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Long time behavior for collisional strongly magnetized plasma

in three space dimensions

Mihäı BOSTAN ∗, Anh-Tuan VU †

(December 30, 2023)

Abstract

We consider the long time evolution of a population of charged particles, under strong
magnetic fields and collision mechanisms. We derive a fluid model and justify the asymp-
totic behavior toward smooth solutions of this regime. In three space dimensions, a
constraint ocurs along the parallel direction. For eliminating the corresponding Lagrange
multiplier, we average along the magnetic lines.
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1 Introduction

We consider a population of charged particles of charge q, massm, whose density in the phase
space (x, v) ∈ R3 × R3, at time t̃ ∈ R+, is denoted by f̃ = f̃(t̃, x, v). We concentrate on the
long time behavior, that is

f̃(t̃, x, v) = f ε(t, x, v), t = εt̃.

Here ε > 0 is a small parameter, related to the ratio between the cyclotronic period T ε
c and

the observation time Tobs. The notation Bε = Bεe, Bε > 0, |e| = 1 stands for the magnetic
field, assumed to be divergence free. We know that qBε

m ∼ ωε
c = 2π

T ε
c
and therefore we consider

strong magnetic fields

Bε =
B

T ε
c /Tobs

=
B

ε
,

where B is a reference magnetic field, corresponding to Tobs, i.e., qB
m = ωc = 2π

Tobs
. The

collision mechanism accounts for friction and diffusion effects and is described by Fokker-
Planck operator

Q(f) =
1

τ
divv{σ∇vf + vf},
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where τ is the relaxation time and σ is the velocity diffusion, see [33] for the introduction of
this operator, based on the principle of Brownian motion.
The self consistent electric field writes

E[f ] = −∇xΦ[f ], Φ[f ] =
q

4πϵ0

∫
R3

n[f(x′, ·)]
|x− x′|

dx′ =
q

4πϵ0

∫
R3

∫
R3

f(x′, v′)

|x− x′|
dv′dx′,

where the potential Φ[f ] satisfies the Poisson equation

−ϵ0∆xΦ[f ] = q n[f ] = q

∫
R3

f dv,

and where n[f ] stands for the particle density. Here ϵ0 is the electric permittivity of the vac-
uum. We obtain the Vlasov-Poisson-Fokker-Planck (VPFP) system, with external magnetic
field

ε∂tf
ε+v ·∇xf

ε+
q

m

(
E[f ε] + v ∧ Be

ε

)
·∇vf

ε =
1

τ
divv(σ∇vf

ε+vf ε), (t, x, v) ∈ R+×R3×R3,

(1)

E[f ε] = −∇xΦ[f
ε], −ϵ0∆xΦ[f

ε] = q n[f ε] = q

∫
R3

f ε dv. (2)

We complete the above system by the initial condition

f ε(0, x, v) = f εin(x, v), (x, v) ∈ R3 × R3. (3)

There are many works dealing with the existence and uniqueness of solutions to the VPFP
system, in the three dimensional setting. For the existence of weak solutions for the VPFP
problem (1), (2) and (3) we refer to [31, 58]. Existence and uniqueness results for strong
solutions of the VPFP problem can be found in [24, 25, 35, 52, 54].

The VPFP system (1), (2) and (3) describes the dynamic of charged particles under the
action of strong magnetic field |Bε| → +∞, as ε↘ 0, and also accounts for collisions between
particles. The mathematical literature in this field, we refer interested readers to the works
[1, 11, 22]. Other asymptotic regimes for strongly magnetized plasmas, incorporating collision
effects, are discussed in [20, 21, 16].

We are interested in the asymptotic behavior of the problem (1), (2) and (3) as ε ↘ 0.
This study is motivated by the description of tokamak plasma [37]. In the large magnetic field
regime, charged particles get trapped along the magnetic field lines and they rotate around
these lines with small radius. This gyration radius of the particles, called the Larmor radius,
is inversely proportional to the strength of the magnetic field. Therefore, charged particles
are well-confined within the tokamak. However, numerically solving the kinetic equation in
the presence of such large magnetic fields requires the resolution of small time steps (typycally
smaller than ε2) due to high oscillations in time of the particles around the magnetic lines,
leading to a huge time computations cost. Hence, the question of deriving asymptotic model
to reduce the cost of numerical simulation is of great importance. Many kinetic models with
strong magnetic field have been studied, usually leading to the so-called guiding-center or
gyro-kinetic models. We refer to [46, 47] for a physical references and [10, 27, 40, 41, 49, 55, 56]
for mathematical results on this topic.

We derive a new asymptotic model as ε ↘ 0. Let us now analyze the Vlasov-Fokker-
Planck equation (1). The dynamics of the charged particles are dominated by the transport in
velocity along the magnetic force 1

ε (v∧Be)·∇v, while the transport v·∇x+
q
mE[f ε]·∇v and the

collision operator Q(f ε) are of the same order, leading to the guiding-center approximation as
ε goes to 0. The limit distribution function is constant along the characteristic flow associated
with the dominant advection field v∧Be. It depends only on space, time and two components
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of the velocity, corresponding to the parallel component along the magnetic field line and the
magnitude of the perpendicular velocity. Moreover, for collision plasma, the charged particles
seem to reach a thermal equilibrium. By performing the balance of the free energy functional
associated with the VPFP system

E [f ε] =
∫
R3

∫
R3

(
σfε ln f ε + f ε

|v|2

2

)
dvdx+

ϵ0
2m

∫
R3

|E[f ε]|2 dx,

then the analysis of the dissipation term

D[f ε] =

∫
R3

∫
R3

|σ∇vf
ε + vfε|2

f ε
dvdx,

which allows us to conclude that the limit distribution function f of the family (f ε)ε>0, as
ε↘ 0, is an equilibrium of the form of local Maxwellian distribution in velocity, parametrized
by macroscopic quantities (particle concentration), for any (t, x) ∈ R+ × R3, i .e.,

f(t, x, v) = n(t, x)M(v) = n(t, x)
e−|v|2/2σ

(2πσ)3/2
, (t, x, v) ∈ R+ × R3 × R3.

The concentration n(t, x) satisfies the following transport equation with a constraint

∂tn+divx

[
n

(
E[n] ∧ e

B
− σ

∇xωc ∧ e
ω2
c

− σ
∂xee ∧ e
ωc

)]
+Be · ∇xp = 0, (t, x) ∈ R+ ×R3, (4)

Be · ∇xk[n] = 0, k[n] = σ(1 + lnn) +
q

m
Φ[n], (5)

coupled to the Poisson equation

E[n] = −∇xΦ[n], −ϵ0∆xΦ[n] = qn, (6)

with initial condition

n(0, x) = nin(x) =

∫
R3

f(0, x, v) dv,

where p is thought as a Lagrange multiplier associated to the constraint (5). At the limit, the
concentration n is advected along the electric cross-field drift, magnetic gradient drift, and
magnetic curvature drift. The model obtained in the three dimensional framework is much
more complex in the two-dimensional one (see [23]), since in this case, we need to handle extra
constraints. The constraint (5) arises from the perturbation of the limit particle densities f
as ε↘ 0, i.e., f ε ≃ f + εf1 leading to the following equation

v · ∇xf − q

m
∇xΦ[f ] · ∇vf +

q

m
(v ∧Be) · ∇vf1 = 0. (7)

We want to find a closure for the dominant term f or the concentration n, so we need to
eliminate the magnetic term of f1 enters (7) as a Lagrange multiplier. In the absence of
magnetic fields, equation (7) becomes

v · ∇xf − q

m
∇xΦ[f ] · ∇vf = 0.

Substituting f(t, x, v) = n(t, x)M(v) in the previous equality, and by direct computations
yield the following relation

∇xk[n] = 0, k[n] = σ(1 + lnn) +
q

m
Φ[n].
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This constraint implies that the concentration n(t, x) has the form

n(t, x) = Z(t)e−
q

mσ
Φ[n(t)](x), (8)

which is the so-called Boltzmann-Gibbs relation, relating the electron density to the electric
potential, cf. [2]. In the general case of the magnetic field B(x)e(x), we apply the average
along the characteristic flow with respect to the operator (v ∧ e(x)) · ∇v. Employing this
method, we rigorously derive the constraint (5) for the concentration n(t, x). Moreover,
when the magnetic field is uniform i .e., Be = (0, 0, 1), the constraint (5) becomes

∂x3k[n] = 0, k[n] = σ(1 + lnn) +
q

m
Φ[n],

which leads to the concentration n(t, x) can be written as

n(t, x) = N(t, x⊥)
e−

q
mσ

Φ[n(t)](x)∫
R e

− q
mσ

Φ[n(t)](x⊥,x3)dx3
, (9)

where x = (x⊥, x3) ∈ R2 × R, cf. [44, 51]. It is worth noting that our limit model (4) is
consistent with the limit model of the electron distribution function obtained in [44]. Indeed,
in the case of a uniform magnetic field, the limit equation (4) becomes

∂tn+ divx (nE ∧ e) + ∂x3p = 0.

Integrating in x3 to eliminate the Lagrange multiplier p and using (9) we obtain

∂tN(t, x⊥) + divx⊥

(
N(t, x⊥)

⊥∇x⊥Φ̃
)
= 0,

where Φ̃ : R+ × R2 → R is an x3 averaged of Φ[n]

Φ̃(t, x⊥) =
mσ

q
ln

(∫
R
e−

q
mσ

Φ[n(t)](x⊥,x3)dx3

)
,

which is exactly the limit model introduced in [44].
The asymptotic regime will be investigated by appealing to the relative entropy or mod-

ulated energy method, as introduced in [59]. By this technique one gets strong converges,
provided that the solution of the limit system is smooth as well as the convergence of the
initial data. Many asymptotic regimes were obtained using this technique, see [27, 28, 41, 53]
for quasineutral regimes in collisionless plasma physics, [56, 4] for hydrodynamic limits in gaz
dynamics, [42] for fluid-particle interaction, [7, 6] for high electric or magnetic field limits in
plasma physics.

