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?(Intro)?

Long time behavior for collisional strongly magnetized plasma
in three space dimensions

Mihai BOSTAN * Anh-Tuan VU T

(March 24, 2023)

Abstract

We consider the long time evolution of a population of charged particles, under strong
magnetic fields and collision mechanisms. We derive a fluid model and justify the asymp-
totic behavior toward smooth solutions of this regime. In three space dimensions, a
constraint ocurs along the parallel direction. For eliminating the corresponding Lagrange
multiplier, we average along the magnetic lines.

Keywords: Long time behavior, Strongly magnetized plasmas, Relative entropy.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

We consider a population of charged particles of charge ¢, mass m, whose density in the phase
space (z,v) € R3 x R3, at time £ € R, is denoted by f= f(f, x,v). We concentrate on the
long time behavior, that is

f(tN,x,v) = f5(t,x,v), t = et.

Here € > 0 is a small parameter, related to the ratio between the cyclotronic period T} and
the observation time Typs. The notation B* = Bfe, B¢ > 0, |e| = 1 stands for the magnetic

field, assumed to be divergence free. We know that % ~wE = % and therefore we consider
strong magnetic fields

B B

BE = —m—mmmm = —
Tca/Tobs (3

where B is a reference magnetic field, corresponding to Ty, i.€., % = W, = TQ—Z. The
collision mechanism accounts for friction and diffusion effects and is described by Fokker-
Planck operator

Q(f) = %divv{avvf +of)
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where 7 is the relaxation time and o is the velocity diffusion, see [29] for the introduction of
this operator, based on the principle of Brownian motion.
The self consistent electric field writes

E[f]:—de)[f], (I)[f]: 1 /Rgp[f(x,’- /Rg Rgfﬂf U d/d(E/

dmeg |z — /| e |z — |

where the potential ®[f] satisfies the Poisson equation

—e0A:@[f] = plf]l = qn[fl = ¢ Rgf dv

where p[f] and n[f] stand for the charge density and particle density respectively. Here
gg is the electric permittivity of the vacuum. We obtain the Vlasov-Poisson-Fokker-Planck
equation, with external magnetic field

eatf€+v-vxf5+% < (] +v/\B> Voff = —divv(avvf%rvfe), (t,z,v) € Ry xR3xR3

(1) fequevper-seats
B = V.01 —eod, 8l = qnlf] = [ f*av (2) e Potasontps

We add the initial densities

F5(0,2,0) = f(w,v), (2,0) € RS x RS, (3) [oqu Tnitial]

There are many works dealing with the existence and uniqueness of solutions to the VPFP
system, in the three dimensional setting. For the existence of weak solutions for the VPFP
problem (1), (2), (3) we refer to [27, 53]. Existence and uniqueness results for strong solutions
of the VPFP problem can be found in [22, 23, 30, 47, 49].

The system (1), (2), (3) describes the dynamic of charged particles under the action of
strong magnetic field B® — 400, as € \, 0 and also the collisions between particles. The
mathematical literature in this field, we refer the interested reader to the works [1, 10, 21].
Other asymptotic regime for strongly magnetized plasmas where collisions are taken into
account are mentioned here, cf. [19, 20, 15].

We are interested in the asymptotic behavior of the problem (1), (2), (3), as ¢ \( 0.
This study is motivated for the description of tokamak plasma [32]. In the large magnetic
field regime, the charged particles get trapped along the magnetic field lines and they rotate
around these lines with small radius. This gyration radius of the particles is called the Larmor
radius, is inversely proportional to the streng of the magnetic field. Therefore, the charged
particles are confined well into tokamak. But solving numerically of kinetic equation in the
presence of such large magnetic fields requires the numerical resolutions of the small time
steps (typycally smaller than £2), due to high oscillations in time of the particles around the
magnetic lines, leading to a huge time computations cost. Hence, the question of deriving
asymptotic model, reducing the cost of numerical simulation is of great importance. Many
kinetic models with strong magnetic field have been studied, it usually leads to the so-called
guiding-center or gyro-kinetic models. We refer to [41, 42] for a physical references and
[9, 24, 35, 36, 44, 50, 51] for a mathematical result on this topic.

We derive a new asymptotic model as € N\ 0. Let us now analyze the Vlasov-Fokker-Planck
equation (1). The dynamic of the charged particles is dominated by the transport in velocity
along the magnetic force X (v A Be) - V,, whereas the transport v -V, + L E[f¢] -V, and the
collision operator Q(f€) are in the same order, leading to the guiding-center approximation as
€ goes to 0. The limit distribution function is constant along the characteristic flow associated



to the dominant advection field v A Be. It only depends on space, time and two components
of the velocity, corresponding to the parallel component along the magnetic field line and the
magnitude of the perpendicular velocity. Moreover, for collision plasma, the charged particles
seem to reach a thermal equilibrium. By performing the balance of free energy functional
associated to the VPFP system

€0

,02
g[fs]:/ﬂ§3/ﬂ‘{3<o-f51nf€+f€’2|> d’l)d$+2,rn/RB‘E[f8”2 dz

then the analysis of the dissipation term

o= [ [T

which allows us to conclude that the limit distribution function f of the family (f¢).>0, as
€ \( 0, is an equilibrium of the form of local Maxwellian distribution in velocity, parametrized
by macroscopic quantities (particle concentration), for any (t,z) € Ry x R3, i.e.,

6—|’U|2/20'

flt,z,v) =n(t,x)M(v) = n(t,aﬁ)w,

(t,z,v) € Ry x R® x R,

The concentration n(t,x) satisfies the following transport equation with a constraint

E zWe €T
Oy + div, [n( [n]/\e_UV weAe  OzeeNe

o
2
B w2 We

):| + Be-Vyp=0, (t, J}) e Ry x R? (4) equ:gyro-kinet
Be - V3k[n] =0, kln] =onlnn + i<I)[n] (5)[equ:constraint

m
coupled to the Poisson equation

Eln] = =Va@lnl, —c0,2ln) = gn (6) [oau Poiasontin

with initial condition
n(0,z) = niy(z) = f(0,z,v) dv
RB

where p is thought as a Lagrange multiplier associated to the constraint (5). At the limit,
the concentration n is advected along the electric cross field drift, magnetic gradient drift,
magnetic curvature drift. The model obtained in the three dimensional framework is much
more complex in the two-dimensional one, since in that case we need to handle extra con-
straints. The constraint (5) comes from the pertubation of the limit particle densities f as
e N0 i.e., f€ ~ f+efi leading to the following equation

v Vaf = SV, 8[f]- Vof + (v A Be) - Vo fy = 0. (7) [equ:EquaConF|

We want to find a closure for the dominant term f or the concentration n, so we need to
eliminate the magnetic term of f; enters (7) as a Lagrange multiplier. In the absence of
magnetic fields, the equation (7) becomes

v-fo—%Vz<1>[f]-va:0.

Substituting f(¢,x,v) = n(t,x)M(v) in the previous equality, and by direct computations
yield the following relation

Vik[n] =0, k[n]=0clnn+ %@[n]

3



This constraint implies that the concentration n(¢, z) has the form
n(t,z) = Z(t)e me M (8) 7equ:Boltz-Gibl

which is the so-called Boltzmann-Gibbs relation, relating the electron density to the electric
potential, cf. [2]. In the general case of magnetic field B(x)e(z), we apply the average along
the characteristic flow with respect to the operator (v A e(z)) - V,. Employing this method,
we derive rigorously the constraint (5) for the concentration n(t,z). Moreover, when the
magnetic field is uniform i.e., Be = (0,0, 1), the constraint (5) becomes

Ogskln] =0, k[n]=0clnn+ i(ID[TL],
m
which leads to the concentration n(t,z) can be written as

¢~ me Bn]

9 equ:ReduBoltz-
oo & e Pz ) emiRedubotts

where x = (z1,23) € R x R, cf. [39, 46]. It is worth showing that our limit model (4) is
consistent with the limit model of the electron distribution function, obtained in [39]. Indeed,
in the case of the uniform magnetic field, the limit equation (4) becomes

n(t,z) = N(t,z))

Ogn + divy (nE Ae) + Opap = 0.

Intergrating in z3 to eliminate the Lagrange multiplier p and using (9) we obtain
ON(t 1)+ dive, (N(t,21) V., &) =0,

where ® : R x R?2 — R is an 3 averaged of ®[n]

d=""1 </ eT,i,‘P[n]dm)
q R

which is exactly the limit model introduced in [39].

The asymptotic regime will be investigated by appealing to the relative entropy or mod-
ulated energy method, as introduced in [54]. By this technique one gets strong converges,
provided that the solution of the limit system is smooth as well as the convergence of the
initial data. Many asymptotic regimes were obtained using this technique, see [24, 25, 36, 48]
for quasineutral regimes in collisionless plasma physics, [51, 4] for hydrodynamic limits in gaz
dynamics, [37] for fluid-particle interaction, [6, 5] for high electric or magnetic field limits in
plasma physics.

Before writing our main result, we define the modulated energy E[n®(t)|n(t)] by

£l (B)n(0)] :a/Rsn(t)h <"E(t ) do +/ IV, ®[nf] — V,0[n]2 dz

n(t)

where h : Ry — Ry is the convex function defined by h(s) = slns — s+ 1, s € Ry. This
quantity splits into the standard L? norm of the electric field plus the relative entropy between
the particle density n® of (1), (2), (3) and the particle concentration n of the limit model (4),
(5), (6). The main result of this paper is the following

Theorem 1.1
Assume that the initial particle densities (f5))es0 satisfy f5 >0, M, 1= sup,~q M}, < +00,
(MainThm) Uin = sup,~o U;;, < +oo where

2
Mg, = / Jo (@, v) doda, US, = / P (o) v+ 2% / V52 de.
R3 JR3 R3 JR3

4



We assume that (f%)e>0 are smooth solutions of (1), (2), (3) and n is a smooth solution
of (4), (5), (6) such that W[n] = = A Vik[n] + 2> B¢ pelongs to W00, T[xR?), ny, > 0,
nin € LY(R3), k[nin] € ker(Be - V ) We suppose that

lima/ / ni, M (v < ) dvdz =0, hmé’[ S nin) =0
e\0 R3 JR3 M e\0

where n, = [ps [ dv,e > 0. Then we have
lim sup 0/ / n°(t)M(v)h < N > dvdz =0, lim sup E[n°(t)|n(t)] =0
eNOo<t<r  JRr3 JR3 nsM N0 o<t<T

£ £,,]2
11m///|"vf+f U qudzat = 0.
eNO ET R3 JR3

In particular we have the convergences limen f¢ = nM in L°°(]0,T[; L*(R3 x R3)) and
limow o Vo ®B[f] = V,@[n] in L (0, T[; L2(R)).

Our paper is organized as follows. In Section 2 we establish some a priori estimates satisfied by
smooth solutions (¢, E¢) of the three dimensional VPFP system. In the next section, by using
Hilbert expansion we derive the asymptotic model. The limit model is a transport equation
which involves a Lagrange multiplier with a constraint in the direction to the magnetic field
lines. Section 4 is devoted to find an equivalent model by eliminating the Lagrange multiplier.
The idea is to apply the average along the characteristic flow associated to the magnetic field.
The new limit model after averaging needs to analyze the commutation property between the
average operator and rot,. We shall establish a result for this commutation property in the
Section 5. In particular, we will apply this formula to tokamak magnetic fields in the next
section. The convergence towards the asymptotic model is proved rigorously in Section 7
under the assumption that the solution of the limit problem is smooth. In the last section
we investigate the well-posedness of the limit model obtained from the Section 6.

2 Preliminaires
?(Prelim)? . . C . .

In this work, we will assume that the initial data is smooth enough in order to have the
existence and uniqueness of a smooth solution to the VPFP system for any fixed € > 0. The
asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (1) when € becomes small
comes from the balance of the free energy functional

2
E[fe]:/]Rs/]RS<afelnf€+f€w2’> dvdx+2€731/RS]E[f5]|2 dz.

2
Multiplying the left hand side of (1) by o(1 4+ In f¢) + |U2 and intergrating with respect to
(z,v) € R3 x R? yield

e ,02
/RB/Rg[aatferv.foeri(E[qurv/\BE> ~va5} [a(lJrlnfg)JrIQ\] duds

:/ / [€8t+v.vx+q< [f€] +U/\> U] [stlnf€+f5|v|2] dvdx
R3 JR3

_/R3 /RB;E[fE]-va dvdz

2
~<ip fo fo (ormr e 7l ) avaoe [ w0l gl as (10) equ:Batancoti



where j[f¢] = q [gs f*(-,v)v dv stands for the current densities.
Thanks to the continuty equation

e0yplf7] + divej[f] =0

we write

/ V@[] - 7[f°] d / [felowplfF] d (11)[equ:EvoluElect

= 5 [ B[f919,A,0[F7] da
m R3
goe d o112
- [ Vel da.

i

Multiplying the right hand side of (4) by o(1+1n f¢)+ -—— and then integrating with respect

to (x,v) € R? x R? imply
2 1 € €12
/ Q(fe |: (1 +In f6> + ||:| dvdz = / |0V ff+ of | dvdx (12) equ:Dissipatio
R3 JR3

| / oMV, ( ff/M)! o
R3 JR3

2
where M stands for the Maxwellian equilibrium M (v) = (270)~%/% exp <—|2U‘>, v € R3.
o

Combining (10), (11), (12) leads to the balance

2
é‘g |:/ / <Uf5 1nf5+f€|v|> dvd:c—i—go/ ’VI(I)[fs]P dx:| (13) ?oqu: EquFreeEn
t R3 JR3 2 2, RS equ:EquFreeEn:
€ 2
R3 JR3 fe

or equivalently

‘( oMV (f2/M)[? .
el f (e //R | dvdads = €[ f(0)].

fe
At least formally, we deduce that f¢ = f+ O(¢e), as € N\ 0, where the leading order density f
satisfies o 2
1
/ oMV (f/M)] dvdx =0, t € R,.
T JR3 JR3 f

Therefore we have f(t,x,v) = n(t,z)M (v), (t,r,v) € Ry xR3xR3 and it remains to determine
the time evolution of the concentration n = [p3f dv.
We establish uniform bounds for the kinetic energy.

