x)) dx = R 3 p Be n + e ω c ∧ ∇ x k[n] • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx.

Proof.

By straightforward computations, we obtain

d dt R 3 k[n](n ε -n) dx = R 3 σ ∂ t n n + q m ∂ t Φ[n] (n ε -n) dx + R 3 k[n](∂ t n ε -∂ t n) dx = R 3 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx (44) + R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x n ε e ω c ∧ ∇ x k[n ε ] -div x e ω c ∧ F ε dx,
where in the last integral we have used the contraint Be • ∇ x k[n] = 0 which allows us to deduce that

R 3 k[n](Be • ∇ x p -Be • ∇ x p ε ) dx = 0.
Thanks to [START_REF] Rein | Global existence of classical solutions to the vlasov-poisson system in a three-dimensional, cosmological setting[END_REF], [START_REF] Fénod | Long time behavior of two-dimensional Vlasov equation with strong external magnetic field[END_REF] we have

R 3 ∂ t n σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx = - R 3 div x ne ω c ∧ ∇ x k[n] σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx ( 45 
) - R 3 Be • ∇ x p σ n ε -n n + q m (Φ[n ε ] -Φ[n]) dx = - R 3 div x (nV [n]) σ n ε -n n dx - R 3 ne ω c ∧ ∇ x k[n] • q m (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx = -σ R 3 div x e ∧ ∇ x Φ[n] B (n ε -n) dx -σ R 3 ∇ x ln n • V [n](n ε -n) dx - R 3 ne B ∧ ∇ x k[n] • (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx = - R 3 ∇ x k[n] • V [n](n ε -n) dx - R 3 ne B ∧ ∇ x k[n] • (E[n ε ] -E[n]) dx + R 3 pBe n • q m (n ε -n)(E[n ε ] -E[n]) -F ε dx.
Thanks to [START_REF] Rein | Global existence of classical solutions to the vlasov-poisson system in a three-dimensional, cosmological setting[END_REF] again, the last integral in [START_REF] Herda | Anisotropic Boltzmann-Gibbs dynamics of strongly magnetized Vlasov-Fokker-Planck equations[END_REF] writes easily

R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x n ε e ω c ∧ ∇ x k[n ε ] -div x e ω c ∧ F ε dx (46) = R 3 ∇ x k[n] • (n ε V [n ε ] -nV [n]) dx - R 3 e ω c ∧ ∇ x k[n] • F ε dx.
Observe that

n ε V [n ε ] -nV [n] -(n ε -n)V [n] = n ε e ∧ ∇ x Φ[n ε ] B -n e ∧ ∇ x Φ[n] B -(n ε -n) e ∧ ∇ x Φ[n] B = n ε e ∧ (∇ x Φ[n ε ] -∇ x Φ[n]) B ,
and finally ( 44), ( 45) and ( 46) yield the result.

Coming back to [START_REF] Goudon | Hydrodynamic limits for the Vlasov-Navier-Stokes equations. Part II: Fine particles regimes[END_REF], the modulated energy balance becomes

E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds = E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx ( 47 
)
- t 0 R 3 W [n] • q m (n ε -n)(E[n ε ] -E[n]) -F ε dxds,
where

W [n] = pBe n + e ωc ∧ ∇ x k[n].
In order to apply Gronwall lemma, we estimate the terms in the last integral of [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF]. Thanks to the formula

q m (n ε -n)(E[n ε ] -E[n]) = ϵ 0 m [div x (E[n ε ] -E[n])](E[n ε ] -E[n]) = ϵ 0 m div x (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 3 , we obtain - R 3 W [n] • q m (n ε -n)(E[n ε ] -E[n]) dx = ϵ 0 m R 3 (E[n ε ] -E[n]) ⊗ (E[n ε ] -E[n]) - |E[n ε ] -E[n]| 2 2 I 3 : ∂ x W [n] dx ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) ϵ 0 m 1 + √ 3 2 R 3 |E[n ε ] -E[n]| 2 dx,
where for any matrix P ∈ M 3,3 (R), the notation ∥P ∥ stands for (P : P ) 1/2 . Similarly, we have for some value C to be precised later on

R 3 W [n] • div x R 3 (σ∇ v f ε + f ε v) ⊗ v dv dx = - R 3 ∂ x W [n] : R 3 
(σ∇ v f ε + f ε v) ⊗ v dv dx ≤ ∥∂ x W [n]∥ L ∞ ((0,T )×R 3 ) 1 2ετ C R 3 R 3 |σ∇ v f ε + f ε v| 2 f ε dvdx + ετ C R 3 R 3 f ε |v| 2 2 dvdx . Since j ε = R 3 (σ∇ v f ε + f ε v) dv we have t 0 R 3 W [n(s)] • (ε∂ s j ε + j ε τ ) dxds = ε R 3 W [n(t)] • j ε (t, x) dx -ε R 3 W [n(0)] • j ε (0, x) dx + t 0 R 3 R 3 [σ∇ v f ε + f ε (s, x, v)v] • W [n(s)] τ -ε∂ s W [n(s)] dvdxds ≤ √ ε R 3 R 3 (f ε (0, x, v) + f ε (t, x, v)) ε |v| 2 2 + ∥W [n]∥ 2 L ∞ 2 dvdx + ε∥∂ s W [n]∥ L ∞ + ∥W [n]∥ L ∞ τ t 0 R 3 R 3 1 2εC |σ∇ v f ε + f ε v| 2 f ε + εC 2 f ε dvdxds.
Plugging the above computations in [START_REF] Littlejohn | Hamiltonian formulation of guiding center motion[END_REF], the modulated energy balance becomes for t ∈ [0, T ]

E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 ετ 1 - ∥W [n]∥ L ∞ 2C - ετ ∥∂ s W [n]∥ L ∞ 2C - ∥W [n]∥ L ∞ 2C t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + ∥∂ x W [n]∥ L ∞ 2 + √ 3 ϵ 0 2m R 3 |E[n ε ] -E[n]| 2 dx + ε τ C 2 ∥∂ x W [n]∥ L ∞ T 0 R 3 R 3 f ε |v| 2 dvdxdt + √ ε sup 0≤t≤T ε R 3 R 3 f ε |v| 2 dvdx + √ ε √ ε CT 2 ε∥∂ s W [n]∥ L ∞ + ∥W [n]∥ L ∞ τ + ∥W [n]∥ 2 L ∞ R 3 R 3 f ε (0, x, v) dvdx.
Taking 0 < ε ≤ 1 and C large enough, we obtain by Lemma 2.1 and ( 40), for some constant

C T , 0 ≤ t ≤ T , 0 < ε ≤ 1 E[n ε (t)|n(t)] + σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 2ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + C T t 0 E[n ε (s)|n(s)]ds + C T √ ε.
Applying Gronwall lemma, we deduce that for 0

≤ t ≤ T , 0 < ε ≤ 1 E[n ε (t)|n(t)]+σ R 3 R 3 n ε (t)M h f ε (t) n ε (t)M dvdx + 1 2ετ t 0 R 3 R 3 |σ∇ v f ε + vf ε | 2 f ε dvdxds ≤ E[n ε (0)|n(0)] + σ R 3 R 3 n ε (0)M h f ε (0) n ε (0)M dvdx + C T √ ε e C T t .
The above inequality says that the particle density f ε remains close to the Maxwellian with the same concentration, i .e., n ε (t)M , and n ε (t) stays near n(t), provided that analogous behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)

We justify the convergence of f ε toward nM in L ∞ (0, T ; L 1 (R 3 ×R 3 )), the other convergences being obvious. We use the Csisár -Kullback inequality in order to control the L 1 norm by the relative entropy, cf. [START_REF] Csiszár | Information-type measures of difference of probability distributons and indirect observation[END_REF][START_REF] Kullback | A lower bound for discrimination in information in terms of variation[END_REF]]

R n |g -g 0 |dx ≤ 2 max R n g 0 dx 1/2 , R n gdx 1/2 R n g 0 h g g 0 dx 1/2
for any non negative integrable functions g 0 , g : R n → R. Applying two times the Csisár -Kullback inequality we obtain

R 3 R 3 |f ε (t, x, v) -n(t, x)M (v)| dvdx ≤ R 3 R 3 |f ε (t, x, v) -n ε (t, x)M (v)| dvdx + R 3 |n ε (t, x) -n(t, x)| dx ≤ 2 M in R 3 R 3 n ε (t)M (v)h f ε (t) n ε (t)M dvdx 1/2 + 2 max M in , ∥n in ∥ L 1 (R 3 ) R 3 n(t)h n ε (t) n(t) dx 1/2
→ 0, as ε ↘ 0.