Before writing our main result, we define the modulated energy E [nε(t)|n(t)] by

E [nε(t)|n(t)] = σ

∫
R3

n(t)h

(
nε(t)

n(t)

)
dx+

ϵ0
2m

∫
R3

|∇xΦ[n
ε]−∇xΦ[n]|2 dx,

where h : R+ → R+ is the convex function defined by h(s) = s ln s − s + 1, s ∈ R+. This
quantity splits into the standard L2 norm of the electric field plus the relative entropy between
the particle density nε of (1), (2) and (3) and the particle concentration n of the limit model
(4), (5) and (6). For any nonnegative integer k and p ∈ [1,∞], W k,p = W k,p(Rd) stands for
the k-th order Lp Sobolev space. Ck

b stands for k times continuously differentiable functions,
whose partial derivatives, up to order k, are all bounded and Ck([0, T ];E) is the set of k-
times continuously differentiable functions from an interval [0, T ] ⊂ R into a Banach space
E. Lp(0, T ;E) is the set of measurable functions from an interval (0, T ) to a Banach space
E, whose p-th power of the E-norm is Lebesgue measurable. The main result of this paper
is the following
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Theorem 1.1
Let B ∈ C1

b (R3) be a smooth magnetic field, such that infx∈R3 |B(x)| = B0 > 0. Assume
that the initial particle densities (f εin)ε>0 satisfy f εin ≥ 0, Min := supε>0M

ε
in < +∞, Uin :=

supε>0 U
ε
in < +∞ where

M ε
in :=

∫
R3

∫
R3

f εin(x, v) dvdx, U
ε
in :=

∫
R3

∫
R3

|v|2

2
f εin(x, v) dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε
in]|2 dx.

Let T > 0. We denote by (f ε)ε>0 the solutions of (1), (2) and (3) in the sense of Definition
2.1 below on [0, T ]. We assume that n is a non-negative smooth solution of (4), (5) and
(6) on [0, T ] such that W [n] = e

ωc
∧ ∇xk[n] +

pBe
n belongs to W 1,∞((0, T ) × R3), nin ≥ 0,

nin ∈ L1(R3), k[nin] ∈ ker(Be · ∇x). We suppose that

lim
ε↘0

σ

∫
R3

∫
R3

nεinM(v)h

(
f εin
nεinM

)
dvdx = 0, lim

ε↘0
E [nεin|nin] = 0,

where nεin =
∫
R3f

ε
in dv, ε > 0. Then we have

lim
ε↘0

sup
0≤t≤T

σ

∫
R3

∫
R3

nε(t)M(v)h

(
f ε

nεM

)
dvdx = 0, lim

ε↘0
sup

0≤t≤T
E [nε(t)|n(t)] = 0,

lim
ε↘0

1

ετ

∫ T

0

∫
R3

∫
R3

|σ∇vf
ε + f εv|2

f ε
dvdxdt = 0.

In particular we have the convergences limε↘0 f
ε = nM in L∞(0, T ;L1(R3 × R3)) and

limε↘0∇xΦ[f
ε] = ∇xΦ[n] in L

∞(0, T ;L2(R3)).

Our paper is organized as follows. In Section 2, we establish some a priori estimates on the
three dimensional VPFP system. In the next section, using Hilbert expansion, we derive
the asymptotic model. The limit model is a transport equation that involves a Lagrange
multiplier with a constraint in the direction of the magnetic field lines. Section 4 is devoted to
finding an equivalent model by eliminating the Lagrange multiplier. The idea is to apply the
average along the characteristic flow associated with the magnetic field. The new limit model,
after averaging, needs analysis of the commutation property between the average operator
and rotx. We establish a result for this commutation property for the special class of vector
fields which present angle variables in Section 5. In particular, we apply this formula to
tokamak magnetic fields in the next section. The convergence towards the asymptotic model
is rigorously proved in Section 7 under the assumption that the solution of the limit problem
is smooth. In the last section we investigate the well-posedness of the limit model obtained
from Section 6.

2 Preliminaires

We start by introducing the concept of weak solution to the VPFP system (1), (2) and (3)
for any fixed ε > 0.

Definition 2.1 Let T > 0. Given f εin ∈ L1(R3 × R3) we will say that f ε is a weak solution
of (1)-(3) on the time interval [0, T ] if
(i) f ε ≥ 0, f ε ∈ L∞(0, T ;L1 ∩ L∞(R3 × R3)),
(ii) for any ψ ∈ C∞([0, T [×R3 × R3)∫ T

0

∫
R3

∫
R3

f ε
[
ε
∂ψ

∂t
+ v · ∇xψ +

q

m

(
E[f ε] + v ∧ Be

ε

)
· ∇vψ

]
dvdxdt

+

∫ T

0

∫
R3

∫
R3

1

τ
f ε(σ∆vψ − v · ∇vψ)dvdxdt+

∫
R3

∫
R3

εf εin(x, v)ψ(0, x, v)dvdx = 0.
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The global-in-time of weak solution for the nonlinear VPFP system (1)-(3) comes from almost
the same argument as presented in [30, 34], we merely state the existence theorem for the
solution and do not give any details on that here.

Theorem 2.1 Let B ∈ L∞(R3). Suppose that the initial data f εin satisfies

f εin ≥ 0, f εin ∈ L1 ∩ L∞(R3 × R3), (|x|2 + |v|2 +Φ[f εin])f
ε
in ∈ L1(R3 × R3).

Then, for any T > 0, there exists a global weak solution of the system (1)-(3) in the sense of
Definition 2.1 satisfying:

f ε ∈ L∞(0, T ;L1 ∩ L∞(R3 × R3)) and (|x|2 + |v|2 +Φ[f ε])f ε ∈ L∞(0, T ;L1(R3 × R3)).

The asymptotic behavior of the Vlasov-Fokker-Planck-Poisson equation (1) when ε be-
comes small comes from the balance of the free energy functional

E [f ε] =
∫
R3

∫
R3

(
σfε ln f ε + f ε

|v|2

2

)
dvdx+

ϵ0
2m

∫
R3

|E[f ε]|2 dx.

Multiplying the left hand side of (1) by σ(1 + ln f ε) + |v|2
2 and integrating with respect to

(x, v) ∈ R3 × R3 yield∫
R3

∫
R3

[
ε∂tf

ε + v · ∇xf
ε +

q

m

(
E[f ε] + v ∧ Be

ε

)
· ∇vf

ε

] [
σ(1 + ln f ε) +

|v|2

2

]
dvdx

=

∫
R3

∫
R3

[
ε∂t + v · ∇x +

q

m

(
E[f ε] + v ∧ Be

ε

)
· ∇v

] [
σfε ln f ε + f ε

|v|2

2

]
dvdx

−
∫
R3

∫
R3

q

m
E[f ε] · vfε dvdx

= ε
d

dt

∫
R3

∫
R3

(
σf ε ln f ε + f ε

|v|2

2

)
dvdx+

q

m

∫
R3

∇xΦ[f
ε] ·
(∫

R3

vf ε dv

)
dx. (10)

Thanks to the continuty equation

ε∂tn[f
ε] + divx

∫
R3

vf ε dv = 0,

we write

q

m

∫
R3

∇xΦ[f
ε] ·
(∫

R3

vf ε dv

)
dx = ε

q

m

∫
R3

Φ[f ε]∂tn[f
ε] dx (11)

= −ϵ0ε
m

∫
R3

Φ[f ε]∂t∆xΦ[f
ε] dx

=
ϵ0ε

2m

d

dt

∫
R3

|∇xΦ[f
ε]|2 dx.

Multiplying the right hand side of (1) by σ(1+ ln f ε)+ |v|2
2 and then integrating with respect

to (x, v) ∈ R3 × R3 imply∫
R3

∫
R3

Q(f ε)

[
σ(1 + ln f ε) +

|v|2

2

]
dvdx = −1

τ

∫
R3

∫
R3

|σ∇vf
ε + vfε|2

f ε
dvdx (12)

= −1

τ

∫
R3

∫
R3

|σM∇v(f
ε/M)|2

f ε
dvdx,

6



where M stands for the Maxwellian equilibrium M(v) = (2πσ)−3/2 exp
(
− |v|2

2σ

)
, v ∈ R3.

Combining (10), (11) and (12) leads to the balance

ε
d

dt

[∫
R3

∫
R3

(
σfε ln f ε + f ε

|v|2

2

)
dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]|2 dx

]
(13)

+
1

τ

∫
R3

∫
R3

|σM∇v(f
ε/M)|2

f ε
dvdx = 0,

or equivalently

εE [f ε(t)] + 1

τ

∫ t

0

∫
R3

∫
R3

|σM∇v(f
ε/M)|2

f ε
dvdxds = εE [f ε(0)].

Notice that weak solutions may only satisfy an inequality in the above relation that is enough
for our purposes. At least formally, we deduce that f ε = f+O(ε), as ε↘ 0, where the leading
order density f satisfies

1

τ

∫
R3

∫
R3

|σM∇v(f/M)|2

f
dvdx = 0, t ∈ R+.

Therefore we have f(t, x, v) = n(t, x)M(v), (t, x, v) ∈ R+×R3×R3 and it remains to determine
the time evolution of the concentration n =

∫
R3f dv.

We establish uniform bounds for the kinetic energy.

Lemma 2.1
Let T > 0. Assume that the initial particle densities (f εin) satisfy f

ε
in ≥ 0,Min := supε>0M

ε
in <

+∞, Uin := supε>0 U
ε
in < +∞, where for any ε > 0

M ε
in :=

∫
R3

∫
R3

f εin(x, v) dvdx, U
ε
in :=

∫
R3

∫
R3

|v|2

2
f εin(x, v) dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε
in]|2 dx.