Lemma 2.1
€

Assume that the initial particle densities (f5)) satisfy fo, > 0, M, := sup,~o M, < 400,
(KinEne) {7, .— = sup.-q U, < 400, where for any e > 0

2
M, ::/ / fi(z,v) dvde, Uy, = / / o® (x,v dvdx—i—/ |V ®[f5]|? da.
Rr3 JR3 r3 JR3

We assume that (f€)e>o are smooth solutions of (1), (2), (3). Then we have

2
£ sup {/ il —fe(t,x v)dvdx+/ Vg <I’f€]|2daz}<sUm+3 T M,
o<t<T \Jrs Jrs 2

6



and
I 9 3o
/ / lv|“f€(t, z,v) dvdzdt < eUy + —T Miy,.
T Jo R3 JR3 T

Proof.
| 2

Multiplying (1) by % and intergrating with respect to (z,v) € R? x R3 yield

d 2 1
il L L e avaes 20 [ vt anl =2 - L[ R s
dt | Jps Jr3 2 T T Jr3 JR3

and therefore we obtain

2
5{/ id —fe(t,z,v) dvdz+ / V. ®[f]? dx} / / lv|2f¢ dvdzds
Rr3 Jr3 2 R3 JR3

3o

which yields the results. O

3 Formal derivation of the limit model

? ; ?
?(ForDerLinMod)? This section is devoted to the derivation of the limit model for (1), (2), (3) when e becomes

very small by using the properties of the average dominant operator transport. At the formal
level, we perform our analysis starting from a Hilbert expansion

fe=f+efi+eifot ..

Plugging the above ansatz into the kinetic equation (1) yields
eO(f+efi+efot ) to-Volf+efi +e2fot )

+% (E[f+6f1+52f2+...]+v/\3:> Volf+efi+elfo+..)=Q(f +efi +%fo +..).

Identifying the contributions to any power of ¢ leads to

L(onBe)-Vuf =0 (14) [equ:Ozdero)|
v Vof + LB[f]- Vof + L(v A Be) - Vufi = Q(f) (15) [equ: Ordert
Ouf +v- Vafi+ LE[A]- Vuf + (A Be) - Vofe = Q(f1). (16)

2
Multiplying (15) by (1 +1n f) + |— and integrating with respect to (z,v) € R? x R3 yield

q |v]? 1 oMV, (f/M)?
/IRB/IRg(v-VI+mE[f] ) (aflnf+f )dvdx+7_/R3 g ; dvdz

= /]R3 /RM(iE[f] uf dUdl‘—l—/ fl%(v/\Be) : Uv;vf dvdz. (17)[equ:EquBalance

R3 JR3

Integrating (15) with respect to v € R?® we deduce that div, [ps fv dv = 0 and therefore we
have

D). of dods — — - o
/Rs/RsmE[f] vf dvde ~ V.®[f] - j[f] da = 0.

RS



Using also (14), the last contribution in the right hand side of (17) cancels, and therefore we

obtain )
1/ / oMV (f/M)] dvdz = 0, t € R,
T Jr3 Jr3 /

saying that f = nM, for some function n = n(¢,x) to be determined. In that case the
constraint (14) is satisfied and (15) becomes

v Vaf + %E[f] - V,f € Range((v A e(z)) - V), = € R3.

For any e € S? we denote by R(, e) the rotation of angle # around the axis e
R(6,e) =cosO(I3 —e@e)v —sinf(v Ae) + (v-e)e, v e R
The characteristic flow of the field (v Ae) -V,
% =V(0;v) Ne, V(0;v) =v
is given by
V(0;v) = R(—0,e)v = cos (I3 —e @ e)v +sinf(v Ae) + (v-e)e, (A,v) € R x R>.
For any function g(v) = (v A e) - V,h in the range of the operator (v A e) - V,, we have

g(V(0;v)) = %h(V(G;U)) (6,v) € R x R3

and by the periodicity of the flow we obtain

1 2w

— g(V(6;v))dd =0, v € R3.
27T 0

Therefore, for any z € R3, the average along the characteristic flow with respect to (vAe(z))-
V, of the function v -V, f + L E[f] -V, f vanishes. But

v Vaf + LB Vaf = 0 Ver)M = L(B(f] o) = BMo- Valon + Lal))

m o
and since )
1 T
7 M(V(6;v))V(0;v)d0 = M (v)(v-e)e
™ Jo

finally we obtain the constraint
e-Vzkn] =0, k[n] =0(1+1nn) + g(I>[n], z € R3.
m

Here the potential ® = ®[n] writes

q n(t,x")
o[n(t)](z) = pr. /11{3 P x/|dx’, (t,x") € Ry x R3.

The time evolution for the concentration n comes by integrating (16) with respect to v € R?

on + divx/ vfi dv=0. (18)[equ:EquContinu

R3



Multiplying (15) by v and integrating with respect to v € R we obtain

B
divz/v®vfdv—an[f]—q vfidvAe=0.
R3 m m Jr3
Since f is a Maxwellian equilibrium, we have ngv ®vf dv = onls and the previous equality
becomes

wc/ vfidvAe= avxn—ngE[f]
R3 m

or equivalently

we(lz — e®e)/ vfi dv =neA (avzn - qE[f])

R3 n m
= ne A V(o lnn + Lo[n)
m
= ne A Vzk[n].

The divergence with respect to x of fRSU f1 dv writes

div, /Rgvfl dv = div, [(13 —e®e) /R3vf1 dv] + div, [e ® e/Rvil dv]
(v-e)fa
B

= div, <ne A Vﬁ{:[n]) + Be -V, dv.

We R3

Coming back in (18) we obtain the limit model

O¢n + div, <ne N Vﬂﬂ[n]) 4+ Be-V,p=0 (19) equ:EquLimitKn

C

for some function p such that the following constraint holds true
Be - V,k[n] =0, k[n] = o(1+ olnn) + ~&[n). (20) [oqu+EquConsSec
m

The limit model involves a Lagrange multiplier p, associated to the constraint (20). One of
the main difficulty is that the unknown is the concentration n, whereas the constraint relies
on k[n]. Formally, we have the balances

Proposition 3.1
Any smooth solution of the limit model (19), (20) verifies the mass and free energy conser-

(BalLiMod) ,\ uiom

d B d €0 2 _
e Rsn(t,x) dz =0, dt/RS{anlnn—FQm\VxCI)[nH } dz = 0.

Proof.
Clearly we have the total mass conservation. For the energy conservation, we multiply (19)
by k[n] and integrate with respect to € R?, observing that

o d 50 2
R38tnk:[n] dz = T R3{0nlnn+ %|Vz<b[n]| } dz

A3divw <ne A ka[n]) k[n] dz = — /R3 <ne A VIk[n]) Y, k[n] dz = 0

We We

/ Be - Vpk[n] dz = —/ pBe -V k[n] dz = 0.
R3 R3



Recall the usual drift velocities when dealing with magnetic confinement: the electric field
drift, the magnetic gradient drift, the magnetic curvature drift

EANe mlvAe?ViBAe lvAel? Vowe Ae m|v/\e|2a A (v-e)?
, — =— — eeNe=—
B 2¢B B 2 w2 gB We
When working at the fluid level, the averages with respect to v € R? of the above drift
velocities become

Ogee N e.

ENe ENe
UAD = M dv =
AP s B B
vAel?2 Vawe Ae Viewe Ne
vGD = — | | o —Mdv=—0——F—
R3S 2 we wz
2
v-e Ozee N e
UCD:—/ (v-e) Ogee NeM dv = —o—————.
R3 We We

The flux in the limit model (19) also writes n)[n], where V[n] = vap + vgp + vop-
Proposition 3.2
Any smooth function n satisfying

on + divy <7:}e A ka:[n]> + Be-Vyp=0, kln] =0(1+1nn)+ %‘b[n]

also verifies
EANe Vaewe A e Oree N e
—0 -0
B w? We

ogn + divy(nV[n]) + Be - V,p =0, Vin| =

and p = p+ g~ (e - rotze).

Proof.
Recall the formula div,(§ An) = n - roty§ — £ - rot,n, for any smooth vector fields £ and 7.
Therefore we can write

divx</\Vk: >—d1vx[ (o’ 4 )]
We m
= divy (nE A €> + div, (ae A Vzn)
B We
E
= div, (n A 6) + o rot, (€> -Vaen
B We
E
= div, (n /\e> + o div, (nrotm (€>>
B We
= div, nE ney odiv, anwc ne ﬁmtxe
B w? We

= div, (nv/\p + nvagp + ﬂ(1’3 —e® e)rotxe> + div, (Un(e . rotme)e) )
We

We

Notice that we can write
(I3 — e ® e)rotze = e A (rotze A e) = e A [(Ope — t0ze)e] = e A Dgee

implying that
n n
o— (I3 — e® e)rotye = —o—0zee A e = nuep.
c We
Finally we obtain

C

div, (Ze A ka[n]> = divy(nV[n]) + Be - V, {BU” (e- rotxe)]

and our conclusion follows. O

10



4 Reformulation of the limit model

?(RefLiMod)? We intend to find an equivalent formulation for (19), (20) by eliminating the Lagrange mul-

tiplier p which appears in (19). For doing that, we will average along the characteristic flow
of the magnetic field cf. [7, 8, 9, 11, 12, 13, 14]. Let us recall briefly the definition of the
average operators along a characteristic flow for functions and vector fields cf. [16]. Consider
a smooth, divergence free vector field b = b(y) : R™ — R™

b€ Wio™ (R™), divyh =0 (21) [oqu:BauLipDiv

with at most linear growth at infinity

3C > 0 suchthat |b(y)| < C(1+y|), y € R™. (22) [equ:Equérowth]|

We denote by Y (s;y) the characteristic flow associated to b

dY

P b(Y(s59)), Y(0;9) =y, s€ R, y € R™.

Under the above hypothese, this flow has the regularity Y € I/Vll (R x R™) and is measure
preserving. We concentrate on periodic characteristic flows (the tokamak characteristic flows
are periodic, with uniform period) that is:

35 > 0 suchthat Y(S;y) =y, y € R™.

For any function u = u(y) : R™ — R we define the average (u) along the flow of b -V, by

S/ ) ds, y € R™.

When applied to L?(R™) functions, the above operator coincides with the orthogonal pro-
jection in L?(R™), over the subspace of constant functions along the flow of b - Vy, cf. [8].
Indeed, it is easily seen that for any y € R™, h € R

) 00 = & [ sV sas = & [l s+ rpas = w0

and for any 1 € L?(R™) which is constant along the flow Y we have

|t v = [ ulwuly(-sip) dy
= [ s )it dy

= [ [t asvw ay

— [ w6 .

For any vector field ¢ = ¢(y) : R™ — R™, we define the average (c) along the flow of b-V, by

S
-1 /O Y (=5 Y (s55))e(Y (53 )) ds.

11



Notice that the family of transformations ¢ — 9Y (—s;Y (s;:))e(Y(s;+)), s € R, is a one
parameter group. The average operators for functions and vector fields are related by the

formulae
(e V) = () Vo (23) equ: veconsti

for any function v which is constant along the flow ¥ and

<CL : V9> =a-V <9> (24) equ:AveInvoFie

for any vector field a which is in involution with respect to b, that is, their Poisson bracket
vanishes

la,b] := (a-Vy)b—(b-Vy)a=0.

Indeed, as ¥(Y(s;:)) = 1,5 € R, we have ‘0Y (s;4)(VY)(Y(s;y)) = Vi(y),s € R and
therefore

S
(@ Vo =g [ 0¥ (s (s5)ely () ds- T

1 S
=3 / DY (—5;Y (5:))e(Y (55)) - 'OY (55 (V) (Y (53 )) dis

S
—5 | e o s as

In the previous computations we have used the equality Y (—s;Y (s;y)) =y, y € R™ which
implies after differentiation with respect to y

OyY (—s;Y (s5;-)0,Y (s;-) = Ipy.

Similarly, the condition [a, b] = 0 expresses the commutation between the flows associated to
the vector fields a and b

Z(h; Y(S; y)) = Y(S; Z(h; y)), h,seR, ye€ Rm, (25) equ:EquComFlow
where Z(h;y) denotes the characteristic flow associated to a

SA(hy) = a(Z(hsy)), (hy) € RxR™

Taking the derivative of (25) with respect to h at h = 0 we obtain

oY (5:9)) = - lm0Z(h:Y (s:9) = oY (s: Z(h)) = B,Y (s )alw), (s.0) € (B x B™).

Hence we have

(@ v0) S/ L(VO)(Y(s; ) ds
= s/ a0, (s;-)(VO)(Y (s;)) ds

S/av 5:))) ds
=a-V(0

12



We come back to the limit model (19), (20) and we consider a smooth magnetic field Be-V,,
whose characteristic flow is periodic, with uniform period S. The properties of the average
along the magnetic field lines is investigated in the mathematical literature, cf. [46]. If we
denote by X = X (s;x) the flow of the magnetic field, we have by S periodicity

(Be - V,p) = S/ (Be - Vop)(X S/ L))} ds = 0.

Therefore the Lagrange multiplier p can be eliminated, by taking the average in (19)

By (n) + <divz (Ze A Vwkz[n])> = 0. (26) [equ:EquveLix]

C

The difficulty task is how to express the average of the divergence term, with respect to (n),
such that we get a model for the new unknown (n).

Proposition 4.1
For any zero average function «, and constant along the flow X function v, we have

(Zerohve)
<divx (% A w)> —0
Proof.

We are done if we prove that for any constant along the flow function # we have

/ div, <% A\ V1/1> 0(x) dz = 0. (27) [equ:EquZeroWea
R3 B

Ase- Vi =0, e- VO = 0, therefore we have (I3 — e ® €)(VO A Vi) = 0. The vector field
VO AV is divergence free

div, (VO A V) = Vb - ot (V) — VO - rot, (Vi) =0

and therefore there is a constant function A along the flow X such that VO A Vi = ABe. We
deduce that

/Rgdivz (%/\w;) 0(z) dx:—AS(OgAvw) V0 dz
_/ (veAvw-%dx
R3

e
ABe- 254
B

:/ /\adx:/ Aoy de =0
R3 R3
and therefore (27) holds true.

