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in three space dimensions
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Abstract

We consider the long time evolution of a population of charged particles, under strong
magnetic fields and collision mechanisms. We derive a fluid model and justify the asymp-
totic behavior toward smooth solutions of this regime. In three space dimensions, a
constraint ocurs along the parallel direction. For eliminating the corresponding Lagrange
multiplier, we average along the magnetic lines.
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1 Introduction

We consider a population of charged particles of charge ¢, mass m, whose density in the phase
space (z,v) € R3 x R3, at time £ € R, is denoted by f= f(f, x,v). We concentrate on the
long time behavior, that is

f(tN,x,v) = f5(t,x,v), t = et.

Here € > 0 is a small parameter, related to the ratio between the cyclotronic period 77 and
the observation time Typs. The notation B* = Bfe, B¢ > 0, |e| = 1 stands for the magnetic

field, assumed to be divergence free. We know that % ~wE = % and therefore we consider
strong magnetic fields

B B

BE = == —
TCE/Tobs E’

where B is a reference magnetic field, corresponding to Ty, i.€., % = W, = TQ—Z. The
collision mechanism accounts for friction and diffusion effects and is described by Fokker-
Planck operator

Q(f) = %divy{avvf +of),
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where 7 is the relaxation time and o is the velocity diffusion, see [33] for the introduction of
this operator, based on the principle of Brownian motion.
The self consistent electric field writes

E[f] = -V, ®[f], ®[f] = q /RS n[f(xl’.ﬁ]dx/ _ 4 /R3 9 f(xljvi‘)dvldl‘/,

 dmeg | — 47reg |z —x

where the potential ®[f] satisfies the Poisson equation

—l8lf] = qnlf] = [ f o

and where n|[f] stands for the particle density. Here ¢q is the electric permittivity of the vac-
uum. We obtain the Vlasov-Poisson-Fokker-Planck (VPFP) system, with external magnetic
field

Eﬁtf5+v'vzfa+% <E[f8] +ovA ]ie) Vo ff = ldivv((IVUfE—i—vf‘f), (t,z,v) € Ry xR3xR3,
T

)
BI/) = ~VaBlr), —ol®{f] = qnlf] = [ f* v &)

We complete the above system by the initial condition
£E00,2,0) = £ (z,v), (z,v) € R3 x R3. (3)

There are many works dealing with the existence and uniqueness of solutions to the VPFP
system, in the three dimensional setting. For the existence of weak solutions for the VPFP
problem (1), (2) and (3) we refer to [31, 58]. Existence and uniqueness results for strong
solutions of the VPFP problem can be found in [24, 25, 35, 52, 54].

The VPFP system (1), (2) and (3) describes the dynamic of charged particles under the
action of strong magnetic field |B®| — 400, as € N\, 0, and also accounts for collisions between
particles. The mathematical literature in this field, we refer interested readers to the works
[1, 11, 22]. Other asymptotic regimes for strongly magnetized plasmas, incorporating collision
effects, are discussed in [20, 21, 16].

We are interested in the asymptotic behavior of the problem (1), (2) and (3) as € \, 0.
This study is motivated by the description of tokamak plasma [37]. In the large magnetic field
regime, charged particles get trapped along the magnetic field lines and they rotate around
these lines with small radius. This gyration radius of the particles, called the Larmor radius,
is inversely proportional to the strength of the magnetic field. Therefore, charged particles
are well-confined within the tokamak. However, numerically solving the kinetic equation in
the presence of such large magnetic fields requires the resolution of small time steps (typycally
smaller than £2) due to high oscillations in time of the particles around the magnetic lines,
leading to a huge time computations cost. Hence, the question of deriving asymptotic model
to reduce the cost of numerical simulation is of great importance. Many kinetic models with
strong magnetic field have been studied, usually leading to the so-called guiding-center or
gyro-kinetic models. We refer to [46, 47] for a physical references and [10, 27, 40, 41, 49, 55, 56]
for mathematical results on this topic.

We derive a new asymptotic model as € \, 0. Let us now analyze the Vlasov-Fokker-
Planck equation (1). The dynamics of the charged particles are dominated by the transport in
velocity along the magnetic force %(v/\Be) -V, while the transport v-V,+ L E[f?]-V, and the
collision operator Q(f¢) are of the same order, leading to the guiding-center approximation as
€ goes to 0. The limit distribution function is constant along the characteristic flow associated
with the dominant advection field v A Be. It depends only on space, time and two components



of the velocity, corresponding to the parallel component along the magnetic field line and the
magnitude of the perpendicular velocity. Moreover, for collision plasma, the charged particles
seem to reach a thermal equilibrium. By performing the balance of the free energy functional
associated with the VPFP system

2
5[f€]:/Rs/Rg<af€1nfﬁ+f€|2’> dvdm+2€;)l/RS|E[f€]]2 du,

then the analysis of the dissipation term

o= [, [ L

which allows us to conclude that the limit distribution function f of the family (f¢).>0, as
€ \( 0, is an equilibrium of the form of local Maxwellian distribution in velocity, parametrized
by macroscopic quantities (particle concentration), for any (¢,z) € Ry x R3, i.e.,

6_|U|2/2U

fit,z,v) =n(t,z)M(v) = n(t,x)m,

(t,z,v) € Ry x R® x R,

The concentration n(t,x) satisfies the following transport equation with a constraint

E xTwve X
On +divy |n (EAe _ (VaweNe | OeeeNeN) | g g b0, (1a) € Ry x RY, (4)
B w? We
Be - Vzk[n] = 0, k[n] :a(l—i-lnn)—i-%@[n], (5)

coupled to the Poisson equation
E[n] = =V, ®[n], —egA,P[n] = gn, (6)

with initial condition
n(0,z) = nin(xz) = [ f(0,z,v) do,
R3

where p is thought as a Lagrange multiplier associated to the constraint (5). At the limit, the
concentration n is advected along the electric cross-field drift, magnetic gradient drift, and
magnetic curvature drift. The model obtained in the three dimensional framework is much
more complex in the two-dimensional one (see [23]), since in this case, we need to handle extra
constraints. The constraint (5) arises from the perturbation of the limit particle densities f
as € \(0, i.e., f¢ ~ f+ ef; leading to the following equation

v Vof — LV,B[f] - Vof + (v A Be) - Vyfi = 0. (7)
m m
We want to find a closure for the dominant term f or the concentration n, so we need to
eliminate the magnetic term of f; enters (7) as a Lagrange multiplier. In the absence of
magnetic fields, equation (7) becomes

v-fof%fob[f]-va:().

Substituting f(t,x,v) = n(t,x)M(v) in the previous equality, and by direct computations
yield the following relation

Vok[n] =0, k[n] = o(1+1Inn) + %@[n].

3



This constraint implies that the concentration n(t ) has the form
n(t,z) = Z(t)e me 2O .

which is the so-called Boltzmann-Gibbs relation, relating the electron density to the electric
potential, cf. [2]. In the general case of the magnetic field B(z)e(x), we apply the average
along the characteristic flow with respect to the operator (v A e(z)) - V,. Employing this
method, we rigorously derive the constraint (5) for the concentration n(t,z). Moreover,
when the magnetic field is uniform i.e., Be = (0,0, 1), the constraint (5) becomes

Opskln] =0, k[n]=0(1+1nn)+ %@[n],

which leads to the concentration n(t,z) can be written as
e~ mz 2n®)](x)

n(t, x) = N<t7 xJ_) Y 6_% [n(t)](xLyxd)dx3

(9)

where © = (v,,23) € R? x R, cf. [44, 51]. It is worth noting that our limit model (4) is
consistent with the limit model of the electron distribution function obtained in [44]. Indeed,
in the case of a uniform magnetic field, the limit equation (4) becomes

on + divy (nE Ae) + Opap = 0.

Integrating in z3 to eliminate the Lagrange multiplier p and using (9) we obtain
ON(t 1)+ dive, (N(t,21) V., &) =0,

where ® : R x R? = R is an 3 averaged of ®[n]

B(t,21) = o ( / ¢~ Blnt mm)dxg),
R

which is exactly the limit model introduced in [44].

The asymptotic regime will be investigated by appealing to the relative entropy or mod-
ulated energy method, as introduced in [59]. By this technique one gets strong converges,
provided that the solution of the limit system is smooth as well as the convergence of the
initial data. Many asymptotic regimes were obtained using this technique, see [27, 28, 41, 53]
for quasineutral regimes in collisionless plasma physics, [56, 4] for hydrodynamic limits in gaz
dynamics, [42] for fluid-particle interaction, [7, 6] for high electric or magnetic field limits in
plasma physics.

Before writing our main result, we define the modulated energy £[n°(t)|n(t)] by

Elnf () |n(t)] :a/Rgn(t)h <”E(t > dz +/ IV, ®[n°] — V,®[n]? dz,

n(t)

where h : Ry — R, is the convex function defined by h(s) = slns — s+ 1, s € Ry. This
quantity splits into the standard L? norm of the electric field plus the relative entropy between
the particle density n® of (1), (2) and (3) and the particle concentration n of the limit model
(4), (5) and (6). For any nonnegative integer k and p € [1,00], WP = WkP(R?) stands for
the k-th order LP Sobolev space. C’{f stands for k£ times continuously differentiable functions,
whose partial derivatives, up to order k, are all bounded and C*([0,T]; E) is the set of k-
times continuously differentiable functions from an interval [0,7] C R into a Banach space
E. LP(0,T; FE) is the set of measurable functions from an interval (0,7") to a Banach space
E, whose p-th power of the F-norm is Lebesgue measurable. The main result of this paper
is the following



Theorem 1.1

Let B € C}(R?) be a smooth magnetic field, such that inf,cps |B(z)| = By > 0. Assume
that the initial particle densities (f5)e>o0 satisfy f5, > 0, Miy = sup,~q M:, < 400, Uiy 1=
sup.~q Uf; < +oo where

2
ME ;:/ / J2 (@ v) dvda, US ;:/ IO £ (20 dvda:—i—/ A
R3 R3 Rs ]R3 2

Let T > 0. We denote by (f€)=>0 the solutions of (1), (2) and (3) in the sense of Definition
2.1 below on [0,T]. We assume that n is a non-negative smooth solution of (4), (5) and
(6) on [0,T)] such that W[n] = = A Vk[n] + 22 belongs to Wh((0,T) x R?), nyy > 0,
nin € LY (R3), k[ni,] € ker(Be - Vm). We suppose that

ii{[r(l)a/Rg/Rsn M(v < mM) dvdz =0, h\r{né’[ | nin] = 0,

where n, = [ps [ dv,e > 0. Then we have
fe ) :
lim sup o n®(t)M(v)h dvdz =0, lim sup &[n°(t)|n(t)] =0,
5\00<t£T /1[@3 /1@3 M) <n5M 5\00<t£T [ Bn(?)]

£ €,,|2
hm/ / / oV f +f”’ dvdzdt = 0.
e\0 ET R3 JR3

In particular we have the convergences hmg\g e = nM in L*=(0,T; L*(R® x R3)) and
limes o Vo, ®[f5] = V,®[n] in L>=(0,T; L?(R3)).

Our paper is organized as follows. In Section 2, we establish some a priori estimates on the
three dimensional VPFP system. In the next section, using Hilbert expansion, we derive
the asymptotic model. The limit model is a transport equation that involves a Lagrange
multiplier with a constraint in the direction of the magnetic field lines. Section 4 is devoted to
finding an equivalent model by eliminating the Lagrange multiplier. The idea is to apply the
average along the characteristic flow associated with the magnetic field. The new limit model,
after averaging, needs analysis of the commutation property between the average operator
and rot,. We establish a result for this commutation property for the special class of vector
fields which present angle variables in Section 5. In particular, we apply this formula to
tokamak magnetic fields in the next section. The convergence towards the asymptotic model
is rigorously proved in Section 7 under the assumption that the solution of the limit problem
is smooth. In the last section we investigate the well-posedness of the limit model obtained
from Section 6.

2 Preliminaires

We start by introducing the concept of weak solution to the VPFP system (1), (2) and (3)
for any fixed € > 0.

Definition 2.1 Let T > 0. Given f, € L'(R3 x R3) we will say that f¢ is a weak solution
of (1)-(3) on the time interval [0,T) if

(i) f€ >0, f¢€ L>®(0,T; L' N L>°(R3 x R3)),

(ii) for any ¢ € C°°([0, T[xR3 x R3)

T
/ /R3/1R3f5 [E?f+v-vx¢+q<E[f€]+v/\Bj> .vvw] dvdzdt

/ /RS s 7 f€ oAy —v- Vu¢)dvdxdt+/ /3sfi;(x,v)¢(o,x,v)dvdx:o.
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The global-in-time of weak solution for the nonlinear VPFP system (1)-(3) comes from almost
the same argument as presented in [30, 34], we merely state the existence theorem for the
solution and do not give any details on that here.

Theorem 2.1 Let B € L™°(R3). Suppose that the initial data f£, satisfies
S >0, fo e LN LR x RY), (|z]* + |v]* + @[fL)) f5 € L'(R? x R?).

Then, for any T > 0, there exists a global weak solution of the system (1)-(3) in the sense of
Definition 2.1 satisfying:

fE€ L0, T; L' N L®(R? x R?)) and (|=|* + |v|* + ®[f°]) f € L>°(0,T; L'(R? x R?)).

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (1) when ¢ be-
comes small comes from the balance of the free energy functional

2
5[f€]:/Rs/Rg<af€1nfﬁ+f€|2’> dvdm+2€;)l/RS|E[f€]]2 dz.