In the same manner we perform the balance of the relative between two smooth solutions of the limit model.

Proposition 7.2

Assume that n, ñ are smooth solutions of (4), ( 5) and [START_REF] Bostan | The Vlasov-Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation[END_REF] 

such that n in , ñin ≥ 0, n in , ñin ∈ L 1 (R 3 ), ∇ x Φ[n in ], ∇ x Φ[ñ in ] ∈ L 2 (R 3 ), ∂ x W [n] ∈ L 1 (0, T ; L ∞ (R 3 )), k[n in ], k[ñ in ] ∈ ker(Be • ∇ x ).
Then we have the inequality

E[ñ(t)|n(t)] ≤ E[ñ in |n in ] exp((2 + √ 3)∥∂ x W [n]∥ L 1 (0,T ;L ∞ (R 3 )) ), 0 ≤ t ≤ T.
In particular, there is at most one smooth solution.

Proof.

By [START_REF] Golse | The Vlasov-Poisson system with strong magnetic field[END_REF] we know that

E[ñ|n] = E[ñ] -E[n] - R 3 k[n](ñ -n) dx = σ R 3 nh ñ n dx + ε 0 2m R 3 |∇ x Φ[ñ] -∇ x Φ[n]| 2 dx. Thanks to the constraint Be • ∇ x k[n] = 0, Be • ∇ x k[ñ] = 0, we can write e • ∇ x σ ñ -n n + q m (Φ[ñ] -Φ[n]) = q m (ñ -n)(E[ñ] -E[n]) n • e.
As in the proof of Proposition 7.1, we observe that

d dt R 3 k[n](ñ -n) dx = R 3 ∂ t n σ ñ -n n + q m (Φ[ñ] -Φ[n]) dx + R 3 k[n] div x ne ω c ∧ ∇ x k[n] -div x ñe ω c ∧ ∇ x k[ñ] dx = R 3 W [n] • q m (ñ -n)(E[ñ] -E[n]) dx,
and the balance for the relative entropy becomes

E[ñ(t)|n(t)] -E[ñ(0)|n(0)] = - q m t 0 R 3 (ñ -n)(E[ñ] -E[n]) • W [n] dxds ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) (2 + √ 3) ϵ 0 2m t 0 R 3 |E[n ε ] -E[n]| 2 dxds ≤ ∥∂ x W [n]∥ L ∞ (R 3 ) (2 + √ 3) t 0 E[ñ(s)|n(s)]ds.
Applying Gronwall lemma completes the proof.

Example of smooth solutions for limit model

In this section we construct smooth solution for the limit model obtained in Section 6.1. We focus on the existence of the limit model

∂ t n + div x ne ω c ∧ ∇ x k[n] = 0, k[n] = σ(1 + ln n) + q m Φ[n], (t, x) ∈ R + × R 2 × T 1 , (48) 
where Φ[n] stands for the Poisson electric potential which solves

-ϵ 0 ∆ x Φ[n(t)](x) = q n(t, x), (t, x) ∈ R + × R 2 × T 1 . (49) 
Denoting E[n(t)] = -∇ x Φ[n(t)] the electric field derives from the potential Φ[n(t)]. We supplement our model by the initial condition

n(0, x) = n in (x), x ∈ R 2 × T 1 , (50) 
where n in is a smooth function and belongs to ker(Be • ∇ x ). The external magnetic field we consider here Be = (x 2 , -x 1 , 1). Notice that the vector field e/B ∈ W 2,∞ ((R 2 × T 1 )).

We follow the same arguments as in the well-posedness proof for the Vlasov-Poisson problem with an external magnetic field, as discussed in [START_REF] Bostan | Asymptotic Behavior for the Vlasov-Poisson Equations with Strong External Magnetic Field. Straight Magnetic Field Lines[END_REF][START_REF] Bostan | Asymptotic behavior for the Vlasov-Poisson equations with strong external curved magnetic field[END_REF]. Our goal is to obtain a priori bounds for the

L ∞ norm of E[n] and ∂ x E[n]
, not in the full space R 3 , but in R 2 × T 1 . These bounds rely on estimating the fundamental solution of Laplace's equation on R 2 × T 1 . Therefore, we begin by investigating the Poisson equation for a given density in this domain and finding a fundamental solution for this purpose.

8.1 Fundamental solution of Laplace's equation on

R 2 × T 1 Consider a function Ξ : R 2 × T 1 → R satisfying -∆ x Ξ = δ 0 (x, x 3 ), x = (x = (x 1 , x 2 ), x 3 ) ∈ R 2 × T 1 , (51) 
in the sense of distributions, where δ 0 (x) denotes the Dirac measure on R 2 × T 1 giving unit mass to the point 0.

Lemma 8.1 Let x = (x, x 3 ) ∈ R 2 × T 1 . Then Ξ(x) = - 1 4π 2 ln(|x|) + Γ(x), satifies (51) 
, where

Γ(x) = ∞ 0 1 4πt e -|x| 2 /4t 1 π ∞ n=1
e -n 2 t cos(nx 3 ) dt.

Proof.

We have

-∆ x Ξ = 1 2π n∈Z δ 0 (x)e inx 3 , (52) 
where we have used the Poisson summation formula

δ 0 (x 3 ) = 1 2π n∈Z e inx 3 .
Indeed, the δ 0 (x 3 ) is periodic with period 2π, it can be represented as a Fourier series

δ 0 (x 3 ) = n∈Z c n e inx 3 ,
where the Fourier coefficients are

c n = 1 2π π -π δ 0 (x 3 )e -inx 3 dx 3 = 1 2π e -i0x 3 = 1 2π .
On the other hand, as Ξ is periodic in x 3 of period 2π, we also have

Ξ(x) = n∈Z β n (x)e inx 3 , therefore -∆ x Ξ(x, x 3 ) = n∈Z (-∆ xβ n (x) + n 2 β n (x))e inx 3 . (53) 
Comparing ( 52) and ( 53) yields the following linear elliptic equation in the whole space R 2 for any n

∈ Z\ {0} -∆ xβ n (x) + n 2 β n (x) = 1 2π δ 0 (x), x ∈ R 2 . (54) 
A solution to (54) can be found by using the Fourier transform for linear equation. It is known that the solution to this equation is given in term of the Bessel potential G(x) as [START_REF] Evans | Partial Differential Equations: Second Edition[END_REF] where

β n (x) = 1 2π (U ⋆ δ 0 )(x), cf.
U (x) = ∞ 0 1 4πt e -|x| 2
/4t e -n 2 t dt. Thus, we have the solution formula

β n (x) = 1 2π t 0 1 4πt e -|x| 2 /4t e -n 2 t dt.
In the case n = 0, the equation ( 54) becomes the Laplace equation on R 2 . It is well known that the fundamental solution is given by -1 4π 2 ln |x|. Finally, we obtain

Ξ(x) = - 1 4π 2 ln(|x|) + n∈Z\{0} 1 2π t 0 1 4πt e -|x| 2 /4t e -n 2 t dt e inx 3 = - 1 4π 2 ln(|x|) + t 0 1 4πt e -|x| 2 /4t 1 2π n∈Z\{0} e -n 2 t e inx 3 dt = - 1 4π 2 ln(|x|) + t 0 1 4πt e -|x| 2 /4t 1 π ∞ n=1 e -n 2 t cos(nx 3 ) dt. Let us denote Γ 1,2 (t, x) := 1 4πt e -|x| 2 /4t and Γ 3 (t, x 3 ) := 1 2π 1 + 2 ∞ n=1 e -n 2 t cos(nx 3 ) . It is know that Γ 1,2 is a heat kernel on R 2 of the heat equation ∂ t Γ 1,2 (t, x) -∆ xΓ 1,2 (t, x) = 0, (t, x) ∈ R + × R 2 , Γ 1,2 | t=0 (x) = δ 0 (x), while Γ 3 is a heat kernel on T 1 of ∂ t Γ 3 (t, x 3 ) -∂ 2 x 3 Γ 3 (t, x 3 ) = 0, (t, x 3 ) ∈ R + × T 1 , Γ 3 | t=0 (x 3 ) = δ 0 (x 3 ).
For a proof of this property, we refer to [START_REF] Carrillo | Decay and vanishing of some axially symmetric Dsolutions of the Navier-Stokes equations[END_REF]. We define now G(t, x) := Γ 1,2 (t, x)Γ 3 (t, x 3 ). Then G is the fundamental solution of heat equation on R 2 × T 1 , that means