We assume that (f ε)ε>0 are weak solutions of (1), (2) and (3). Then we have

ε sup
0≤t≤T

{∫
R3

∫
R3

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]|2 dx

}
≤ εUin +

3σ

τ
TMin

and
1

τ

∫ T

0

∫
R3

∫
R3

|v|2f ε(t, x, v) dvdxdt ≤ εUin +
3σ

τ
TMin.

Proof.
We will establish the results for smooth solutions, and we observe that the same conclusions
hold true in the framework of weak solutions by combining the formal arguments to be
exposed here with the choice of an appropriate sequence of test functions in Definition 2.1

for every studied property (cf. [5, 26]). Multiplying (1) by |v|2
2 and integrating with respect

to (x, v) ∈ R3 × R3 yield

ε
d

dt

{∫
R3

∫
R3

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]|2 dx

}
=

3σ

τ
M ε

in −
1

τ

∫
R3

∫
R3

|v|2f ε dvdx

and therefore we obtain

ε

{∫
R3

∫
R3

|v|2

2
f ε(t, x, v) dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]|2 dx

}
+

1

τ

∫ t

0

∫
R3

∫
R3

|v|2f ε dvdxds

= εU ε
in +

3σ

τ
tM ε

in,

which yields the results.
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3 Formal derivation of the limit model

This section is devoted to deriving the limit model for (1), (2) and (3) when ε becomes very
small, using the properties of the average dominant operator transport. At the formal level,
we initiate our analysis with a Hilbert expansion

f ε = f + εf1 + ε2f2 + ....

Plugging the above ansatz into the kinetic equation (1) yields

ε∂t(f + εf1 + ε2f2 + ...) + v · ∇x(f + εf1 + ε2f2 + ...)

+
q

m

(
E[f + εf1 + ε2f2 + ...] + v ∧ Be

ε

)
· ∇v(f + εf1 + ε2f2 + ...) = Q(f + εf1 + ε2f2 + ...).

Identifying the contributions to any power of ε leads to

q

m
(v ∧Be) · ∇vf = 0. (14)

v · ∇xf +
q

m
E[f ] · ∇vf +

q

m
(v ∧Be) · ∇vf1 = Q(f). (15)

∂tf + v · ∇xf1 +
q

m
E[f1] · ∇vf +

q

m
(v ∧Be) · ∇vf2 = Q(f1). (16)

Multiplying (15) by σ(1 + ln f) + |v|2
2 and integrating with respect to (x, v) ∈ R3 ×R3 yields∫

R3

∫
R3

(
v · ∇x +

q

m
E[f ] · ∇v

)(
σf ln f + f

|v|2

2

)
dvdx+

1

τ

∫
R3

∫
R3

|σM∇v(f/M)|2

f
dvdx

=

∫
R3

∫
R3

q

m
E[f ] · vf dvdx+

∫
R3

∫
R3

f1
q

m
(v ∧Be) · σ∇vf

f
dvdx. (17)

Integrating (15) with respect to v ∈ R3 we deduce that divx
∫
R3vf dv = 0 and therefore we

have ∫
R3

∫
R3

q

m
E[f ] · vf dvdx = − q

m

∫
R3

∇xΦ[f ] ·
(∫

R3

vf dv

)
dx = 0.

Using also (14), the last contribution in the right hand side of (17) cancels, and therefore we
obtain

1

τ

∫
R3

∫
R3

|σM∇v(f/M)|2

f
dvdx = 0, t ∈ R+,

saying that f = nM , for some function n = n(t, x) to be determined. In that case, the
constraint (14) is satisfied and (15) becomes

v · ∇xf +
q

m
E[f ] · ∇vf ∈ Range((v ∧ e(x)) · ∇v), x ∈ R3.

For any e ∈ S2, we denote by R(θ, e) the rotation of angle θ around the axis e

R(θ, e) = cos θ(I3 − e⊗ e)v − sin θ(v ∧ e) + (v · e)e, v ∈ R3.

The characteristic flow of the field (v ∧ e) · ∇v

dV
dθ

= V(θ; v) ∧ e, V(0; v) = v,

is given by

V(θ; v) = R(−θ, e)v = cos θ(I3 − e⊗ e)v + sin θ(v ∧ e) + (v · e)e, (θ, v) ∈ R× R3.
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For any function g(v) = (v ∧ e) · ∇vh in the range of the operator (v ∧ e) · ∇v, we have

g(V(θ; v)) = d

dθ
h(V(θ; v)), (θ, v) ∈ R× R3,

and by the periodicity of the flow we obtain

1

2π

∫ 2π

0
g(V(θ; v))dθ = 0, v ∈ R3.

Therefore, for any x ∈ R3, the average along the characteristic flow with respect to (v∧e(x)) ·
∇v of the function v · ∇xf + q

mE[f ] · ∇vf vanishes. But

v · ∇xf +
q

m
E[f ] · ∇vf = (v · ∇xn)M − q

m
(E[f ] · v)nM

σ
=
n

σ
Mv · ∇x(σ lnn+

q

m
Φ[f ]),

and since
1

2π

∫ 2π

0
M(V(θ; v))V(θ; v)dθ =M(v)(v · e)e,

finally we obtain the constraint

e · ∇xk[n] = 0, k[n] = σ(1 + lnn) +
q

m
Φ[n], x ∈ R3.

Here the potential Φ = Φ[n] writes

Φ[n(t)](x) =
q

4πϵ0

∫
R3

n(t, x′)

|x− x′|
dx′, (t, x) ∈ R+ × R3.

The time evolution for the concentration n comes by integrating (16) with respect to v ∈ R3

∂tn+ divx

∫
R3

vf1 dv = 0. (18)

Multiplying (15) by v and integrating with respect to v ∈ R3 we obtain

divx

∫
R3

v ⊗ vf dv − n
q

m
E[f ]− qB

m

∫
R3

vf1 ∧ e dv = 0.

Since f is a Maxwellian equilibrium, we have
∫
R3v⊗ vf dv = σnI3 and the previous equality

becomes

ωc

∫
R3

vf1 dv ∧ e = σ∇xn− n
q

m
E[f ],

or equivalently

ωc(I3 − e⊗ e)

∫
R3

vf1 dv = ne ∧
(
σ
∇xn

n
− q

m
E[f ]

)
= ne ∧∇x(σ lnn+

q

m
Φ[n])

= ne ∧∇xk[n].

The divergence with respect to x of
∫
R3vf1 dv writes

divx

∫
R3

vf1 dv = divx

[
(I3 − e⊗ e)

∫
R3

vf1 dv

]
+ divx

[
e⊗ e

∫
R3

vf1 dv

]
= divx

(
ne

ωc
∧∇xk[n]

)
+Be · ∇x

∫
R3

(v · e)f1
B

dv.
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Coming back in (18) we obtain the limit model

∂tn+ divx

(
ne

ωc
∧∇xk[n]

)
+Be · ∇xp = 0, (19)

for some function p such that the following constraint holds true

Be · ∇xk[n] = 0, k[n] = σ(1 + lnn) +
q

m
Φ[n]. (20)

The limit model involves a Lagrange multiplier p, associated to the constraint (20). One of
the main difficulty is that the unknown is the concentration n, whereas the constraint relies
on k[n]. Formally, we have the balances

Proposition 3.1
Any non-negative smooth solution of the limit model (19), (20) verifies the mass and free
energy conservations

d

dt

∫
R3

n(t, x) dx = 0,
d

dt

∫
R3

{
σn lnn+

ϵ0
2m

|∇xΦ[n]|2
}

dx = 0.

Proof.
Clearly we have the total mass conservation. For the energy conservation, we multiply (19)
by k[n] and integrate with respect to x ∈ R3, observing that∫

R3

∂tnk[n] dx =
d

dt

∫
R3

{
σn lnn+

ϵ0
2m

|∇xΦ[n]|2
}

dx,

∫
R3

divx

(
ne

ωc
∧∇xk[n]

)
k[n] dx = −

∫
R3

(
ne

ωc
∧∇xk[n]

)
· ∇xk[n] dx = 0,∫

R3

Be · ∇xpk[n] dx = −
∫
R3

pBe · ∇xk[n] dx = 0.

Recall the usual drift velocities when dealing with magnetic confinement: the electric field
drift, the magnetic gradient drift, and the magnetic curvature drift

E ∧ e
B

, −m|v ∧ e|2

2qB

∇xB ∧ e
B

= −|v ∧ e|2

2

∇xωc ∧ e
ω2
c

, −m|v ∧ e|2

qB
∂xee ∧ e = −(v · e)2

ωc
∂xee ∧ e.

When working at the fluid level, the averages with respect to v ∈ R3 of the above drift
velocities become

v∧D =

∫
R3

E ∧ e
B

M dv =
E ∧ e
B

,

vGD = −
∫
R3

|v ∧ e|2

2

∇xωc ∧ e
ω2
c

M dv = −σ∇xωc ∧ e
ω2
c

,

vCD = −
∫
R3

(v · e)2

ωc
∂xee ∧ eM dv = −σ∂xee ∧ e

ωc
.

The flux in the limit model (19) also writes nV[n], where V[n] = v∧D + vGD + vCD.
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Proposition 3.2
Any non-negative smooth function n satisfying

∂tn+ divx

(
ne

ωc
∧∇xk[n]

)
+Be · ∇xp = 0, k[n] = σ(1 + lnn) +

q

m
Φ[n],

also verifies

∂tn+ divx(nV[n]) +Be · ∇xp̃ = 0, V[n] = E ∧ e
B

− σ
∇xωc ∧ e

ω2
c

− σ
∂xee ∧ e
ωc

,

and p̃ = p+ σn
Bωc

(e · rotxe).