Multiplying the left hand side of (1) by o(1 4 In f¢) + @ and integrating with respect to
(z,v) € R3 x R? yield

o[

/RS/RS[s&f6+v-fo6+an<E[f6}+u/\lz_e> 'vag} [U(1+lnf€)—|—2] dvda

o[

—/ / [a@t—l—v-vx—l—q(E[fﬂ—i—v/\Be) 'VU] [Ufglnfs—i—fs] dvdx
R3 JR3 m € 2

q € (>
—/Rg/Rame[f]-vf dvdz

— g € € s|v’2> q s < . >
_5dt/RS/RS<Uf Inf*+ f 5 dvdx—i—m RSVx@[f] /Rsvf dv | dz. (10)

Thanks to the continuty equation

Eatn[fs] + le:c/

vf®dv =0,
R3

we write

L | v, (/Rsvfe dv) dxzs% /RSCI)[fE]E)tn[fE] dz (11)

m Jgrs
=~ [ B[f10,A,®[f7] da
m Jr3
= —— +P[f°]|* du.
o i Ll da
Multiplying the right hand side of (1) by o(1+1n f¢) + % and then integrating with respect
to (z,v) € R? x R? imply

e e, [ _ 1 |oVuf® +vfef?
/]R3 R3Q(f ) [a(1+lnf )+ 2} dvdz = —T/R3 /R3 I dvdz (12)

1 € 2
T JR3 JR3 fa




where M stands for the Maxwellian equilibrium M (v) = (2w0) /2 exp <—%), v € R3.
Combining (10), (11) and (12) leads to the balance

d P Ll 0 i,
1 oMV, (f2/M)J?
= dvdx =

+ /]1{3 - fe vdx = 0,

or equivalently

// oMV, {E/M)‘ dvdzds = ££[f°(0)].
R3 JR3 f

Notice that weak solutions may only satisfy an inequality in the above relation that is enough
for our purposes. At least formally, we deduce that f© = f+O(e), as € \, 0, where the leading

order density f satisfies
1 M M)|?
/ / oMV (f/M)] dvdx =0, t € R,.
R3 JR3 f

Therefore we have f(t,x,v) = n(t,z)M (v), (t,r,v) € Ry xR3xR3 and it remains to determine
the time evolution of the concentration n = ng f dv.
We establish uniform bounds for the kinetic energy.

Lemma 2.1
LetT > 0. Assume that the initial particle densities (f5)) satisfy f5 > 0, Min 1= sup.-o M, <
+00, Uiy 1= sup,~q U, < +00o, where for any € > 0

M, ::/ fi(x,v) dvdz, Uy, ::/ \v — fi(z,v) dvd:z‘—i— / |V, P fm]\2 dz.
R3 JR3 R3 JR3

We assume that (f¢)e>0 are weak solutions of (1 ), (2) and (3). Then we have

2
€ sup {/ il - f(t,z,v) dvde + 5 / IV, ®[f]]? dx} < el + i —T M,
o<t<T \Jr3 JR3 2
and
1T 9 e 30
— [v|“ f€(t, z,v) dvdedt < eUy + —T Miy.
T 0 R3 JR3 T
Proof.

We will establish the results for smooth solutions, and we observe that the same conclusions
hold true in the framework of weak solutions by combining the formal arguments to be
exposed here with the choice of an appropriate sequence of test functions in Definition 2.1

for every studied property (cf. [5, 26]). Multiplying (1) by @ and integrating with respect
to (x,v) € R? x R3? yield

d
e— / [0 — fe(t,z,v) dvdx+ / V@[] da 3—UME / lv|2f¢ dvda
dt | Jps Jrs 2 R3 JR3

and therefore we obtain

2
6{/ Hf(t:rv)dvdx—i—/lv <I’f5]2dx} // lv|? ¢ dvdzds
r3 Jr3 2 R3 JR3

== EUia;l 371&]\45

m?

which yields the results. O



3 Formal derivation of the limit model

This section is devoted to deriving the limit model for (1), (2) and (3) when e becomes very
small, using the properties of the average dominant operator transport. At the formal level,
we initiate our analysis with a Hilbert expansion

fe=f—+efi+elfo+ ...

Plugging the above ansatz into the kinetic equation (1) yields
0 (fHefi+eifot.)+v-VolfHefi+eifot..)

+% <E[f+sf1+52f2+...]+vAB;> Vo(f4efi+e2fo+..)=Q(f +efi +2fa+..).

Identifying the contributions to any power of ¢ leads to

%(v/\Be) -Vuf =0. (14)
v-Vaf + LB Vol + - (wA Be) - Vufi = Q). (15)
Ouf +v- Vafi+ LE[fi]- Vuf + (A Be) - Vofe = Q(f1). (16)

|2

Multiplying (15) by (1 +1In f) + ‘UT and integrating with respect to (x,v) € R? x R? yields

/Rg/Rs(v.Vm—FglE[f].VO (gf]nf_i_fh’;) dvdx—i_i/w /Rg]aMVv](cf/M)P o

- /]RS /RSTIq”LE[f] ' Uf dvdz + /R3 RSflg(U A Be) : U?fvf dvdz. (17)

m

Integrating (15) with respect to v € R® we deduce that div, [psvf dv = 0 and therefore we

have
[ Lt orate =2 [ i) ([ orav) w0

Using also (14), the last contribution in the right hand side of (17) cancels, and therefore we

obtain )
1/ oMV, (f/M)|
T JR3 JR3 f
saying that f = nM, for some function n = n(t,z) to be determined. In that case, the
constraint (14) is satisfied and (15) becomes

dvdx =0, t € Ry,

v-Vaf + %E[f] -V, f € Range((v Ae(z))-V,), € R3.

For any e € S2, we denote by R(#, e) the rotation of angle § around the axis e
R(6,e) = cosO(I3 —e®e)v —sinf(vAe) + (v-e)e, veER.
The characteristic flow of the field (v Ae) -V,

dv
W V(0;v) Ne, V(0;v) =,
is given by

V(0;0) = R(—0,e)v = cos (I3 —e @ e)v+sinb(vAe)+ (v-e)e, (0,v) € R x R3.



For any function g(v) = (v A e) - V,h in the range of the operator (v A e) - V,, we have
d
gV (:0)) = SnV(B:), (0.0) € B x B,
and by the periodicity of the flow we obtain
1 2m

Py g(V(0;v))do =0, v € R®.
2 0

Therefore, for any = € R3, the average along the characteristic flow with respect to (v Ae(z))-
V, of the function v -V f + L E[f] -V, f vanishes. But
M
v-Vof + LB[f]-Vof = (v Ven)M — L(E[f]-v)n=— = “Muv-V,(olnn+ Ld[f]),
m m o o m

and since )

1 X

o MV(0;v))V(0;v)d0 = M (v)(v - e)e,
T Jo

finally we obtain the constraint
e-Vgk[n] =0, k[n]=0c(1+1nn) + g<I)[n], x € R3.
m

Here the potential ® = ®[n] writes

B[n (1)) (z) = 47360 /R 3 ’T;(i“; )4, (t,2) € Ry x R,

The time evolution for the concentration n comes by integrating (16) with respect to v € R3
on + divx/ vfi dv = 0. (18)
R3

Multiplying (15) by v and integrating with respect to v € R? we obtain

B
divx/v@)vfdv—an[f]—q vfi Aedv=0.
R3 m m Jr3

Since f is a Maxwellian equilibrium, we have ng,v ®vf dv = onls and the previous equality
becomes

wc/ vfidvAe= van—ngE[f],
R3 m

or equivalently

we(I3 — 6®e)/ vfi dv =neA (van - qE[f]>

R3 n m
=neAVy(olnn+ i(ID[TL])
m
= ne A Vzk[n].

The divergence with respect to x of fRSU f1 dv writes

divm/ vf1 dv = div, [(13 —e®e)/ vf1 dv] + div, [e@e/ vf1 dv]
R3 R3 R3

(v-e)fi

dv.
s B

— div, <Z€ A ka:[n]> + Be-V,



Coming back in (18) we obtain the limit model
, ne
On + div, < A ka[n]) + Be-Vzp =0, (19)
C

for some function p such that the following constraint holds true
Be-Vykn] =0, kln] = o(1 +Inn) + %@[n]. (20)

The limit model involves a Lagrange multiplier p, associated to the constraint (20). One of
the main difficulty is that the unknown is the concentration n, whereas the constraint relies
on k[n|. Formally, we have the balances

Proposition 3.1
Any non-negative smooth solution of the limit model (19), (20) verifies the mass and free
enerqy conservations

e Rsn(t,x) dz =0, dt/RS{onlnn—FQm\fob[nH } dz = 0.

Proof.

Clearly we have the total mass conservation. For the energy conservation, we multiply (19)
by k[n] and integrate with respect to x € R3, observing that

Oynkln] do = —
o I} dz =5 RS

/Rgdivx (Zi A Vgck[n]) kln] dz = — /}R3 Cj A ka[n]) V.k[n] do = 0,

/ Be - Vzpk[n] dz = —/ pBe -V k[n] dz = 0.
R3 R3

£ 2
{anlnn—i— 2m]Vx<I>[n]\ } dz,

[

Recall the usual drift velocities when dealing with magnetic confinement: the electric field
drift, the magnetic gradient drift, and the magnetic curvature drift
EAe mlvAe>ViBAe lvAe> Viawe Ae  mlvAel?

(v-e)?
— Bpee N e = —
B ' 2B B 2 w2 qB  reene W

oree N e.

When working at the fluid level, the averages with respect to v € R3 of the above drift
velocities become

EANe EANe
UAD = M dv = ,
NPT s B B
lvAel|? Vowe Ae Vawe A e
’UGD:—/ 5 m; Mdv:—oigﬂc2 ,
R3 CL)C wc
2
v-e Ozee Ne
U(;D:—/( )amee/\eMdv:—axi.
R3 We We

The flux in the limit model (19) also writes nV[n|, where V[n| = vap + vgp + vop-

10



Proposition 3.2
Any non-negative smooth function n satisfying

Ogn + divy (Ze A mG‘[n}> +Be-Vyp=0, kln]=0(1+1nn)+ %(I)[n],

also verifies

on + div(nV[n]) + Be - V,p =0, V[n] = Be—av C:)z - e(j e,

and p = p+ F5-(e - rotze).

Proof.
Recall the formula div,(§ An) = n - roty§ — £ - rot,n, for any smooth vector fields £ and 7.
Therefore we can write

div, (ne A Vﬂ{:[n]) = div, [ne A (van — qE)]

We

w
. e
+ o div, (nrotm <)>
We

e Vewe N e n
> — o div, (n“ — rotgce)

2
wg We

nuap + nvap + ﬂ(1’3 —e® e)rotze> + div, (m(e . rotme)e> .
w

C C

Notice that we can write
(I3 — e ® e)rotze = e A (rotze Ae) = e A [(Orze — ‘Ore)e] = e A Oree,

implying that

n n
oc— (I3 — e ® e)rotye = —o—0zee A e = nuep.
We We

Finally we obtain

div, <”6’ A V””k[n]> = div;(nV[n]) + Be - V, {gn

We We

(e- rotxe)] :

and our conclusion follows. O

4 Reformulation of the limit model

We intend to find an equivalent formulation for (19), (20) by eliminating the Lagrange mul-
tiplier p which appears in (19). For doing that, we will average along the characteristic flow
of the magnetic field cf. [8, 9, 10, 12, 13, 14, 15]. Let us recall briefly the definition of the
average operators along a characteristic flow for functions and vector fields cf. [17]. Consider
a smooth, divergence free vector field b = b(y) : R”™ — R™

b e WEe(R™), divyb=0, (21)

loc

11



with at most linear growth at infinity
3C > 0 suchthat |b(y)| < C(1+ |y|), y € R™. (22)

We denote by Y (s;y) the characteristic flow associated to b

dY

P b(Y(s;y), Y(0;9) =y, s€R, y e R™.

Under the above hypothese, this flow has the regularity Y € Wk (R x R™) and is measure

loc
preserving. We concentrate on periodic characteristic flows (the tokamak characteristic flows
are periodic, with uniform period) that is:
35 > 0 suchthat Y (S;y) =y, y € R™.

For any function u = u(y) : R™ — R we define the average (u) along the flow of b -V, by

S’/ ) ds, y € R™.

When applied to L?(R™) functions, the above operator coincides with the orthogonal pro-
jection in L%(R™), over the subspace of constant functions along the flow of b - V,, cf. [9].
Indeed, it is easily seen that for any y € R™, h € R

W 09 = & [ a0 ias = & [ (s 4 s = () o),

and for any 1 € L?(R™) which is constant along the flow Y we have
|t v = [ ulwu(y(-sip) dy
-/ o) &

~ [ [t s ay

=/<w@ww@
-

For any vector field ¢ = ¢(y) : R™ — R™, we define the average (c) along the flow of b- V, by

S
@—;Aawﬂmw»@%nm&

Notice that the family of transformations ¢ — 9Y (—s;Y (s;-))e(Y(s;-)), s € R, is a one
parameter group. The average operators for functions and vector fields are related by the
following formulas:

(c- Vi) = (c) - Vb, (23)
for any function ¢ which is constant along the flow Y and

(a-VO) =a-V(0), (24)

for any vector field a which is in involution with respect to b, that is, their Poisson bracket
vanishes

la,b] := (a-Vy)b—(b-V,)a=0.

12



Indeed, as ¥(Y(s;+)) = ¥,s € R, we have ‘9Y (s;y)(V)(Y(s;y)) = Vi(y),s € R and
therefore

S
=5 | VsV Dev (s1)) ds - Vo
S
=5 | OV (s el () Y (5 (V) (51) s

— 1 [ vere ) as

= (c- V).

In the previous computations, we utilized the equality Y (—s;Y (s;y)) = y, y € R™ which,
upon differentiation with respect to y, implies

0yY (=5, Y (s5;-)0,Y (s5-) = Iy

Similarly, the condition [a,b] = 0 expresses the commutation between the flows associated to
the vector fields a and b

Z(h;Y (s;9)) = Y(s: Z(hy)), hys €R, y € R™, (25)
where Z(h;y) denotes the characteristic flow associated to a
d m
2 (hy) = a(Z(ksy)), (hy) € RxR™.

Taking the derivative of (25) with respect to h at h = 0 we obtain

oY (5:9)) = 3 lm0Z(h: Y (s:0) = oY (s: Z(h)) = B,Y (s:)alw), (s.0) € (B x B™).

Hence we have
1 S

We come back to the limit model (19), (20) and we consider a smooth magnetic field Be -V,
whose characteristic flow is periodic, with a uniform period S. The properties of the average
along the magnetic field lines are investigated in the mathematical literature, cf. [51]. If we
denote by X = X (s;x) the flow of the magnetic field, we have by S periodicity

Be-Vap) = § [ (Be- V)i ds = & [ p0xis )y as=o
Therefore the Lagrange multiplier p can be eliminated, by taking the average in (19)
) ne
O (n) + <d1vz <w A ka[n]>> = 0. (26)

The difficulty task is how to express the average of the divergence term, with respect to (n),
such that we get a model for the new unknown (n).

13



Proposition 4.1
For any zero average function a, and constant along the flow X function v, we have

<divx (% A v¢)> — 0.