∂ t G -∆ x G = 0, (t, x = (x, x 3 )) ∈ R + × R 2 × T 1 , G| t=0 (x) = δ 0 (x).
Thus, we have that the function Γ in the fundamental solution for Laplace's equation ( 51) is related to the previous solution of heat equation as

Γ(x) = ∞ 0 Γ 1,2 (t, x) Γ 3 (t, x 3 ) - 1 2π dt. (55) 
Remark 8.1

The heat kernel Γ 3 on T 1 can also be given by the heat kernel k t (x 3 ) = (4πt) -1/2 e -x 2 3 /4t on the real line R as follows

Γ 3 (x 3 ) = 1 2π g t (x 3 ) := 1 2π 2π n∈Z k t (x 3 + 2πn) , x 3 ∈ T 1 . (56) 
Indeed, the function g t ∈ L 1 (T 1 ) since

∥g t ∥ T 1 = T 1 g t dm(x 3 ) = n∈Z T 1 k t (x 3 + 2πn)dx 3 = R k t (x 3 )dx 3 = 1,
where dm(x 3 ) is Haar measure on T 1 , dm(x 3 ) = 1/(2π) dx 3 . Thus, the periodic function g t can be written in the form of the Fourier serie

g t (x 3 ) = n∈Z ĝt (n)e inx 3 ,
where (ĝ t (n)) n∈Z is the sequence of the Fourier coeffiecients which is given by

ĝt (n) = 1 2π T 1 g t (x 3 )e -inx 3 dm(x 3 ) = 1 4π 2 n∈Z T 1 k t (x 3 + 2πn)e -in(x 3 +2πn) dx 3 = 1 4π 2 R k t (x 3 )e -inx 3 dx 3 = 1 4π 2 kt (n) = 1 2π 1 2π e -n 2 t ,
where kt (n) is the Fourier transform of the function k t (x 3 ).

Since we need the bounds of the function Γ and its derivatives in the following, we must to estimate the function Γ 3 -1 2π and also the first and second derivates of Γ 3 from (55). We shall use the arguments in [START_REF] Maheux | Notes on Heat Kernels on Infinite dimensional Torus[END_REF] to obtain the bound of |Γ 3 -1 2π |. Firstly, using the formula (56), we can rewrite the function Γ 3 on T 1 as follows: Lemma 8.2 For any t > 0 and for any x 3 ∈ T 1 , we have

g t (x 3 ) = π t exp -x 2 3 4t   1 + 2 n≥1 exp -π 2 n 2 t cosh πnx 3 t   .
Proof.

Using the definition of g t (x 3 ), we have

g t (x 3 ) = 2π n∈Z 1 (4πt) 1/2 exp - (x 3 + 2nπ) 2 4t = π t exp -x 2 3 4t n∈Z exp - πnx 3 t exp -π 2 n 2 t = π t exp -x 2 3 4t   1 + n≥1 exp πnx 3 t + exp - πnx 3 t exp -π 2 n 2 t   ,
which gives the claim, using cosh(y) = e y +e -y 2 .

Next, using Lemma 8.2, we obtain the following estimate Lemma 8.3 For any t > 0 and any

x 3 ∈ T 1 = [-π, π], we have exp -x 2 3 4t g t (0) ≤ g t (x 3 ) ≤ π t + g t (0) exp -x 2 3 4t . (57) 
Proof.

Using Lemma 8.2 and the fact that from cosh(y) ≥ 1, y ∈ R we get the lower bound. Indeed, for any t > 0

g t (x 3 ) ≥ exp - x 2 3 4t π t   1 + 2 n≥1 exp -π 2 n 2 t   = exp - x 2 3 4t g t (0).
For the upper bound, let us write

S(x 3 ) = 1 + 2 n≥1 exp -π 2 n 2 t cosh πnx 3 t .
For any n ≥ 1, using

|x 3 | ≤ π 2 cosh πnx 3 t ≤ 2 cosh π 2 n t = exp π 2 n t + exp - π 2 n t ≤ 1 + exp π 2 n t .
Therefore

S(x 3 ) ≤ 1 + n≥1 exp -π 2 n 2 t 1 + exp π 2 n t = 1 + n≥1 exp -π 2 n 2 t + exp - π 2 n(n -1) t ≤ 1 + n≥1 exp -π 2 n 2 t + exp - π 2 (n -1) 2 t = 2 + 2 n≥1 exp -π 2 n 2 t = 1 + t π g t (0).
Together with g t (x 3 ) = π t exp -x 2 3 4t S(x 3 ) implies the upper bound we wanted to prove.

We need the estimate of the function g t (x 3 ) at x 3 = 0.

Lemma 8.4

For any t > 0, we have

π t ≤ g t (0) ≤ 1 + π t , and 
2e -t ≤ g t (0) -1 ≤ 2e -t 1 -e -t .
Consequently, there exist positive constants

C 1 , C 2 such that |g t (0) -1| ≤ C 1 e -C 2 t √ t .
Proof. Using Lemma 8.2 with x 3 = 0 gives g t (0) ≥ π t . By formula [START_REF] Saint-Raymond | Convergence of solutions to the Boltzmann equation in the incompressible Euler lomit[END_REF] we have

g t (0) -1 = 2ϕ(t), ϕ(t) = 2 n≥1 e -n 2 t .
Since e -x 2 t is positive and decreasing, bounding a sum by an integral we get

ϕ(t) ≤ ∞ 0 e -x 2 t dx = 1 √ t ∞ 0 e -x 2 dx = 1 2 π t , hence g t (0) ≤ 1 + π t
. Moreover, ϕ(t) ≥ e -t we have g t (0) -1 ≥ 2e -t . Finally, since e -n 2 t ≤ e -nt , for any n ≥ 1, we deduce that ϕ(t) ≤ 2 n≥1 e -nt = 2e -t 1 -e -t , which gives

g t (0) -1 ≤ 2e -t
1-e -t . To finish Lemma, it remains to prove |g t (0) -1| ≤ e -t √ t , for any t > 0. Indeed, we have

|g t (0) -1| = (g t (0) -1)1 {0<t<1} + (g t (0) -1)1 {t≥1} ≤ π t e -t e t 1 {0<t<1} + 2e -t 1 -e -t √ t 1 √ t 1 {t≥1} ≤ C 1 e -C 2 t √ t ,
for some positive constants C 1 and C 2 . Now, the following lemma provides estimates of Γ 3 -1 2π and its derivatives on T 1 .

Lemma 8.5

Let Γ 3 (t, x 3 ) = 1 2π 1 + 2 ∞ n=1 e -n 2 t cos(nx 3 ) be the heat kernel on T 1 . Then there exist constants C 1 , C 2 and C 3 which can change from line to line such that

Γ 3 (t, x 3 ) - 1 2π ≤ C 1 1 √ t e -C 2 t e -C 3 x 2 3 /4t , t > 0, x 3 ∈ T 1 , (58) 
|∂ x 3 Γ 3 (t, x 3 )| ≤ C 1 1 t e -C 2 t e -C 3 x 2 3 /4t , t > 0, x 3 ∈ T 1 , (59) 
|∂ 2 x 3 Γ 3 (t, x 3 )| ≤ C 1 1 t 3/2 e -C 2 t e -C 3 x 2 3 /4t , t > 0, x 3 ∈ T 1 . (60) 
Proof.

Readers can find these results in [START_REF] Carrillo | Decay and vanishing of some axially symmetric Dsolutions of the Navier-Stokes equations[END_REF], even when T 1 is replaced by more general compact manifold, cf. [START_REF] Tian | Isoperimetric inequality under Kähler Ricci flow[END_REF][START_REF] Qi | A formula for backward and control problems of the heat equation[END_REF]. We provide here the main lines of the proof.