Proof.
Recall the formula divx(ξ ∧ η) = η · rotxξ − ξ · rotxη, for any smooth vector fields ξ and η.
Therefore we can write

divx

(
ne

ωc
∧∇xk[n]

)
= divx

[
ne

ωc
∧
(
σ
∇xn

n
− q

m
E

)]
= divx

(
n
E ∧ e
B

)
+ divx

(
σ
e

ωc
∧∇xn

)
= divx

(
n
E ∧ e
B

)
+ σ rotx

(
e

ωc

)
· ∇xn

= divx

(
n
E ∧ e
B

)
+ σ divx

(
n rotx

(
e

ωc

))
= divx

(
n
E ∧ e
B

)
− σ divx

(
n
∇xωc ∧ e

ω2
c

− n

ωc
rotxe

)
= divx

(
nv∧D + nvGD +

σn

ωc
(I3 − e⊗ e)rotxe

)
+ divx

(
σn

ωc
(e · rotxe)e

)
.

Notice that we can write

(I3 − e⊗ e)rotxe = e ∧ (rotxe ∧ e) = e ∧ [(∂xe− t∂xe)e] = e ∧ ∂xee,

implying that

σ
n

ωc
(I3 − e⊗ e)rotxe = −σ n

ωc
∂xee ∧ e = nvCD.

Finally we obtain

divx

(
ne

ωc
∧∇xk[n]

)
= divx(nV[n]) +Be · ∇x

[
σn

Bωc
(e · rotxe)

]
,

and our conclusion follows.

4 Reformulation of the limit model

We intend to find an equivalent formulation for (19), (20) by eliminating the Lagrange mul-
tiplier p which appears in (19). For doing that, we will average along the characteristic flow
of the magnetic field cf. [8, 9, 10, 12, 13, 14, 15]. Let us recall briefly the definition of the
average operators along a characteristic flow for functions and vector fields cf. [17]. Consider
a smooth, divergence free vector field b = b(y) : Rm → Rm

b ∈W 1,∞
loc (Rm), divyb = 0, (21)
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with at most linear growth at infinity

∃C > 0 such that |b(y)| ≤ C(1 + |y|), y ∈ Rm. (22)

We denote by Y (s; y) the characteristic flow associated to b

dY

ds
= b(Y (s; y)), Y (0; y) = y, s ∈ R, y ∈ Rm.

Under the above hypothese, this flow has the regularity Y ∈W 1,∞
loc (R× Rm) and is measure

preserving. We concentrate on periodic characteristic flows (the tokamak characteristic flows
are periodic, with uniform period) that is:

∃S > 0 such that Y (S; y) = y, y ∈ Rm.

For any function u = u(y) : Rm → R we define the average ⟨u⟩ along the flow of b · ∇y by

⟨u⟩ (y) = 1

S

∫ S

0
u(Y (s; y)) ds, y ∈ Rm.

When applied to L2(Rm) functions, the above operator coincides with the orthogonal pro-
jection in L2(Rm), over the subspace of constant functions along the flow of b · ∇y, cf. [9].
Indeed, it is easily seen that for any y ∈ Rm, h ∈ R

⟨u⟩ (Y (h; y)) =
1

S

∫ S

0
u(Y (s;Y (h; y)))ds =

1

S

∫ S

0
u(Y (s+ h; y))ds = ⟨u⟩ (y),

and for any ψ ∈ L2(Rm) which is constant along the flow Y we have∫
Rm

u(y)ψ(y) dy =

∫
Rm

u(y)ψ(Y (−s; y)) dy

=

∫
Rm

u(Y (s; y))ψ(y) dy

=

∫
Rm

1

S

∫ S

0
u(Y (s; y)) dsψ(y) dy

=

∫
Rm

⟨u⟩ (y)ψ(y) dy.

For any vector field c = c(y) : Rm → Rm, we define the average ⟨c⟩ along the flow of b ·∇y by

⟨c⟩ = 1

S

∫ S

0
∂Y (−s;Y (s; ·))c(Y (s; ·)) ds.

Notice that the family of transformations c → ∂Y (−s;Y (s; ·))c(Y (s; ·)), s ∈ R, is a one
parameter group. The average operators for functions and vector fields are related by the
following formulas:

⟨c · ∇ψ⟩ = ⟨c⟩ · ∇ψ, (23)

for any function ψ which is constant along the flow Y and

⟨a · ∇θ⟩ = a · ∇ ⟨θ⟩ , (24)

for any vector field a which is in involution with respect to b, that is, their Poisson bracket
vanishes

[a, b] := (a · ∇y)b− (b · ∇y)a = 0.
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Indeed, as ψ(Y (s; ·)) = ψ, s ∈ R, we have t∂Y (s; y)(∇ψ)(Y (s; y)) = ∇ψ(y), s ∈ R and
therefore

⟨c⟩ · ∇ψ =
1

S

∫ S

0
∂Y (−s;Y (s; ·))c(Y (s; ·)) ds · ∇ψ

=
1

S

∫ S

0
∂Y (−s;Y (s; ·))c(Y (s; ·)) · t∂Y (s; ·)(∇ψ)(Y (s; ·)) ds

=
1

S

∫ S

0
(c · ∇ψ)(Y (s; ·)) ds

= ⟨c · ∇ψ⟩ .

In the previous computations, we utilized the equality Y (−s;Y (s; y)) = y, y ∈ Rm which,
upon differentiation with respect to y, implies

∂yY (−s;Y (s; ·)∂yY (s; ·) = Im.

Similarly, the condition [a, b] = 0 expresses the commutation between the flows associated to
the vector fields a and b

Z(h;Y (s; y)) = Y (s;Z(h; y)), h, s ∈ R, y ∈ Rm, (25)

where Z(h; y) denotes the characteristic flow associated to a

d

dh
Z(h; y) = a(Z(h; y)), (h, y) ∈ R× Rm.

Taking the derivative of (25) with respect to h at h = 0 we obtain

a(Y (s; y)) =
d

dh
|h=0Z(h;Y (s; y)) =

d

dh
|h=0Y (s;Z(h; y)) = ∂yY (s; y)a(y), (s, y) ∈ (R× Rm).

Hence we have

⟨a · ∇θ⟩ = 1

S

∫ S

0
a(Y (s; ·)) · (∇θ)(Y (s; ·)) ds

=
1

S

∫ S

0
a · t∂yY (s; ·)(∇θ)(Y (s; ·)) ds

=
1

S

∫ S

0
a · ∇(θ(Y (s; ·))) ds

= a · ∇ ⟨θ⟩ .

We come back to the limit model (19), (20) and we consider a smooth magnetic field Be ·∇x,
whose characteristic flow is periodic, with a uniform period S. The properties of the average
along the magnetic field lines are investigated in the mathematical literature, cf. [51]. If we
denote by X = X(s;x) the flow of the magnetic field, we have by S periodicity

⟨Be · ∇xp⟩ =
1

S

∫ S

0
(Be · ∇xp)(X(s; ·)) ds = 1

S

∫ S

0

d

ds
{p(X(s; ·))} ds = 0.

Therefore the Lagrange multiplier p can be eliminated, by taking the average in (19)

∂t ⟨n⟩+
〈
divx

(
ne

ωc
∧∇xk[n]

)〉
= 0. (26)

The difficulty task is how to express the average of the divergence term, with respect to ⟨n⟩,
such that we get a model for the new unknown ⟨n⟩.
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Proposition 4.1
For any zero average function α, and constant along the flow X function ψ, we have〈

divx

(αe
B

∧∇ψ
)〉

= 0.

Proof.
We are done if we prove that for any constant along the flow function θ we have∫

R3

divx

(αe
B

∧∇ψ
)
θ(x) dx = 0. (27)

As e · ∇ψ = 0, e · ∇θ = 0, therefore we have (I3 − e ⊗ e)(∇θ ∧ ∇ψ) = 0. The vector field
∇θ ∧∇ψ is divergence free

divx(∇θ ∧∇ψ) = ∇ψ · rotx(∇θ)−∇θ · rotx(∇ψ) = 0,

and therefore there is a constant function λ along the flow X such that ∇θ∧∇ψ = λBe. We
deduce that ∫

R3

divx

(αe
B

∧∇ψ
)
θ(x) dx = −

∫
R3

(αe
B

∧∇ψ
)
· ∇θ dx

=

∫
R3

(∇θ ∧∇ψ) · αe
B

dx

=

∫
R3

λBe · αe
B

dx

=

∫
R3

λα dx =

∫
R3

λ ⟨α⟩ dx = 0,

and therefore (27) holds true.

Applying Proposition 4.1 with the function k[n], which is constant along the flow of Be · ∇x,
we obtain 〈

divx

(
ne

ωc
∧∇xk[n]

)〉
=

〈
divx

(
⟨n⟩ e
ωc

∧∇xk[n]

)〉
.

We also need to express k[n] = σ(1 + lnn) + q
mΦ[n], with respect to ⟨n⟩, where the concen-

tration n is such that the constraint (20) holds true.