Proof.
We are done if we prove that for any constant along the flow function 6 we have

/R?)divm (% A vw) 0(z) dz = 0. (27)

As e-Vip =0, e- VO = 0, therefore we have (I3 — e ® e)(VO A Vi) = 0. The vector field
VO AV is divergence free

div (VO A Vip) = Vb - ot (V) — VO - ot (Vih) = 0,

and therefore there is a constant function A along the flow X such that VOA Vi) = ABe. We
deduce that

/deivm (% Aw) 0(z) dz = —/RS(‘T; Aw) .V dz

e
:/Rs(vaAvqp).de

ae
— [ ABe-%%q
/Rs “BY

:/ )\adx:/ A{a) dz =0,
R3 R3

and therefore (27) holds true. ]

Applying Proposition 4.1 with the function k[n], which is constant along the flow of Be -V,

we obtain <divx (Zi . ka[n]>> _ <diV:r <<Z}>Ce A ka[n]>> .

We also need to express k[n] = (1 +Inn) + L ®[n], with respect to (n), where the concen-
tration n is such that the constraint (20) holds true.

Lemma 4.1
The first variation of the free energy

En] = / onlnn + G—O\VxCP[nHQ dz
R3 2m
is k[n] =o0(1+1nn) + g<I>[n] For any concentration n,ng > 0 we have
m

g[n]—g[no]—/ o <”1n”—”+1) dz

R3

klno](n — ng) dz = 0/

R

3
— ®n| - V,P >
+ 2™ /R:a‘vac [n] vm [nO” doe > 0:

no No no

with equality iff n = ng.

14



Proof.
By direct computations one gets

Eln] — Eno] — /RSk‘[ng](n —np) dz

=0 [ {nlnn—nplnng — (1 +1Inng)(n —ne)} dx
R3

+ [ {59t = V.0 = Lolnlin—no)} o

=0 | {nlnn—n+np—nlnng} dz
R3

i Ag{ﬁrvx¢[n]\2 = gy |Valnol P = AV lno] - (Vo 0ln] = Vol } do

:a/ no (”1n”—"+1) de + 2 [ |V, ®[n] — Vo®[ne][? dz > 0
R3 m

which equality iff n = ng. Obviously we have
. Elno + hz] — Eng| — h [psk[no]z da

h—0 h
- nm(’/ no (M0 NE o the mothe ) gy limeo/ W2V, ®[2]|2 dz = 0,
h—0 h Jp3 no no ng h—0 2mh Jps
saying that limy_o h ™ (E[ng + hz] — E[no]) = [paknolz da. O

Thanks to the previous lemma we deduce that there is at most one concentration n with a
given average, such that Be -V k[n| = 0.
Lemma 4.2

Let ni,ng be two concentrations such that (n1) = (na) and Be - V kln1] = Be - Vk[na].

Therefore we have n1 = ny. In particular, for a given average, there is at most one concen-
tration n such that Be - V k[n] = 0.

Proof.
We have by Lemma 4.1

o] ~ oo - |

RS

K[ns] (1 — ng) do = 0/

N9 <nllnnl—n1—|—l> dx
R3

n2 n2 n2

6() 2
P @1 =V, @ dz,
+5, - |V ®[n1] — V. ®[no]|* dx

and

Eng] — Elm] — | Knal(ns — ny) da = a/

ny <annn2—n2—|—1> dx
R3 R3

niy niy ni
0 _ 2
+ - R3|Vx<1>[ng] V. ®[ni]|* dz,
implying that
/ (k[na] = K[na]) (1 — o) da = a/ (n1 — ng) In <”1> dr+ [ [V, 0[] — Vad[na] 2 da.
R3 R3 no m JRr3
Since Be - Vz(k[ni] — k[nz]) = 0, (n1 — na) = 0, we deduce
/B(k[nﬂ — k[na])(n1 — ng) de =0,
R

and thus ny = ng. O

15



If n is such that Be -V k[n] = 0, then for any concentration n having the same average as n
we have

Eln] > &[n] +/ kn](n —n) dz = &[n|,

R3
saying that for any given average a, the unique concentration n such that (n) = a and
Be - V k[n] = 0, satisfies
E[n] = min &n.
(n)=a

We denote by F' the application which maps a € ker(Be - V) to n such that (n) = a,
Be -V k[n] = 0.

Lemma 4.3
The application a € ker(Be - V) — E[n = F(a)] is conver and its first variation is a —
kin = F(a)].

Proof.

Consider ay,ay € ker(Be - V,) and A1, A2 € [0, 1] such that Ay + Ay = 1. We have
)\15[F(a1)] + )\Qg[F(GQ)] > 8[)\1F(a1) + )\2F<a2)]

since £ is convex and

S[F()qal + /\2@2)] = min g[ﬁ} < 5[/\1F(a1) + )\QF(CLQ)]
(R)=A1a14+X202
because
<)\1F(a1) + )\QF(G/Q)) =\ <F(a1)> + Ag <F(a2)> = A\i1a1 + Aoao.

Consider now a, z € ker(Be - V) and h € R. The convexity of £ implies

E[F(a+ hz)] — E[F(a)] > /RSk[F(a)][F(a + hz) — F(a)] dz

E[F(a)] (F(a+ hz) — F(a)) dx

T

R3

K[E(a)][(F(a+ hz)) = (F(a))] dz

Il
5

R3
_ /R HF(@)l(a+hz) — a do
= h/RSk’[F(a)}z(x) dz.
Passing to the limit when A \,0 and h 0 we deduce that
ElF(a+ hz)] — E[F(a
ti ELC P2 EF@] /R3/<:[F(a)]z dz.

1
Combining the results in Proposition 4.1, Lemma 4.3, the limit model (19), (20) becomes

Ba + <divz <Z€ A Vzk[F(a)]>> —0, n=F(a).
As k[F(a)] € ker(Be - V), we obtain by (23)

<divx (Ze A ka:[F(a)])> - <rotm (f) : ka[F(a)]> - <rotx <Z€)> - Vok[F(a)],

and therefore the previous limit model also writes

O + <rotx <ae>> Vak[F(a)] =0, n= F(a). (28)

[
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5 A commutation formula for angular vector fields

The last step will concern a commutation formula between the operators (-) and rot,. We
establish this formula for the special class of vector fields which present angle variables. In
particular, this formula will apply for tokamak magnetic fields. We start with a very simple
example. Consider the vector field b(y) - V, = 120y, — 119y,,y = (y1,y2) € R%, whose
characteristic flow is 27-periodic

coss sins
—sins coss

Y(s;9y) = R(—s)y = < > y, (s,9) € R x R2
The gradient of any invariant function ), that is a function satisfying (Y (s;)) = ¥,s € R,

verifies
'Y (s;-) (V) (Y (s;-)) = Vi, s € R. (29)

There are other vector fields verifying similar properties. Let us consider the angle 6 = 0(y) €
[0, 27[ given by
y1 = |yl cosO(y), y2 = lylsinb(y), y € R*\ {(0,0)}.

The function 6 is smooth in D = R2\(R, x {0}) and we have

- b
V=W _ bW g,

|y|? ly|2’

The function 6 is discontinuous across R} x {0}

lim  6(y) =0, lim  O(y) =2m, z1 >0,
y1—=21,y2 \0 (y) y1—21,y2,/'0 (y> '

but its gradient, which is well defined on D is the restriction of a smooth vector field on
R*\ {(0,0)}

v(y) = —W y € B2\ {(0,0)}.

For any y € D and |s| small enough we have

d

LY (s9) =b(Y(s39)) - (VO(Y(s39)) = —1,

implying that 6(Y (s;y)) = 6(y) — s,y € D and |s| small enough. Taking the gradient with
respect to y we obtain

LY (5;9)(VO) (Y (5;9)) = VO(y),

or
LAY (s;y)v(Y (s;9)) = v(y), y € D, |s|small enough. (30)

Actually it is easily seen that the previous formula holds true for any y € R?\ {(0,0)} and
s € R. The vector field v also satisfies

div,'v(y) =0,

but it is not the gradient of a smooth function § on R?\ {(0,0)}, because, in that case, for
any y € R\ {(0,0)}, we would obtain

1 27 21 1 21 d

“l=go [ en¥sy)ds= g | G- VOV (sy)ds =g | Z8(Y(s5y) ds =0.
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Generally, given a smooth divergence free vector field b- V,, in R3, with global characteristic
flow Y = Y(s;9), (s,y) € R xR3, we call angular vector field in D € R3 any vector field v -V,
satisfying

b(y) - v(y) = C, '0Y (s;y)v(Y(s;y)) = v(y), rotyw =0, (s,y) € R x D,

for some constant C' € R*, where D is an open subset of R3, which is left invariant by the
flow i.e., Y(s; D) = D,s € R. We intend to establish the following commutation formula.

Proposition 5.1

Let us consider a vector field b-V,, in R?® satisfying (21), (22) with S-periodic characteristic
flowY =Y (s;y), (s,y) € RxR3. We denote by n -V, the gradient of an invariant function
with respect to the flow Y, or an angular vector field, in some open subset D of R3, which is
left invariant by the flow Y. Therefore, for any C' function a = a(y), we have

(Vya An) =V, {(a) Anin D. (31)

In particular, if o € ker(b- V), then (Vya An) -V, is in involution with respect to b-V, in
D.

We will use the following lemmas.

Lemma 5.1
We denote by M]|e] the matriz of the linear transformation v — e A v,v € R3, that is
Mlelv =eAv,v € R3. For anye € S?, and £, € R? such that £ - e = 0, we have

EAn=(e® Mle]§ — Mel§ @ e)n.

Proof.
By direct computations one gets

(e® Mle]§ — MleJ]s @ e)n=((e N§) -m)e — (e-n)e N E
= ((EAn)-e)e+(n-e)éAe
=e®e(AN(n—(n-e)e))+(n-e) e
=EN(—(n-e)e)+(n-e)Ne
=EAn,

where we have used that £ A (n — (n-e)e) € Re, since £ - e = 0. O

For any function or vector field, the notation Fs stands for F' o Y(s;-).

Lemma 5.2

Let us consider a vector field b-V,, in R3 satisfying (21), (22) with S-periodic characteristic
flowY =Y (s;9), (s,y) € RxR3. We denote by M|[e] the matriz of the linear transformation
v = eAv,v € R3, that is M[e]Jv = e Av,v € R3. Then, for any function u such that
u € ker(b- V), we have the equality

OY (s; ) M[e]'OY (s; )
0]

(1 - s ) (Va). = 2w, o= 2

(I3 —es® es)

Proof.

For any invariant functions a = «a(y), 8 = S(y) with respect to the flow ¥ we have V,a A
V5 € Re and divy (V,aAV,3) = 0. Therefore there is A € ker(b-V,) such that V,aAV,5 =
Ab, saying that the vector field Vya A V3 is in involution with respect to b - V,. We have

Y (s; )VaANVE = (Va)s A (VS)s.
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Therefore, by Lemma 5.1 we obtain
BY (s;-)(e ® M[e]Va — M[e]Va ® )V = (es ® Mles)(Va)s — Mle](Va)s ® es)(VB)s,
which reduce, thanks to the equalities e - V8 = 0, e, - (VB)s = 0 to
Y (s;-)(e ® M[e]Va)VP = (es @ M[es](Va)s)(VB)s.
As o and $ are left invariant by the flow Y, we have
Va = V(as) ="'9Y (s;-)(Va)s, VB =V (Bs) =Y (s;-)(VB)s,
implying that
Y (s;-)(e @ M[e]'0Y (5;-)(Va)s) Y (s;-)(VB)s = (es @ Mes](Va)s)(VB)s.

Observe that oY(s)b b ]
S: -

oY (s;)e = — 1t = 2 = 2

10| [l

es, since [b,b] =0,

and therefore we obtain

Y (s;-)M[e]tdY (s;-) _ (. Mles](Va)s
(cre ) (7 = (0 TS ) 0

or equivalently

<3Y(8; )M[e]' Y (s;-)  Mles

- (Va)s € Res.
1 0] )

Finally we have

Y (s;-)M[e]tdY (s;- Mles
ey e (PLWISOVs) Ml g
0] 10|
for any invariant function «, and our conclusions follows. O

Lemma 5.3

Let us consider a vector field b-V, in R?® satisfying (21), (22) with S-periodic characteristic
flow Y = Y(s;y),(s,y) € R x R3, which possesses angular vector field v in some invariant
open subset D C R3. A wector field ¢ -V, has zero average in D iff (c-v) = 0 in D and
(¢-Vyu) =0 in D for any function u such that 1pu € ker(b- V).

Proof.
By formula (23) we know that for any function u which is left invariant by Y in D, we have
(- Vyu) = (c) - Vyu in D. Similarly, for any y € D we write

S
) () = 5 | el v¥ (i) ds
1 S
=5 | VsV n)ely () - 0¥ (ssy(Y (ssn) d
1 S
— 5 | v s Yoty i) dsv0)

= {c) (y) - v(y)-
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Clearly, if (¢) = 0in D, then 1p (c- Vyu) = 0 for any function v such that 1pu € ker(b- V)
and 1p (c-v) = 0. Conversely, if 1p (c-Vyu) = 0 for any function u such that 1pu €
ker(b-Vy) and 1p (c-v) =0, then 1p (c) - Vyu =0, 1p (c) - v = 0. We deduce that there is
a function A = A(y) in D such that

(¢) () = A(W)bly), y € D.

Taking the scalar product by v(y),y € D, we obtain

0={c)(y)-v(y) = Ay)by) - v(y) = AMy)C, y € D.
Since C' € R*, we deduce that A vanishes in D and 1p (c) = 0. O
We are ready to prove the commutation formula (31).

Proof. (of Proposition 5.1)

All the computations are performed in D.

We assume for the moment that a € ker(b- V,) and we prove that Va A is in involution
with respect to b - V,. We have by Lemma 5.1 and Lemma 5.2

OY (s1-)(Var A ) = Y (s:-)(e © M[]Vor — M[e]Va@ )y
= [bs g D IMIEOV (537) () OV (i )M Y (5;)

0] 0]
OY (s;-) M(e]'OY (s; -)
[b]

(Va)s @ bs] Ms

= |:b3®(_[3 —es®es) (I3 — es ®es)(Va)s

_(13 — €5 & es)aY(S; )]W‘IET}ta}/(S’ ) <I3 — €s ® es)(va)s X bs] Ts
= (es ® Mes|(Va)s — Mes](Va)s @ es)ns
= (VO()S N s,

where we have used that
Y (s;-)M|[e]' Y (s; )
1

Y (s;-)M|[e]' Y (s; )
b]

[bs ® (—es @ ey) (Va)s + (es @ es) (Va)s ® bs} ns = 0.