For the bound [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF], it is easily obtained from the consequence of Lemma 8.4 for t ≥ 1. If t ≤ 1, first using (56) yields Γ 3 (t, x 3 ) -1 2π = 1 2π (g t (x 3 ) -1) then (57) we have

1 2π exp -x 2 3 4t g t (0) -1 ≤ Γ 3 (t, x 3 ) - 1 2π ≤ 1 2π exp -x 2 3 4t π t + g t (0) -1 . ( 61 
)
Using the upper bound in (61) and Lemma 8.4 we deduce that

Γ 3 (t, x 3 ) - 1 2π ≤ 1 2π exp -x 2 3 4t π t + 1 2π exp -x 2 3 4t 2e -t 1 -e -t .
If t ∈ [δ 0 , 1], for some δ 0 ∈ (0, 1), it's not hard to show from the previous inequality that there exist positive constants C 1 , C 2 and C 3 such that Γ 3 (t, x 3 ) -1 2π ≤ C 1 1 √ t e -C 2 t e -C 3 x 2 3 /4t . On the other hand, for any positive test function φ ∈ C ∞ 0 (R), since lim t→0 + Γ 3 -1 2π , φ = (1 -1/2π)φ(x 3 ) and lim t→0 + ⟨k t , φ⟩ = φ(x 3 ), where k t (x 3 ) = (4πt) -1/2 e -x 2 3 /4t is the heat kernel on R, we deduce that we can choose the positive constants as above to obtain the previous estimate of Γ 3 -1/2 as t → 0 + . Together, these arguments give us the upper bound of [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF]. Similarly, by using the lower bound in (61), we infer the lower bound in [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF]. Therefore, we obtain the estimate [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF]. Now, for the estimates ( 59) and ( 60), we apply Lemma 2.1 in [START_REF] Tian | Isoperimetric inequality under Kähler Ricci flow[END_REF], which can be extended to the parabolic case, see Lemma 2.3 in [START_REF] Tian | Isoperimetric inequality under Kähler Ricci flow[END_REF] 

|∇ x u(t, x 3 )| ≤ C r 1 r 4 r t-r |y-x 3 |<r |u(s, y)| 2 dyds 1/2
, where u is asolution of the heat equation

∂ t u -∆ x 3 u = 0 in the domain [t -r 2 , t] × B(x 3 , r), with r = √ t/2 for any fixed point (t, x 3 ) ∈ R × T 1 .
In the next lemma, we provide estimates for the function Γ and its derivatives using the relation [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF] and the inequalities ( 58), ( 59) and ( 60).

Lemma 8.6

Let Γ(x) be the function on R 2 × T 1 provided by Lemma 8.1. Then we have the following estimates

|Γ(x)| ≤ C |x| , |∂ x Γ(x)| ≤ C |x| 2 , |D 2 x Γ(x)| ≤ C |x| 3 ,
where D 2

x denotes the second order derivative. Here, C stands for a positive constant, which can vary in each estimate.

Proof.

We will first estimate Γ(x). Thanks to [START_REF] Saint-Raymond | Control of large velocities in the two-dimensional gyro-kinetic approximation[END_REF] and [START_REF] Victory | On the existence of global weak solutions for the Vlasov-Poisson-Fokker-Planck system[END_REF], we deduce that

|Γ(x)| ≤ C 1 4π ∞ 0 t -3/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt ≤ C 1 4π ∞ 0 t -3/2 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min (1, C 3 )/4 = C 1 4π e -2 √ C 2 C ′ 3 |x| ∞ 0 t -3/2 e -C 2 t+2 √ C 2 C ′ 3 |x|-C ′ 3 |x| 2 /t dt = C 1 4π e -2 √ C 2 C ′ 3 |x| ∞ 0 e - √ C ′ 3 |x|- √ C 2 t √ t 2 2d(-t -1/2 ) = C 1 2π e -2 √ C 2 C ′ 3 |x| ∞ 0 e - √ C ′ 3 |x|u- √ C 2 u -1 2 du, u = t -1/2 = C 1 2π 1 C ′ 3 |x| e -2 √ C 2 C ′ 3 |x| ∞ 0 e -θ- √ C 2 C ′ 3 |x|θ -1 2 dθ, θ = C ′ 3 |x|u ≤ C |x| ,
for some positive constant C, where we have used that

∞ 0 e -θ- √ C 2 C ′ 3 |x|θ -1 2 dθ = √ π 2 , (62) 
see the proof of Lemma 8.12 in Appendix.

Next we estimate ∇ x Γ(x). Taking the derivative with respect to x in the formula (55) we deduce that

|∇ x Γ(x)| ≤ ∞ 0 |∇ xΓ 1,2 (t, x)||Γ 3 (t, x 3 ) - 1 2π |dt + ∞ 0 |Γ 1,2 (t, x)||∂ x 3 Γ 3 (t, x 3 )|dt.
A simple computation show that

∇ xΓ 1,2 (t, x) = -|x| 8πt 2 e -|x| 2 /4t ,
and thanks to the estimates ( 58) and ( 59) we obtain

|∇ x Γ(x)| ≤ C 1 |x| 8π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 4π ∞ 0 t -2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt ≤ C 1 |x| 8π ∞ 0 t -5/2 e -C 2 t e -C ′ 3 |x| 2 /t dt + C 1 4π ∞ 0 t -2 e -C 2 t e -C ′ 3 |x| 2 /t dt,
where

C ′ 3 = min(1, C 3 )/4. Using sup R ⋆ + q(t) = q(C ′ 3 |x| 2 )
where q(t) = t -1/2 e -C ′ 3 |x| 2 /2t for the first integral on the last line of the previous inequality, we deduce that

|∇ x Γ(x)| ≤ C 1 8π 1 C ′ 3 e + C 1 4π ∞ 0 t -2 e -C ′ 3 |x 2 |/2t dt = C 1 8π 1 C ′ 3 e + C 1 4π 2 C ′ 3 |x| 2 ∞ 0 d dt e ′ 3 |x 2 |/2t dt ≤ C |x| 2 ,
for some positive constant C.

Finally, we estimate D 2 x Γ(x). By direct computation in (58), we have

|D 2 x Γ(x)| ≤ ∞ 0 |D 2 xΓ 1,2 (t, x)||Γ 3 (t, x 3 ) - 1 2π |dt + ∞ 0 |∇ xΓ 1,2 (t, x)||∂ x 3 Γ 3 (t, x 3 )|dt + ∞ 0 |Γ 1,2 (t, x)||∂ 2 x 3 Γ 3 (t, x 3 )|dt. Since D 2 xΓ 1,2 (t, x) = 1 8πt 2 -I 2 + x ⊗ x 2t e -|x| 2 /4t , it implies that |D 2 xΓ 1,2 (x)| ≤ 1 8πt 2 e -|x| 2 /4t + |x| 2 16πt 3 e -|x| 2 /4t .
Using the inequalities ( 58), ( 59) and ( 60) we deduce that

|D 2 x Γ(x)| ≤ C 1 8π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 |x| 2 16π ∞ 0 t -7/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 |x| 8π ∞ 0 t -3 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt + C 1 4π ∞ 0 t -5/2 e -C 2 t e -|x| 2 /4t e -C 3 x 2 3 /4t dt =: I 1 + I 2 + I 3 + I 4 .
The estimates of the integrals I 1 and I 4 are performed as above. Thus we get

I 1 ≤ C |x| 3 , I 4 ≤ C |x| 3 .
For the integral I 3 , we have that

I 3 ≤ C 1 |x| 8π 2 ∞ 0 t -3 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min(1, C 3 )/4. Using again sup R ⋆ + h(t) = h(C ′ 3 |x| 2 ) where h(t) = t -1/2 e -C ′ 3 |x| 2 /2t
, we obtain that I 3 ≤ C |x| 3 , for some positive constant C. Similarly for integral I 2 , we also have

I 2 ≤ C 1 |x| 2 32π 2 ∞ 0 t -7/2 e -C 2 t e -C ′ 3 |x| 2 /t dt, C ′ 3 = min(1, C 3 )/4 ≤ C 1 |x| 2 32π 2 1 C ′ 3 e|x| ∞ 0 t -3 e -C 2 t e -C ′ 3 |x| 2 /2t dt ≤ C |x| 3 .
Together, the estimations of I i , for any i = 1, ..., 4 will provide us the estimate of D 2

x Γ(x). Thanks to Lemma 8.1 and the L ∞ estimate for the function Γ in Lemma 8.6, and following the same arguments as in the proof for Poisson's equation in R 3 , we can show that the solution of the Poisson equation ( 49) is given by Φ

[n](x) = q ϵ 0 Ξ ⋆ n(x) = q ϵ 0 π -π R 2 Ξ(x -y)n(y) dȳdy 3 . (63) 
8.2 Estimations for the electric field and its gradient on R 2 × T 1

We give now some estimates of the electric field E[n] = -∇ x Φ[n] which can be proved by treating the singular term in the fundamental solution Ξ as in, cf. [START_REF] Batt | Global symmetric solutions of the initial value problem of stellar dynamics[END_REF] for the space domain x ∈ R 3 and [43] for x ∈ T 3 .