Applying Proposition 4.1 with the function k[n], which is constant along the flow of Be-V,,

e obtan <divx (Zj A ka:[n]>> = <divx <<7;>Ce A ka:[n]>> :

We also need to express k[n] = o(1 +1lnn) + g<I>[n], with respect to (n), where the concen-
m

tration n is such that the constraint (20) holds true. O

13



Lemma 4.1
The first variation of the free energy E[n] = [pzonlnn + 52|V, ®[n][* dz is k[n] = o(1 +

Inn) + ECI)[n]. For any concentration n,ng > 0 we have
m

no (nlnn — n—|—1> dz
no no no

(FirstVar)

el = Eln] ~ [ kol — ) do = /R

3
80 2

+ / |V ®@[n] — Vy®@[ne]|” dz > 0
2m R3

with equality iff n = ng.
Proof.

By direct computations one get

Eln] — Elng] - / K[nol(n — no) dz

RS

= a/ {nlnn —nplnng — (1 +lnng)(n —no)} dz
R3
670 2 €0 2 g B
+/1%3{2m|vxq>[n” 2m|vx¢[n0]| mq)[no](n no)} dx

=0 [ {nlnn—n+ny—nlnny} dz
R3

+ /Rg{;fllva@[n]ﬁ — S|V ®fno] [ — 22V, ®lno] - (Vo ®ln] = Valn]) | da

:a/ no <"1n”_”+1) dx+€0/ IV, ®[n] — Vu®[nol|? dz > 0
R3 ng ng No 2m Jps

which equality iff n = ng. Obviously we have

E[no + hz] — Eng] — h [gsk[nolz dx

lim

h—0 h
i © , no—i—hzlnno+hz_no+hz+1 dx+lim€0/h2lvm‘1’[z]!2d$=0
h—0 h Jp3 ng ng ng h—0 2mh Jp3
saying that lims_o h ™1 (E[ng + hz] — Elng)) = [paknolz da O

Thanks to the privious lemma we deduce that there is at most one concentration n with given
average, such that Be - k[n] = 0.

Lemma 4.2

Let ni,ne be two concentrations such that (n1) = (na2) and Be - V kln1] = Be - Vk[na].
Therefore we have n1 = ny. In particular, for a given average, there is at most one concen-
tration n such that Be - Vzk[n] = 0.

?(Uniqueness)?

Proof.
We have, by Lemma 4.1

N9 (nllnnl— nl—i—l) dx
3 no no no

k[na](n1 —ng) da = O'/

R

E[n] — E[no] —/

R?)

< _ :
—|—2m RBIVJ}I)[m] V. ®[ns|” da

14



and

Ena] — €[] —/

R3

k[ni](n2 —nq1) dae = 0'/

ny (mlnm—m—i—l) dx
R3

50 2
— =P — V.o d
+o /RB!V [no] = Vo @[ni]|” dz

implying that

/Rs(k[m] — k[na])(n1 — ng) dz = U/

(m —n2)In <Z;) de + 2 [ |Va®[na] — Vud®[ni]|? dz
R

m Jgrs

Since Be - Vz(k[ni] — k[nz]) = 0, (n1 — na) = 0, we deduce

/ (k[na] — kna])(n1 — na) dz = 0
R3

and thus nq = ns. ]
If n is such that Be -V k[n] = 0, then for any concentration 7 having the same average as n
we have
E[n] > E[n] +/ k[n)(n —n) dz = &[n]
R3
saying that for any given average a, the unique concentration n such that (n) = a and

Be -V k[n] = 0, satisfies
E[n] = min &[n].

(R)=a

We denote by F' the apllication which maps a € ker(Be - V,) to n such that (n) = a,
Be -V k[n] = 0.

Lemma 4.3
The apllication a € ker(Be - V) — En = F(a)] is convex and its first variation is a —
(FirstVarBis) k[n = F(a)].

Proof.
Consider aq,as € ker(Be - V) and A1, A2 € [0, 1] such that A\; + Ao = 1. We have

)qE[F(al)] + )\QS[F(CZQ)] > 5[)\1F(&1) + )\QF(ag)]
since £ is convex and

E[F()\lal + /\2@2)] = min g[ﬁ} < 5[/\1F(a1) + )\QF(GQ)]
<T_L>=)\1a1+)\2a2

because
<)\1F(a1) + )\2F((I2)> =)\ <F(a1)> + Ag <F(a2)> = A\a1 + Agas.

Consider now a, z € ker(Be - V) and h € R. The convexity of £ implies

E[F(a+ hz)] —E[F(a)] > A3k[F(a)][F(a + hz) — F(a)] dz

- /R3l<:[F(a)] (F(a+ hz) — F(a)) dz

K[F(a)[(F(a+ hz)) — (F(a))] dz

Il

R3

KIE(a)][{(a + hz)) = (a)] dz

R3

= h/R3l<:[F(a)]z(m) dz.
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Passing to the limit when A\, 0 and h 0 we deduce that

E[F(a+ hz)] — F(a)

ilzli% > = /ng[F(a)]z dz.

]
Combining the results in Proposition 4.1, Lemma 4.3, the limit model (19), (20) becomes

da + <divm <“e A mG[F(a)]>> —0, n = Fla).

We

As k[F(a)] € ker(Be - V), we obtain by (23)

<div$ (Ze A ka[F(a)])> - <rotx <Z€) -kaz[F(a)]> - <r0tx (Z‘z)>  Vok[F(a)]

and therefore the previous limit model also writes

da + <rotw <“>> Vok[F(a)] =0, n= F(a). (28)

We

5 A commutation formula for angular vector fields

?(AngVectFields)? Thq Jast step will concern a commutation formula between the operators (-) and rot,. We

establish this formula for the special class of vector fields which present angle variables. In
particular, this formula will apply for tokamak magnetic fields. We start with a very simple
example. Consider the vector field b(y) - V, = 420y, — 110y,,y = (y1,92) € R?, whose
characteristic flow is 2m-periodic

coss sins
—sins coss

Y(siy) =R(—s)y = < > y, (s,9) € R x R2
The gradient of any invariant function v, that is a function satisfying (Y (s;-)) = ¥, s € R,

verifies

taY(S; ‘)(V”L/J)(Y(S; )) =Vy, s eR. (29) ?equ:GradInvFu

There are other vector fields verifying similar properties. Let us consider the angle § = 0(y) €
[0, 27| given by
y1 = |yl cos8(y), y2 = ly|sinb(y), y € R\ {(0,0)}.

The function 6 is smooth in D = R?\(R, x {0}) and we have

- b
vy@:_(yz, y1) __by) yeD.

|y|? ly|2’

The function 6 is discontinuous across RY x {0}

lim  6(y) =0, lim  O(y)=2m, 21 >0
y1—21,y2 \0 (y) y1—21,y2 /0 (y) !

but its gradient, which is well defined on D is the restriction of a smooth vector field on
R*\ {(0,0)}

v(y) = —@M‘y) y € B2\ {(0,0)}.
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For any y € D and |s| small enough we have

0 (s59) = (Y (s32) - (VO)(¥ (s53)) = 1

implying that 6(Y (s;y)) = 6(y) — s,y € D and |s| small enough. Taking the gradient with
respect to y we obtain
Y (s3y)(VO)(Y (s3)) = VO(y)
or
LY (s;y)v(Y (s;9)) = v(y), y € D, |s|small enough. (30) ?equ:GradAngVe.

Actually it is easily seen that the previous formula holds true for any y € R?\ {(0,0)} and
s € R. The vector field v also satisfies

diVytl/ = div (’y|2> =0
)

but it is not the gradient of a smooth function 6 on R2\ {(0,0)}, because, in that case, for
any y € R\ {(0,0)}, we would obtain

27 2 - 27 -
=g [0 ) s = o [0 VO ) as = 5 [ L) ds =0

Generally, given a smooth divergence free vector field b- V,, in R3, with global characteristic
flow Y = Y(s;9), (s,y) € R xR3, we call angular vector field in D € R3 any vector field v -V,
satisfying

b(y) - v(y) = C, 'Y (s;y)v(Y (s;y)) = v(y), rotyr =0, (s,y) € Rx D
for some constant C' € R*, where D is an open subset of R3, which is left invariant by the
flow i.e., Y(s; D) = D,s € R. We intend to establish the following commutation formula.

Proposition 5.1

Let us consider a vector field b-V,, in R?® satisfying (21), (22) with S-periodic characteristic
(AngField) g,y Y = Y (s;9), (s,y) € R x R3. We denote by n-V, the gradient of an invariant function

with respect to the flow 'Y, or an angular vector field, in some open subset D of R3, which is

left invariant by the flow Y. Therefore, for any C' function a = a(y), we have

(VyaAn) =V, () Anin D. (31) [equ: AngField]
In particular, if o € ker(b- V), then (Vya An) -V, is in involution with respect to bV, in
D.
We will use the following lemmas.

Lemma 5.1
We denote by M]|e] the matriz of the linear transformation v — e A v,v € R3, that is
{VectProd) Mlelv =eAv,v €R3. For anye € S?, &,n€R3 such that £ - e =0, we have

§AN = (e® Mle]¢ — Me]¢ @ e)n
Proof.
By direct computations one gets
(e @ Mle]¢ — Mle]¢ @ e)n = ((e AE) - n)e — (e n)
= ((EAn)-e)e+(n-e)§ e
=e®e(CA(n—(n-ee))+(n-e)sNne
=EAm—(n-e)e)+(n-e)§ e
=E&AN
where we have used that £ A (n — (n-e)e) € Re, since £ - e = 0. O

€ — (€
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For any function or vector field, the notation Fs stands for F' o Y(s;-).

Lemma 5.2

We have the equality
(Identity)
Y (s;-)M|e]'dY (s; - Mles b
(S’ ) |IE|6] (S’ )(1‘3 es ®65) [6] e

(13 — €5 (= 65)

Proof.

For any invariant functions a = a(y), 8 = S(y) with respect to the flow ¥ we have V,a A
Vy5 € Re and divy, (V,aAV,3) = 0. Therefore there is A € ker(b-V,) such that V,aAV,5 =
Ab, saying that the vector field Vya A V3 is in involution with respect to b - V,. We have

Y (5;-)VaAVB = (Va)s A (VB)s.
By Lemma 5.1 we obtain
Y (s;-)(e @ Me]Va — M[e]Va® )V = (es @ Mles|(Va)s — Mles|(Va)s @ €5)(V)s
which reduce, thanks to the equalities e - VB = 0, es - (V3)s = 0 to
Y (s;-)(e @ Me]Va)VB = (es ® Mes](Va)s)(VB)s.
As o and # are left invariant by the flow Y, we have
Va = V(as) ="9Y (s;-)(Va)s, VB =V(Bs) =Y (s;-)(VB)s
implying that
Y (s;-)(e @ Me]' DY (s5-)(Va)s) 9Y (53-)(VB)s = (e5 @ Mles)(Va)s)(VB)s.

Observe that oY (s:)b . b
s -

Y (s;)e= —1— = — = =

[ | [b]

es, since [b,b] =0

and therefore we obtain

Y (5 ) MIE0Y (5 (o M),
(c2e ) ) = (e 0 HEREER ) 9

or equivalently

Yis: YM t Y(s:- M s
(8 (Sa ) [6] 9 (S, ) — [6 ]> (VOZ)S € Re;.
o [bs|
Finally we have

(13 — e ®es) <6Y(S7 )]\ﬁg‘e] 8Y(S; ) o AT[)[jS]) (VO&)S =0

for any invariant function «, and our conclusions follows. O

Lemma 5.3

Let us consider a vector field b-V,, in R?® satisfying (21), (22) with S-periodic characteristic
(zeroAveVectField) flowY =Y (s;y),(s,y) € R x R3, which possesses angular vector field v in some invariant

open subset D C R3. A wector field c - Vy has zero average in D iff (c-v) = 0 in D and

(c-Vyu) =0 in D for any function u such that 1pu € ker(b- V).
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Proof.
By formula (23) we know that for any function u which is left invariant by Y in D, we have
(- Vyu) = (c) - Vyu in D. Similarly, for any y € D we write

S
(c-v)(y) = ;/0 c(Y(s;y)) - v(Y(s;y)) ds
1 S
= S/O Y (=s;Y (s59))c(Y(s;9)) - tayY(S;y)l/(Y(S;y)) ds

S
_ % /0 Y (=Y (5:9))c(Y (5;1)) ds - v(y)
= (o) (v) - v(y).

Clearly, if (¢) = 0 in D, then 1p (c- Vyu) = 0 for any function u such that 1pu € ker(b- V)
and 1p(c-v) = 0. Conversely, if 1p (c-Vyu) = 0 for any function v such that 1pu €
ker(b-Vy) and 1p (c-v) =0, then 1p (c) - Vyu =0, 1p (c) - v = 0. We deduce that there is
a function A = A(y) in D such that

(¢) () = A(y)b(y), y € D.

Taking the scalar product by v(y),y € D, we obtain

Since C' € R*, we deduce that A vanishes in D and 1p (¢) = 0. O
We are ready to prove the commutation formula (31).

Proof. (of Proposition 5.1)

All the computations are performed in D.

We assume for the moment that o € ker(b- V,) and we prove that Va A 7 is in involution
with respect to b - V,. We have by Lemma 5.1 and Lemma 5.2

Y (s;)(VaAn) =0Y (s;-)(e® M[e]Va — M[e]Va ® e)n
[b o Y (53 ) M[e]'OY (s; ) _OY (s3-)M[e]'0Y (s; )
’ 0] 0]

(Va)s

AY (s;-) M[e]' Y (s;-)
1

(Va)s ® bs:| s

= [bs ® (I3 — es ® eg) (I3 —es @es)(Va)s

Iy ey @ e A ')M‘ gﬁtay(s; Iy~ er @ e)(Va), bs] s
= (es ® Mles](Va)s — Mles|(Va)s @ es)ns
= (Va)s A ns,

where we have used that

Y (s;-) M [e]'0Y (s; )
[b]

Y (s;-) M [e]'0Y (s; )
[b]

bs ® (—es ® es) (Va)s + (es ® es) (Va)s ® bs} ns = 0.

Assume now that («) = 0 and we prove that (Va A n) = 0. Notice that we need the following
formulas in the calculations below

Y (s;:)b=0bs <= b=0Y(—s;Y(s,))bs
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and
V(a,) =Y (5;)(Va), < 0¥ (=5 Y (s3)) V() = (Va)s.