Assume now that (o) = 0 and we prove that (Va An) = 0. If n = V3 for some function g,

which is left invariant by Y in D we have

Y (—s;Y(s;:))ns A (Va)s
=Y (—s;Y(s;°))(es @ Mes](VB)s — Mles](VB)s ® es)(Va)s

_ <b® Y (=s; Y (s; -))M“[;s]t@Y(—s;Y(S; '))vﬂ

_8Y(—s; Y (s;-))Mles]tY (—s; Y (s5)) V3 ® b) V(o)
[ba] )
Y (—s;Y (s5-)) Mles]' Y (—s;Y (s3-))

:[b®(lge®e) bs] (I3 —e®e)Vp

(e Y Y ()Mol DY (¥ (5:)

(Is—e®e)VBRb| Vas

|bs|
_ <b® ]‘Tb[‘e]v@ — ]‘Tb[‘e]vm@b) Va,
= (e® Ml[e]VB — M[e]VB ® e)Va
- VB /\ vas;
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where we used the following formulas in the calculations above
Y (s;:)b=0bs < b=0Y(—s;Y(s,"))bs,

and
V(as) ='0Y (s;-)(Va)s & 0Y (—s;Y (s;-))V(as) = (Va)s,
VB =V(fs) ="9Y (s5;-)(VB)s & 'Y (=s; Y (s;-)) VB = (V)s.
We obtain
(VBAVa) = /V,B/\Vast—Vﬂ/\V<> 0.

If n is an angular vector field v in D, we appeal to Lemma 5.3. Obviously we have (Va Av) -v) =
0 and for any function u such that 1pu € ker(b- V), we can write since (Vyu Av) -V, is in
involution with b- V, in D cf. the first part of this proof, and thanks to (24)

(Vyanv) -Vyu) == ((VyuAv) Vya) = —(VyuAv) - Vy{a) =0.

Therefore we deduce that
(VaAv) =0.

Finally, for any function o we have
(VaAn) = (V(a) An) + (V(a—(a)) An)

/aY s ¥ (5:))(V {a))s A s ds

-1 /0 Y (—5:Y (5:))0Y (5:)(V {a) An) ds

S
:;/0 V(o) Ands
=V () A

6 Tokamak magnetic fields

In this section we apply the previous results to some examples of magnetic fields. We start
by a simplified framework, that of a magnetic field, whose magnetic lines wind on cylindrical
surfaces.

6.1 Cylindrical case

Z1
Ry’ Ry
where By, Ry are some reference values for the magnetic field and length. The characteristic
flow is given by

We consider the magnetic field B = Be = By , 1>, r = (1,20, 23) = (T, 23) € R3,

_ B
()((37 j;)’ Xg(S;Jfg)) = <R <_S_RO> T, r3 + SB()) s (S,.f‘,xg) eR x Rg,
0

where

cosf) —sind
R(0) = <sin9 cos 0 >’ feR.
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We have two angular vector fields

0
vy = M a;;éO I/H (0,0,1).
xl—i-x

All the functions are supposed periodic with respect to x3. Taking S = 27 Ry/ By, we define
the average operator for a function u by

) (2 s/ (X (s:7), Xs(s: 23)) s/ << >m:r3+s2SRo>ds,

and for a vector field ¢- V, = ¢- Vz + c30x3 by

2ry 0 2 2
/ R(s%5) 0 |ec (R <—s7r> Z,r3 + SWR()) ds
s 0 1 S S

27r 21\ = 2
s=F —s* )T, 23+ sZTR
S/<(S 3(2”%) e 0)>d8'
We use the following decomposition of Be -V,

B
Be = fo‘f|2V9 + B()VH, |z| > 0.
Ry

Thanks to Proposition 5.1, we compute the term <r0tx <a,e>> appearing in the limit model
We
(28). Observe that

ae a (Bo, _p aBy|z|? aBy
rot,, <wc> = rot, [ch <RO|:17| vy + B()I/||>:| =V, <chR0 Avg+V, B, Ay,

and therefore
ae aBo|z|? aBy
t. [ — = A A
<I‘O z (wc)> Va < Bw.Ry vg+ Vg Bo. V|
aBo|z|? aBy ae
=V A Vel 5=— ) Ay =rot, [ —
v <BwCR0 Yo+ Va Buw, Y| = tote we )’
since the functions a, Bw. and |Z|? belong to ker(Be - V,.). We obtain

<rotx (Ze>> V. k[F(a)] = rot, <Z‘3> V. k[F(a)] = div, (Ze A ka[F(a)D :

In that case, the vector field rot, (g—i) is in involution with Be -V, and (28) becomes

Ora + divy <a€

c

A VM‘[F(@)]) =0, n = F(a).
In this case we work in the 27 Ro-periodic domain with respect to x3, R? x T!, where T! =
R/(2mRyZ). The potential ® solves the Poisson equation
—0Ay® = qn, z € R? x T!,
with the boundary condition

lim ®(z,x3) =0, 23 € T

|Z| =00
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The Jacobian matrix of the flow X (s,z) = (X (s;Z), X3(s;x3)) is orthogonal

0

By

0. X (s;0) = R(= SRO) 01,
0 0 1

which implies that the Laplace operator commutes with the translations along the flow, that
is
Axus = (Axu)&

for any smooth function u. Indeed, for any v € C}(R? x T') we have

/ Agugsths do = —/ Vaus - Vatps da
R2xT! R2xT?!
= —/ toX (s;2)(Vu)s - '0X (s;2) (Vi) dx
R2xT?!

_ / (Va)s - (Vab)s dz
R2xT!

—_ / Vu -V dz
R2xT!

—/ Agutp dx

R2xT!

:/ (Azu)sws dz,
R2xT1

saying that Ayus = (Azu)s. If ®[n] is the potential corresponding to the 27 Ry-periodic
concentration n with respect to x3, then

_EOAz((I)[n])s = _EO(Am‘I)[n])s = qns,

for any x3 we have

lim @[n](X(s;2)) = lim ®n](X(s;7), X3(s;23)) = 0, because | X (s,7)| = ||,

|Z| =400 |Z| =400
and (®[n])s is 2w Rp-periodic with respect to x3

O[n](X (s;7), X3(s; 23 + 27 Ro)) = [n](X (s;2), X3(s323) +
= O[n(X(s;7), X3(s;73)) = ( [ D)s(@)-
z)

Therefore we have (®[n])s = ®[ns]. In particular, if n € ker(Be-V,) then ®[n] € ker(Be-V )
By construction n = F'(a) is the unique concentration such that (n) = a, Be - V k[n| =
Clearly we have (a) = a and k[a] = o(1 +1Ina)+ L ®[a] € ker(Be-V,) and thus n = F'(a) = a
for any a € ker(Be - V). The constraint in (20) is automatically satisfied. In that case, our
limit model simply writes

on + div, <Ze A ka:[n]> =0, (t,z) € Ry x R? x T (32)

Remark 6.1

The equation (32) propagates the constraint Be - V,n = 0. When the magnetic field is
uniform i.e., Be = (0,0,1), it is not difficult to check that if Be - V n(t,z) = 0 holds at
t =0, then it will do so for all time in which the solution exists. Thus, the constraint (20)
can be understood as a mere constraint on the initial data.
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Since we know that at any time ¢, n(t) belongs to ker(Be - V), we can reduce the above
model to a two dimensional problem. We appeal to the invariants of the flow X

() 5= () ()= (3)-

We introduce the new unknown function N = N (¢, = (y1,y2)) such that
n<t7 .%') = N<t7 Y= R(x3/RU){E)7
and we are looking for the model satisfied by N = N (t,y).

Lemma 6.1
Let us consider a smooth function U = U(y),y € R?, and u(z) = U(R(x3/Ro)z), * € R2xT".
We have

Lo L=
Ayu = [divy <12 + Y 5’2 y) va] (5 = R(x3/Ro)T).
0

Proof.
Consider ¥ € C}(R?) and ¢(z) = U(R(x3/Ro)Z), * € R? x T!. Integrating by parts, thanks
to the xs-periodicity, one gets

/ Agutp(z) do = —/ Veu - V) do
R2xT! R2xT1

- _/ gy (VgU)(R(x3/Ro)Z) - %(v?j\y)(R(JZ’iﬁ/Ro)j) "
R2xT1 O .

_ _/R @@(v U)(R(x3/Ro)z) - (V5¥)(R(x3/Ro)Z) d

21 0T Ox

where % is the Jacobian matrix of the apllication x — R(x3/Ro)Z

dy

B <R($3/Ro) R(xs/Ro+m/2) 5 > € Ma3(R).

The matrix product ag writes

0y 0y 1z 3\ T |
_— —I B R —_— = —
3z O 2+R<RO> QR z = (we, —x1),

and we obtain

/R o Aw(a) da

Sy ST E ST ——
/T/R< y®L>VU()V\I/()dyd:c3

=27 Ry /}R2 (dng (IQ + y?;’) %U) VU (y)dy

15 15
o 252 0] 2 )
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The previous computation shows that A,u — [divg <12 + Lﬂ%ﬁ) VQU] (gj =R (%) :E) is
0

orthogonal on ker(Be - V). But this function belongs to ker(Be - V), because u belongs
to ker(Be - V), together with A, u, since the Laplace operator commutes with the flow X.

Finally we obtain
Lon Lo
. Y-y _ T3\ _
Ayu = [leg (Ig + 7]?,% ) VgU] (y =R <R0> x) .

Lemma 6.2
Let us consider two smooth functions U = U(y), W = W (), 7 € R? and u(x) = U(R(z3/Ro)7),
w(z) = W(R(z3/Ro)Z), * € R? x T*. We have

. ue . U _ T3\ _ qBo
div, (% A wa> = [dlvy <ng(7T/2)vyW>] <y =R <R0> x) , Wo ==

Proof.
As before, we perform the computation in distribution sense. We already know that the

vector field rot, (Z—f) -V, is in involution with Be - V., and therefore

div, (ue A Vmw) = rot, (f) -V,w € ker(Be - V),

[

it is enough to consider test functions 1 (z) = U(R(z3/Ro)Z), ¥ € C}(R?)

/ div, <“e A v$w> ¥(z) do = —/ (“e A vzw> V() dz
R2xT1 We R2xT1 \ We

= —/ L M[e]Vaw - Vot dz
R

2Tl We

= _/ M@M[e]@(VQW)(R(x?)/RO)E) (V) (R(x3/Ro)Z) dz.
R2xT1 We oz ox

By direct computations we obtain
1 0y L9y 1 T qBy
L0000 L () = 4B
We Ox g oxr  wo 9) 0

and therefore the previous calculations lead to

/ div, <ue A wa> Y(x) de = 27 Ry MJ‘VgI/V -V Udy
R2xT1 We R2 WO

= —szo/ divy <U(y)ivyw> T (y)dy
R2 wo

S ) [ e

div, <“e A wa> = div; (ULVyW> .

We wo

We deduce that
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Combining Lemma 6.1 and Lemma 6.2 we derive the limit model with respect to the new
unknown N. The potential ® = ¢[n]| writes ¢(¢t,x2) = ®(t,5 = R(x3/Ro)x) where ®(t,7)
solves the elliptic equation

. gty . 7 e R?
—eodivy || I2 + R—g Vy®(t,y)| =gN(t,y), y € R

We supplement this elliptic equation by the condition limg_, ®(t,y) = 0 and we denote
by ®[N] the solution corresponding to the concentration N. We introduce K[N] = o(1 +
In N) + -Z&®[N]. The time evolution for the concentration N is given by

N
AN + div, (w—OR (g) ng[N]) =0, (t,7) € Ry x R2,

and the initial condition
N(0,7) = Nin(9), 5 € R,

where ni, (r) = Nin(R(23/Ro)), v € R? x T!.

6.2 The toroidal case

We consider now a magnetic field whose magnetic lines wind on toroidal surfaces (called
magnetic surface). We denote by ¢ the toroidal angle in the plan x;0z2, by 6 the poloidal
angle and Ry is the mean radius of the torus, as shown in Figure 1

x1 = (Ro + 7rcosf)cosp, xog = (Rg+ rcosf)sinp, xs=rsinb.

The magnetic field writes cf. [48]

TZ

Figure 1: Toroidal and poloidal coordinates (Source: FusionWiki)

B()?"
Be = Bpey,, 7 <1y < Ry,
¢ fq(Ro + 7 cosf) ¢ + Doy, T < To 0

where e, and eg stand the unit vectors of toroidal and poloidal coordinates system

0
B ) (—x2,21,0)
e, = —— = (—singp,cos p,0) = ——=-,
‘%’ Va3 + 3
0 /
€9 = % = (—sinf cos p, —sin fsin ¢, cos ) = < (w31, 2372) /Y + xQ )
‘%l n/ﬂcl +x2
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with 9
90 = (—(Ro + rcosf)sinp, (Ry + rcosf) cos p,0),

% = (—rsinf cos p, —rsinfsin p, r cos ).

Here f, is the quality factor, that is the number of toroidal winds of a magnetic line, cor-
responding to one poloidal wind. The magnetic field lines are either closed or dense on
magnetic surface, depending whether the quality factor f; is rational, (i.e., f; = n/m, m,n
are integers) or not. If f, is rational, the field line is closed otherwise the field line is dense
on a magnetic surface. It is obvious that a field line on a magnetic surface with f, = n/m
closes itself after traveling n toroidal turns and m poloidal turns.