Lemma 4.1
The first variation of the free energy

E [n] =
∫
R3

σn lnn+
ϵ0
2m

|∇xΦ[n]|2 dx

is k[n] = σ(1 + lnn) +
q

m
Φ[n]. For any concentration n, n0 ≥ 0 we have

E [n]− E [n0]−
∫
R3

k[n0](n− n0) dx = σ

∫
R3

n0

(
n

n0
ln

n

n0
− n

n0
+ 1

)
dx

+
ϵ0
2m

∫
R3

|∇xΦ[n]−∇xΦ[n0]|2 dx ≥ 0,

with equality iff n = n0.
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Proof.
By direct computations one gets

E [n]− E [n0]−
∫
R3

k[n0](n− n0) dx

= σ

∫
R3

{n lnn− n0 lnn0 − (1 + lnn0)(n− n0)} dx

+

∫
R3

{ ϵ0
2m

|∇xΦ[n]|2 −
ϵ0
2m

|∇xΦ[n0]|2 −
q

m
Φ[n0](n− n0)

}
dx

= σ

∫
R3

{n lnn− n+ n0 − n lnn0} dx

+

∫
R3

{ ϵ0
2m

|∇xΦ[n]|2 −
ϵ0
2m

|∇xΦ[n0]|2 −
ϵ0
m
∇xΦ[n0] · (∇xΦ[n]−∇xΦ[n0])

}
dx

= σ

∫
R3

n0

(
n

n0
ln

n

n0
− n

n0
+ 1

)
dx+

ϵ0
2m

∫
R3

|∇xΦ[n]−∇xΦ[n0]|2 dx ≥ 0

which equality iff n = n0. Obviously we have

lim
h→0

E [n0 + hz]− E [n0]− h
∫
R3k[n0]z dx

h

= lim
h→0

σ

h

∫
R3

n0

(
n0 + hz

n0
ln
n0 + hz

n0
− n0 + hz

n0
+ 1

)
dx+ lim

h→0

ϵ0
2mh

∫
R3

h2|∇xΦ[z]|2 dx = 0,

saying that limh→0 h
−1(E [n0 + hz]− E [n0]) =

∫
R3k[n0]z dx.

Thanks to the previous lemma we deduce that there is at most one concentration n with a
given average, such that Be · ∇xk[n] = 0.

Lemma 4.2
Let n1, n2 be two concentrations such that ⟨n1⟩ = ⟨n2⟩ and Be · ∇xk[n1] = Be · ∇xk[n2].
Therefore we have n1 = n2. In particular, for a given average, there is at most one concen-
tration n such that Be · ∇xk[n] = 0.

Proof.
We have by Lemma 4.1

E [n1]− E [n2]−
∫
R3

k[n2](n1 − n2) dx = σ

∫
R3

n2

(
n1
n2

ln
n1
n2

− n1
n2

+ 1

)
dx

+
ϵ0
2m

∫
R3

|∇xΦ[n1]−∇xΦ[n2]|2 dx,

and

E [n2]− E [n1]−
∫
R3

k[n1](n2 − n1) dx = σ

∫
R3

n1

(
n2
n1

ln
n2
n1

− n2
n1

+ 1

)
dx

+
ϵ0
2m

∫
R3

|∇xΦ[n2]−∇xΦ[n1]|2 dx,

implying that∫
R3

(k[n1]− k[n2])(n1 − n2) dx = σ

∫
R3

(n1 − n2) ln

(
n1
n2

)
dx+

ϵ0
m

∫
R3

|∇xΦ[n2]−∇xΦ[n1]|2 dx.

Since Be · ∇x(k[n1]− k[n2]) = 0, ⟨n1 − n2⟩ = 0, we deduce∫
R3

(k[n1]− k[n2])(n1 − n2) dx = 0,

and thus n1 = n2.
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If n is such that Be · ∇xk[n] = 0, then for any concentration n̄ having the same average as n
we have

E [n̄] ≥ E [n] +
∫
R3

k[n](n̄− n) dx = E [n],

saying that for any given average a, the unique concentration n such that ⟨n⟩ = a and
Be · ∇xk[n] = 0, satisfies

E [n] = min
⟨n̄⟩=a

E [n̄].

We denote by F the application which maps a ∈ ker(Be · ∇x) to n such that ⟨n⟩ = a,
Be · ∇xk[n] = 0.

Lemma 4.3
The application a ∈ ker(Be · ∇x) → E [n = F (a)] is convex and its first variation is a →
k[n = F (a)].

Proof.
Consider a1, a2 ∈ ker(Be · ∇x) and λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1. We have

λ1E [F (a1)] + λ2E [F (a2)] ≥ E [λ1F (a1) + λ2F (a2)]

since E is convex and

E [F (λ1a1 + λ2a2)] = min
⟨n̄⟩=λ1a1+λ2a2

E [n̄] ≤ E [λ1F (a1) + λ2F (a2)]

because
⟨λ1F (a1) + λ2F (a2)⟩ = λ1 ⟨F (a1)⟩+ λ2 ⟨F (a2)⟩ = λ1a1 + λ2a2.

Consider now a, z ∈ ker(Be · ∇x) and h ∈ R. The convexity of E implies

E [F (a+ hz)]− E [F (a)] ≥
∫
R3

k[F (a)][F (a+ hz)− F (a)] dx

=

∫
R3

k[F (a)] ⟨F (a+ hz)− F (a)⟩ dx

=

∫
R3

k[F (a)][⟨F (a+ hz)⟩ − ⟨F (a)⟩] dx

=

∫
R3

k[F (a)][(a+ hz)− a] dx

= h

∫
R3

k[F (a)]z(x) dx.

Passing to the limit when h↘ 0 and h↗ 0 we deduce that

lim
h→0

E [F (a+ hz)]− E [F (a)]
h

=

∫
R3

k[F (a)]z dx.

Combining the results in Proposition 4.1, Lemma 4.3, the limit model (19), (20) becomes

∂ta+

〈
divx

(
ae

ωc
∧∇xk[F (a)]

)〉
= 0, n = F (a).

As k[F (a)] ∈ ker(Be · ∇x), we obtain by (23)〈
divx

(
ae

ωc
∧∇xk[F (a)]

)〉
=

〈
rotx

(
ae

ωc

)
· ∇xk[F (a)]

〉
=

〈
rotx

(
ae

ωc

)〉
· ∇xk[F (a)],

and therefore the previous limit model also writes

∂ta+

〈
rotx

(
ae

ωc

)〉
· ∇xk[F (a)] = 0, n = F (a). (28)
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5 A commutation formula for angular vector fields

The last step will concern a commutation formula between the operators ⟨·⟩ and rotx. We
establish this formula for the special class of vector fields which present angle variables. In
particular, this formula will apply for tokamak magnetic fields. We start with a very simple
example. Consider the vector field b(y) · ∇y = y2∂y1 − y1∂y2 , y = (y1, y2) ∈ R2, whose
characteristic flow is 2π-periodic

Y (s; y) = R(−s)y =

(
cos s sin s
− sin s cos s

)
y, (s, y) ∈ R× R2.

The gradient of any invariant function ψ, that is a function satisfying ψ(Y (s; ·)) = ψ, s ∈ R,
verifies

t∂Y (s; ·)(∇ψ)(Y (s; ·)) = ∇ψ, s ∈ R. (29)

There are other vector fields verifying similar properties. Let us consider the angle θ = θ(y) ∈
[0, 2π[ given by

y1 = |y| cos θ(y), y2 = |y| sin θ(y), y ∈ R2\ {(0, 0)} .

The function θ is smooth in D = R2\(R+ × {0}) and we have

∇yθ = −(y2,−y1)
|y|2

= −b(y)
|y|2

, y ∈ D.

The function θ is discontinuous across R⋆
+ × {0}

lim
y1→z1,y2↘0

θ(y) = 0, lim
y1→z1,y2↗0

θ(y) = 2π, z1 > 0,

but its gradient, which is well defined on D is the restriction of a smooth vector field on
R2\ {(0, 0)}

ν(y) = −(y2,−y1)
|y|2

, y ∈ R2\ {(0, 0)} .

For any y ∈ D and |s| small enough we have

d

ds
θ(Y (s; y)) = b(Y (s; y)) · (∇θ)(Y (s; y)) = −1,

implying that θ(Y (s; y)) = θ(y) − s, y ∈ D and |s| small enough. Taking the gradient with
respect to y we obtain

t∂Y (s; y)(∇θ)(Y (s; y)) = ∇θ(y),

or
t∂Y (s; y)ν(Y (s; y)) = ν(y), y ∈ D, |s| small enough. (30)

Actually it is easily seen that the previous formula holds true for any y ∈ R2\ {(0, 0)} and
s ∈ R. The vector field ν also satisfies

divy
tν(y) = 0,

but it is not the gradient of a smooth function θ̃ on R2\ {(0, 0)}, because, in that case, for
any y ∈ R2\ {(0, 0)}, we would obtain

−1 =
1

2π

∫ 2π

0
(b · ν)(Y (s; y)) ds =

1

2π

∫ 2π

0
(b · ∇θ̃)(Y (s; y)) ds =

1

2π

∫ 2π

0

d

ds
θ̃(Y (s; y)) ds = 0.
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Generally, given a smooth divergence free vector field b · ∇y in R3, with global characteristic
flow Y = Y (s; y), (s, y) ∈ R×R3, we call angular vector field in D ∈ R3 any vector field ν ·∇y

satisfying

b(y) · ν(y) = C, t∂Y (s; y)ν(Y (s; y)) = ν(y), rotyν = 0, (s, y) ∈ R×D,

for some constant C ∈ R⋆, where D is an open subset of R3, which is left invariant by the
flow i .e., Y (s;D) = D, s ∈ R. We intend to establish the following commutation formula.

Proposition 5.1
Let us consider a vector field b · ∇y in R3 satisfying (21), (22) with S-periodic characteristic
flow Y = Y (s; y), (s, y) ∈ R×R3. We denote by η · ∇y the gradient of an invariant function
with respect to the flow Y , or an angular vector field, in some open subset D of R3, which is
left invariant by the flow Y . Therefore, for any C1 function α = α(y), we have

⟨∇yα ∧ η⟩ = ∇y ⟨α⟩ ∧ η in D. (31)

In particular, if α ∈ ker(b · ∇y), then (∇yα ∧ η) · ∇y is in involution with respect to b · ∇y in
D.