If n = V3 for some function 3, which is left invariant by Y in D we have
Y (=s;Y (s5:))ns A (Va)s
=0Y (—s;Y(s;:))(es @ M[es](VB)s — Mes|(VB)s @ es)(Va)s

_ (b® Y (—s5;Y(s; '))M“Ej's] Y (—s5;Y(s;-))

Vp

OV (=5;Y (s37)) M|e] 0Y (—s; Y (s; Nvse b) (Va)
[bs] ’
[b ®(I3—e® )ay(—S; Y(s; '))M“ES‘S]@Y(—S; Y(s;-) (Is —e®e)Vp
(—cw e)aY(—S; Y (s;-))M[es]' Y (=5;Y (s5-)) (s — e ® ©)VB & b| Va

D]
(M, M[] )
‘( i Y |b|w”®”>VS
= (e® M[e]VB — M[e]VB ® e)Vas
= VB A Vas.

We obtain
(VB AVa) = /Vﬁ/\Vast—Vﬁ/\V<> 0.

If n is an angular vector field v in D, we appeal to Lemma 5.3. Obviously we have ((Va Av) -v) =

0 and for any function u such that 1pu € ker(b- V,), we can write since (Vyu Av) -V, is in
involution with b-V, in D cf. the first part of this proof, and thanks to (24)

(VyaAv)-Vyu) =—((VyuAv) -Vya) =—=(VyuAv) -V, (a) =0.

Therefore we decude that
(VaAv) =0.

Finally, for any function o we have

(VaAn) =(V{a) An) + (V(a—(a)) An)

S/ Y (—s: Y (51 ))(V (a))s A 1ps ds

-+ / Y (—s;Y (5;-))0Y (5;)(V {a) An) ds

S
:;/0 V(o) Ands
=Vi{a)An

6 Tokamak magnetic fields

?(TokMagField)? Iy this section we apply the previous results to some examples of magnetic fields. We start

by a simplified framework, that of a magnetic field, whose magnetic lines wind on cylindrical
surfaces.
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6.1 Cylindrical case
(Cylin) ] . T2 T - 3
We consider the magnetic field B = Be = By TR 1), x = (21,22, 23) = (T,23) € R”,
0 0
where By, Ry are some reference values for the magnetic field and length. The characteristic
flow is given by

(X(S;f),Xg(S;xg)) = (R (—8?) Tr,r3+ SB()> , (s,z,x3) € R x R3
0

where

R(0) = (COSH —sm9>’ e

sinf cosf

We have two angular vector fields

0
vy = M .%'750 UH (0,0,1).
23 + 23

All the functions are supposed periodic with respect to x3. Taking S = 2w Ry/ By, we define
the average operator for a function u by

> 2
(u) (z) S/ (X (s;7), X3(s;23)) S/ < (—s) Z, T3 —|—s;rR0) ds
and for a vector field ¢- V, = ¢ - Vz + c30x3 by
2m)
/ R(s7§) 0 |c (R (—s27r> I, r3+ S%Ro) ds
B 0 1 S S

/ ( (s%7r (—s%’f)x,ar?)—i—szgRo)) ds.
- s

03( ss)ixg—ks%”Ro)

)

We use the following decomposition of Be -V,
B
Be = 22|z*vg + Boyy, || > 0.
Ry

Thanks to Proposition 5.1, we compute the term <rotm (ae>> appearing in the limit model
We
(28). Observe that

ae a ([ By, aBo|z|? aBy
rot, (wc> = roty [ch <Ro|x] Vg +Boy||>] =V (chRo ANvg+ Vg, B, Ay

and therefore
ae aBo|z|? aBy
t. [ — =
<1"O z (wc) > Va < Bw.Rq ANvg+V, Bo. VAN V|
aBo|z|? aBy ae
) A —) Ay =rot, [ —
v <BwCR0 Yo+ Ve Bw, Y= tote we )’

since the functions a and |z|? belong to ker(Be - V). We obtain

<rotx (f) > - V.k[F(a)] = rot, (z‘f)  V.k[F(a)] = div, (Ze A vxk[F(a)O .
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In that case, the vector field rot, (@) is in involution with Be -V, and (28) becomes

We

Bra + div, <“e A mG‘[F(a)]> —0, n = Fla).

We

In this case we work in the 27w Ry-periodic domain with respect to x3, R? x T', where T! =
R/(2mRoZ). The potential ® solves the Poisson equation

—e0A;® =gn, x € R? x T*
with the boundary condition

lim ®(z,x3) =0, 23 € T,

|Z| =00

The Jacobian matrix of the flow X(s,z) = (X(s;7), X3(s;23)) is orthogonal

0

_gBo
0. X (s;2) = R(=sg,) 0
1

0 0

which implies that the Laplace operator commutes with the translations along the flow, that
is
Azus = (Aa:u)s

for any smooth function u. Indeed, for any v € C!(R? x T!) we have

/ Azusths doe = —/ Vaus - Vb do
R2xT1 R2xT1

__ / DX (5;2)(Va)s - 10X (52) (Vi) der
R2xT!

—— [ (T (Vo) s
R2xT!

= —/ V-V dx
R2xT1
:/ Azutp dx
R2xT1

= / (Aa:u)sd}s dx
R2xT1

saying that Ayus = (Azu)s. If ®[n] is the potential corresponding to the 27 Ry-periodic
concentration n with respect to x3, then

—e0A(P[n])s = —e0(AP[n])s = gns,
for any x3 we have

lim ®[n)(X(s;2)) = lim ®[n](X(s;Z), X3(s;23)) =0, because | X (s,7)| = |z|

|Z|—+o0 |Z|—+o00

and (®[n])s is 2w Rp-periodic with respect to x3



Therefore we have (®[n])s = ®[ns]. In particular, if n € ker(Be-V ) then ®[n] € ker(Be-V,).
By construction n = F'(a) is the unique concentration such that (n) = a, Be - V;k[n] = 0.
Clearly we have (a) = a and k[a] = o(1+1Ina)+ L ®[a] € ker(Be-V,) and thus n = F(a) = a
for any a € ker(Be - V). The constraint in (20) is automatically satisfied. In that case, our
limit model simply writes

- ne
On + div, <wc A ka[n]> =0, (t,r) € Ry x R? x T, (32)[equ:EquCyli]

Remark 6.1
The equation (32) propagates the constraint Be - Vo,n = 0. When the magnetic field is
?(PropaCons)? uniform i.e., Be = (0,0,1), it is not difficult to check that if Be - V n(t,z) = 0 holds at
t =0, then it will do so for all time in which the solution exists. Thus, the constraint (20)
can be understood as a mere constraint on the initial data.

Since we know that at any time ¢, n(¢) belongs to ker(Be - V), we can reduce the above
model to a two dimensional problem. We appeal to the invariants of the flow X

(S0 -5 (22 () -3 ()

We introduce the new unknown function N = N (¢, = (y1,y2)) such that
n(ta l’) = N(ta Y= R(l’g/Ro)i')
and we are looking for the model satisfied by N = N (t, 7).

Lemma 6.1

Let us consider a smooth function U = U(y),y € R?, andu(z) = U(R(x3/Ro)z), * € R2xT".
(Laplace) 11/¢ have

: ety _ .
Ayu = [leg (Ig + R2> VgU] (y = R(z3/Rp)x).
0

Proof.
Consider ¥ € C}(R?) and ¢(z) = U(R(x3/Ro)Z), * € R? x T!. Integrating by parts, thanks

to the xs-periodicity, one gets

/ Ayutp(x) de = / Veu - Vb do
RZxT!

R2xT!?
tag _ tag a
== - (VgU)(R(z3/Ro)x) - o~ (Vy¥)(R(xs/Ro)Z) dx
R2xT1 Ox ox
0y 0y _ _
== -5 (VgU)(R(z3/Ro)x) - (VyV¥)(R(z3/Ro)T) da
R2xT! Oox Ox
where % is the Jacobian matrix of the apllication z — R(z3/Ro)x
oy T
prle R(xz3/Ro), R(x3/Ro + 7/2)— | € Ma3(R).
T Ry

. 7l t 7l .
The matrix product 22-2Z writes
or Ox

oy tag B T3 +z xs Lz 1
%&1/‘_[2+R< 7®R - x-(xg,—xﬂ
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(ConservLamw)

and we obtain

/ Azutp(x) de
R2xT!
1z €3 Lz x3

= — I — R U)(R(==

/R2x1r1[ 2R (Ro) Ry 9R <RO> RO] (Vo) (RO)

y®L .
/Tl /112{2 <12 + >V U(y) - Vy¥(y)dy des
J__

=21 Ry /R2 (divy (IQ + y%y> VyU> U(y)dy

I

. Lyety _ _
— /RW [dlvy <12 n ngy> va} <y —R <2‘:’)> :13> »(z) da.

The previous computation shows that Aju — [dlvy (Ig + y® y) VgU] (gj =R ( 7 ) i’) is
orthogonal on ker(Be - V). But this function belongs to ker(Be - V), because u belongs
to ker(Be - V,), together with Aju, since the Laplace operator commutes with the flow X.

Finally we obtain

1= 1=
. YR~y _ xs3
Axu = |:ley <_[2 + R%) VyU:| (y =R (RO

Lemma 6.2

Let us consider two smooth functions U = U(y), W = W (%), 7 € R? and u(x) = U(R(z3/Ro)

w(z) = W(R(z3/Ro)Z), * € R? x T*. We have

div, (Zi A Vw) = [di"y <Z]R(7T/2)Vyw)] <Z7 " <Zi

Proof.

T), wp=—.
m

T

As before, we perform the computation in distribution sense. We already know that the
vector field rot, (Z—i) -V is in involution with Be - V., and therefore

div, (ue A wa> = rot, (ue) -Vyw € ker(Be - V).
We We

it is enough to consider test functions ¥ (z) = ¥(R(z3/Ro)7), ¥ € C}(R?)

/ div, <ue A wa> Y(z) doe = —/ <ue A Vﬂu) V() dz
R2xT! We R2xT! \We

= / EM[e]VIW-Vﬂb dx
R

2Tl We

_ _/ M@M[e]@(vgwxmm/}z@@.(vg\y)(R(gjg/Ro)@ o
R2xT1

Ox

We ox

By direct computations we obtain

1 6yM[ ]tay 1 R (71') _ qBo

we Ox oxr  wy

24
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?(Toroidal)?

and therefore the previous calculations lead to

/ div, <“e A wa> () dz = 21Ry | LD v w . v, wdy
R2xT1 We R2 WO

= —27TR0/ divy <U(y)ivyw> T (y)dy
R2 wo

ol ()] o)

div, <“e A wa> = div; (ULVyW> .
We wo
1

Combining Lemma 6.1 and Lemma 6.2 we derive the limit model with respect to the new
unknown N. The potential & = ¢[n]| writes ¢(t,x) = ®(t,y = R(x3/Ro)x) where ®(t,7)
solves the elliptic equation

We deduce that

. ety _ w2
—Eodl'v'g IQ + T(Q) Vg‘b(t7 y) = qN(tvy)7 ) € R .

We supplement this elliptic equation by the condition limg ®(t,y) = 0 and we denote
by ®[N] the solution corresponding to the concentration N. we introduce K[N] = o(1 +
In N) + LZ®[N]. The time evolution for the concentration N is given by

N
QN + divy (wR (g) vyK[N}) =0, (t,7) € Ry x R2
0
and the initial condition

N(0,9) = Nin(9), § € R
where ni, (7) = Nin(R(z3/Ro)Z), z € R? x T

6.2 The toroidal case

We consider now a magnetic field whose magnetic lines wind on toroidal surfaces (called
magnetic surface). We denote by ¢ the toroidal angle in the plan x10x2, by 6 the poloidal
angle and Ry is the mean radius of the torus, as shown in Figure 1

x1 = (Ro + rcosf)cosp, xo = (Ry+rcosb)sing, x3 = rsinb.
The magnetic field writes cf. [43]

Bo?"

Be —
c fq(Ro + 17 cosf)

694‘30690, r<rg <Ry

where e, and ey stand the unit vectors of toroidal and poloidal coordinates system

€p = = (— sin ©, Cos @70) M

- 7, 2
‘8@ V] + 75

0 /
€g = % = (—sinf cos p, —sinfsin p, cos ) = < (321, Z372) , i + 932 ) .
‘%} ry/at+ a3
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Figure 1: Toroidal and poloidal coordinates (Source: FusionWiki)

with 9
Erie (—(Ro + rcosf)sinp, (Ry + rcosf) cos ¢, 0)
¥

% = (—rsinf cos p, —rsinfsin p, r cos ).

Here f, is the quality factor, that is the number of toroidal winds of a magnetic line, cor-
responding to one poloidal wind. The magnetic field lines are either closed or dense on
magnetic surface, depending whether the quality factor f, is rational, (i.e., f; = n/m, m,n
are integers) or not. If f, is rational, the field line is closed otherwise the field line is dense
on a magnetic surface. It is obvious that a field line on a magnetic surface with f, = n/m
closes itself after traveling n toroidal turns and m poloidal turns.

In Cartesian coordinates, the magnetic field writes

% _ —T9 T 0 -|-i r —x3T1 —X3T9 \/:L‘% + x% — Ry ‘
By N R RV Tk fo /a2 ¥ a3 \r/a2+ a2 r/a? + a3 T
Both the fields e, - V, eg - V; leave invariant the function r? = (\/:c% + x% — Ro)? + a:% and

therefore we have Be - V,r = 0. We denote by X (s;z) the characteristic flow of Be-V,. We
have

dé dXs rcosf
— = ——=DBe-e3 =B,
TSV T Tds €res 0 fq(Ro + 7 cosf)
implying that W B
0

ds Jq(Ro +1rcos) (33)[equ:EquEvoPol |

In order to determine the evolution of the toroidal angle ¢, we write

. .dé . dy  dXy ) rsin @ cos
rsing - cose (Ro + rcosf)sin g s P 0 sin ¢ 0 Fo(Ro + 1c0s0)
leading to
ng BO

s 3
ds Rg-+rcosb (34) [oqu:EquvoTor

The differential equation (33) also writes

By

d
—(R09 + rsin (9) = — (35) equ:EquEvoPloB
ds fq
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and thus we obtain

B
Rof(s) + rsinf(s) = Rof(0) + rsin0(0) + 570‘
q

As Ry+rcosf > Ry—r > Ry — 19 > 0, the poloidal angle 6 is increasing and there is S > 0
such that 6(S) = 0(0) + m2w, m € Z\ {0}. The number S comes by the above equality that

Rom2r = Ro(6(S) — 0(0)) = S0
Jfq

and thus S = f,™2™% By (33) and (34) we have %(ap — fq9) = 0, implying that

Bo
p(S) — ¢(0) = fo(0(5) = 6(0)) = fym2m.