In Cartesian coordinates, the magnetic field writes

Be _ —T9 1 0 +i r —T3T —T3T9 V3 + 135 — Ry .
B \Val+ad Va+d ) hvArd \n/arad At ad T
Both the fields ey, - V, eg - V. leave invariant the function r? = (V23 + x% — Ro)?2+ :c§ and

therefore we have Be - V,r = 0. We denote by X (s;x) the characteristic flow of Be - V,. We
have

do dXs rcosf
f— = ——=Be-e3 =B
TSV T ds €res qu(Ro +rcosf)’
implying that
de By
— = _ 33
ds  fq(Ro+rcosf) (33)
In order to determine the evolution of the toroidal angle ¢, we write
. do . dy  dXy ) rsinf cos
rsing o cosy (Ro + 7 cos )smgpds s 0 sin ¢ qu(Ro—l—rcosH)’
leading to
dy By
-~ __ -0 34
ds  Ro+rcosf (34)
The differential equation (33) also writes
B
diS(ROG +rsinf) = f—qo, (35)

and thus we obtain

B
Ryf(s) + rsinf(s) = Rof(0) + rsin0(0) + sf—o.
q

As Ry +rcost > Ry —r > Ry —rg > 0, the poloidal angle 6 is increasing and there is S > 0
such that 6(S) = 0(0) + m2m, m € Z\ {0}. The number S comes by the above equality that

Bo

fa’

and thus S = f, mzéz)Ro. By (33) and (34) we have %(ap — fq9) = 0, implying that
p(S) = ¢(0) = f4(8(S5) = 6(0)) = fym2m.

Therefore the magnetic lines wind f; times along the toroidal angle while doing one wind
along the poloidal angle. As r is left invariant by the flow X, we have r(S) = r(0) and thus

Rom2r = Ro(8(S) — 6(0)) = S
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X(S;z) = X(0;2) = xif f; = ,n € Z\ {0}, saying that the characteristic flow is S-periodic.
Observe that

. —I2 X1
le$< 5 5 5 2,0)20,
Vat a3 /ol
div —x3T1 —I3%2 \/.%% + x% —Ro\ 0
x ) bl - )
x%—l—az% a:%—l—:c% ,/;p%+x%

and therefore the magnetic field Be -V, is divergence free. We are looking for angular vector
fields. Motivated by (35), we consider

vg = RoV40 + rcosOV .0 + sin OV . r.
Since Lo = £,40, we also have from (35) that & {Rop + f,rsinf} = By and we take
Vo = RoVyp + fqrcos OV ,0 + fqsin 0V r.

Proposition 6.1
The wvector fields vy, vy are angular. The magnetic field Be - V, writes

Be = a,v, + agrg + o Vo,

B qu7 a, = —Byxs <r + fq) .

Qg = =53 — Do -
Ry folzl? Ro folz? 7

with
Bo|z| Bor?
a, = =

Proof.

It is easily seen that the vector v, and vy are angular fields. For the decomposition of
magnetic field Be, notice that, in the definition of v, v, the gradients of the angles ¢, 0 are
understood as the continuous vector fields

. —X2 T
Ve = (—sinp, cos p,0) = , ,00,
o= sing om0 = (. o)

and
1 1 - = Vi + a5 — R
V30 = —(—sinf cos p, —sinfsin p, cos ) = — 1371 , 1312 , Tt 0.
r T r\/a:%—h’c% r\/x%—kx% r
By direct computations we have
1
Vool = 53—, [Val> = =, |[Vor|? =1,
Vapl? = i (V0 = 5, [V

Ve V0 =Vap-Ver =V,0-Ver =0,

and B B
Be Vyp=—"22 Be-V,0=—> Be-Vyr=0,
\/x% Jrl‘% fq|x|
and
s Ry 9 fqcost
Ve - Vap = Ro|Vapl” = W’ V- Vgl = fyrcosO|V, 0" = =——,
Vo - Var = fysin0|Vyr|? = fysind, vg- Voo =0, vg- Vil = |7} |V.0)° = Lﬁ’,

vy - Vor = sin |V, r|? = sin 6.

Taking the scalar product with V¢, V.0, V,r we obtain the coefficients o, ag, ;- in the
decomposition of the magnetic field Be - V. O
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By Proposition 6.1, we have
ae a
roty <w) = rot, [ch(a(pl/@ + g + arvxr)]

ao, Q.
=V, <ch>/\l/¢+v (ch)/\v(g—i—v <ch>/\yr’

and thanks to Proposition 5.1, we obtain

ae ao acy aqy
t - — PN A A A
<rox<w0)> vm<BWC> V@+V$<BWC> V9+V$<ch> o
ao aoy aqy
= rot —£ — .
ot (52 ) e+ (g o+ () )
We can write

o () st o (2o (o i )] st

and the limit model (26) becomes

Bra + div, [a (<§§> v+ <;j> vy + <l§w> yr) A ka[F(a)]] =0, n = Fla).

7 Convergence result

We concentrate now on the asymptotic behavior as € N\, 0 of the family of weak solutions
(f¢, E[f])e>0 of the Vlasov-Poisson-Fokker-Planck system (1), (2), and (3) and we establish
rigorously the connection to the fluid model (4), (5), and (6).

We are looking a model for the concentration n® = n[f¢] = f f¢ dv, similar to the equation
(4) of the limit concentration n and we perform the balance of the relative entropy between
n® and n. As usual, these computations require the smoothness of the solution for the limit
model. We justify the asymptotic behavior of (f¢, E[f¢]).>0 when £ \ 0, provided that there
is a smooth solution (n, E[n] = —V,®[n]) for the fluid model (4), (5), and (6). We do not
concentrate on the well posedness of this fluid model, nevertheless we refer to Section 6.1 for
some examples of smooth solutions. We are working with weak solutions (f¢, E[f¢])e>0.

The balance for the number of particles writes

1
o + Ldivas® = 0, 5 = j[fF] = / v do. (36)
9 R3
We are using the balance momentum as well

E

€0 j° —I—dlvm/ fe v®vdv—gn E[ff] — e aAe:—J—, (37)
m € T
which allows us to express the orthogonal component of j¢

ot ee e ( Vn" + v <I>[f€]>

€ We

3

+ S A [divx/ (avvf5+vf€)®vdv+58tj5+]?
R3

We
ne

A Vakn ]+3AFE,
We We
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where we denote o

F® = divr/ (oVuff+vff)@vdv+edj® + j—,
R3 T
and in the above computation, we have used that div, ngdvva ®vdv=—0Vnt.
Observe that
=

1 (ae . o\B
—div,j® = dmw + div, |:(j€)6:|
€ € Be

€ e
= divy <7Le AVM‘W]) + div, (e /\F5> +Be -V, [(J e)} ,

We Be

and finally, thanks to (36), we obtain a similar model for n®, as in (4)

€
Oxnt + div, (n €

c

Y&
A ka[n€]> + div, <e A F‘f) +Be- Vo =0, p° =2

c

e
Be

(38)

We are also looking for a equation, analogous to (5), in order to complete the evolution
equation (38), involving the Lagrange multiplier p. Considering the parallel component in
the momentum balance (37), we obtain

oe-Vyn® + 4 pee.- V. ®[nl+e- F*=0.
m
Thanks to (5), the above equation also writes

R e R ) B e S

We intend to estimate the modulated energy of n® with respect to n by writing £[nf|n] as

En®|n] :U/Rsnh< ) dx~|—/ IV, ®[n] — Vo d[n]?2 de

_ /RS(anE Inns + %|Vx<1>[n€]\ ) de — /Rg(anlnn + %m@[n]y?) da
- / {a(l +1Inn) + %@[n]} (n® —n) dx
R3

= E[n] — Eln] — / K[l (n° — n) da. (40)

R3

We introduce as well the modulated energy of f¢ with respect to n°M, given by
a/ / nebih (1) dvda + 60/ V. ®[f5] — V,@[n°M]|? dx
R3 JR3 neM 2m R3
=0

2
= 0/ ffIn f— fflnn® + f° 1n(27r0)3/2 + fEﬂ dvdzx
R3 JR3 20

2
:/ /af‘flnf“rfa’v’ dvdx+60/ V. B[] dz
R3 JR3
—/ on®lnn® d$—/ |V, ®[n°]|? d:v—i—o'ln(27ro')3/2/ f¢ dvdzx
R3

R3 JR3

=E&[f] - En°]+ 0111(2770)3/2/ fE dvdz.
R3
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Thanks to the free energy balance (13) and mass conservation of (1) one gets

Ent(#)] —E[nE(O)]—l-U/RB /Rgns(t)Mh< f:()) > dvdz (41)
-0 [, forronm (Fgp) avee
—T/O /Rs Rg"’v”fefj“fEP dvdads.
Thanks to Proposition 3.1 and combining (40), (41) leads to
S[ng(t)]n(t)H-a/RS /Rsns(t)Mh( f(t()t) > dvdz +/ /R /Rg‘”v of 0 Godads
£[n®(0)[n(0) +U/RJ/RJ <( )dd—/dS/R3 |(nf — n) dads.

(42)

The next task is to evaluate the time derivative of [psk[n](n® —n) da. Notice that for any
smooth concentration n, we can write

M/\Va;k[n]:ne/\(vn [])
We We
ge
_o¢ " V,®
o /\V;JH— 5 /\Vm [n]

= nV[n] — orot, <”€) ,

where V[n] = orot, (i) + %w. Clearly, we have
div, <Ze A ka[n]> = divg(nV[n]). (43)

Proposition 7.1
With the notations in (4), (5), (38) and (39) we have the equality

% En(t)](n°(t,z) — n(t,z)) dz
R3
Be e £ 3
:/R< 7+CLTCAV ok[n ]) (L —n)(Blwe] - Bln]) - F°) d.

Proof.
By straightforward computations, we obtain

% ng[n] (n® —n) dx

atn 5 €
:/ﬂ{g( 7—1— 8t [n ]> (n® —mn) dx+/ng[n](8tn — On) dz
_ /38tn <a" — s L] - @[n])) d (44)
R

—I-/ k[n] [divx <ne A Vﬂc[n]) — div, <n €A vxk[neO _ div, (6 /\Fsﬂ da,
R? We We We
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where in the last integral we have used the contraint Be - V k[n] = 0 which allows us to
deduce that

/ kn](Be-Vzp — Be - Vyp©) dz = 0.
R3

Thanks to (43), (39) we have

/Raat” (Gns_n + 9 (o —%D) Ny

n m

__ /deivx <”e A ka[n]> <a”€ — o+ L] - @[n])> d (45)

We

_ /RSBe.vxp <0n5nn + %((I)[ne] — CI)[n])) dz
_ /R div,(nV[n)) <a”€n‘"> de — / ”jwmk[n}) L (Bln) - Bln)) da

+/Rgpf:“. L (n® = n)(Eln) - Bln)) - F*| da

2P
:—a/ div, <e/\V [n]>(n€—n) dz—0o | Viylnn-V[n](n® —n)dz
R3 B R3

- /Rg (% A Vokln]) - (B[n] - Eln]) do + Rgpfe : [%(n - (B[] - Bln)) - F¥| da

= — | V.k[n]-V[n](n® —n) dz — /R("e Avmk[n]) - (E[n°] — Eln]) dz

s B
+ [ 22 [ Lt~ m)(Bln] - Blnl) = F*] do

Thanks to (43) again, the last integral in (44) writes easily
/ k[n] [divx <”e A ka:[n]> — div, (”e A ka[ng]) — div, (6 A Fﬂ dr  (46)
R3 We We We

— [ Vukin] - FV[ne] - nVn]) de — /R (6 A ka[n]) FF da.

R3 We

Observe that

V0] — nVin] — (0 — n)Vn] = e AV @[] nE AVz®[n] (n — n)e AV ®[n]
B B B
_ et A (Vi ®@[nf] — V. ®[n])
- 3 ’
and finally (44), (45) and (46) yield the result. ]

Coming back to (42), the modulated energy balance becomes

€ t va € e(2
S[na(t)]n(t)]+o/R3 /Rgna(t)Mh <nf(t()?w> dvdx—i—;/o /R3 R3‘ ffj OF T qudzds

~etomon o [ [ acomn (L0

/0 RSW[TL] . (%(ns —n)(E[nf] — Eln]) — Fe) dzds,

) dvdz (47)
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where Wn] = pTBe + & A Vgk[n]. In order to apply Gronwall lemma, we estimate the terms
in the last integral of (47). Thanks to the formula

2 (n° —n)(Bln] - Elnl) = 2 [dive(E[7] - Eln))(E[7] - Eln))

€ nfl — n 2
= ativ, (1] - £l @ (B0 - £ - 2 ),
we obtain
= Wl (0 = m) (B[]~ Bln)) da
€ nf] — En]|?
=2 <(E[n5] — Efn)) ® (E[n] — Eln]) - |E[]2EH|13> 0, W[n] da
R3
< N0 W In] | oo ) (1 + *f) [ B0 = Bl de,

where for any matrix P € Mj3(R), the notation ||P|| stands for (P : P)'/2. Similarly, we
have for some value C to be precised later on

Win] - divx/ (oVyuf+ ffv) ®@v dv de
R3 R3

=— [ 9, W[n]: / (oVuf®+ ffv) ®vdvde
RS R3

1 vafg + fEfU 2
< |[0:Wn]|l oo ((0,1) xR3) [ | e |

[of?
dvd C ¢ dvdx| .
2etC R3 JR3 f vdr et /RS Rsf 2 v

Since j¢ = [pa(oVy f€ 4 fv) dv we have
t js
/ Win(s)] - (€0s5° + —) dzds
0 JR3 T

=e | Wn(t)] j°(t,x)de —¢ RSW[n(O)] -7°(0,x) dz

g
v Lo+ o o)) avdoas

< \/E/RS A3(f5(0,x,v)+f€(t,x,v)) <s“’2|2+‘w[g]||2”’°> dvdz

[Wnlll=] [* 1 [oV,ufe+ fo?  eC .
+ [6”85W[TL]HL°° +T]/0 /R3 /Rs{250 7e —|—7f } dvdzds.
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Plugging the above computations in (47), the modulated energy balance becomes for ¢ € [0, 7]

() n(t)] + o /R 3 /R ()M (nf;()t) > dvdz

1 HW[ ]HLOO _erl@sWinfllp=  [[Win ||L°°> oV + 0 f]
= <1 2C / /R3 R3 fe

e o)+ [ [ 20 (nf((gfjw> duda

+ [ 0xW [n]| Lo (2 + \/§) — |E[n5] — E[n]? dz

€l,,12 1,12
+6fH8 Win ||Loo/ / / felv dvdxdt—l—ﬁoiltlfTs/ / fe|v|* dvdx
+vE Ve (howinlom + DI ) i | [ #0000 dva,

Taking 0 < ¢ <1 and C large enough, we obtain by Lemma 2.1 and (40), for some constant
Cr,0<t<T,0<e<1

5[n6(t)ln(t)]+a/RS /Rgnf(t)Mh (nf(gt()t])w dvdz +257/ /RB RB'“V f?f oFF qpdzds

5[n5(0)|n(0)]+0/RS /R3n5(0)Mh <nf(é)oj)w) dvdx+CT/ E[nf()n(s)|ds + Cpv/e.