We will use the following lemmas.

Lemma 5.1
We denote by M [e] the matrix of the linear transformation v → e ∧ v, v ∈ R3, that is
M [e]v = e ∧ v, v ∈ R3. For any e ∈ S2, and ξ, η ∈ R3 such that ξ · e = 0, we have

ξ ∧ η = (e⊗M [e]ξ −M [e]ξ ⊗ e)η.

Proof.
By direct computations one gets

(e⊗M [e]ξ −M [e]ξ ⊗ e)η = ((e ∧ ξ) · η)e− (e · η)e ∧ ξ
= ((ξ ∧ η) · e)e+ (η · e)ξ ∧ e
= e⊗ e(ξ ∧ (η − (η · e)e)) + (η · e)ξ ∧ e
= ξ ∧ (η − (η · e)e) + (η · e)ξ ∧ e
= ξ ∧ η,

where we have used that ξ ∧ (η − (η · e)e) ∈ Re, since ξ · e = 0.

For any function or vector field, the notation Fs stands for F ◦ Y (s; ·).

Lemma 5.2
Let us consider a vector field b · ∇y in R3 satisfying (21), (22) with S-periodic characteristic
flow Y = Y (s; y), (s, y) ∈ R×R3. We denote by M [e] the matrix of the linear transformation
v → e ∧ v, v ∈ R3, that is M [e]v = e ∧ v, v ∈ R3. Then, for any function u such that
u ∈ ker(b · ∇y), we have the equality

(I3 − es ⊗ es)
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
(I3 − es ⊗ es)(∇u)s =

M [es]

|bs|
(∇u)s, e =

b

|b|
.

Proof.
For any invariant functions α = α(y), β = β(y) with respect to the flow Y we have ∇yα ∧
∇yβ ∈ Re and divy(∇yα∧∇yβ) = 0. Therefore there is λ ∈ ker(b·∇y) such that ∇yα∧∇yβ =
λb, saying that the vector field ∇yα ∧∇yβ is in involution with respect to b · ∇y. We have

∂Y (s; ·)∇α ∧∇β = (∇α)s ∧ (∇β)s.
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Therefore, by Lemma 5.1 we obtain

∂Y (s; ·)(e⊗M [e]∇α−M [e]∇α⊗ e)∇β = (es ⊗M [es](∇α)s −M [es](∇α)s ⊗ es)(∇β)s,

which reduce, thanks to the equalities e · ∇β = 0, es · (∇β)s = 0 to

∂Y (s; ·)(e⊗M [e]∇α)∇β = (es ⊗M [es](∇α)s)(∇β)s.

As α and β are left invariant by the flow Y , we have

∇α = ∇(αs) =
t∂Y (s; ·)(∇α)s, ∇β = ∇(βs) =

t∂Y (s; ·)(∇β)s,

implying that

∂Y (s; ·)(e⊗M [e]t∂Y (s; ·)(∇α)s)t∂Y (s; ·)(∇β)s = (es ⊗M [es](∇α)s)(∇β)s.

Observe that

∂Y (s; ·)e = ∂Y (s; ·)b
|b|

=
bs
|b|

=
|bs|
|b|
es, since [b, b] = 0,

and therefore we obtain(
es ⊗

∂Y (s; ·)M [e]t∂Y (s; ·)
|b|

(∇α)s
)
(∇β)s =

(
es ⊗

M [es](∇α)s
|bs|

)
(∇β)s,

or equivalently (
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
− M [es]

|bs|

)
(∇α)s ∈ Res.

Finally we have

(I3 − es ⊗ es)

(
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
− M [es]

|bs|

)
(∇α)s = 0,

for any invariant function α, and our conclusions follows.

Lemma 5.3
Let us consider a vector field b · ∇y in R3 satisfying (21), (22) with S-periodic characteristic
flow Y = Y (s; y), (s, y) ∈ R × R3, which possesses angular vector field ν in some invariant
open subset D ⊂ R3. A vector field c · ∇y has zero average in D iff ⟨c · ν⟩ = 0 in D and
⟨c · ∇yu⟩ = 0 in D for any function u such that 1Du ∈ ker(b · ∇y).

Proof.
By formula (23) we know that for any function u which is left invariant by Y in D, we have
⟨c · ∇yu⟩ = ⟨c⟩ · ∇yu in D. Similarly, for any y ∈ D we write

⟨c · ν⟩ (y) = 1

S

∫ S

0
c(Y (s; y)) · ν(Y (s; y)) ds

=
1

S

∫ S

0
∂Y (−s;Y (s; y))c(Y (s; y)) · t∂yY (s; y)ν(Y (s; y)) ds

=
1

S

∫ S

0
∂Y (−s;Y (s; y))c(Y (s; y)) ds · ν(y)

= ⟨c⟩ (y) · ν(y).
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Clearly, if ⟨c⟩ = 0 in D, then 1D ⟨c · ∇yu⟩ = 0 for any function u such that 1Du ∈ ker(b · ∇y)
and 1D ⟨c · ν⟩ = 0. Conversely, if 1D ⟨c · ∇yu⟩ = 0 for any function u such that 1Du ∈
ker(b · ∇y) and 1D ⟨c · ν⟩ = 0, then 1D ⟨c⟩ · ∇yu = 0, 1D ⟨c⟩ · ν = 0. We deduce that there is
a function λ = λ(y) in D such that

⟨c⟩ (y) = λ(y)b(y), y ∈ D.

Taking the scalar product by ν(y), y ∈ D, we obtain

0 = ⟨c⟩ (y) · ν(y) = λ(y)b(y) · ν(y) = λ(y)C, y ∈ D.

Since C ∈ R⋆, we deduce that λ vanishes in D and 1D ⟨c⟩ = 0.

We are ready to prove the commutation formula (31).

Proof. (of Proposition 5.1)
All the computations are performed in D.
We assume for the moment that α ∈ ker(b · ∇y) and we prove that ∇α ∧ η is in involution
with respect to b · ∇y. We have by Lemma 5.1 and Lemma 5.2

∂Y (s; ·)(∇α ∧ η) = ∂Y (s; ·)(e⊗M [e]∇α−M [e]∇α⊗ e)η

=

[
bs ⊗

∂Y (s; ·)M [e]t∂Y (s; ·)
|b|

(∇α)s −
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
(∇α)s ⊗ bs

]
ηs

=

[
bs ⊗ (I3 − es ⊗ es)

∂Y (s; ·)M [e]t∂Y (s; ·)
|b|

(I3 − es ⊗ es)(∇α)s

−(I3 − es ⊗ es)
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
(I3 − es ⊗ es)(∇α)s ⊗ bs

]
ηs

= (es ⊗M [es](∇α)s −M [es](∇α)s ⊗ es)ηs

= (∇α)s ∧ ηs,

where we have used that[
bs ⊗ (−es ⊗ es)

∂Y (s; ·)M [e]t∂Y (s; ·)
|b|

(∇α)s + (es ⊗ es)
∂Y (s; ·)M [e]t∂Y (s; ·)

|b|
(∇α)s ⊗ bs

]
ηs = 0.

Assume now that ⟨α⟩ = 0 and we prove that ⟨∇α ∧ η⟩ = 0. If η = ∇β for some function β,
which is left invariant by Y in D we have

∂Y (−s;Y (s; ·))ηs ∧ (∇α)s
= ∂Y (−s;Y (s; ·))(es ⊗M [es](∇β)s −M [es](∇β)s ⊗ es)(∇α)s

=

(
b⊗ ∂Y (−s;Y (s; ·))M [es]

t∂Y (−s;Y (s; ·))
|bs|

∇β

−∂Y (−s;Y (s; ·))M [es]
t∂Y (−s;Y (s; ·))

|bs|
∇β ⊗ b

)
∇(αs)

=

[
b⊗ (I3 − e⊗ e)

∂Y (−s;Y (s; ·))M [es]
t∂Y (−s;Y (s; ·))

|bs|
(I3 − e⊗ e)∇β

−(I3 − e⊗ e)
∂Y (−s;Y (s; ·))M [es]

t∂Y (−s;Y (s; ·))
|bs|

(I3 − e⊗ e)∇β ⊗ b

]
∇αs

=

(
b⊗ M [e]

|b|
∇β − M [e]

|b|
∇β ⊗ b

)
∇αs

= (e⊗M [e]∇β −M [e]∇β ⊗ e)∇αs

= ∇β ∧∇αs,
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where we used the following formulas in the calculations above

∂Y (s; ·)b = bs ⇔ b = ∂Y (−s;Y (s, ·))bs,

and
∇(αs) =

t∂Y (s; ·)(∇α)s ⇔ t∂Y (−s;Y (s; ·))∇(αs) = (∇α)s,

∇β = ∇(βs) =
t∂Y (s; ·)(∇β)s ⇔ t∂Y (−s;Y (s; ·))∇β = (∇β)s.

We obtain

⟨∇β ∧∇α⟩ = 1

S

∫ S

0
∇β ∧∇αs ds = ∇β ∧∇⟨α⟩ = 0.

If η is an angular vector field ν inD, we appeal to Lemma 5.3. Obviously we have ⟨(∇α ∧ ν) · ν⟩ =
0 and for any function u such that 1Du ∈ ker(b · ∇y), we can write since (∇yu ∧ ν) · ∇y is in
involution with b · ∇y in D cf. the first part of this proof, and thanks to (24)

⟨(∇yα ∧ ν) · ∇yu⟩ = −⟨(∇yu ∧ ν) · ∇yα⟩ = −(∇yu ∧ ν) · ∇y ⟨α⟩ = 0.

Therefore we deduce that
⟨∇α ∧ ν⟩ = 0.