Therefore the magnetic lines wind f; times along the toroidal angle while doing one wind
along the poloidal angle. As r is left invariant by the flow X, we have r(S) = r(0) and thus
X(S;z) = X(0;2) = xif f; = -,n € Z\ {0}, saying that the characteristic flow is S-periodic.
Observe that

. —I2 T
div, 5 5 5 ,01 =0
Vai+ a3 \/x}+ a3
div —x3L1 —T3X2 \/%% + x% —Ro\
X M 9 -
x%—i—x% a:%—i—a:% 1/55%—{-@‘%

and therefore the magnetic field Be -V, is divergence free. We are looking for angular vector
fields. Motivated by (35), we consider

vg = RgV,.0 + rcos V0 + sin 0V ,.r.
Since %go = fq%O, we also have from (35) that % {Rop + fqrsinf} = By and we take
Vo = RV + fqrcos OV .0 + f,sin OV r.

Proposition 6.1

The vector fields vy, vg are angular. The magnetic field Be - V, writes
(DecompositionBe)

Be = ayv, + agrg + . Var

with
. Bo|§?‘ . B()T2

a, = o = 7] — Ro
v Ry 7 fq|i“‘2

v
E— r=—DB ).
R, Owg(fqlxl2+r>

- Bqu

Proof.

It is easily seen that the vector v, and vy are angular fields. For the decomposition of
magnetic field Be, notice that, in the definition of v, vy, the gradients of the angles ¢,  are
understood as the continuous vector fields

. —x2 x1
Ve = (—sinp, cos p,0) = , ,0
o= (singicosi ) = (G )

and

1 1
V0 = —(—sinf cos p, —sinfsin g, cos ) = — (
T r

—x311 —XI3T9 \/SL’% + {E% — RO)

b) b
r/23? + 23 /23 + 23 r
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By direct computations we have

PR |vace|2 =

1
IVeol? = 55— Vo2 =1
X
1

1
+ x5 r2’
Vaep Ve =V - Ver =V, 0-Ver =0

and B B
Be-Vﬂp:io, Be-VxH:%, Be-V,r=0
3 + 23 fqlZ|
and
s Ry 9 fqcost
Vo - Vap = Ro|Vap|® = e v V.l = fyrcos|V,0% = 4——
_ : 2 _ . _ g 2 _ @
V- Var = fqsin0|Vyr|® = fysinb, vy Voo =0, vg- V0 = |2]7|V,0|" = 2

vy - Var = sin0|V,r> = sin 0.

Taking the scalar product with V¢, V.0, V,r we obtain the coefficients o, ag, ;- in the
decomposition of the magnetic field Be - V. O

By Proposition 6.1, we have

ae a
rot, (WC> = rot, [Bw(awvw + gy + arvir)]

C

ao aoy aoy
=V 1A V.l —=—=] A Vel —= ) A
v <ch> Vot Va <ch> ¥ Ve <ch> Yr

and thanks to Proposition 5.1, we obtain

ae ao acy ao
<rotx <%>> =V, <Bwi> INZE Y <ch> Avg+ Vg <Bw2> A Uy
ax acy aq
= rot, (<Wi> Ve + <_ch> vy + <Bwrc> Vr) .
We can write

<r0tx <Ze>> -V E[F(a)] = rot, [a (<§$> v+ <§Z> vy + <g‘w> y)] Vo k[F(a)]

and the limit model (26) becomes

dya + div, [a <<BO‘$> v, + <§£> Vo + <§w> ur> A ka[F(a)]] —0, n= F(a).

7 Convergence result

We concentrate now on the asymptotic behavior as € N\, 0 of the family of smooth solutions
(f%, E[f¢])e>0 of the Vlasov-Poisson-Fokker-Planck system (1), (2), (3) and we establish rig-
orously the connection to the fluid model (4), (5), (6).

We are looking a model for the concentration n® = n[f¢] = ng f¢ dv, similar to the equation
(4) of the limit concentration n and we perform the balance of the relative entropy between
n® and n. As usual, these computations require the smoothness of the solution for the limit
model. We justify the asymptotic behavior of (f¢, E[f¢])e>0 when £ N\, 0, provided that
there is a smooth solution (n, E[n] = —V;®[n]) for the fluid model (4), (5), (6). We do not
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concentrate on the well posedness of this fluid model, nevertheless we refer to Section 6.1 for
some examples of smooth solutions. We are working with smooth solutions (f¢, E[f¢])e>0-
The balance for the number of particles writes

1
on® + gdivxjs =0, 5 =4[] = /Rsf% dv. (36) [equ:ParticleDe

We are using the balance momentum as well

rE

e + dlvm/ ffo@ovdv— iTL E[ff] — e JjSNe= L (37) [equ:EquMomentu
m =7 T
which allows us to express the orthogonal component of j¢
jE—(jE-e)e_nEe/\< Van®

€ We

+29,0077)

Jri/\ [divx/ (vaf5+vf€)®vdv+68tj€+]7
R3

We
ne

A Vzk[n®] + £ AFE
We We
where we denote -

FE:divx/ (UVUfE—vaE)@vdv—FEatje-i-J?
R3

and in the above computation, we have used that div, ngavas Qv dv=—0Vn.
Observe that

1 e _ (g€ i€.e)B

L v, i = div,d — U7 0e | g [Ue)e}

€ € Be

(& (&

= divg (n A Vdf[?ﬂ) + div, (6 A F5> + Be -V, [(]e)}

and finally, thanks to (36), we obtain a similar model for n®, as in (4)

£

€ € : € € € c (]E ) 6’) -
A ka[n ] +divy | —AF° ) +Be-V.p°=0 p° = Be (38) equ:EquDensity
w

c c

oyn® + divy, <n

We are also looking for a equation, analogous to (5), in order to complete the evolution
equation (38), involving the Lagrange multiplier pf. Considering the parallel component in
the momentum balance (37), we obtain

e - Von® + -Lnfe - Ve@[nf]+e- F°=0.
m

Thanks to (5), the above equation also writes

q (n® —n)(E[n°] - Eln])

€ _
e-Vg (O'n r + g(@[ns] — @[n])) + % < Ff=— -e. (39) [equ:EquParalle

n m m n

We intend to estimate the modulated energy of n° with respect to n by writing £[nf|n] as
EnIn] = a/Rth (2) dr + % \v ®[nf] — V,®[n]* dz
= /RS(anE Inn® + %Wx@[ns]\Q) dz — /Rg(anlnn + %Wm@[n]lz) dz
- /R3{J(1 +1Inn) 4+ %@[n]} (n® —n) dx
= &[n°] — &[n] — / kn](n® —n) dz. (40)[equ:EntropyDen

R3
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We introduce as well the modulated energy of f¢ with respect to n°M, given by
€ fe €0 e € 2
o n°*Mh ey d’ud:r—l—f ]fob[f | = Vi ®[n"M]|* dz
R3 JR3
=0
=0 / [ fE = flnnt 4 ff In(27m0)3/? + f€| o dvdz
R3

- 5 € 5J4J3 v €112
_/Ra/RsUf In f© + f*5- dvde + 5 / Vo @[f°]|° dz

/ on®lnn® dx/ |V, ®[n°]|? dx+o’ln(2ﬂ'o’)3/2/ f¢ dvdx
R3

R3 JR3
— £[f7] - En] + o In(2r0)?? / 7 duda.
R3

Thanks to the free energy balance (10) and mass conservation of (1) one gets

En°(t)] — —I—U/R3 /RS < f(a()) > dvdx
—o [, [t (L) avas
_7'/0 /R3 /R3 |0va€f:— of dvdazds.

Thanks to Proposition 3.1 and combining (40), (

41) leads to

(41) equ:BalanEnerD

5[n5(t)!n(t)]+a/RS /Rgns(t)Mh< {;g%) dvdaz +/ /RS /Rg“’v fa*”fap dvdzds

E[nf(0)|n(0) +U/1R3/R3 < (é )dd /ds/Rs |(n® —n) dzds.

The next task is to evaluate the time derivative of fR3
smooth concentration n, we can write

DAV k] = 25 A (avxn 1y, [n]>
We We n m

where V[n] = orot, (i) + %;DM. Clearly, we have

div, (Ze A ka:[n]) = div, (nV[n]).

Proposition 7.1
With the notations in (4), (5), (38), (39) we have the equality
(TimeDeri)

g En(t)](n°(t,z) — n(t,z)) dz
R3
_ /Rs (pie + wi A V;,;k[n]) : (%(n ~n)(E[p] - Eln)) - F*) da.
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n|(n® —n) dz. Notice that for any

(43) fonu Babivvi]



Proof.
By straightforward computations, we obtain

d

T ng[n] (n® —n)dx

_ /R (Uat” + T‘—T’Latcp[no (n° —n) dz + /ng[n](atne — 9n) de

n

= [ o (o™ Lalu] - o)) as (44) oqu:FizatTines

+/ k[n] [divz <ne A ka[n]) — divy <ne /\Vzk‘[ne]> —div, (e A Fs)] dz
R3 We We We

where in the last integral we have used the contraint Be - V k[n| = 0 which allows us to
deduce that

/ E[n](Be-Vyp — Be - Vyp©) do = 0.
R3

Thanks to (43), (39) we have

/Raé?tn <Jn€n— n ., %(@[na] _ cb[n])) e

_— /Rgdivx <Ze A V,;k:[n]) (a”n_ " L (@) - @[n])> dz (45) [equ: FirstTineD

C

_ Rgge Vap <o‘n6; " L apne] - (b[n])) dz

_ _/Wdivm(nwn]) <a" _”> dx—/]l@("%vzk[no L (Blnf) - Bln) da

n We

pBe f—n n°| — E[n]) — F¢] dz
+ [ P2 (0 = n)(Bln] ~ Ein)) ~ F] 4

3 N

=P
= —O’/ div, <M> (n®=n)der —0o [ Vzylnn-Vn|(n® —n)dx
R3 B R3

- | DA V.k[n]) - (En°] — E[n]) dz + pBe. [(n® —n)(E[n°] — E[n]) — F*] dx
rs \ B R3 N

= — | V.k[n]-Vn)](n® —n) dz — /R (E A W[n]) - (E[n°] — E[n]) dz

R3 B
+/ PBe ((ne — n)(EW] - Eln)) — F9] da.
R3 N

Thanks to (43) again, the last integral in (45) writes easily

3
/R3k[n] [divx (Ze A ka[n]> — div, (Ze A ka:[na]) — div, (;’ A Fﬂ dr  (46)[equ:LastInte]

Cc c

= [ Vbl (V] = nVn]) da - /RS (; A ka:[n]> - F* da.

Observe that
n°V[n°] — nVin] — (n* —n)V[n| =n° < B B B

e/\VM) . <e/\ thID[n]) RN )
. <e A (Vo [nf] — Vm‘b[n]))
B

and finally (44), (45), (46) yield the result. O
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Coming back to (42), the modulated energy balance becomes

n (t)!n(t)]+a/RS/Rgn5(t)Mh< ft()t) > dvdz +/ /RS/RJUV f€+”f€|2 dvdzds

[ |7”L —|— (T/R3 /]R3 < 0)M> dvdx (47) BalModEnerDens

where W(n] = £ ]je < A Vzk[n]. In order to apply Gronwall lemma, we estimate the terms

in the last integral of (47) Thanks to the formula

€0

%(ns = n)(Bnf] = Eln]) = —[diva(E[n"] — E[n])[(E[nf] — Eln])

neél — n 2
= Vi, <<E[n€] _ Eln)) @ (Elnf] — Eln]) - 'E”QE”'I)

we obtain

| Wl (%(n — n)(E[nf] — E[n])) dar
nfl — En]|?
-2 <(E[ns] — E[n]) ® (E[nf] — E[n]) — |EH2E[”I3> 0, Wn] du
R3

< N0 W n]|| oo (rsy— (1 + ﬁ) R3|E{n6] — E[n])? dz

where for any matrix P € Mj33(R), the notation ||P|| stands for (P : P)Y/2. Similarly, we
have for some value C to be precised later on

Win] - divx/ (oVufe+ ffv)@v dvde
R3 R3
=— [ 0;Win]: / (oVuft + ffv)®@v dv de
R3 R3

1 oV ff + fv)? v|?
< 10Vl e 0.1 [M | RB‘ A ® qudz + erc /R 3 /R 3 f6‘2’ dvdz|

Since j° = [ps(0V, f€ + fev) dv we have

/ W(n - (e0s7° —|— )dxds
RS

W[ ®)]-7°(t, ) dw — ¢ st[ n(0)] - j°(0,2) dz

/ /R3 /R3 [0V f€ + f5(s,2,0)v] - {[7:_(8)] — 665W[n(s)]} dvdzds

2 nll2 o
< \@/RB R3(f5(0,x,v)+f5(t,x,v)) (5’2‘+|W/[Q]HL> dvdx

Winllliz=] [* L |oVufo+ f?  eC .
+ {s!lasw[n]llm +T]/0 /RB /Rs{QEC 7 +5f } dvdzds.
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Plugging the above computations in (47), the modulated energy balance becomes for 0 < ¢ <

EnE(B)n(t)] + o /R 3 /R ()M <nf ;g%) dvdz

€ el2
LA IIW[ ]HLoo _eT||0sWin]|lpe HW ||L<>° // oVuf® +of P s
eT 2C R3 JRS fe

e O]+ [ [ n0 (nf(éfw dvda

+ oWl (2+ V3) o [ \EIn%) — Bl a

+€—H8 Win HLoo/ / / felv]? dvdadt + /e sup 5/ f5|v\2 dvdx

0<t<T

+vE|VES (ol + ) 4 v |er]//ffo:cvdvdx

Taking 0 < ¢ <1 and C large enough, we obtain by Lemma 2.1 and (40), for some constant
Cr,0<t<T,0<e<1

5[n€(t)\n(t)]+a/Rs /Rgns(t)Mh (g;g%) dvdz +257/ /Rg /RS|”V fE“fE’Q dvdzds

<5[n€(0)|n(0)]+0/RS /Rgne(O)Mh <nf(0(§)])w) dvda:+C’T/ £n®(s)|n(s)]ds + Cr/E

Applying Gronwall lemma, we deduce that for 0 <t <T, 0<e<1

e t)|n(t)]—|—a/Rg /RSnf(t)Mh (nf(st(;])\D dudz +2€T/ /R RBIJV f}+vf€\2 odads
< (e +o [ [ woan (L0 due+ crv]

The above inequality says that the particle density f° remains close to the Maxwellian with
the same concentration, i.e., n(t)M, and n®(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)

We justify the convergence of f¢ toward n.M in L*°(]0, T|; L' (R3xR3)), the other convergences
being obvious. We use the Csisir -Kullback inequality in order to control the L' norm by
the relative entropy, cf. [28, 40]

s som{ (o) ()} (20 (2) )

for any non negative integrable functions go,g : R™ — R. Applying two times the Csisar
-Kullback inequality we obtain

/ |£E(t, x,v) — n(t, z) M (v)| dvdz

R3 JR3

< / |fe(t, x,v) — n®(t, ) M (v)| dvdz +/ [nf(t,z) —n(t,z)| dx
Rr3 JR3 B3

< 2\/Mim (ng(t)M(v)h < /() ))1/2

ne(t)

M
c 1/2
+2max{\/Min, |||nin||L1(R3)} </ n(t)h <” (t)> dx) 50, ase N\ 0.
RB

n(t)
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[

In the same manner we perform the balance of the relative between two smooth solutions
of the limit model.