Applying Gronwall lemma, we deduce that for 0 <t <T 0<e <1

: t)\n(t)]—i-a/Rg /Rgna(t)Mh (n{(et()t])w> dvdz +257/ /Rg Rd’av f? T Godads
< [5[n€(0)|n(0)] ”/Rs /R3n€(0)Mh <n((§)])w) dvdx+C’T\/§] (Crt,

The above inequality says that the particle density f€ remains close to the Maxwellian with
the same concentration, i.e., n°(t)M, and n®(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)

We justify the convergence of f¢ toward nM in L*°(0,T; L*(R? x R3)), the other convergences
being obvious. We use the Csisar -Kullback inequality in order to control the L' norm by
the relative entropy, cf. [32, 45]

fsowse o ( o) ()} (o0 (3))

for any non negative integrable functions gg,g : R — R. Applying two times the Csisar
-Kullback inequality we obtain

/]RB Rs’fa(t’m’ v) —n(t,z)M(v)| dvdx
S/ S a,v) — ot 2)M ()|dvdx+/,n (t.2) — n(t,2)| dz

<oyt ([ [ reonron (L0) dvdx>1/2
e omas {3l } ([ (0) )™ o, sz 0

dvdxds
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In the same manner we perform the balance of the relative between two smooth solutions
of the limit model.

Proposition 7.2

Assume that n, i are smooth solutions of (4), (5) and (6) such that nin, Nin > 0, Nin, Nin €
LY (R3), V,®nin], Vo ®[fin] € L*(R3), 0, W(n] € LY(0,T; L®°(R?)), k[nin], k[fin] € ker(Be -
V). Then we have the inequality

EWDIND)] < Elfimlnin] exp((2 + V3) [0 W |1 o 7w (@on)s 0 < ¢ < T
In particular, there is at most one smooth solution.
Proof.
By (40) we know that

Elin] = E[A] — Eln] — /ng[n](ﬁ ) da

:U/ h (”) dz+ 20 [ v, 00 — V.d[n)? da.
R3 n 2m R3

Thanks to the constraint Be - V k[n] = 0, Be - V;k[n] = 0, we can write

¢V, <aﬁ —" L 9 (] - @[n])) _ e =n)(EA) = )
As in the proof of Proposition 7.1, we observe that
< [ klnl(i = m) do = /Rgatn (aﬁ T (g - @[n])) du
+ /ng[n] [divz <Ze A mG:[n]) — div, <Z€ A ka[ﬁ]ﬂ dz
= | Wlnl- G = n)(Bl7] - B[n]) d,

and the balance for the relative entropy becomes

EOIn(0)] — EROIn0)] =L [ [ = n)(El7) = Bln)) - Wia] dads
< 10 W ey 2+ V35 [ [ |Eln) ~ Eln? dads
0 JR3

< (19 W]l e (2 + V) /0 Eli(s)In(s))ds.

Applying Gronwall lemma completes the proof. ]

8 Example of smooth solutions for limit model

In this section we construct smooth solution for the limit model obtained in Section 6.1. We
focus on the existence of the limit model

On + dive (ne A ka[n]> =0, k[n] = o(1 +1lnn) + Ld[n), (t,x) € Ry x RZx T, (48)
m

We
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where ®[n] stands for the Poisson electric potential which solves
—e0A®[n(t)|(x) = gn(t,z), (t,2) € Ry x R x T (49)

Denoting E[n(t)] = —V,®[n(t)] the electric field derives from the potential ®[n(t)]. We
supplement our model by the initial condition

n(0,z) = ni(z), = € R* x T, (50)

where nj, is a smooth function and belongs to ker(Be - V,). The external magnetic field we
consider here Be = (z2, —1,1). Notice that the vector field e/ B € W% ((R? x T!)).

We follow the same arguments as in the well-posedness proof for the Vlasov-Poisson problem
with an external magnetic field, as discussed in [18, 19]. Our goal is to obtain a priori bounds
for the L>° norm of E[n] and 0, E[n], not in the full space R?, but in R? x T!. These bounds
rely on estimating the fundamental solution of Laplace’s equation on R? x T'. Therefore, we
begin by investigating the Poisson equation for a given density in this domain and finding a
fundamental solution for this purpose.

8.1 Fundamental solution of Laplace’s equation on R? x T!

Consider a function Z : R? x T! — R satisfying
—ALZE = 6o(f,$3), Tr = (.f = (.’El,xg),l'g) € R? x Tl, (51)

in the sense of distributions, where &y(z) denotes the Dirac measure on R? x T! giving unit
mass to the point 0.

Lemma 8.1
Let x = (%, x3) € R? x T!. Then

satifies (51), where

> 1 —12 /44 1 2
_ T —|EF /A n?t dt.
['(x) = /0 ;e E e cos(nxs)

Proof.
We have

—ALZE = % Z 50(@)617“3, (52)

where we have used the Poisson summation formula

1 .
do(x3) = - > e,

ne”

Indeed, the dp(x3) is periodic with period 27, it can be represented as a Fourier series

oo(x3) = Z Cp M3

neL
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where the Fourier coefficients are

1 4 . 1 : 1
_ 5 —inz3 q — — ,—0z3 _ _
n 2 J_, olws)e v 271'6 27

On the other hand, as = is periodic in z3 of period 27, we also have

E(x) =) Bu(@)e™?,

ne”Z

therefore

—DGE(T,w3) = > (—AzBn(T) + 0 Ba(T))e™. (53)

nel

Comparing (52) and (53) yields the following linear elliptic equation in the whole space R?
for any n € Z\ {0}

1
AgBn(T) + n?Bn(T) = 5 00(%), 7 € R2. (54)
A solution to (54) can be found by using the Fourier transform for linear equation. It is
known that the solution to this equation is given in term of the Bessel potential G(z) as

Ba(E) = o=(U % &)(2), cf. [38] where U(z) = [° fme""/4e=7"1dt. Thus, we have the
solution formula

1 t —12 2
5) — = —|®|*/4t —n tdt
Ba(Z) 27 /0 4t ¢ )

In the case n = 0, the equation (54) becomes the Laplace equation on R?. It is well known

that the fundamental solution is given by — 2 In |z|. Finally, we obtain
1 2

= — _ —\a:| /4t —n*t ¢ inTs

(z) A2 In(lz[) + Z o / 47Tt c

neZ\{0}
= _iln(m) +/t Le—\iIQ/thi Z o7t gines 4y
472 o 4wt 27
nez\{0}

1 t
= —ﬁln(m) +/ g —|z[?/4t 2 [Ze n’ b cos( narg)] dt.
T 0

[
Let us denote 'y o(t, Z) := %ﬂte"le/‘“ and T3(t, x3) = 5= [1 +23°%0 e cos(nfrg)}. It is

know that I'i 2 is a heat kernel on R? of the heat equation

{ 8tI‘1,2(t,ac) Az #I Q(t l’) = 0 ( ) S R+ X R
L1 2li=0(7) = do(Z),

while T's is a heat kernel on T' of

{ 8tF3(t, 1‘3) — 8 Fg(t xg) =0, ( 3) € R+ X T
D3li=0(x3) = do(z3).

For a proof of this property, we refer to [29]. We define now G(t,z) := I'1 o(t, z)T's(¢, z3).
Then G is the fundamental solution of heat equation on R? x T!, that means

{ 0G — A,G =0, (t,r = (T,73)) € Ry x R2 x T!,
G’t:()(ib') = 50(%’)
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Thus, we have that the function I' in the fundamental solution for Laplace’s equation (51) is
related to the previous solution of heat equation as

I(z) = /0 st 7) [rg(t,xg) - ;ﬁ] dt. (55)

Remark 8.1
The heat kernel T's on T can also be given by the heat kernel ky(z3) = (4mt) ™Y 2e~3/4 op
the real line R as follows

1

[s(z3) = —gi(x3) := % [2%2 ki(x3 + 2mn)

1
27Tgt , r3 € T, (56)
nez

Indeed, the function g; € L*(T') since

el = /Tl grdm(z3) = Z/Tl ki(w3 + 2mn)drs = /Rk‘t(lfs)diﬂz =1,

nez

where dm(x3) is Haar measure on T!, dm(xs) = 1/(2n)dxs. Thus, the periodic function g;
can be written in the form of the Fourier serie

gi(z3) = th(n)einm’
nez

where (G1(n))nez is the sequence of the Fourier coeffiecients which is given by

1 . 1 _
ﬁt(n) = — gt(xg)e_m“dm(wg) - Z/ k't(ﬂj‘g, + 27rn)e—zn(1’3+27rn)dx3
27 T 471'2 T!
nez
1 ; I 11 o
— k —inz3 g _ k _ - | L %t
471'2/]1& t(@s)e 3T 42 «(n) o2 [2776 } ’

where ky(n) is the Fourier transform of the function ky(x3).

Since we need the bounds of the function I' and its derivatives in the following, we must to
estimate the function I's — % and also the first and second derivates of I's from (55). We
shall use the arguments in [50] to obtain the bound of [I's — %| Firstly, using the formula
(56), we can rewrite the function I's on T! as follows:

Lemma 8.2
For any t > 0 and for any x3 € T, we have

2 2.2
gi(x3) = ﬁexp (fj) 1+22exp< th >cosh (WT;:US)

n>1

Proof.
Using the definition of g¢(x3), we have

1 (w3 + 2nm)?
gi(x3) = 27rz ————exp (—
= (4mt)1/2 4t

2 2,2
T —x5 <7mx3) —Tn
=,/—-e —= e - e
o (50) Do (-75%) e (25)
n
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. . . . _ eY+e Y
which gives the claim, using cosh(y) = “5—.
Next, using Lemma 8.2, we obtain the following estimate

Lemma 8.3
For any t >0 and any x3 € T! = [~7, 7], we have

o (T2) 00 < aten) < [T+ 00| e (S22)). 7
Proof.

Using Lemma 8.2 and the fact that from cosh(y) > 1,y € R we get the lower bound. Indeed,
for any ¢t > 0
2 2,2 2
x5 7r —Tn B x3
gi(x3) > exp <_4t> 7 1+2 E exp < ; > = exp <_4t) 9:(0).

n>1

For the upper bound, let us write

S(xz) =1+ 2Zexp (—W;n2> cosh <7mta:3) .

n>1

For any n > 1, using |x3| < 7

2 2 2 2
2 cosh <7r7;x3> < 2cosh <7rtn> = exp <7rtn> + exp <_7rtn> <1+exp (T) .

Therefore
—2n2 2
R )
n>1
—72n? m2n(n — 1)
-1 _
e () ree ()
n>1
—72n? 72(n — 1)2
<1 -
e () ree ()
n>1
2

—T
Together with g;(z3) = ﬁ exp <4t3) S(z3) implies the upper bound we wanted to prove.

We need the estimate of the function g;(z3) at x3 = 0.

Lemma 8.4
For any t > 0, we have

T T
—<q0)<1 —
t_gt()_ + ta

and )

2e~
2t < g (0)—1< )
¢ =9(0) “1l—et

e—Cat

Consequently, there exist positive constants C1,Cy such that |g.(0) — 1] < C; N

39



Proof.
Using Lemma 8.2 with 23 = 0 gives g;(0) > y/F. By formula (56) we have

9:(0) — 1 = 2¢(t) —22 -

Since e~ is positive and decreasing, bounding a sum by an integral we get

& 2 1 [ 2 1 /=
t) < e " tda::/ e Tdr =<4/ —,
¢()_/0 VtJo 2Vt

hence ¢;(0) < 1+ ﬁ Moreover, ¢(t) > et we have ¢;(0) — 1 > 2e~'. Finally, since

2 —1
T ¢ +» which gives
—t

g(0) —1 < 12_664- To finish Lemma, it remains to prove |g;(0) — 1| < \/, for any t > 0.

e ™t < e for any n > 1, we deduce that o(t) <2375 e =

Indeed, we have
19¢(0) — 1] = (g¢(0) — D) Tgocsecny + (9(0) — Dp>yy

T _ 2et 1
< \/Ze t€t]l{0<t<1} + 1 _ ot \/Eﬁ]l{tzl}
e—CQt

<O

for some positive constants C7 and Cs. O

Now, the following lemma provides estimates of I'3 — 5- and its derivatives on T!.

Lemma 8.5
Let T3(t,z3) = 5= [1 +2% 2, e*”thos(mcg)} be the heat kernel on T'. Then there exist

constants C1,Cy and C3 which can change from line to line such that

1 1
Ts(t, x3) — 2' < C’lﬁe_cﬁe_c”%/“, t>0,23 €T, (58)
™
1
xT: ) = —e 2t6 3 ’ >U,z3 € )
02,V (t, 23)| < C1e Cat=Caz3/at ¢ 5 T! (59)
L ot —Caa2/at 1
’agsr?,(t,l'?,)‘ < Clme 2t aT3 s t > O,x3 eT. (60)

Proof.

Readers can find these results in [29], even when T! is replaced by more general compact
manifold, cf. [57, 60]. We provide here the main lines of the proof.

For the bound (58), it is easily obtained from the consequence of Lemma 8.4 for t > 1. If

t <1, first using (56) yields I'3(t, z3) — 5= = 5=(g¢(23) — 1) then (57) we have

% {exp <_4922> 9:(0) — } < Ts(t,x3) — % < % {exp <_43§§) (ﬁ+9t(0) - 1)] - (61)

Using the upper bound in (61) and Lemma 8.4 we deduce that

1 1 —x2 s 1 —x2 2t
Ta(t,w3) — — < —exp | —23 ) /2 4+ —exp [ —22
a(t, ) 27r_27reXp<4t>\/;+27reXp<4t>1—e—t
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If t € [do, 1], for some &y € (0,1), it’s not hard to show from the previous inequality that
there exist positive constants C1,Cy and C5 such that I's(¢, z3) — % < Clﬁe_cﬁe_c?’z%/‘“.
On the other hand, for any positive test function ¢ € C§°(R), since lim; o+ (I's — %, ©) =
(1 — 1/2m)p(23) and limy o+ (ki, @) = @(23), where k(x3) = (4mt)~"H/2e~73/4 is the heat
kernel on R, we deduce that we can choose the positive constants as above to obtain the
previous estimate of I's — 1/2 as t — 0T. Together, these arguments give us the upper
bound of (58). Similarly, by using the lower bound in (61), we infer the lower bound in
(58). Therefore, we obtain the estimate (58). Now, for the estimates (59) and (60), we apply
Lemma 2.1 in [57], which can be extended to the parabolic case, see Lemma 2.3 in [57]

1/2
C ({1 r

vxu<t,m3>|§(4 / / |u<s,y>|2dyds) ,
r 7 Jt—r Jy—zs|<r

where v is asolution of the heat equation d;u — Az,u = 0 in the domain [t — r? ¢] x B(xs,7),
with r = v/t/2 for any fixed point (¢,73) € R x T*. O

In the next lemma, we provide estimates for the function I' and its derivatives using the
relation (55) and the inequalities (58), (59) and (60).