Finally, for any function α we have

⟨∇α ∧ η⟩ = ⟨∇ ⟨α⟩ ∧ η⟩+ ⟨∇(α− ⟨α⟩) ∧ η⟩

=
1

S

∫ S

0
∂Y (−s;Y (s; ·))(∇⟨α⟩)s ∧ ηs ds

=
1

S

∫ S

0
∂Y (−s;Y (s; ·))∂Y (s; ·)(∇⟨α⟩ ∧ η) ds

=
1

S

∫ S

0
∇⟨α⟩ ∧ η ds

= ∇⟨α⟩ ∧ η.

6 Tokamak magnetic fields

In this section we apply the previous results to some examples of magnetic fields. We start
by a simplified framework, that of a magnetic field, whose magnetic lines wind on cylindrical
surfaces.

6.1 Cylindrical case

We consider the magnetic field B = Be = B0

(
x2
R0

,− x1
R0

, 1

)
, x = (x1, x2, x3) = (x̄, x3) ∈ R3,

where B0, R0 are some reference values for the magnetic field and length. The characteristic
flow is given by

(X̄(s; x̄), X3(s;x3)) =

(
R
(
−sB0

R0

)
x̄, x3 + sB0

)
, (s, x̄, x3) ∈ R× R3,

where

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R.
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We have two angular vector fields

νθ =
(x2,−x1, 0)
x21 + x22

, x̄ ̸= 0, ν∥ = (0, 0, 1).

All the functions are supposed periodic with respect to x3. Taking S = 2πR0/B0, we define
the average operator for a function u by

⟨u⟩ (x) = 1

S

∫ S

0
u(X̄(s; x̄), X3(s;x3)) ds =

1

S

∫ S

0
u

(
R
(
−s2π

S

)
x̄, x3 + s

2π

S
R0

)
ds,

and for a vector field c · ∇x = c̄ · ∇x̄ + c3∂x3 by

⟨c⟩ (x) = 1

S

∫ S

0

 R(s2πS )
0
0

0 0 1

 c

(
R
(
−s2π

S

)
x̄, x3 + s

2π

S
R0

)
ds

=
1

S

∫ S

0

(
R(s2πS )c̄

(
R
(
−s2πS

)
x̄, x3 + s2πS R0

)
c3
(
R
(
−s2πS

)
x̄, x3 + s2πS R0

) )
ds.

We use the following decomposition of Be · ∇x

Be =
B0

R0
|x̄|2νθ +B0ν∥, |x̄| > 0.

Thanks to Proposition 5.1, we compute the term

〈
rotx

(
ae

ωc

)〉
appearing in the limit model

(28). Observe that

rotx

(
ae

ωc

)
= rotx

[
a

Bωc

(
B0

R0
|x̄|2νθ +B0ν∥

)]
= ∇x

(
aB0|x̄|2

BωcR0

)
∧ νθ +∇x

(
aB0

Bωc

)
∧ ν∥,

and therefore〈
rotx

(
ae

ωc

)〉
= ∇x

〈
aB0|x̄|2

BωcR0

〉
∧ νθ +∇x

〈
aB0

Bωc

〉
∧ ν∥

= ∇x

(
aB0|x̄|2

BωcR0

)
∧ νθ +∇x

(
aB0

Bωc

)
∧ ν∥ = rotx

(
ae

ωc

)
,

since the functions a, Bωc and |x̄|2 belong to ker(Be · ∇x). We obtain〈
rotx

(
ae

ωc

)〉
· ∇xk[F (a)] = rotx

(
ae

ωc

)
· ∇xk[F (a)] = divx

(
ae

ωc
∧∇xk[F (a)]

)
.

In that case, the vector field rotx

(
ae
ωc

)
is in involution with Be · ∇x, and (28) becomes

∂ta+ divx

(
ae

ωc
∧∇xk[F (a)]

)
= 0, n = F (a).

In this case we work in the 2πR0-periodic domain with respect to x3, R2 × T1, where T1 =
R/(2πR0Z). The potential Φ solves the Poisson equation

−ϵ0∆xΦ = qn, x ∈ R2 × T1,

with the boundary condition

lim
|x̄|→∞

Φ(x̄, x3) = 0, x3 ∈ T1.
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The Jacobian matrix of the flow X(s, x) = (X̄(s; x̄), X3(s;x3)) is orthogonal

∂xX(s;x) =

 R(−sB0
R0

)
0
0

0 0 1

 ,

which implies that the Laplace operator commutes with the translations along the flow, that
is

∆xus = (∆xu)s,

for any smooth function u. Indeed, for any ψ ∈ C1
c (R2 × T1) we have∫

R2×T1

∆xusψs dx = −
∫
R2×T1

∇xus · ∇xψs dx

= −
∫
R2×T1

t∂X(s;x)(∇u)s · t∂X(s;x)(∇ψ)s dx

= −
∫
R2×T1

(∇u)s · (∇ψ)s dx

= −
∫
R2×T1

∇u · ∇ψ dx

=

∫
R2×T1

∆xuψ dx

=

∫
R2×T1

(∆xu)sψs dx,

saying that ∆xus = (∆xu)s. If Φ[n] is the potential corresponding to the 2πR0-periodic
concentration n with respect to x3, then

−ϵ0∆x(Φ[n])s = −ϵ0(∆xΦ[n])s = qns,

for any x3 we have

lim
|x̄|→+∞

Φ[n](X(s;x)) = lim
|x̄|→+∞

Φ[n](X̄(s; x̄), X3(s;x3)) = 0, because |X̄(s, x̄)| = |x̄|,

and (Φ[n])s is 2πR0-periodic with respect to x3

Φ[n](X̄(s; x̄), X3(s;x3 + 2πR0)) = Φ[n](X̄(s; x̄), X3(s;x3) + 2πR0)

= Φ[n](X̄(s; x̄), X3(s;x3)) = (Φ[n])s(x).

Therefore we have (Φ[n])s = Φ[ns]. In particular, if n ∈ ker(Be·∇x) then Φ[n] ∈ ker(Be·∇x).
By construction n = F (a) is the unique concentration such that ⟨n⟩ = a, Be · ∇xk[n] = 0.
Clearly we have ⟨a⟩ = a and k[a] = σ(1+ln a)+ q

mΦ[a] ∈ ker(Be ·∇x) and thus n = F (a) = a
for any a ∈ ker(Be · ∇x). The constraint in (20) is automatically satisfied. In that case, our
limit model simply writes

∂tn+ divx

(
ne

ωc
∧∇xk[n]

)
= 0, (t, x) ∈ R+ × R2 × T1. (32)

Remark 6.1
The equation (32) propagates the constraint Be · ∇xn = 0. When the magnetic field is
uniform i .e., Be = (0, 0, 1), it is not difficult to check that if Be · ∇xn(t, x) = 0 holds at
t = 0, then it will do so for all time in which the solution exists. Thus, the constraint (20)
can be understood as a mere constraint on the initial data.
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Since we know that at any time t, n(t) belongs to ker(Be · ∇x), we can reduce the above
model to a two dimensional problem. We appeal to the invariants of the flow X

R
(
X3(s;x3)

R0

)
X̄(s; x̄) = R

(
x3 + sB0

R0

)
R
(
−sB0

R0

)
x̄ = R

(
x3
R0

)
x̄.

We introduce the new unknown function N = N(t, ȳ = (y1, y2)) such that

n(t, x) = N(t, ȳ = R(x3/R0)x̄),

and we are looking for the model satisfied by N = N(t, ȳ).

Lemma 6.1
Let us consider a smooth function U = U(ȳ), ȳ ∈ R2, and u(x) = U(R(x3/R0)x̄), x ∈ R2×T1.
We have

∆xu =

[
divȳ

(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳU

]
(ȳ = R(x3/R0)x̄).

Proof.
Consider Ψ ∈ C1

c (R2) and ψ(x) = Ψ(R(x3/R0)x̄), x ∈ R2 × T1. Integrating by parts, thanks
to the x3-periodicity, one gets∫

R2×T1

∆xuψ(x) dx = −
∫
R2×T1

∇xu · ∇xψ dx

= −
∫
R2×T1

t∂ȳ

∂x
(∇ȳU)(R(x3/R0)x̄) ·

t∂ȳ

∂x
(∇ȳΨ)(R(x3/R0)x̄) dx

= −
∫
R2×T1

∂ȳ

∂x

t∂ȳ

∂x
(∇ȳU)(R(x3/R0)x̄) · (∇ȳΨ)(R(x3/R0)x̄) dx,

where ∂ȳ
∂x is the Jacobian matrix of the apllication x→ R(x3/R0)x̄

∂ȳ

∂x
=

(
R(x3/R0),R(x3/R0 + π/2)

x̄

R0

)
∈ M2,3(R).

The matrix product ∂ȳ
∂x

t∂ȳ
∂x writes

∂ȳ

∂x

t∂ȳ

∂x
= I2 +R

(
x3
R0

) ⊥x̄

R0
⊗R

(
x3
R0

) ⊥x̄

R0
, ⊥x̄ = (x2,−x1),

and we obtain∫
R2×T1

∆xuψ(x) dx

= −
∫
R2×T1

[
I2 +R

(
x3
R0

) ⊥x̄

R0
⊗R

(
x3
R0

) ⊥x̄

R0

]
(∇ȳU)(R(

x3
R0

)x̄) · (∇ȳΨ)(R(
x3
R0

)x̄) dx

= −
∫
T1

∫
R2

(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳU(ȳ) · ∇ȳΨ(ȳ)dȳ dx3

= 2πR0

∫
R2

(
divȳ

(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳU

)
Ψ(ȳ)dȳ

=

∫
R2×T1

[
divȳ

(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳU

](
ȳ = R

(
x3
R0

)
x̄

)
ψ(x) dx.
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The previous computation shows that ∆xu −
[
divȳ

(
I2 +

⊥ȳ⊗⊥ȳ
R2

0

)
∇ȳU

] (
ȳ = R

(
x3
R0

)
x̄
)

is

orthogonal on ker(Be · ∇x). But this function belongs to ker(Be · ∇x), because u belongs
to ker(Be · ∇x), together with ∆xu, since the Laplace operator commutes with the flow X.
Finally we obtain

∆xu =

[
divȳ

(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳU

](
ȳ = R

(
x3
R0

)
x̄

)
.