Proposition 7.2

Assume that n, i are smooth solutions of (4), (5), (6) such that niy,Nin > 0, Nin, Nin €
(UniLimMod) Ll(RS), vxq)[ninvaq)[ﬁin] c LZ(Rg), amw[n] c Ll(]O,T[, LOO(R:})), k[njn],k’[ﬁin] S ker(Be .

V). Then we have the inequality

ER)n(t)] < Efim|nin] exp((2 + V3)[18:W [n]l| 11 oo (re))s 0 <t < T
In particular, there is at most one smooth solution.
Proof.
By (40) we know that

Eliiln] = &[] — £[n] —/ K[l (7 — n) da

R3

_ / nh (”) do+ 2 [ |V, - V,@[n]? da.
R3 n 2m R3

Thanks to the constraint Be - V k[n] = 0, Be - V k[n] = 0, we can write

¢V, <aﬁ L NEAT q»[n])> _ e (A =n)(ElA) = Bn])
As in the proof of Proposition 7.1, we observe that
< [ klnl(i = m) do = /Rgatn (aﬁ T g - @[n])) da
+ /ng[n] [divz <Ze A mG:[n]) — div, <Z€ A ka[ﬁ]ﬂ dz
= | Wl %(ﬁ — n)(E[R] - En]) dz

and the balance for the relative entropy becomes

E(OIn(0)] — EROIn0)] =L [ [ @ =n)(El7) = Blnl) - Win] dads
< N0 W n]| o) 2+ VB) 5 | [ |E[n*] = Eln][? deds
0 JR3

<0 W n] || Lo rs) (2 + V3) /0 E[n(s)|n(s)]ds.

Applying Gronwall lemma completes the proof. O

8 Example of smooth solutions for limit model

In this section we construct smooth solution for the limit model obtained in Section 6.1. We
focus on the existence of the limit model

On + divy, (TL@ A mG‘[n}) =0, k[n] = 0'(1 +In n) + i@[n], (t,x) eR; x R? x T! (48) equ:EquCylinMo
We m
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where ®[n] stands for the Poisson electric potential which solves

—50Az¢>[n(t)](x) = qn(t,w), (t, ac) e Ry X R? x T!. (49) equ:PoiCylinLi

Denoting E[n(t)] = —V,®[n(t)] the electric field derives from the potential ®[n(t)]. We
supplement our model by the initial condition

n(O,x) = ’I’Lin(fL‘), S R? x T! (50) equ:IniCylinLi

where nj, is a smooth function and belongs to ker(Be - V,). The external magnetic field we
consider here Be = (z2, —x1,1). Notice that the vector field e/B € W2 ((R? x T1!))3.

We follow the same arguments as in the well posedness proof for the Vlasov-Poisson problem
with external magnetic field, cf [17, 18]. We need to get a priori bounds for the L*° norm
of E[n] and 0,E[n] in not the full space R3, but in R? x T'. These bounds are based
on estimating the fundamental solution of Laplace’s equation on R? x T!. Therefore we
start by investigating the Poisson equation for a given density in this domain and finding a
fundamental solution to this goal.

8.1 Fundamental solution of Laplace’s equation on R? x T!

Consider a function I' : R? x T! — R satisfying

—A, = 2(50 T .%'3 O 27rn)), xr = (.T = (x1,$2),1‘3) S Rz x Tt (51) equ:EquPoiPerZ

neL

in the sense of distributions, where &y(z) denotes the Dirac measure on R? x T! giving unit
mass to the point z. The sum on the right hand side of (51) takes over all integers n and
it is clear that this sum is periodic with period 27 in the variable x3. We call I' a periodic
fundamental solution with respect to x3.

Lemma 8.1
Let x = (Z,x3) € R? x T!. Then

(PerFundSol)
_ > —|x\ /4t - —n?2
I(z) = /0 i [g e " cos nmg)] dt

satifies (51).

Proof.
We have

—A,I'= 2(50 z,x3) + (0,2mn))
neZ

—250 )do(z3 + 27n)

nel

= 00() Y _ bo(ws + 2mn)

neL

1 inc
= 6y(z )%Ze 3

neL

1 .
- Sa () etnes 2 :
- E 0(:6)6 (5 ) equ:SumPerZ

nel
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where we have used the Poisson summation formula
E do(z3 + 2mn) E eS|
27r
nez nez

Indeed, the sum ) ., do(x3 + 27n) is periodic with period 27, it can be represented as a

Fourier series
g do(x3 + 2mn) = g cpe'rs
ne” neL

where the Fourier coefficients are

1 [ .
Cn = 5 Z 0o(x3 + 2mn)e” ""3dxs
g nez
2T
Z do (x?))e—zmcg dxs
neL
— i —i0x3 — i
2 2

On the other hand, as I is periodic in x3 of period 27, we also have
Z 5 mz3
n
nez

therefore

—AT(Z,23) = Y _(—D5Ba (@) + 12 B (1)), (53) [equ:EquLap]

neL

Comparing (52) and (53) yields the following linear elliptic equation in the whole space R?
for any n € Z\ {0}

Asfn(7) +n2Bu(z) = 5-00(a), 7 € B2 (54) equiEquCosts]

A solution to (54) can be found by using the Fourier transform for linear equation. It is
known that the solution to this equation is given in term of the Bessel potential B(z) as
Bn(Z) = %(B *d9)(Z), cf. [33] where

B(z) =/ )
0 47Tt

Thus, we have the solution formula

5u@) = o [ e
" 21 Jo 4wt '

In the case n = 0, the equation (54) becomes the Laplace equation on R2. It is well known
that the fundamental solution is given by Aln|z| + B, with A, B € R. We choose here the
simple solution £y(z) = 0. Subsequently, we obtain

Z / —|:c| /4t —thdt em:cg
2 ant©

neZ\{0}

t
1 —12 1 2,
— e AL —n?t inw3 |
= e e e t
/0 4rt 27 Z

nez\{0}

t
— 7|x| /4t - —n?
/ e [ E e ™" cos( nzcg)] dt.
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Let us denote I'1 (£, Z) := ﬁe_mz/“ and T3(t, 23) = 5= [1 +23°%° e "t cos(nas)|. Tt is

know that I'1 2 is a heat kernel on R? of the heat equation

{ atl“m(t,:f) — Afrljg(t,i’) =0, (t, ZZ‘) € RJr x R?
I'12li=0(Z) = do(Z)

while I's is a heat kernel on T of

{ 8tF3(t,$3) — 6§3F3(t, 1'3) =0, (t,xg) S R+ x Tt
[3li=0(73) = do(73).

For a proof of this property, we refer to [26]. We define now G(t,z) := I'1 o(t, z)T's(¢, z3).
Then G is the fundamental solution of heat equation on R? x T!, that means

{ 0,G — A,G =0, (t,v = (z,23)) € Ry x R? x T!
Gli=o(z) = dp(x).

Thus, we have that the fundamental solution for Laplace’s equation is related to the solution
of heat equation as

o 1
@) = [ Tra(ea) [Tateas) - o at (55)[san Basiapions
0 ™

Remark 8.1
The heat kernel T's on T can also be given by the heat kernel ki(x3) = (47rt)_1/26_x§/4t on
the real line R as follows

Loy e T (56) equ Foatiert]

1 1
Is(x3) = ggt(x?)) = o [27TZ ki(x3 + 2mn)
nez

Indeed, the function g € L*(T?!) since
Hgt”ﬂ‘l = / gtdm(acg) = Z/ kt(l’:; + 27rn)d:c3 = / kt(xg)dacg =1
™ nez’ T R

where dm(x3) is Haar measure on T', dm(x3) = 1/(2n)dxs. Thus, the periodic function g;
can be written in the form of the Fourier serie

gi(x3) =Y Gu(n)e™s

nez
where (§:(n))nez is the sequence of the Fourier coeffiecients which is given by

~ 1 —inz
() = 5 [ e ()

o 1 —in(z3+2mn)
=02 7%/@ ki(z3 + 2mn)e 3 dzs

1 —inx
—W/Rkt(xg)e 3dxg

1 . 1 |1 2
=k = — |—e
472 () 27 |:27T€ } ’

where ki(n) is the Fourier transform of the function ky(x3).
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Since we need the bounds of the function I' and its derivatives in the following, thus from
(55) we must to estimate the function I's — ﬁ and also the first and second derivates of I's.
We shall use the arguments in [45] to get the bound of [I's — % . Firstly, by the formula (56)
we can rewrite the function I's on T as following

Lemma 8.2
For any t > 0 and for any x3 € T', we have

(EquiFormHeatKer)
(23) s —x2 L+92 Z —7%n? b <7TTLZE3>
=,/—e —= e cos
giiEs t P\ Ta AT t
n>1

Proof.

Using the definition of g;(z3), we have
1 (w3 + 2n7)?

nez
— 2 2.2
_ \/f exp <4j3> S exp (_Wf?’)exp< T )
nez

_ T (7
VP

2,2
1+ <exp (sz‘g) + exp (—szg)) exp < th > :
n>1
which gives the claim, using cosh(y) = % ]

Next, using the Lemma 8.2, we obtain the following estimate

Lemma 8.3

For any t > 0 and any z3 € T' = [~7, 71|, we have
—2 T —x2
exp (4;’) 9+(0) < gi(z3) < { n + gt(())} exp <4753> : (57)[FirstEstHeatKe
Proof.

Using the Lemma 8.2 and the fact that from cosh(y) > 1,y € R we get the lower bound.
Indeed, for any ¢t > 0

x2 T —m2n2 x2
> _ 73 el — _73 .
gt(z3) > exp ( 4t> " 142 E exp < " > exp < 4t) g+(0)

n>1

For the upper bound, let us write

2,2

S(zg) =1 +ZZexp (_th > cosh (WTBB) .

n>1

For any n > 1, using |z3| < 7
2 2 2 2
2 cosh (7777::3) < 2cosh (th> = exp (th> + exp (—th) <1+4exp <7rtn) .
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Therefore

.2
Together with g;(z3) = ﬁexp <4xt3> S(z3) implies the upper bound we wanted to prove.
We need the estimate of the function g;(x3) at x3 = 0.

Lemma 8.4
For any t > 0, we have

(Estginit) T pn
—<g(0)<1+4/+
t t
and .
2e”
2¢ ' < g(0)—1< :
Consequently, there exist positive constant C1,Cy such that |g:(0) — 1] < Cy ej;t.

Proof.
Using Lemma 8.2 with 3 = 0 gives g;(0) > /F. By formula (56) we have

9(0) =1 =26(t), ¢(t) =2 e

n>1

Since e~2°t is positive and decreasing, bounding a sum by an integral we get

s

& 2 1 [ 2 1
gi)()_/o e x il e T =54/

hence ¢;(0) < 1+ ﬁ Moreover, ¢(t) > e~t we have g;(0) — 1 > 2e~¢t. Finally, since

2 —t
e ™t < e for any n > 1, we deduce that ¢(t) < 2 s e = ] _ee—t which gives
g:(0) —1< 12_e;t. To finish the Lemma, it remains to prove |g:(0) — 1| < e;tt, for any ¢ > 0.
Indeed, we have
9:(0) — 1] = (g:(0) — 1)1{0<t<1} + (9:(0) — 1)1{t21}
™ o_ 2e~t 1
< \/ze fe'ljocrcry + 1_76_,:\5%1{@1}
—Cat
e
<C
=tz
for some positive constants C; and Cs. O
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Now the following Lemma provides the estimates of I's — % and its derivatives on T!.

Lemma 8.5
LetT3 = & [1 +2% 2, et cos(nxg)} be the heat kernel on T'. Then there exist constants

?(BoundHeatT1)? 'y Co, C3 which can change from line to line such that

1 1
Ls(t, z3) — 2‘ <Gy %engtefcwg/g? T3 € T! (58) [FirstEstHeatKe
T
1
|02, '3(t, z3)| < C1 Ee—Cgte—ngg/M’ T3 € T! (59) [SecEstHeatKer
1
|8§3I‘3(t,x3)] < Clwe’cﬁe’c”%/“, r3 € T! (60) [ThirdEstHeatKe

Proof.

Readers can see these results in [26], even when T! is replaced by more general compact
manifold, cf. [52, 55]. We provide here the main lines of the proof.