Lemma 8.7

Let n be a positive concentration and belongs to L 1 (R 2 × T 1 ) ∩ L ∞ (R 2 × T 1 ). Then, there exists a constant C > 0 such that the electric field E[n] satisfies the following estimate:

∥E[n]∥ L ∞ ≤ C(∥n∥ L ∞ + ∥n∥ L 1 ).
Proof.

For any x = (x, x 3 ) ∈ R 2 × [-π, π], by the formula (63) we have

∇ x Φ[n](x) = - q 4π 2 ϵ 0 π -π R 2 ∇ x ln |x -ȳ|n(y) dȳdy 3 + q ϵ 0 π -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 = - q 4π 2 ϵ 0 π -π R 2 x - ȳ |x -ȳ| 2 n(y) dȳdy 3 + q ϵ 0 x 3 +π x 3 -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 .
The first integral in the previous expression can be estimated as

q 4π 2 ϵ 0 π -π R 2 ∇ x ln |x -ȳ|1 {|x-ȳ|≤1} n(y) dȳdy 3 + π -π R 2 ∇ x ln |x -ȳ|1 {|x-ȳ|≥1} n(y) dȳdy 3 ≤ C(∥n∥ L ∞ + ∥n∥ L 1 ).
For the second integral, we make a decomposition of R 2 × T 1 in the following way

R 2 × [x 3 -π, x 3 + π] := I ∪ J, where I = y ∈ R 3 : |x -y| ≥ 1 ∩ R 2 × [x 3 -π, x 3 + π], J = y ∈ R 3 : |x -y| ≤ 1 . It is obviously that J ⊆ R 2 × [x 3 -π, x 3 + π].
Thus the last integral in the previous equality can be written

x 3 +π x 3 -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 = I ∇ x Γ(x -y) n(y)dy + J ∇ x Γ(x -y) n(y)dy.
Thanks to Lemma 8.6, we deduce that

q ϵ 0 x 3 +π x 3 -π R 2 ∇ x Γ(x -y) n(y) dȳdy 3 ≤ C I 1 |x -y| 2 n(y)dy + J 1 |x -y| 2 n(y)dy ≤ C x 3 +π x 3 -π R 2 n(y) dȳdy 3 + |x-y|≤1 1 |x -y| 2 n(y)dy ≤ C π -π R 2 n(y) dȳdy 3 + 4π∥n∥ L ∞ ≤ C(∥n∥ L 1 + ∥n∥ L ∞ ),
where we have used that |x-y|≤1 1 |x-y| 2 dy = 4π. Combining these estimates, we obtain the desired result in Lemma.

Lemma 8.8 Let n ∈ L 1 (R 2 × T 1 ) ∩ W 1,∞ (R 2 × T 1 )
and n ≥ 0. There exists a constant C > 0 such that the gradient of the electric field E[n] satisfies the following estimates

∥∇ x E[n]∥ L ∞ ≤ C 1 + ∥n∥ L ∞ (1 + ln + (∥∇ x n∥ L ∞ )) + ∥n∥ L 1 ,
where the notation ln + stands for the positive part of ln.

Proof.

Observe that

Φ[n](x) = - q 4π 2 ϵ 0 π -π R 2 ln(|x -ȳ|)n(y) dȳdy 3 + q ϵ 0 π -π R 2 Γ(x -y) n(y) dȳdy 3 = - q 4π 2 ϵ 0 π -π R 2 ln(|ȳ|)n(x -ȳ, x 3 -y 3 ) dȳdy 3 + q ϵ 0 π -π R 2 Γ(y) n(x -y) dȳdy 3 ,
because the functions Γ and n are periodic with respect to x 3 of period 2π. We estimate now

∂ 2 x 1 Φ[n](x).
In other cases, we can do the same. Taking the derivative in the variable x 1 of the above equality, we have

∂ x 1 Φ[n](x) = - q 4π 2 ϵ 0 π -π R 2 ln(|ȳ|)∂ x 1 n(x -ȳ, x 3 -y 3 ) dȳdy 3 + q ϵ 0 π -π R 2 Γ(y)∂ x 1 n(x -y) dȳdy 3 = q 4π 2 ϵ 0 π -π R 2 ln(|ȳ|)∂ y 1 n(x -ȳ, x 3 -y 3 ) dȳdy 3 - q ϵ 0 π -π R 2 Γ(y)∂ y 1 n(x -y) dȳdy 3 = q 4π 2 ϵ 0 π -π R 2 ln(|x -ȳ|)∂ y 1 n(ȳ, y 3 ) dȳdy 3 - q ϵ 0 π -π R 2 Γ(x -y)∂ y 1 n(y) dȳdy 3 , which implies that ∂ 2 x 1 Φ[n](x) = q 4π 2 ϵ 0 π -π R 2 ∂ x 1 ln(|x -ȳ|)∂ y 1 n(ȳ, y 3 ) dȳdy 3 - q ϵ 0 π -π R 2 ∂ x 1 Γ(x -y)∂ y 1 n(y) dȳdy 3 = q 4π 2 ϵ 0 π -π R 2 x 1 -y 1 |x -ȳ| 2 ∂ y 1 n(ȳ, y 3 ) dȳdy 3 - q ϵ 0 x 3 +π x 3 -π R 2 ∂ x 1 Γ(x -y)∂ y 1 n(y) dȳdy 3 =: K 1 + K 2 .
The estimation of K 1 , see [START_REF] Batt | Global symmetric solutions of the initial value problem of stellar dynamics[END_REF]. We estimate now K

2 . Let r, R > 0 such that 0 < r < R < ∞ verify y ∈ R 3 : |x -y| < R ⊂ R 2 × [x 3 -π, x 3 + π].
Then we make a decomposition of R 2 × [x 3 -π, x 3 + π] in the following way

R 2 × [x 3 -π, x 3 + π] := J 1 ∪ J 2 ∪ J 3 ,
where

J 1 = y ∈ R 3 : |x -y| > R ∩ R 2 × [x 3 -π, x 3 + π], J 2 = y ∈ R 3 : r < |x -y| < R , J 3 = y ∈ R 3 : |x -y| < r .
For the integral on J 1 , thanks to the integration by parts with respect to y 1 and noticing that the boundary of

J 1 is ∂J 1 = y ∈ R 3 : |x -y| = R ∪ R 2 × {x 3 -π, x 3 + π}, we get - J 1 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = J 1 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 - |x-y|=R ∂ x 1 Γ(x -y)n(y) -(x 1 -y 1 ) |x -y| dσ(y) - R 2 [∂ x 1 Γ(x -(ȳ, x 3 + π))n(ȳ, x 3 + π) -∂ x 1 Γ(x -(ȳ, x 3 -π))n(ȳ, x 3 -π)] =0 dȳ. (64) 
Similarly, the integral on J 2 can be written as

- J 2 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = J 2 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 - |x-y|=R ∂ x 1 Γ(x -y)n(y) (x 1 -y 1 ) |x -y| dσ(y) - |x-y|=r ∂ x 1 Γ(x -y)n(y) -(x 1 -y 1 ) |x -y| dσ(y). ( 65 
)
For the integral on J 3 , since ∂ y 1 n(y) = ∂ y 1 [n(y) -n(x)] and then using the integration by parts, we obtain

- J 3 ∂ x 1 Γ(x -y)∂ y 1 n(y)dȳdy 3 = - J 3 ∂ x 1 Γ(x -y)∂ y 1 [n(y) -n(x)]dȳdy 3 = J 3 ∂ y 1 ∂ x 1 Γ(x -y)[n(y) -n(x)]dȳdy 3 - |x-y|=r ∂ x 1 Γ(x -y)[n(y) -n(x)] (x 1 -y 1 ) |x -y| dσ(y). (66) 
Combining the equalities (64), ( 65) and (66) we deduce that

∂ 2 x 1 Φ[n](x) = J 1 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 + J 2 ∂ y 1 ∂ x 1 Γ(x -y)n(y)dȳdy 3 + J 3 ∂ y 1 ∂ x 1 Γ(x -y)[n(y) -n(x)]dȳdy 3 + |x-y|=r ∂ x 1 Γ(x -y)n(x) (x 1 -y 1 ) |x -y| dσ(y) := I 1 + I 2 + I 3 + I 4 .
Thanks to Lemma 8.6, we will estimate the integrals I i , for any i = 1, ..., 4.