Lemma 8.6
Let T'(x) be the function on R? x T provided by Lemma 8.1. Then we have the following
estimates

C

()| < |C D2 < 1o

where D? denotes the second order derivative. Here, C stands for a positive constant, which
can vary in each estimate.

|01 ()

'—||2’

Proof.
We will first estimate I'(x). Thanks to (55) and (58), we deduce that

c ,
’ ( )| < 4;/ _3/26_02te_‘x|2/4t@_c3x§/4tdt

C ,
< O [T =802 Cot g =Cylal gy, C% = min (1,C5) /4
0

T Ar

i —2,/C2C% || > —3/2 ,—Cot+2,/CaCh|z|—C}|z|? /¢
= —¢ 203l 173/2 = C2t+2,/C2Cyla| = Csz* /t 34

47 0

2
O x| —+/Cot

C1 9 /G > ( i 2) ~1/2

=€ 2Clal e 2d(—t~1/?)

_ G aymieg / V) gy 12

2
_ g 1 62\/@|x/ e—(@—\/m'm‘@_l) d9, 9 — \/Eé‘x|u
27 \/ﬁé‘x’ 0
C

_ma

for some positive constant C', where we have used that
[e’e) 7 1\ 2
/ 6—(9—./0203\x|9 ") 40 — ﬁ’ (62)
0 2
see the proof of Lemma 8.12 in Appendix.
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Next we estimate V,I'(z). Taking the derivative with respect to x in the formula (55) we
deduce that

o0

& 1
Vor@) < [ Vst a)lINattas) = 5ot [ D)o st
A simple computation show that

—|Z| _ja2
Vfcrlz(t,ff) — 87lt2‘€ |Z| /4t’

and thanks to the estimates (58) and (59) we obtain

Cilz| [ —5/2 —Cat —|z|?/4t ,—Csx2 /4t Ci (%, 2 _cu —|Z|2/4t ,—C322 /4t
|V.[(z) < —— t2/%e %% e 3 dt+r 1 %e e e~ 3T/t
0 0

81 7
< Gzl (% sp2 —cot —chlal gy LG /OO 12~ Cate=Cilal/t gy
- 87[' 0 T 0

where C% = min(1,C3)/4. Using supg: ¢(t) = q(C4|z|?) where q(t) = t~1/2e=C5l2*/2t for the
first integral on the last line of the previous inequality, we deduce that

|V$F(az)|§<cl = +401> / 1~26-Chla?I/2t gy
7y

877T\/C§e 0

Cl 1 C]_ 2 > d 7C/| 2|/2t
(= e I B LT

<8w,ﬁ0§e+4w> cgyx|2/0 AT

C

< —

for some positive constant C'.
Finally, we estimate D2I'(x). By direct computation in (58), we have

o0 1 o0
DEr@)| < [ DAt )Pt ) — 5ol [ (VT el )BT, wo)lde
0 0

+ [T )18, Palr ).
0

Since
D%Fl,g (t, SE) =

[_IQ LI® i] o al2/4t.

82 2t

it implies that
B 1 =2 |Ii|2 =2
D21 B S L | M L
IDz2(@)] < e T Ton3©
Using the inequalities (58), (59) and (60) we deduce that

|DIT(2)| < % / T (/2 Catlalfatg=Cand ey
T Jo

=|2 00
Cllgﬂ / £ 7/2—Cat |2 /4t~ Csad /4 g
™ Jo
o o0
C1z| 43— Cat ,—|T|* /4t ,—C3a5 /4t 34

+ 8 0

Ci [™ _5/2 —Cot_—|52/4t —Csa/at
—|—4— t e e e~ 3T/t
T Jo

=L+ 1+ I3+ 4.
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The estimates of the integrals I; and I, are performed as above. Thus we get

C C
L <—, It < —.
IR TR

For the integral I3, we have that

Cl‘$|

< o t_3e_c2te_célz‘2/tdt, C4 = min(1,C3)/4.
™ Jo

I3 <

Using again supgs h(t) = h(C4|z|?) where h(t) = t1/2¢=C3le?/2t e obtain that I < EE
x

for some positive constant C'. Similarly for integral I», we also have

1, < Gl / 1T/2Cate=Cllliqy €1 — min(1, Cs) /4
327[' 0
Cl|93|2 / —3,—Cat ,—Chlaf2/2t 3,
R VO
. ¢
= zf3

Together, the estimations of I;, for any i = 1, ..., 4 will provide us the estimate of D2T'(x). O

Thanks to Lemma 8.1 and the L™ estimate for the function I" in Lemma 8.6, and following
the same arguments as in the proof for Poisson’s equation in R?, we can show that the solution
of the Poisson equation (49) is given by

€0

Blnl() = L2 an(e) = L / /R Z(w - y)n(y) dgdys. (63)

8.2 Estimations for the electric field and its gradient on R? x T!

We give now some estimates of the electric field E[n] = —V,®[n] which can be proved by
treating the singular term in the fundamental solution = as in, cf. [3] for the space domain
r € R? and [43] for x € T3.

Lemma 8.7
Let n be a positive concentration and belongs to L*(R? x T') N L>°(R? x T!). Then, there
exists a constant C > 0 such that the electric field Eln] satisfies the following estimate:

B[]z < C([[nllze + [InllL1)-

Proof.
For any = = (Z,x3) € R? x [—7, 7], by the formula (63) we have

q
4dm2¢q

s - - - q s -
V. ®[n](z) = - / Vzln |z — g|n(y) dydys += QVxF(w —y) n(y) dydys

R
:r3+7r
= ) dyd — Tz — dgdys.
471'260/ /szyP yays + / N (z —y)n(y) dydys

The first integral in the previous expression can be estimated as

q " - _
Ineg (/_7r RQV;T: In|Z — g|1jz—g<1yn(y) dydy3‘i‘/_7r .

< C(lInllzee + lInllpr)-

™

VzIn|Z — g|1jz—g>137(y) dydy3>
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For the second integral, we make a decomposition of R? x T! in the following way
R? x [x3 —m, 23 + 7] := T U J,
where
I:{yER3:|m—y| > 1}ﬁR2 X [xg — m, x5 + 7,
J:{yER3:|x—y|§1}.

It is obviously that J C R? x [x3 — 7, z3 + 71]. Thus the last integral in the previous equality
can be written

T3+
/ RQV:CF(% —y)n(y) dydys = /IVzF(w —y)n(y)dy + /J V. I'(z —y) n(y)dy.
r3—T
Thanks to Lemma 8.6, we deduce that
¢ [* V.I(z — y)n(y) djd <C-/ LI +/ ! ()d]
— 2L (T —Yy)nly) dydys =~ T n\y)ay T \y)ay
R2 ° L 1\1‘—9’2 J\l‘—y’Q

€0 Jyz—m

x3+m 1
<C’/ /nydydy—i—/ ——=n(y)dy
r3—m JR2 ( ) ° lz—y|<1 ’1‘ - y’2 ( )

<C / /Qn(y) dydys +47T||n||L°°:|
LJ —m JR

< C(lnllpr + linlze),

where we have used that flx—y\ <1 ﬁdy = 4m. Combining these estimates, we obtain the

desired result in Lemma. O

Lemma 8.8
Let n € LY(R? x T N WH*(R2 x T') and n > 0. There exists a constant C > 0 such that
the gradient of the electric field E[n] satisfies the following estimates

IVoE[n]llzee < C (1 + [Inflroe (1 + W™ ([ Vanllze)) + [[nllz1)
where the notation In™ stands for the positive part of In.

Proof.
Observe that

#ol(e) =5 [ [ e = gbnto) gty + L [ [ =) ate) das

4d72¢,

q T I _ q [T _
=— / / In(|g))n(z — 7, x5 — y3) dydys + — / / I'(y) n(z —y) dydys,
—r JR2 € J—7 JR2

472eq

because the functions I' and n are periodic with respect to x3 of period 27w. We estimate now
8§1CI)[n] (z). In other cases, we can do the same. Taking the derivative in the variable x; of
the above equality, we have

0 fnl(e) =~ 5 [ [ o nt@ ~ g.aa — ) dgtis + 2 [ [ )00 - ) dpde
iy 3 3 B B q s 3
i [ nllgbonte 5.0 ) dgdss = L [ [ v@dnte - ) dydss
€y J—rx JR2 €0 J—r JR2
q

™ - B B ) q - i
= 12 / / In(|z — g])9y, n(y, y3) dydys — / / (x —y)d,,n(y) dgdys,
€0 J -7 JR2 € J_r Jr2

q
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which implies that

2 ja—
9z, @[n]( 47r260 / /Rzaxl y1)9y, (Y, y3) dydys — — /_W /Ranlr Y)0y,n(y) dydys
T3+T
47T2€0 / /R2 |z — Z/|28y1n ¥>ys) dydys — / / 02, (2 — y) Oy, n(y) dydys
=: K1 + K.

The estimation of K, see [3]. We estimate now Ks. Let 7, R > 0 such that 0 < r < R < 00
verify
{yeR’: |z —y| <R} CR*x [v3 — m, 25 + 7).

Then we make a decomposition of R? x [x3 — 7, 3 + 7] in the following way
R? x [373 —7T,l'3+71'] =JiUJyU Js,

where
:{yER3:|a:—y|>R}ﬂR2><[m3—7r,m3+7T],
={yeR’:r<|z—y|<R}, J3={yeR®:|z—y|<r}.

For the integral on Ji, thanks to the integration by parts with respect to y; and noticing
that the boundary of Jy is J; = {y € R® : |z — y| = R} UR? x {&3 — m, x5 + 7}, we get
= [ 9@ - 1)y n(w)dadss
J1

= / Dy 02, D — y)n(y)dgidys — / 00Tz — () =) 45
Ji le—y|=R |z —y|

- /}R2 [0, (& — (g, 23 + m))n(y; 23 + ) = 0p, U@ — (g, 23 — 7))n(y, 23 —m)] g, (64)
=0

Similarly, the integral on Jy can be written as

/J O, Dz — )3y, () diidys

_ B L _ (21 — 1)

= [ Bu0ure = pniagass— [ v = yn) T ao)

Jo |lz—y|=R |:L' y|

[ oy T Mo ), (65)
|a—y|=r lz —yl

For the integral on J3, since dy,n(y) = 0y, [n(y) — n(x)] and then using the integration by
parts, we obtain

= [ 9L = )0z =~ [ 9.L(@ ~ 1) nly) - n()dgdss
J3 J3

- / 9,00, T — y)ln(y) — n(e)]dgdys — / 0T (i — ) [n(y) — n(@)] =¥ do(y).
J3 |z—y|=r |z — vy
(66)
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Combining the equalities (64), (65) and (66) we deduce that
89%1(1)[”] (z) = /J 8y18wlr($ —y)n(y)dydys +/J ay18m1F(x —y)n(y)dydys
1 2
+ [ 05,00, I(2 = y)[n(y) — n(z)]dydys

J3

—nlx (1 —w1) o
" /|z_y|:r5“”‘” pn() T =as()

=1+ b+ I3+ 1.

Thanks to Lemma 8.6, we will estimate the integrals I;, for any i =1, ..., 4.
For the integral Iy, using the L* estimate of 9,I" we have

IL,<C do(y)|In|le = 4nC|n||Lo.

lz—y|=r |CC - y|2

For the integral I3, using the L estimate of 92T" we also get

1
Is<C 7y|3]a§ — y|dy||Ven|| Lo = 202CT||Von|| poo.

le—y|<r |:L' -

Similarly for the integral I and the integral I, we obtain

1
I < c/ Lyl = 2020 (R
r<|z—y|<R ‘J} - y‘

1 C
L <C —_ dy < — .
1> 7 ‘IL' — y‘gn(y> Y= R3HnHL1

Finally, together these estimates of I;, for any 7 = 1, ..., 4 we obtain
1
Ky < O glinlip +In(R/r)lnllze + 7l Vonl|ze + [Inllze | .

Taking r = and R = 1 which gives us the result of the lemma. ]

[
I+[[Vnll Lo

8.3 Local existence of smooth solutions

Let’s begin to establish strong solutions for the limit model. It is sufficient to construct
a solution on some time interval [0,7], T" > 0. We present only the main arguments, the
other details being left to the reader. We assume that the initial condition ni, satisfies the
hypotheses

Hl) Nin Z 0,
H2) ny, € Whe(R? x TY) n WHY(R? x T1).

Solution integrated along the characteristics
A standard computation, we can rewrite the equation (48) as

o+ (E A %) -Vzn + orot, <e> -Vzn —roty <%) En=0, (t,z) € Ry xR? x TL. (67)

We
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For any smooth field E € L>(0,T; W1>°(R2 x T!)), we consider the associated characteristics
flow of this equation

dt c
(s;s,2) =z € R x T,

Uit s, 2) = Bt (ks 5,2)) A W + ooty <€> MEso)

where I1(¢; s, x) is the solution of the ODE, t represents the time variable, s is the initial time
and x is the initial position. II(s;s,z) = z is our initial condition. Notice that the vector
field 5 is also smooth and belongs to W22 (R? x T!). Therefore, the characteristics in (68)
are well defined for any (s,z) € [0,7] x R? x T! and there are smooth with respect to x.
From (68), the equation (67) can be written as

%n(t, W(t;5,2)) = rot, (7 ) (U(t:5,2)) - E(t, Tt s,2))n(t, Tt 5, 2)) = 0.