For the bound (58), first using (56) yields I's(t, 23) — 5= = 5= (gi(x3) — 1) then (57) we have

us U

1 —1:% 1 1 —x% T
9 At -l = ) T o < 9 At + n :
5 [exp < 1 > 9+(0) 1} Is(t, z3) 2 5 [exp < 1 ; +g:(0) -1 (61)[LowUppHeatKer

Using the upper bound in (61) and Lemma 8.4 we deduce that

1 1 —x2 s 1 —x2 2et
Tyt 25) — — < 2exp [ 23 ) (/T 4 Loexp (25 .
alt,ws) =50 < 27reXp< At )\/Z+27reXp< At > 1— et
If t > dp, for §p € (0,1) it’s not hard to show from the previous inequality that there exist

positive constants C,Co, C3 such that I's(t,z3) — % < 4 %e‘cﬁe—oﬂ%/“. On the other

hand, for any positive test function ¢ € C§°(R), since lim;_,g+ (T's — 5=, ¢) = (1—1/27)¢p(x3)
~1/2—a3/4t

and lim;_,g+ (kt, ) = p(x3), where ki(z3) = (4nt) is the heat kernel on R, we
deduce that we can choose the positive constants as above to obtain the previous estimate of
I's — 1/2. Together these arguments which gives us the upper bound of (58). Similarly, from
the lower bound in (61) we imply the lower bound in (58). Therefore, we get the estimate
(58). Now, for the estimates (59) and (60), we apply the Lemma 2.1 in [52], which can be
extended to the parabolic case, see Lemma 2.3 in [52]

1/2
C (1 r
vmu<t,w3>|§(4 / / |u<s,y>|2dyds) ,
r 7 Jt—r Jy—as|<r

where u is asolution of the heat equation d;u — A u = 0 in the domain [t — r2,t] x B(x3,7),
with r = v/t/2 for any fixed point (¢,73) € R x T*. O
In the next lemma, we give the estimates of the fundamental solution I' and its derivatives

by using the relation (55) and inequalities (58), (59), (60).

Lemma 8.6
Let T'(x) be the fundamental solution on R? x T provided by Lemma 8.1. Then we have the

(EstFundSol) following estimates

where D? denotes the second order derivative. Here, C stands for a positive constant, which
can vary in each estimate.
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Proof.
We will first estimate I'(x). Thanks to (55) and (58), we deduce that
’ ( )| = 4 /OO t73/26702t67‘i|2/4t6703$§/4tdt
T
Cl
- 47r
— ﬁ6_2m|$| /OO t_3/2€_02t+2m|$|_0§1‘x|2/tdt
47 0

<\/@|x|—\/@>2
v 2d(—t~1/2)

/ t73/2e=Cat = Cilal®/1qy O = min (1,C3) /4

Cl 2\/CzC'|95|/ \/ﬁmu VCu~ ) du, u=t1/?

2
:ﬁ —2\/020'|z/ (VG 4. g —  JCrlalu
27 \/ 3lal ’ ’
<
" Ja]

for some positive constant C', where we have used that
S _ _ / —1 2
/ e (9 C2Cslel0 ) dd = \/27? (62) ?equ:GaussInt?
0

see the proof of Lemma 8.12 in the Appendix.
Next we estimate V,I'(z). Taking the derivative in « in the formula (55) we imply that

o0

& 1
]Vxl“(x)| < /0 ‘erLz(t, f)”l_‘g(t, xg) — %|dt + /0 ‘FLg(t, j)”@mrg(t, 1‘3)|dt.
A simple computation show that

—|Z| _ja2
Val12(t,2) = &ltz’e e

and thanks to the estimates (58) and (59) we obtain

IV.I(z)] < Cl’f'?|/ 15/2¢=Cat o —|3|? /4t ;—Cszf /At 4y 4 4C'1/O 420~ Cat ,—|7|? /4t ,—C323 /4t 34

™

< Gil7] = =5/2,~Cat ,~Chlal? ftqe + Cl/ 20— Cat g~ Chlel2/t gy
0

- 87 J I

where C% = min(1, C3)/4. Using SUPRs h(t) = h(C4|z|?) where h(t) = t=1/2¢=Cslel*/2t for the
first integral on the last line of the prev1ous inequality, we deduce that

Ol 1 Cl /OO ) 7cl| 2|/2t
VI t e VBITIE
warol s (St 3
_(C1 1 C1 2 d ey
- (87r Jare 471') qgmz/o at’ dt

C

= =?
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for some positive constant C'.
Finally, we estimate D2I'(x). By direct computation in (58), we have

o0 1 o0
|D2T(z)| S/ !D?gfla(t,x)\F3(t7$3)—2ﬂ\dt+/ (Val'12(t, 7)]|05T3(t, 23)|dE
0 0
+ [ st 02 Ea o)t
0

Observe that .
Dala(t:7) = 5 o

|:—I2 + T ® .’E:| ei|j|2/4t

implying that
_p)
21 a2/

—lal?/at
€ t 3on23

1
DT19(7)| € ——55
| z 172($)| = 167242
Using the inequalities (58), (59), (60) we deduce that

|D3T(z)| < 1?2 /Oo $75/2¢=Catg|al® /4t~ Caug /4t gy
T

=12 00
1|z / 4= T/2—Cat |2 /4t~ Csad /4t 3,
0

3272
bt o0
N C;ﬂ;ﬂ 48— Cat —[7[2/4t ,~Caad /4t 34
m 0
1 —5/2 —~Cat —|7[2/4t —Cyal/at
+4— t e e e 3T/t
I8

::[1+IQ+13+I4.

The estimates of the integrals I7 et I, perform as above. Thus we get

C C
L < —, I, < —.
TR

For the integral I3, we see that
C /
< 81‘§| t 36~ Cote=CaleP/tgy, C4 = min(1, C3) /4.
™ Jo

I3 <

Using again supgs h(t) = h(C4|z|?) where h(t) = t~1/2e=C5l71°/2t e obtain that I3 < FoER
x

for some positive constant C'. Similarly for integral Is, we also have

Ci|z|? ,
< Gl / 1772~ Cote=Cilel /gt Of = min(1, C3) /4
327T 0

2
< Gilz] / 8,~Cat ,~Chlx[2/2t 3
- 327’[‘2 Cée|q;’

I <

B leg
Together the estimations of I;, for any i = 1, ...,4 will give us the estimate of D2T'(x). O
Thanks to Lemma 8.1 and the L estimate for the fundamental solution I' in the Lemma

8.6, following the same arguments as in the proof for Poisson’s equation in R3, we can show

Y
that the solution of the Poisson equation (49) is given by

/ / xr — dydy3 (63) equ:PoissonPot
Eo _r JR2

On)(z) = gf*n x
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8.2 Estimations for the electric field and its gradient on R? x T!

We give now some estimates of the electric field F[n] = —V,®[n] which can be proved by
treating the singular term in the fundamental solution I as in, cf. [3] for the space domain
r € R3 and [38] for z € T3.

Lemma 8.7
Let n be a positive concentration and belongs to L*(R? x T') N L>°(R? x T!). Then, there
(FirstEstiEle) opicts g constant C > 0 such that the electric field E[n] satisfies the following estimate:

[E[n]][Lee < C(l|nllLe + ||InfL1).
Proof.
For any = = (%, 23) € R? x [—, 7], by the formula (63) we have
™

V. ®fn)(z) = / V.T(@ - y)n(y) djdys

—T R2

T3+
- / VaL(z — ) n(y) dgdys.

3—T R2
We make a decomposition of R? x T! in the following way
R? x [x3 —m, 3+ 7] :=TUJ

where
I:{y€R3:|x—y|zl}ﬁ]RQX[xg—w,xg—i—ﬂ
J={yeR’:|z—y| <1}.

It is obviously that J C R? x [x3 — 7, 23 + 7). Thus the last integral in the privious equality
can be written

T3+
/ V.T(z — ) n(y) djdys = /l V.T(x — y) n(y)dy + /J V.T(z — y) n(y)dy.

3—T R2

Thanks to Lemma 8.6, we deduce that

Eawl<c| [ )+ / ‘x_ly‘zmwdy]

[ T3+ 1
<C / /ny dydyg—l—/ ——=n(y)dy
z3—m JR2 ( ) lz—y|<1 ‘l‘ - y’2 ( )

<C / /Rzn(y) dydys + 47T||n||L°°]

< C(lnllpr + lInllze<)

where we have used that f|x dy = 4. O

1
—y|<1 Jo—y[?

Lemma 8.8
Letn € LY(R? x TH) N WH(R2 x T') and n > 0. There exists a constant C > 0 such that
(SecondEstEle) yp, 0 gradient of the electric field E[n] satisfies the following estimates

IVER][lLe < C (14 [Inflzee (1 + " ([Vnllz<)) + [In 1)

where the notation In™ stands for the positive part of In.
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Proof.

We estimate now 92 ®[n](x). In other cases, we can do the same. Observe that

0= [ Jrte-n ain = [ [
—7 JR2 -7 JR2

y) dydys

because the functions I' and n are periodic with respect to xs of period 2w. Taking the

derivative in the variable x1 of the above equality, we have

z) = /_: /RQF(?J)axln(:c — y) dgdys
_/7; /RQF(?/)ayln(:c — y) dydys
B /_7; /Rzl“(a: —y)0y,n(y) dydys

2 00n)(e) == [ [ 0@ 0)0,m(0) dud
T3+T
/ / amr 8y1n( )dydyB

which implies that

Let 7, R > 0 such that 0 < r < R < oo verify

{yeR®: |z —y| < R} CR® x [z3 — 7,23 + 7.

Then we make a decomposition of R? x [x3 — 7, 3 + 7] in the following way

R? x [:Eg—TF,:E3+TF] =J1UJyUJ;3

where

Ji={yeR: |z —y|>R}NR> x [x3 — 7,23 + 7]
{y€R3 r<lz—y| <R}, J3= {ZJGR3 [z —y[ <7}

For the integral on Ji, thanks to the integration by parts with respect to the variable y; with
notice that the boundary of J; is 8J; = {y ER3: |z —y|l= R} UR? x {x3 — 7,23 + 7}, one

gets

/ 0, T — )3y, n(y)dgdys
J1

- / Oys 0T — y)n(y)ddys — / 0Tz — y)n(y)
J1 lz—y|=R

—(x1 —yl)d
|z — y|

a(y)

_ /}RQ [0, T(z — (g, 23 + m))n(y, 3 + 7) — O, L' (x — (g, 23 — 7))n(y, x5 — 7)] dy.

=0

Similarly, the integral on J; can write

/ 0, T — )3y, n(y)dgdys
Ja

— / 9y, 00, T — y)n(y)dgdys — / 9y, Tz —
Ja

lz—y|=R

[ o -y = o),
jo—y|= z =yl
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For the integral on J3, since dy,n(y) = 0y, [n(y) — n(x)] and then using the integration by
parts, we obtain

/amr 00y (y)dgdys = /amr By In(y) — n(z)]dgdys
J3 J3

= [ 0,0uT@ — plnty) — n(e)lagays - / 0Tz — y)ln(y) — n(@) “L= W 4o (y).
J3 | r—y

z—y|=r ‘ - ’
(60)[asEaus3

Combining the equalities (64), (65) and (66) we deduce that
52 @ /J 0T (&~ )y + /J 0T y)nly) il
/J 900, (a = )nly) )
/u IS yyn(e) LI 4 )

|z =y
=L+ 1+ I3+ 14

Thanks to Lemma 8.6, we will estimate the integrals I;, for any i =1, ..., 4.
For the integral Iy, using the L* estimate of 9,I" we have

L<C do(y)|nlze = 4xClln] Lo

|lz—y|=r ’.1‘ - y|2

For the integral I3, using the L™ estimate of 9I" we also get

I;<C _7|3]a: — y|dy||Vn| e = 202Cr||Vnl|Lo.

le—yl<r |
Similarly for the integral I and the integral I;, we obtain

1
r<|z—y|<R |$ - y|3

L <C dy||n|jp~ = 27r2C'1n(R/7‘)HnHLoo

1
J1 |Jf - y|3

Finally, together these estimates of I;, for any 7 = 1, ...,4 we obtain

c
L <C n(y)dy < @Ilnllm-

1
12, B[z~ < C (Rgunuy IR/l + ol Vo + |rnuLoo) .

Taking r = and R = 1 which gives us the result of the lemma. ]

1
1+[[Vn| oo

8.3 Local existence of smooth solutions

Let’s start to establish strong solutions for the limit model. It is enough to construct a
solution on some time interval [0,7], T' € R;. We only present the main arguments, the
other details being left to the reader. We assume that the initial condition n;, satisfies the
hypotheses

Hl) Nin 2> 07
H2) ny, € Whee(R? x T n WHY(R? x T1).
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Solution integrated along the characteristics
A standard computation, we can rewrite the equation (48) as

Oyn + (E A %) -Vzn + orot, <e> -Vzn —roty, (%) ‘En=0, (t,z) € Ry x R* x T!. (67)[equ:EquCylinMo
w

[

For any smooth field E € L*>(]0, T[; W1 (R? x T')), we consider the associated character-
istics flow of this equation

d e(Il(t; s, e
aﬂ(t, s,x) = E(t,1I(t; 8,2)) A B(i(t:s,2)) + orot, (%) (T1(¢; s, x)) (68)equ:EquchaLia]

(s;s,7) =z € R? x T,

where TI(¢; s, x) is the solution of the ODE, t represents the time variable, s is the initial time
and z is the initial position. II(s;s,z) = z is our initial condition. Notice that the vector
field & is also smooth and belongs to W% (R? x T'). Therefore, the characteristics in (68)
are well defined for any (s,z) € [0,7] x R? x T! and there are smooth with respect to z.
From (68), the equation (67) can be written as

%n(t, T(t; 5, x)) — Tots (%) (I(t: 5, 2)) - E(t,11(t; s, 2))n(t, IL(t; 5, ) = 0.

The solution of the transport equation (67) is given by
t
n(t,x) = nin(I1(0; ¢, z)) exp (/ rot, (%) (I(s5t,x)) - E(S,H(S;t,x))ds) . (69)[so1ChaPi]
0

Conservation law on a volume
We have the following conservation law

/ n(t, a:) dx = / nin(a:) dz, 0<t<T. (70) ?ConserVolu?
R2ZxT! RZxT!L

Indeed, we denote J(t;s,z) is the Jacobian matrix of II(¢; s, x) with respect to x at (¢;s,x).
The determinant of the Jacobian matrix J(¢; s, x) is given by

%det (J(t; s,2)) = divy <E(t) A % + orot, (6» (I1(t; s, ))det (J(t; s, 2))

det(J(t;t,z)) = 1.
Hence, we obtain
det (J(t;s,x)) = exp <— /Ot rot, (%) (I1(6; s, x)) - E(0,11(0; s,m))d@) .