For the integral I 4 , using the L ∞ estimate of ∂ x Γ we have

I 4 ≤ C |x-y|=r 1 |x -y| 2 dσ(y)∥n∥ L ∞ = 4πC∥n∥ L ∞ .
For the integral I 3 , using the L ∞ estimate of ∂ 2

x Γ we also get

I 3 ≤ C |x-y|<r 1 |x -y| 3 |x -y|dy∥∇ x n∥ L ∞ = 2π 2 Cr∥∇ x n∥ L ∞ .
Similarly for the integral I 2 and the integral I 1 , we obtain

I 2 ≤ C r<|x-y|<R 1 |x -y| 3 dy∥n∥ L ∞ = 2π 2 C ln(R/r)∥n∥ L ∞ , I 1 ≤ C J 1 1 |x -y| 3 n(y)dy ≤ C R 3 ∥n∥ L 1 .
Finally, together these estimates of I i , for any i = 1, ..., 4 we obtain

K 2 ≤ C 1 R 3 ∥n∥ L 1 + ln(R/r)∥n∥ L ∞ + r∥∇ x n∥ L ∞ + ∥n∥ L ∞ .
Taking r = 1 1+∥∇n∥ L ∞ and R = 1 which gives us the result of the lemma.

Local existence of smooth solutions

Let's begin to establish strong solutions for the limit model. It is sufficient to construct a solution on some time interval [0, T ], T > 0. We present only the main arguments, the other details being left to the reader. We assume that the initial condition n in satisfies the hypotheses

H1) n in ≥ 0, H2) n in ∈ W 1,∞ (R 2 × T 1 ) ∩ W 1,1 (R 2 × T 1 ).

Solution integrated along the characteristics

A standard computation, we can rewrite the equation [START_REF] Lutz | Etude mathématique et numérique d'un modèle gyrocinétique incluant des effets électromagnétique pour la simulation d'un plasma de Tokamak[END_REF] as

∂ t n + E ∧ e B • ∇ x n + σrot x e ω c • ∇ x n -rot x e B • En = 0, (t, x) ∈ R + × R 2 × T 1 . ( 67 
)
For any smooth field E ∈ L ∞ (0, T ; W 

Π(s; s, x) = x ∈ R 2 × T 1 , (68) 
where Π(t; s, x) is the solution of the ODE, t represents the time variable, s is the initial time and x is the initial position. Π(s; s, x) = x is our initial condition. Notice that the vector field e B is also smooth and belongs to W 2,∞ (R 2 × T 1 ). Therefore, the characteristics in (68) are well defined for any (s, x) ∈ [0, T ] × R 2 × T 1 and there are smooth with respect to x. From (68), the equation ( 67 

Conservation law on a volume

We have the following conservation law

R 2 ×T 1 n(t, x) dx = R 2 ×T 1 n in (x) dx, 0 ≤ t ≤ T. (70) 
Indeed, we denote J(t; s, x) is the Jacobian matrix of Π(t; s, x) with respect to x at (t; s, x). Integrating the equality (69) with respect to x and then changing the variable x to Π(t; 0, x), we obtain 

R 2 ×T 1 n(t, x) dx = R 2 ×T 1 n in (x) exp

A priori estimates

The bound in L ∞ (0, T ; W 

∥E(t)∥ L ∞ ).
We then prove (72). By taking the derivative with respect to x in the formula (69), we imply 

∥∇ x n(t)∥ L ∞ ≤
∥E(t)∥ W 1,∞ )),
for some constant C(σ, q, m, B) depending on σ, q, m, C B . Combining these estimates yield

∥∇ x n(t)∥ L ∞ ≤ (∥n in ∥ L ∞ + exp (C 0 T (1 + ∥E∥ W 1,∞ )) ∥∇n in ∥ L ∞ ) exp(C 0 T (1 + ∥E∥ W 1,∞ )),
where we used the notation C 0 for a universal constant depending on σ, q, m, B.

The bound in L ∞ (0, T ; W 1,1 (R 2 × T 1 )) of the solutions 

∥n(t)∥ L 1 = ∥n in ∥ L 1 , t ∈ [0, T ], (74) 
∥E(t)∥ W 1,∞ ).
Here, we fix M 2 as a constant such that 2C(1+e∥n in ∥ L ∞ (2+ln

+ (∥n in ∥ W 1,∞ ))+∥n in ∥ L 1 ) ≤ M 2 2
and we take T = 1 max(C B ,C 0 )(M 1 +M 2 ) . Therefore we obtain

∥∂ x F(E)(t, •)∥ L ∞ ≤ M 2 2 2 = M 2 .
Now we establish the inequality (77 Notice that sup t∈[0,T ] ∥ Ẽ(t)∥ W 1,∞ ≤ M 1 +M 2 , since Ẽ ∈ Σ. Then, the Gronwall lemma allows us to conclude that (79) holds. Therefore we have

I 1 ≤ C t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds.
Next, we estimate the integral I 2 . We utilize the inequality |e x -e y | ≤ e x+y |x -y|, valid for any x, y ∈ R. Applying the same argument as in the estimate of I 1 , we obtain

I 2 ≤ C t 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds.
Notice that, for the sake of simplicity, we use the same notation C in the inequalities for both I 1 and I 2 standing for a universal constant depending on T, M 1 , M 2 , B, n in . Finally, we combine the estimate for the integrals I 1 and I 2 to derive the result.

Lemma 8.11

We have

∥n E (t) - ñ Ẽ (t)∥ L 1 ≤ C t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds,
for some positive constant C, not depending on E, Ẽ.

Proof.

Since n E and ñ Ẽ are the solutions of (67) therefore we deduce that

∂ t (n E (t) - ñ Ẽ (t)) + (E -Ẽ) ∧ e B • ∇ x n E + Ẽ ∧ e B • ∇ x (n E - ñ Ẽ ) +σrot x e ω c • ∇ x (n E - ñ Ẽ ) -rot x e B • (E -Ẽ)n E -rot x e B • Ẽ(n E - ñ Ẽ ) = 0, n E (0) - ñ Ẽ (0) = 0.
Multiplying this equation by sign(n Eñ Ẽ ), then integrating with respect to x, we obtain

∂ t R 2 ×T 1 |n E (t) - ñ Ẽ (t)| dx + R 2 ×T 1 sign(n E - ñ Ẽ ) (E -Ẽ) ∧ e B • ∇ x n E dx - R 2 ×T 1 sign(n E - ñ Ẽ )rot x e B • (E -Ẽ)n E dx - R 2 ×T 1 rot x e B • Ẽ|n E - ñ Ẽ | dx = 0.
Using the inequality (75) and a straightforward estimations yield

∂ t R 2 ×T 1 |n E (t) - ñ Ẽ (t)| dx ≤ C ∥E(t) -Ẽ(t)∥ L ∞ + R 2 ×T 1 |n E - ñ Ẽ | dx ,
for some positive constant C depending only on q, m, B, M 1 , M 2 , n in . Integrating between 0 and t and thanks to the Gronwall lemma we obtain the desired result.