The solution of the transport equation (67) is given by
t
n(t, z) = nin(I1(0; ¢, z)) exp </ rot, (%) (TI(s5t,x)) - E(s,H(s;t,m))ds) : (69)
0

Conservation law on a volume
We have the following conservation law

/ n(t,x) de = / Nin(z) dz, 0 <t <T. (70)
R2xT?! R2xT1!

Indeed, we denote J(t;s,z) is the Jacobian matrix of II(t; s, x) with respect to x at (¢;s,x).
The determinant of the Jacobian matrix J(¢; s, z) is given by

et 55,) = dive (B0 A 5+ oot () (U8, 20)08 (05,2,

det(J(t;t,z)) = 1.

Hence, we obtain

det (J(t;s,x)) = exp (— /Ot rot, (%) (11(0; s, x)) - E(6,T1(0; s,m))dﬂ) .

Integrating the equality (69) with respect to x and then changing the variable x to I1(¢; 0, x),
we obtain

A priori estimates
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The bound in L>(0,T; W1 (R? x T!)) of the solutions
We have the following bounds

sup [|n(t)]| oo ®2x11) < [[Ninll Loo 251 exp(CBT sup [|E(t)]|ze), (71)
te[0,7) t€[0,7]

IVan(8)l| Loe w2ty <([[72in][ Lo + exp(CoT (1 + o IEOwre ) Vaninllze) — (72)
€10,

exp(CoT(1+ sup [[E(t)|[w1.)),
t€[0,T

where we denote the constants Cp = [le/ B2, ®2xm1) and Co = C(a, g, m, B).
We will first prove (71). By the formular (69), for any ¢ € [0, 7] we have

exp < /0 * ot (£) (W(s:t,2) - (s, (s 1, x))ds)

< |[ninl| Lo exp(T(|0x(e/B)l|Lee sup [|E(t)[|L~)
te[0,7

< |Inin|[o exp(CBT sup [[E(¢)] o).
te[0,7)

[n(®)]|Loe < [l
LOO

We then prove (72). By taking the derivative with respect to x in the formula (69), we imply

IVan(®llz < Inin(T10;2,) e |lexp ( /0 ot () (Msi)) - B, (set, ->>ds)

HWLOO

We estimate now ||nin (IL(0; ¢, z))||yyr1,00. Since
1720 (T(0; £, ) [lwrt.oo < [|in| oo + [[0TT(05 2, -) | oo |V 72in [[ £oo

therefore it remains to estimate sup;c(o 71 [|02z11(0; 2, -)|| L. Taking the derivative with respect
to x in (68), we deduce that

t
[10211(0; ¢, -)[[ oo <1 +/0 (1E(s) A (e/B)|lw1.eo + olle/we|lwz.oo)||0-I1(0; 5, -)|| Loo ds
t
<1+(1+Clo,qm, CB))/ (14 [B(5)|[yy1.00) |2 TI(0; 5, -) | e s,
0

for some constant C'(o, q,m) depending on o, g, m. Thanks to Gronwall’s inequality, we have

10211(0; 2, )| = < exp((1 + C(o,¢,m, Cp))t(1 + s IE@)lwre)), t€[0,T],  (73)
tel0,T

which implies for anty ¢ € [0, 7] that

[[72in (TL(O; 2, ) (w100 < [[72im | Lo +-exp((1+C (0, ¢, m, Cp))T(1+ e IE @) lw.00)I[V7tin[ oo
tel0,

Next we estimate the following norm

1(t) = ||exp ( /0 " ot (£) (s t, ) B, (s, -))ds>

‘Wl,oo
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A straightforward computations and then using (73) yield

exp ( /O " ot (%) -E(s)ds) (1+ /0 tHrotx (%) B, ds)

t
< exp(Cpt sy [BO)]) (1 + [ Call Bl (1 + 0115 ->|1Lm>ds)
tel0,T 0

< exp(Cpt sup [|E(t)||L=)
t€[0,T]

I(t) <

oo

t
(1 + [ Csup Bl exp((1 + C(o, g, m, Cp)t(L + sup ||E<s>rW1,w>>ds>
0 [0,T] [0,7]

< exp(Cpt sup | E(t)|r=)

te[0,7
(14 Ct sup | E(s) w1 exp((1 + C(o,q,m, Cp))t(1+ sup [|E()w1)))
[0,7] te[0,T)
< exp(C(o,¢,m, B)t(L+ sup [E(®)[lwre)),

te[0,T
for some constant C'(o,q, m, B) depending on o, ¢, m,Cp. Combining these estimates yield
IVan(t)|zee < ([Ininllzee + exp (CoT (1 4 [ Ellwr.e0)) [|Vnin [ o) exp(CoT (1 + [ El[yr.)),

where we used the notation Cy for a universal constant depending on o, g, m, B.

The bound in L>®(0,T; WH1(R? x T!)) of the solutions
[n(®llLr = lIninllLr, ¢ € [0, 77, (74)

IVanllpr < exp(Cot(1+ sup [ Ellwre))([[Vinllrr +tCo sup [[E(E)[wreel|nnllzr), (75)
t€[0,77] t€[0,T]

where Cj is the constant depending on o, q,m, B. Now we will prove (75). By taking the
derivative with respect to x in (69), we have

t
Van(t, z) = exp </0 rot, (%) ‘E(s)\n(s;tmds> [taxH(O;t,a:)Vxnin(H(O;t,a:))

+nin (11(0; ¢, )) /Ott&cl_[(s;t,x)vx {rotac <%> E(s)} ]H(S;m)ds] )

Then, we integrate with respect to x and change the variable x to II(¢;0,z). Notice that the
Jacobian formula is given by

t e
exp —/ roty | — ) - E(5)|(s:0.2 ds),
< 0 (B) M(s:0.2)
therefore we deduce that

[ Werldrs [ 0000t Vo do
R2xT? R2xT?!
t
+CB/ nin(a:)/ |011(s;5t, )| Lo | E(S, *) |lyods da.

R2xT! 0
Thanks to (73) we obtain
[ 19 e < exp(Cotlt+ sup Bl <) (19l +¢Co sup B~ )
R2xT T

te[0,T] t€[0,T7]

where we use same the notation Cy for a universal constant depending on o, q,m, B.
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Local existence of solutions
We define

D= {E € L®(0, T; W' (R? x TY)) : sup | B[~ < M, sup |, E ()]l < Mz} ,
(0,7 [0,T]

where M;,i = 1,2 are two constants to be fixed later. Given an electric field F in X. We
consider the solution by characteristic of the equation (67) on R? x T!, corresponding to
the electric field £ and denote by n” which is given by the formula (69). We construct the
following map F on X, whose fixed point gives the solution of the system (67), (49) and (50)
at least locally in time such solutions exist

E— F(E) =1 / V.E(x —y)n®(t,y) dy. (76)
€0 JR2xT!
We will prove that the map F is left invariant on the set ¥ for a convenient choice of the

constants M and M,, then we want to establish an estimate like
¢
\FE®) — FEW) |~ < C’T/ |E(s) — B(s)|weds, E, B, te[0,T],  (77)
0

for some constant Cr, not depending on F and E. After that, the existence of the system
(67), (49) and (50) immediately, based on the construction of an iterative method for F.

Lemma 8.9
There exist positive constants My, My and T = T(My, Ms) such that F(X) C 3.

Proof.
Let E € X. Thanks to Lemma 8.7 and the formulas (71) and (74), we have
[FE)(E,)llzoe < C([|nin | oo exp(CBT s IE@)||zee) + [[7n | £1)
telo,
< C(llninllzee + [17inl[ 1) (exp(CT s [E®)][L=) +1)
telo,

< C(lninllzes + lIninl[ 1) exp(CBT sup [[E(t)||L~ +1).
t€[0,T]
Here, we fix M; as a constant such that Ce?(||ninl|ze + ||ninllz1) < M; , and we choose

T= max(CB,C’j) OLF5G) where Cy = C(0,q, m, B) is a universal constant. Hence, we obtain

sup || F(E)(t, )|z < M.

i

The bound of L* norm for the density n(¢) in (71) becomes
[n(8)][ Lo < el|nin][Loe- (78)

It remains to estimate |0, F(E)(t,-)||r~. Thanks to Lemma 8.8, we need to estimate
In*(||V2n(t)|). By the formula (72) we have
I ([ Ven(t)|| o) < I (||| o + exp(CoT (1 + ol HE@ w00 DIV anin| o)
t€[0,T

+ CoT'(1+ sup [[E@®)[lwi.=)
t€[0,T]

< In(flnanlwr.oe (1 + exp(CoT (1 + Sup [E(®)lnr.02))))
€10,

+ CoT(1+ sup [[E(t)|wie)
te[0,T

< I ([[ninllwree) + 1+ 2CoT (1 + sup [|E()[ly1.0).-
t€[0,T]
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Thus, together with (78) we deduce that
102 F (E)(t, )|z < C(1+ ellninll oo (2 + In* ([Jrunlwre) +2CoT (1 + P IE@)[wee) + lIninl[ 1)
te0,T

< 2C(1 + eflninloe (2 + ™ ([|72in [lwroe ) + 17in [ £1) (1 + CoT' sup [|E(t)]lwr.0)-
te[0,7

Here, we fix My as a constant such that 2C(14e]|nin || oo (241" (|| 72in 11,00 )+ |7 | 1) < %
_ 1 X
and we take T = X (C5.Co ) (LT Therefore we obtain

M.
[0 F(E)(t, )L < 722 = Mo.

[

Now we establish the inequality (77). Consider E and E € ¥ and denote by n” and AP the
solutions by characteristics of (67), (50) with the same initial data ni, corresponding to the
electric fields E and F, respectively. It is easily seen from Lemma 8.7 that

IF(E)() = FE)W)llze < C(In(8) = 2P (t)| oo + 07 (1) = 2P (t)]|1)-
Notice that the constant C' is not depend on E and E.

Lemma 8.10
We have

InE(t) — 2B () < © / |E(s) — B(s)] s,
0

for some positive constant C, not depending on E, E.

Proof.
Thanks to (69), we deduce that

InE(t,z) — aP(t, )|

~ t
< [nin(T17(05 £, 2)) = min (I (05 £,)) | exp ( /0 ot () - E<s>|nE<s;t,m>ds>

+ man(TTE (03¢, ) [exp ( /0 " ot (%) : E(s)|HE(S;t7x)d5> — exp < /O vy (%) : E(5)|ﬁg(s;t7x)ds>]

= Il + IQa

where T2 and T2 denote the characteristic of (68) corresponding to the vector fields £ and
E. We estimate now the integral ;. Since

[nin (ITF (05 ¢, 2)) — nin (TTF(0; ¢, )| < [TE(0; ¢, 2) — TIZ(0; ¢, 2)||| Vanin | oo,
so we need to estimate supy scpo.7) ITIE (t; s, ) — fIE(t; $,)||Lee. We claim that
~ t ~
sSup HHE(tvsa ) _HE(t;S7')HL°° < COeCOT(1+M1+M2) / HE(Sa) - E(Sv ')HLO"d“S? (79)
t,s€[0,T 0

for some constant Cy depending on o, g, m, B. Indeed, from the equations in (68) we imply
that

ST 1) (t;5,2) = (BO) A sy — B0 A ln(ti5,2))
+ (E(t) A %\H(t; s,x) — B(t) A %yﬁ(t; s, x))
+ orot, (i) (I1(t; s,x)) — oroty, <;C> (II(t; s, x)),

(HE — HE)(s;s,x) =

o1



Integrating between s and ¢t we find

ImE—ﬁ%@wwﬂéC@/Hﬂ@—E@Wmﬂs
0

t t ~
+Cg/ ||E||W1,oo](HE—HE)(T;s,x)|dT+C'0/ |(IE — 118) (7} 5, x)|dT.
0 0

Notice that sup¢( 1 | E(t)|| w1 < Mi+4 My, since E € . Then, the Gronwall lemma allows
us to conclude that (79) holds. Therefore we have

t
I < C/ |E(s,-) — E(s,-)||reds.
0

Next, we estimate the integral Ir. We utilize the inequality |e* — e¥| < e*t¥|x — y|, valid for
any z,y € R. Applying the same argument as in the estimate of I;, we obtain

t
I < C’/ |E(s, ) — E(s,)||peds.
0

Notice that, for the sake of simplicity, we use the same notation C in the inequalities for
both I; and Is standing for a universal constant depending on T, M1, Ms, B, ny,. Finally, we
combine the estimate for the integrals I; and Is to derive the result. O

Lemma 8.11

We have .

In®(t) = aZ ()l < C ; 1E(s) — E(s)||1~ds,
for some positive constant C, not depending on E,E.

Proof. )
Since n¥ and 7¥ are the solutions of (67) therefore we deduce that

—/ sign(nf — ﬁE)rotz (E> (E - E)nf dz — / rot, (E) - En® — ~E| dz =
R2 xT1 B B

Using the inequality (75) and a straightforward estimations yield

E _ﬁE T _F - nE_~E T
o [, it - af) as < (180 - Bl + [ 10 -0l a)),

xT

for some positive constant C' depending only on g, m, B, M1, Ma, ni,. Integrating between 0
and ¢ and thanks to the Gronwall lemma we obtain the desired result. O
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Based on these arguments and Proposition 7.2, we establish the following result

Proposition 8.1

Assume that the initial condition niy, satisfies the hypotheses H1 and H2. There exists T > 0
and a local time strong solution (n, E) on [0,T] for the limit model (48), (49) and (50). The
solution is unique and satisfies

n >0, ne L®0,T; WH°(R? x TY) N L0, T; WH(R? x TY)),
E € L0, T; Wh>°(R? x T!)).

Appendix

Lemma 8.12
For any r € Ry, we have

o0
/ e~ (0-T071qg — \f

0

Proof.
Let us denote I(r) = [; e~ (=072 q9. Tt is easily seen that

For any r > 0, by taking the derivative with respect to r, we obtain that
-1 —1y,—(0—r0—1)2
I’(r)—?/ 0710 —ro~ e 00 qg
0

which yields
[ee]
I'(r)y =2I(r) — 27“/ 926~ (0=07")qy. (80)
0

Observer that

2r / 92007149 = 2 / e 0= q(r )
0 0

and by changing the variable u = r0~! one gets

oo 0
2r/ 92 (0=707)qp = —2/ e~ =W gy = 21(r).
0

[e. 9]

Substituting in (80), we have
I'(r) =0, r>0

which implies I(r) is independant of value of r and thus I(r) = @, for any r € Ry O
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