Integrating the equality (69) with respect to x and then changing the variable z to II(¢; 0, ),
we obtain

/RQXTIn(t,x) dx
/lenin(x) exp (/Ot I0ty (%) (I(s;0,z)) - E(S,H(S;O,:E))ds) det (J(t;0,z)) dx

/ nin(z) da.
R2xT?
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A priori estimates

The bound in L>(]0, T[; W5>°(R? x T!)) of the solutions
We have the following bounds

sup [[n(6)] oo uzsemt) < minll oo (g2 ) exp (cBT sup \|E<t>||m> (71) [NornTaty]

te[0,T] t€[0,T]

IVan ()] e g2y < <||ninum+exp (COT(1+ sup ||E<t>HW1,oo>) ||Vninum> (72) [GradVormTatey

te[0,7)
exp(CoT'(1+ sup [[E(t)|[wre))
te[0,T

where we denote the constants Cp = [le/B||y2.0®2x1) and Co = C(a, ¢, m, B).
We will first prove (71). By the formular (69), for any ¢ € [0,T] we have

(8l zee < lIninlzee

exp (/Ot roty (%) (I(s;t,x)) - E(s,1(s;t, x))ds)

Lo

< [|72in || oo exp (Tllax(e/B)llLoo sup IIE(t)IILw>

t€[0,T)

< ||Nin]| oo €xp <CBT sup ||E(t)HL°°> .
t€[0,T]

We prove then (72). From the formula (69) we imply

IVan(t)l[Loe < [lnin (TH(0; 2, 2)) 1,00

oo g )

Wioo

We estimate now ||ni,(IL(0;¢, x))||y1.00. Since
17280 (TE(0; 2, ) [lwrt.00 < [7in | oo + [[02T1(0; 2, )| oo [ Vrin [ oo

therefore it remains to estimate sup;c(o 7] [|0z11(0; 2, -)|| L. Taking the derivative with respect
to = in (68), we deduce that

t
10:11(0; 2, )| e <1 +/O (IE(s) A (e/B)llwre + olle/wellwzeo) [[0211(0; s, -) || oo ds
t
<1401+ C(U,%m))CB/ (L+1E(s)l[wr.ee)[|0-11(0; 5, -) || Lo ds
0

for some constant C'(o, g, m) depending on o, g, m. Thanks to Gronwall’s inequality, we have

10, 11(05£, )| o < exp ((1+c<a,q,m>>cgt<1+ sup ||E<t>||W1,oo>>, tel0,7]  (73)[cradCharp

t€[0,T]

which implies that

[ (IL(0; ¢, 2)) [lw1.00 < [[Min || oo +exp ((1 +C(o,q,m))CpT(1 + SElpT} HE(t)HWLw)) [V 7in|| oo
telo,
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Next we estimate the following norm

I(t) :=

S ETRE—

Wloo

ds)
Wl,oo

A straightforward computations and then using (73) yield

exp </Ot rot, (%) -E(s)ds> . (1 + /Ot Hrotx (%) “E(8)(sit,z)

t
< exp(Cit sup HE(t)HLw)(H / CBHE<s>meuaxn<s;t,->umds)
te[0,7] 0

<exp(Cpt sup [|E(t)| L)
te[0,T

I(t) <

)

t
(1 + / Cp(1+ [Sup] 1E(8)||1.00) exp((1 + C(o,q,m))Cps(1 + sup] HE(S)HWl,oo))dS)
0 0,7 T

= exp(Cpt sup [|E(t)|r=)
t€[0,T]

1 td
1+ ——— | —exp((1+C Cps(1 E ~))d
( +1+C(U,q,m)/0 35 (L +C(0,4,m))Cps( +Fo%“ ()llw1.e)) 8>

< exp(Cpt sup [|E(t)||ze) exp((1+ C(o,q,m))Cpt(L+ sup [[E(t)[w1e))
t€[0,T] te[0,T]
< exp(C(o,q,m, B)t(1 4 sup [|E(t)[w1.))
te[0,T
for some constant C'(o,q, m, B) depending on o, q, m,Cp. Combining these estimates yield
[Van(t)||zee < ([ninllzee 4 exp (CoT (1 + [ Ellwr.ee)) [|Vnin o) exp(CoT (1 + || El[y1.0))
where we use the notation Cy for a universal constant depending on o, g, m, B.

The bound in L>(]0, T[; W51 (R? x T!)) of the solutions

[n(t)ll s = i)z, t €[0,T] (74) [NormL1]

te[0,7

IVan(®)llr < exp (Cot(L + | Ellwr)) (|rVnm||L1+tco sup ||E<t>||W1,oo||anL1> (75) [GradoraL1]

where Cj is the constant depending on o,q,m,B. Now we will prove (75). Taking the
derivative with respect to x in (69) we have

t
Van(t, z) = exp ( /0 rot (%) .E(s)|n(8;t,m)ds> [0, T1(0; £, ) Vpmin (T1(0; £, )

+nin (I1(0; ¢, z)) /Ottaxl_[(s; t,2)Vy {rotx (%) E(s)} |H(s;t’z)ds]

Then we integrate with respect to = and change the variable x to I1(¢; 0, x). Notice that the
Jacobian formula is given by

¢ e
exp <—/0 roty, (E) ~E(s)]n(s;0@)ds>
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?7(ClosedSet)?

therefore we deduce that

/ Van] da < / 10uTI(0: £, ) 1oe | Vs
R2xT! R2xT!
t
L Cp / in () / 10T1(s5 8, ) o< | (5, lyyr.odls .
R2xT1 0

Thanks to (73) we obtain

/ [Ven(t)] dz < exp (Cot(1 + || Ely1.e)) <||VninHL1 +tCo sup HE(t)IleooHninHLl>
R2xT?! te[0,7]
where we use same the notation Cy for a universal constant depending on o, q, m, B.

Local existence of solutions
We define

Y= {E e L=([0, T); WH(R? x TY)? : sup | E(t)| e < My, sup ||0,E(t)||z~ < Mg}
[0,7] [0,T]

where M;,i = 1,2 are two constants to be fixed later. Given an electric field F in 3. We

consider the solution by characteristic of the equation (67) on R? x T!, corresponding to

the electric field £ and denote by n® which is given by the formula (69). We construct the

following map F on X, whose fixed point gives the solution of the system (67), (49), (50) at

least locally in time such solutions exist

B FE) =1 / V(@ — y)nf(t,y) dy. (76) 7MapFixPoint?
€0 JR2xT!
We will prove that the map F is left invariant on the set ¥ for a convenient choice of the
constants My and My, then we want to establish an estimate like

t
IFE®) - FEOli < Cr [ |E(s) ~ B(s)|i=ds, ELEET € 0.1]  (77) apoonsrac
0
for some constant C7, not depending on E, E. After that, the existence of the system (67),
(49), (50) immediately, based on the construction of an iterative method for F.

Lemma 8.9
There exists the positive constants My, My and T = T (My, Ms) such that F(X) C 3.

Proof.
Let E € ¥. Thanks to Lemma 8.7 and the formulas (71), (74) we have

IF(E)E, L= < C <Hnin||Loo exp (CBT s IIE(t)IILw> + ||anL1>
telo,

€o
C
< —— (exp (o7 sup [E@)Ii= ) +1
[[nin | Loe + [Inin][ 21 te[0,T)
C
< ——exp [ CpT sup B~ 1)
[Min [l Loe + [I72in][ 21 te[0,T)
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2

[ninll oo +[ninll L1

Here, we fix M7 to be a constant such that < M; and we choose T =

1 .
max(Cp,Co)(M1+Mz) " Hence we obtain

sup [[F(E)(,-)l|lLee < M.
te€[0,7

The bound of L norm for the density n(t) in (71) becomes

[n (@)l < el[nnl| oo (78) [WornTnftyBis|

It remains to estimate |0, F(E)(t,:)||r. Thanks to Lemma 8.8, we need to estimate
In*(||V.n(t)|). By the formula (72) we have

In™([|Van(t)[pe) < In™ (II%HLoo +exp (COT(l + s ||E(t)HW1a°°)> IIVninHLoo>
tel0,T

+ CoT(1+ sup ||E(t)|p1.e)
te[0,T

<Int (nninuw(l +exp(CoT(1+ sup ||E<t>||W1,oo>>>)
t€[0,T]

+ CoT' (1 + sup [[E(t)]lwr.e)
t€[0,T]

< Int(|ninl|pree) + 1 4+2CoT(1 + sup ||E(t)||p1oo)-
t€[0,T]

Thus, together with (78) we get

102 F(E) (¢, )|l < C (1 + eflninl oo (2 + I ([[ninflwree) +2CoT (1 + S[%PT] [E®)lw.00) + HninllLl)
te|0,

< 2C(1 + el|ninl| 2= (2 + W™ (|[min]lwr.)) + [[minll ) (1 + COTtS[%pT] E @) [wr.ee)-
€10,

Here, we fix Mj to be a constant such that 2C(1+e||nin|| oo (24+1In (||nin |[ypr1.00 ) + [[7in ]| 1) <

% and we take T = maX(CB’C;) L) Therefore we obtain

M
|0:F(E)(t, )| < 522 = Mo

[

Now we establish (77). Let us consider E,E € ¥ and denote by~nE ) #E the solutions by
characteristics of (67), (50) corresponding to the electric fields E, E respectively. It is easily
seen from the Lemma 8.7 that

IF(E)(E) = F(E)B) 1 < C(In"(t) = 2P ()| roe + [In"(£) = 27 (#)] £1)-
Notice that the constant C' is not depend on E, E.

Lemma 8.10

We have
?(DiffNormInfty)?

InB(t) — 7B ()| < C / |E(s) — B(s)||p=ds
0

for some constant C, not depending on E, E.
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Proof.
Thanks to (69), we deduce that

nE(t,z) — #P(t,z)]

< o (1150 ,2) = (1012 [ 10t () - B s

B
e ~
rota (E) B (5)|ﬁfi‘(s;t,m>ds>}

+ (0P (0:,2)) [QXP (/ot ot () - B (S”“E(S;“)dS) o </0

=11+ I

t

where IT7, TT¥ denote the characteristic of (68) corresponding to the vector fields F, E.
We estimate now the integral ;. Since

Inin (ITF (0 ¢, 2)) — ﬁin(ﬁE(O;t,x))] < |1I¥(0;t, x) — ﬁE(O;t,x)\HanHLm

we need to estimate supy scpo.7) ITIE(t;s,-) — fIE(t; S,)|L~. We claim that

~ t ~
sup [I7(t;s,) = IP(t; s, )| oo < Coe@oTUFMIFA) / IE(s,-) — E(s,-)|[z=ds.  (79)[DiffCharc]
0

t,s€[0,T
Indeed, from the equations in (68) we imply that

d r =& e ~ e
S —11)(t:5,2) = (B(1) A s = B0 A s )

+ (E(t) Cnlts s, ) — E@) A 3| (t: s x))

+ oroty <€> (I1(¢; s,x)) — oroty, e) (t;s,))
c W

(I1F — %) (s;5,2) = .

Integrating between s and ¢ we find
_ t R
017 — 115 (15,0)| < Co [ 1EGs) = E(s)1=ds
0
t N t .
+ Co/ 1B [y | (TTE — T8 (71 5, )| + 00/ (TTE — 1) (r: 5, 2)|dr.
0 0

Notice that sup¢( 1 | E(t)|lyy1.00 < My+ Mo, since E € . Then, the Gronwall lemma allows
us to conclude that (79) holds. Therefore we have

I < C/ I|1E(s, 8, )|l Leeds.

Next we estimate the integral Io. Using the inequality |e* —e¥| < e**¥|x — y| which holds
for any z,y € R and then by applying the same argument as in the estimate of I; we obtain

I, < C/ ||E )HLoodS
Notice that, for the sake of simplicity, we use the same notation C' in the inequalities of Iy

and I, standing for a universal constant depending on T, M7, M5, B, ni,. Finally, we combine
the estimate for the integrals I; and I> to imply the result. O
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Lemma 8.11

We have
?(DiffNormL1)?

In®(t) — AP (0)]| < C/ IE(s) — E(s)||Loeds
0

for some constant C, not depending on E, E.

Proof. }
Since n, 7i¥ are the solutions of (67) therefore we deduce that
By _ ~E _ Al E A E _ -E
(P (t) — 7 (t))+([E E]/\B> Van +(EAB) Va(nF — iF)
). E _ By _ N (B - EE — N EME —af) =
—I—O'I"Otm( C) Vi(n® —n”) —rot, (B) (E — E)n” — roty, (B) E(n® —n~)=0.

Multiplying this equation by sign(nf — wE ), then integrating with respect to x, we obtain

Gt/ In®(t) — ﬁE(t)\ dz + / sign(n® — fLE) <[E —E]A E) - VnP dx
R2xT? R2xT1 B

e -

—/ sign(n® — ﬁE)rot;B (E> (E - E)nf dz — / roty (—) -Elnf — 2P| dz = 0.
R2xT! B R2xT! B

Using the inequality (75) and a straightforward estimations yield

In¥ — ﬁE| dz
1

Oy /IRHTlmE(t) - ﬁE(t)\ dz < Co||E(t) — E(t)|| 1~ + Co /R2

xT

for some positive constant C. Integrating between 0 and ¢ and thanks to Gronwall lemma
we get the result. ]

Based on these arguments and Proposition 7.2, we establish the following result

Proposition 8.1

Assume that the initial condition ny, satisfies the hypotheses H1 and H2. There exists T > 0
and a local time strong solution (n,E) on [0,T] for the limit model (48), (49), (50). The
solution is unique and satisfies

n >0, ne L0, T[; W-°(R? x T!)) N L*°(J0, T[; W1 (R? x T))
E ¢ L0, T[; Wh*°(R? x T!)).

Appendix
Lemma 8.12
For any r € Ry, we have
(GaussIntegral) /Oo o= (0-1071)% 49 — ﬁ
0
Proof.

Let us denote I(r) = [¢° e~ (0=r07)%49. Tt is easily seen that

1(0) = /OOO e = \f
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For any r > 0, by taking the derivative with respect to r, we obtain that
> -1 —1y\,—(0—r6—1)?
I’(r):2/ R R i Yo U '
0

which yields
I'(r) = 21(r) — 2r / 02~ =" 4. (80) [DerivGauss|
0

Observer that - -
2 / 920707100 = —2 / e 0= q(ro~ 1)
0 0

and by changing the variable u = r6~! one gets

[e%s) 0
2 / f-2e-0-r0"qp — 9 / (v 02 gy — 97 (r),
0

oo

Substituting in (80), we have
I'(ry=0,r>0

NG

which implies I(r) is independant of value of r and thus I(r) = 5=, for any r» € R,. O
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