=

  div x nv ∧D + nv GD + σn ω c (I 3 -e ⊗ e)rot x e + div x σn ω c (e • rot x e)e . Notice that we can write (I 3 -e ⊗ e)rot x e = e ∧ (rot x e ∧ e) = e ∧ [(∂ x e -t ∂ x e)e] = e ∧ ∂ x ee, implying that σ n ω c (I 3 -e ⊗ e)rot x e = -σ n ω c ∂ x ee ∧ e = nv CD .

and for any ψ ∈ L 2 ( 1 S S 0 ∂Y

 210 R m ) which is constant along the flow Y we have R m u(y)ψ(y) dy = R m u(y)ψ(Y (-s; y)) dy = (s; y)) ds ψ(y) dy = R m ⟨u⟩ (y)ψ(y) dy. For any vector field c = c(y) : R m → R m , we define the average ⟨c⟩ along the flow of b • ∇ y by ⟨c⟩ = (-s; Y (s; •))c(Y (s; •)) ds. Notice that the family of transformations c → ∂Y (-s; Y (s; •))c(Y (s; •)), s ∈ R, is a one parameter group. The average operators for functions and vector fields are related by the following formulas: ⟨c • ∇ψ⟩ = ⟨c⟩ • ∇ψ,

  (s; y)) ds = 0. Generally, given a smooth divergence free vector field b • ∇ y in R 3 , with global characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 , we call angular vector field in D ∈ R 3 any vector field ν • ∇ y satisfying b(y) • ν(y) = C, t ∂Y (s; y)ν(Y (s; y)) = ν(y), rot y ν = 0, (s, y) ∈ R × D, for some constant C ∈ R ⋆ , where D is an open subset of R 3 , which is left invariant by the flow i .e., Y (s; D) = D, s ∈ R. We intend to establish the following commutation formula. Proposition 5.1 Let us consider a vector field b • ∇ y in R 3 satisfying (21), (22) with S-periodic characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 . We denote by η • ∇ y the gradient of an invariant function with respect to the flow Y , or an angular vector field, in some open subset D of R 3 , which is left invariant by the flow Y . Therefore, for any C 1 function α = α(y), we have

Lemma 5. 1

 1 We denote by M [e] the matrix of the linear transformation

  Proof. By direct computations one gets (e ⊗ M [e]ξ -M [e]ξ ⊗ e)η = ((e ∧ ξ) • η)e -(e • η)e ∧ ξ = ((ξ ∧ η) • e)e + (η • e)ξ ∧ e = e ⊗ e(ξ ∧ (η -(η • e)e)) + (η • e)ξ ∧ e = ξ ∧ (η -(η • e)e) + (η • e)ξ ∧ e = ξ ∧ η, where we have used that ξ ∧ (η -(η • e)e) ∈ Re, since ξ • e = 0. For any function or vector field, the notation F s stands for F • Y (s; •). Lemma 5.2 Let us consider a vector field b • ∇ y in R 3 satisfying (21), (22) with S-periodic characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 . We denote by M [e] the matrix of the linear transformation

  Therefore, by Lemma 5.1 we obtain ∂Y (s; •)(e ⊗ M [e]∇α -M [e]∇α ⊗ e)∇β = (e s ⊗ M [e s ](∇α) s -M [e s ](∇α) s ⊗ e s )(∇β) s , which reduce, thanks to the equalities e • ∇β = 0, e s • (∇β) s = 0 to ∂Y (s; •)(e ⊗ M [e]∇α)∇β = (e s ⊗ M [e s ](∇α) s )(∇β) s .

Finally we have (I 3 -

 3 e s ⊗ e s ) ∂Y (s; •)M [e] t ∂Y (s; •) |b| -M [e s ] |b s | (∇α) s = 0, for any invariant function α, and our conclusions follows. Lemma 5.3 Let us consider a vector field b • ∇ y in R 3 satisfying (21), (22) with S-periodic characteristic flow Y = Y (s; y), (s, y) ∈ R × R 3 , which possesses angular vector field ν in some invariant open subset D ⊂ R 3 . A vector field c • ∇ y has zero average in D iff ⟨c • ν⟩ = 0 in D and ⟨c • ∇ y u⟩ = 0 in D for any function u such that 1 D u ∈ ker(b • ∇ y ). Proof. By formula (23) we know that for any function u which is left invariant by Y in D, we have ⟨c • ∇ y u⟩ = ⟨c⟩ • ∇ y u in D. Similarly, for any y ∈ D we write ⟨c • ν⟩ (y) = 1 S S 0 c(Y (s; y)) • ν(Y (s; y)) ds = 1 S S 0 ∂Y (-s; Y (s; y))c(Y (s; y)) • t ∂ y Y (s; y)ν(Y (s; y)) ds = 1 S S 0 ∂Y (-s; Y (s; y))c(Y (s; y)) ds • ν(y) = ⟨c⟩ (y) • ν(y). Clearly, if ⟨c⟩ = 0 in D, then 1 D ⟨c • ∇ y u⟩ = 0 for any function u such that 1 D u ∈ ker(b • ∇ y ) and 1 D ⟨c • ν⟩ = 0. Conversely, if 1 D ⟨c • ∇ y u⟩ = 0 for any function u such that 1 D u ∈ ker(b • ∇ y ) and 1 D ⟨c • ν⟩ = 0, then 1 D ⟨c⟩ • ∇ y u = 0, 1 D ⟨c⟩ • ν = 0. We deduce that there is a function λ = λ(y) in D such that ⟨c⟩ (y) = λ(y)b(y), y ∈ D.

R 2 ×T 1 n

 21 s; 0, x)) • E(s, Π(s; 0, x))ds det (J(t; 0, x)) dx = in (x) dx.

  1,∞ (R 2 ×T 1 )), we consider the associated characteristics flow of this equation

	 	d dt	Π(t; s, x) = E(t, Π(t; s, x)) ∧	e(Π(t; s, x)) B(Π(t; s, x))	+ σrot x	e ω c	(Π(t; s, x)),
							

  1,∞ (R 2 × T 1 )) of the solutions We have the following bounds sup t∈[0,T ]∥n(t)∥ L ∞ (R 2 ×T 1 ) ≤ ∥n in ∥ L ∞ (R 2 ×T 1 ) exp(C B T sup ∥∇ x n(t)∥ L ∞ (R 2 ×T 1 ) ≤(∥n in ∥ L ∞ + exp(C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ))∥∇ x n in ∥ L ∞ ) ∥E(t)∥ W 1,∞ )),where we denote the constants C B = ∥e/B∥ W 2,∞ (R 2 ×T 1 ) and C 0 = C(σ, q, m, B). We will first prove (71). By the formular (69), for any t ∈ [0, T ] we have∥n(t)∥ L ∞ ≤ ∥n in ∥ L ∞ exp ≤ ∥n in ∥ L ∞ exp(T ∥∂ x (e/B)∥ L ∞ sup t∈[0,T ] ∥E(t)∥ L ∞ ) ≤ ∥n in ∥ L ∞ exp(C B T sup

					∥E(t)∥ L ∞ ),	(71)
					t∈[0,T ]	
						(72)
	exp(C 0 T (1 + sup			
			t∈[0,T ]		
	0	t	rot x	e B	(Π(s; t, x)) • E(s, Π(s; t, x))ds	L ∞

t∈[0,T ]

  W 1,∞ ≤ ∥n in ∥ L ∞ + ∥∂ x Π(0; t, •)∥ L ∞ ∥∇n in ∥ L ∞ ,therefore it remains to estimate sup t∈[0,T ] ∥∂ x Π(0; t, •)∥ L ∞ . Taking the derivative with respect to x in (68), we deduce that∥∂ ∥E(s)∥ W 1,∞ )∥∂ x Π(0; s, •)∥ L ∞ ds,for some constant C(σ, q, m) depending on σ, q, m. Thanks to Grönwall's inequality, we have∥∂ x Π(0; t, •)∥ L ∞ ≤ exp((1 + C(σ, q, m, C B ))t(1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ )), t ∈ [0, T ],(73)which implies for anty t ∈ [0, T ] that∥n in (Π(0; t, •))∥ W 1,∞ ≤ ∥n in ∥ L ∞ +exp((1+C(σ, q, m, C B ))T (1+ sup t∈[0,T ] ∥E(t)∥ W 1,∞ ))∥∇n in ∥ L ∞ . ∥E(s)∥ W 1,∞ (1 + ∥∂ x Π(s; t, •)∥ L ∞ )ds ∥E(s)∥ W 1,∞ exp((1 + C(σ, q, m, C B )t(1 + sup ∥E(s)∥ W 1,∞ exp((1 + C(σ, q, m, C B ))t(1 + sup

	A straightforward computations and then using (73) yield				
	I(t) ≤ exp	0	t	rot x	e B	• E(s)ds	L ∞	1 +	0	t	rot x	e B	• E(s)| Π(s;t,x)	W 1,∞	ds
							t								
	≤ exp(C B t sup t∈[0,T ] C B ≤ exp(C B t sup ∥E(t)∥ L ∞ ) 1 + 0 ∥E(t)∥ L ∞ )							
		t∈[0,T ]											
	t														
	1 +	C B sup									∥E(s)∥ W 1,∞ ))ds
	0			[0,T ]									[0,T ]		
	≤ exp(C B t sup	∥E(t)∥ L ∞ )									
		t∈[0,T ]											
	(1 + C B t sup										∥E(t)∥ W 1,∞ )))	
		[0,T ]									t∈[0,T ]		
	≤ exp(C(σ, q, m, B)t(1 + sup									
						t∈[0,T ]									
	Next we estimate the following norm									
	I(t) := exp								.		
													W 1,∞		

∥n in (Π(0; t, •))∥ W 1,∞ exp t 0 rot x e B (Π(s; t, •)) • E(s, Π(s; t, •))ds W 1,∞

.

We estimate now ∥n in (Π(0; t, x))∥ W 1,∞ . Since

∥n in (Π(0; t, •))∥ x Π(0; t, •)∥ L ∞ ≤ 1 + t 0 (∥E(s) ∧ (e/B)∥ W 1,∞ + σ∥e/ω c ∥ W 2,∞ )∥∂ x Π(0; s, •)∥ L ∞ ds ≤ 1 + (1 + C(σ, q, m, C B )) t 0 (

1

+ t 0 rot x e B (Π(s; t, •)) • E(s, Π(s; t, •))ds

  ∥∇ x n∥ L 1 ≤ exp(C 0 t(1 + sup t∈[0,T ] ∥E∥ W 1,∞ ))(∥∇n in ∥ L 1 + tC 0 supThen, we integrate with respect to x and change the variable x to Π(t; 0, x). Notice that the Jacobian formula is given by exp -∥∂ x Π(0; t, •)∥ L ∞ |∇ x n in | dx ∥∂ x Π(s; t, •)∥ L ∞ ∥E(s, •)∥ W 1,∞ ds dx.Thus, together with (78) we deduce that∥∂ x F(E)(t, •)∥ L ∞ ≤ C(1 + e∥n in ∥ L ∞ (2 + ln + (∥n in ∥ W 1,∞ ) + 2C 0 T (1 + sup t∈[0,T ] ∥E(t)∥ W 1,∞ ) + ∥n in ∥ L 1 ) ≤ 2C(1 + e∥n in ∥ L ∞ (2 + ln + (∥n in ∥ W 1,∞ )) + ∥n in ∥ L 1 )(1 + C 0 T sup

						t∈[0,T ]
		0	t	rot x	e B	• E(s)| Π(s;0,x) ds ,
	therefore we deduce that				
	|∇ x n| dx ≤				
	R 2 ×T 1	R 2 ×T 1			
					t
	+ C B		n in (x)
		R 2 ×T 1	0
	Thanks to (73) we obtain				

t∈[0,T ] ∥E(t)∥ W 1,∞ ∥n in ∥ L 1 ),

(75) 

where C 0 is the constant depending on σ, q, m, B. Now we will prove (75). By taking the derivative with respect to x in (69), we have

∇ x n(t, x) = exp t 0 rot x e B • E(s)| Π(s;t,x) ds t ∂ x Π(0; t, x)∇ x n in (Π(0; t, x))

+n in (Π(0; t, x))

t 0 t ∂ x Π(s; t, x)∇ x rot x e B • E(s) | Π(s;t,x) ds . R 2 ×T 1 |∇ x n| dx ≤ exp(C 0 t(1 + sup t∈[0,T ] ∥E∥ W 1,∞ ))(∥∇n in ∥ L 1 + tC 0 sup t∈[0,T ] ∥E(t)∥ W 1,∞ ∥n in ∥ L 1 ),

where we use same the notation C 0 for a universal constant depending on σ, q, m, B.

  ). Consider E and Ẽ ∈ Σ and denote by n E and ñ Ẽ the solutions by characteristics of (67),[START_REF] Maheux | Notes on Heat Kernels on Infinite dimensional Torus[END_REF] with the same initial data n in corresponding to the electric fields E and Ẽ, respectively. It is easily seen from Lemma 8.7 that∥F(E)(t) -F( Ẽ)(t)∥ L ∞ ≤ C(∥n E (t) -ñ Ẽ (t)∥ L ∞ + ∥n E (t) -ñ Ẽ (t)∥ L 1 ).Notice that the constant C is not depend on E and Ẽ. E and Π Ẽ denote the characteristic of (68) corresponding to the vector fields E and Ẽ. We estimate now the integral I 1 . Since|n in (Π E (0; t, x)) -n in ( Π Ẽ (0; t, x))| ≤ |Π E (0; t, x) -Π Ẽ (0; t, x)|∥∇ x n in ∥ L ∞ , so we need to estimate sup t,s∈[0,T ] ∥Π E (t; s, •) -Π Ẽ (t; s, •)∥ L ∞ . We claim that sup t,s∈[0,T ] ∥Π E (t; s, •) -Π Ẽ (t; s, •)∥ L ∞ ≤ C 0 e C 0 T (1+M 1 +M 2 )

	Lemma 8.10 We have ∥n Proof. Thanks to (69), we deduce that |n t 0 + n in ( Π Ẽ (0; t, x)) exp t 0 rot x e B • E(s)| Π t rot x e B • E(s)| Π E (s;t,x) ds 0 rot x • Ẽ(s)| Π t e B 0 ∥E(s, •) -Ẽ(s, •)∥ L ∞ ds, (79) for some constant C 0 depending on σ, q, m, B. Indeed, from the equations in (68) we imply that d dt (Π E -Π Ẽ )(t; s, x) = E(t) ∧ e B | Π(t;s,x) -Ẽ(t) ∧ e B | Π (t; s, x) + Ẽ(t) ∧ e B |(Π E -Π Ẽ )(t; s, x)| ≤ C 0 t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds 0 0 | Integrating between s and t we find + C 0 t ∥ Ẽ∥ W 1,∞ |(Π E -Π Ẽ )(τ ; s, x)|dτ + C 0 t |(Π E -Π Ẽ )(τ ; s, x)|dτ.

E (t) -ñ Ẽ (t)∥ L ∞ ≤ C t 0 ∥E(s) -Ẽ(s)∥ L ∞ ds,

for some positive constant C, not depending on E, Ẽ.

E (t, x) -ñ Ẽ (t, x)| ≤ |n in (Π E (0; t, x)) -n in ( Π Ẽ

(

0; t, x))| exp E (s;t,x) ds -exp Ẽ (s;t,x) ds =: I 1 + I 2 , where Π Π (t; s, x) -Ẽ(t) ∧ e B | Π(t; s, x) + σrot x e ω c (Π(t; s, x)) -σrot x e ω c ( Π(t; s, x)), (Π E -Π Ẽ )(s; s, x) = 0.
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Local existence of solutions

We define

where M i , i = 1, 2 are two constants to be fixed later. Given an electric field E in Σ. We consider the solution by characteristic of the equation (67) on R 2 × T 1 , corresponding to the electric field E and denote by n E which is given by the formula (69). We construct the following map F on Σ, whose fixed point gives the solution of the system (67), [START_REF] Miot | On the gyrokinetic limit for the two-dimensional Vlasov-Poisson system[END_REF] and [START_REF] Maheux | Notes on Heat Kernels on Infinite dimensional Torus[END_REF] at least locally in time such solutions exist

We will prove that the map F is left invariant on the set Σ for a convenient choice of the constants M 1 and M 2 , then we want to establish an estimate like

for some constant C T , not depending on E and Ẽ. After that, the existence of the system (67), ( 49) and ( 50) immediately, based on the construction of an iterative method for F. Lemma 8.9

There exist positive constants

Proof.

Let E ∈ Σ. Thanks to Lemma 8.7 and the formulas (71) and (74), we have

Here, we fix M 1 as a constant such that Ce 2 (∥n in ∥ L ∞ + ∥n in ∥ L 1 ) ≤ M 1 , and we choose

, where C 0 = C(σ, q, m, B) is a universal constant. Hence, we obtain sup

The bound of L ∞ norm for the density n(t) in (71) becomes

It remains to estimate ∥∂ x F(E)(t, •)∥ L ∞ . Thanks to Lemma 8.8, we need to estimate ln + (∥∇ x n(t)∥). By the formula (72) we have

Based on these arguments and Proposition 7.2, we establish the following result Proposition 8.1 Assume that the initial condition n in satisfies the hypotheses H1 and H2. There exists T > 0 and a local time strong solution (n, E) on [0, T ] for the limit model ( 48), ( 49) and (50). The solution is unique and satisfies

Appendix

Lemma 8.12 For any r ∈ R + , we have

Proof.

Let us denote I(r) =

∞ 0 e -(θ-rθ -1 ) 2 dθ. It is easily seen that

For any r > 0, by taking the derivative with respect to r, we obtain that

)e -(θ-rθ -1 ) 2 dθ which yields

Observer that 2r

and by changing the variable u = rθ