Lemma 6.2
Let us consider two smooth functions U = U(ȳ),W =W (ȳ), ȳ ∈ R2 and u(x) = U(R(x3/R0)x̄),
w(x) =W (R(x3/R0)x̄), x ∈ R2 × T1. We have

divx

(
ue

ωc
∧∇xw

)
=

[
divȳ

(
U

ω0
R(π/2)∇ȳW

)](
ȳ = R

(
x3
R0

)
x̄

)
, ω0 =

qB0

m
.

Proof.
As before, we perform the computation in distribution sense. We already know that the

vector field rotx

(
ue
ωc

)
· ∇x is in involution with Be · ∇x, and therefore

divx

(
ue

ωc
∧∇xw

)
= rotx

(
ue

ωc

)
· ∇xw ∈ ker(Be · ∇x),

it is enough to consider test functions ψ(x) = Ψ(R(x3/R0)x̄),Ψ ∈ C1
c (R2)∫

R2×T1

divx

(
ue

ωc
∧∇xw

)
ψ(x) dx = −

∫
R2×T1

(
ue

ωc
∧∇xw

)
· ∇xψ(x) dx

= −
∫
R2×T1

u

ωc
M [e]∇xω · ∇xψ dx

= −
∫
R2×T1

U(R(x3/R0)x̄)

ωc

∂ȳ

∂x
M [e]

t∂ȳ

∂x
(∇ȳW )(R(x3/R0)x̄) · (∇ȳΨ)(R(x3/R0)x̄) dx.

By direct computations we obtain

1

ωc

∂ȳ

∂x
M [e]

t∂ȳ

∂x
=

1

ω0
R
(π
2

)
, ω0 =

qB0

m
,

and therefore the previous calculations lead to∫
R2×T1

divx

(
ue

ωc
∧∇xw

)
ψ(x) dx = 2πR0

∫
R2

U(ȳ)

ω0

⊥∇ȳW · ∇ȳΨdȳ

= −2πR0

∫
R2

divȳ

(
U(ȳ)

ω0

⊥∇ȳW

)
Ψ(ȳ)dȳ

= −
∫
R2×T1

[
divȳ

(
U(ȳ)

ω0

⊥∇ȳW

)](
ȳ = R

(
x3
R0

))
ψ(x) dx.

We deduce that

divx

(
ue

ωc
∧∇xw

)
= divȳ

(
U

ω0

⊥∇ȳW

)
.
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Combining Lemma 6.1 and Lemma 6.2 we derive the limit model with respect to the new
unknown N . The potential Φ = ϕ[n] writes ϕ(t, x) = Φ(t, ȳ = R(x3/R0)x̄) where Φ(t, ȳ)
solves the elliptic equation

−ϵ0divȳ
[(
I2 +

⊥ȳ ⊗ ⊥ȳ

R2
0

)
∇ȳΦ(t, ȳ)

]
= qN(t, ȳ), ȳ ∈ R2.

We supplement this elliptic equation by the condition lim|ȳ|→+∞Φ(t, ȳ) = 0 and we denote
by Φ[N ] the solution corresponding to the concentration N . We introduce K[N ] = σ(1 +
lnN) + q

mΦ[N ]. The time evolution for the concentration N is given by

∂tN + divȳ

(
N

ω0
R
(π
2

)
∇ȳK[N ]

)
= 0, (t, ȳ) ∈ R+ × R2,

and the initial condition
N(0, ȳ) = Nin(ȳ), ȳ ∈ R2,

where nin(x) = Nin(R(x3/R0)x̄), x ∈ R2 × T1.

6.2 The toroidal case

We consider now a magnetic field whose magnetic lines wind on toroidal surfaces (called
magnetic surface). We denote by φ the toroidal angle in the plan x1Ox2, by θ the poloidal
angle and R0 is the mean radius of the torus, as shown in Figure 1

x1 = (R0 + r cos θ) cosφ, x2 = (R0 + r cos θ) sinφ, x3 = r sin θ.

The magnetic field writes cf. [48]

Figure 1: Toroidal and poloidal coordinates (Source: FusionWiki)

Be =
B0r

fq(R0 + r cos θ)
eθ +B0eφ, r < r0 < R0,

where eφ and eθ stand the unit vectors of toroidal and poloidal coordinates system

eφ =

∂
∂φ∣∣∣ ∂
∂φ

∣∣∣ = (− sinφ, cosφ, 0) =
(−x2, x1, 0)√

x21 + x22
,

eθ =
∂
∂θ∣∣ ∂
∂θ

∣∣ = (− sin θ cosφ,− sin θ sinφ, cos θ) =

(
−(x3x1, x3x2)

r
√
x21 + x22

,

√
x21 + x22 −R0

r

)
,
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with
∂

∂φ
= (−(R0 + r cos θ) sinφ, (R0 + r cos θ) cosφ, 0),

∂

∂θ
= (−r sin θ cosφ,−r sin θ sinφ, r cos θ).

Here fq is the quality factor, that is the number of toroidal winds of a magnetic line, cor-
responding to one poloidal wind. The magnetic field lines are either closed or dense on
magnetic surface, depending whether the quality factor fq is rational, (i .e., fq = n/m, m,n
are integers) or not. If fq is rational, the field line is closed otherwise the field line is dense
on a magnetic surface. It is obvious that a field line on a magnetic surface with fq = n/m
closes itself after traveling n toroidal turns and m poloidal turns.
In Cartesian coordinates, the magnetic field writes

Be

B0
=

(
−x2√
x21 + x22

,
x1√
x21 + x22

, 0

)
+

1

fq

r√
x21 + x22

(
−x3x1

r
√
x21 + x22

,
−x3x2

r
√
x21 + x22

,

√
x21 + x22 −R0

r

)
.

Both the fields eφ · ∇x, eθ · ∇x leave invariant the function r2 = (
√
x21 + x22 −R0)

2 + x23 and
therefore we have Be · ∇xr = 0. We denote by X(s;x) the characteristic flow of Be · ∇x. We
have

r cos θ
dθ

ds
=

dX3

ds
= Be · e3 = B0

r cos θ

fq(R0 + r cos θ)
,

implying that
dθ

ds
=

B0

fq(R0 + r cos θ)
. (33)

In order to determine the evolution of the toroidal angle φ, we write

−r sin θdθ
ds

cosφ− (R0 + r cos θ) sinφ
dφ

ds
=

dX1

ds
= −B0 sinφ−B0

r sin θ cosφ

fq(R0 + r cos θ)
,

leading to
dφ

ds
=

B0

R0 + r cos θ
. (34)

The differential equation (33) also writes

d

ds
(R0θ + r sin θ) =

B0

fq
, (35)

and thus we obtain

R0θ(s) + r sin θ(s) = R0θ(0) + r sin θ(0) + s
B0

fq
.

As R0 + r cos θ ≥ R0 − r ≥ R0 − r0 > 0, the poloidal angle θ is increasing and there is S > 0
such that θ(S) = θ(0) +m2π, m ∈ Z\ {0}. The number S comes by the above equality that

R0m2π = R0(θ(S)− θ(0)) = S
B0

fq
,

and thus S = fq
m2πR0

B0
. By (33) and (34) we have d

ds(φ− fqθ) = 0, implying that

φ(S)− φ(0) = fq(θ(S)− θ(0)) = fqm2π.

Therefore the magnetic lines wind fq times along the toroidal angle while doing one wind
along the poloidal angle. As r is left invariant by the flow X, we have r(S) = r(0) and thus
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X(S;x) = X(0;x) = x if fq =
n
m , n ∈ Z\ {0}, saying that the characteristic flow is S-periodic.

Observe that

divx

(
−x2√
x21 + x22

,
x1√
x21 + x22

, 0

)
= 0,

divx

(
−x3x1
x21 + x22

,
−x3x2
x21 + x22

,

√
x21 + x22 −R0√
x21 + x22

)
= 0,

and therefore the magnetic field Be ·∇x is divergence free. We are looking for angular vector
fields. Motivated by (35), we consider

νθ = R0∇xθ + r cos θ∇xθ + sin θ∇xr.

Since d
dsφ = fq

d
dsθ, we also have from (35) that d

ds {R0φ+ fqr sin θ} = B0 and we take

νφ = R0∇xφ+ fqr cos θ∇xθ + fq sin θ∇xr.

Proposition 6.1
The vector fields νφ, νθ are angular. The magnetic field Be · ∇x writes

Be = αφνφ + αθνθ + αr∇xr,

with

αφ =
B0|x̄|
R0

, αθ =
B0r

2

fq|x̄|2
−B0fq

|x̄| −R0

R0
, αr = −B0x3

(
r

fq|x̄|2
+
fq
r

)
.

Proof.
It is easily seen that the vector νφ and νθ are angular fields. For the decomposition of
magnetic field Be, notice that, in the definition of νφ, νθ, the gradients of the angles φ, θ are
understood as the continuous vector fields

∇xφ = (− sinφ, cosφ, 0) =

(
−x2

x21 + x22
,

x1
x21 + x22

, 0

)
,

and

∇xθ =
1

r
(− sin θ cosφ,− sin θ sinφ, cos θ) =

1

r

(
−x3x1

r
√
x21 + x22

,
−x3x2

r
√
x21 + x22

,

√
x21 + x22 −R0

r

)
.

By direct computations we have

|∇xφ|2 =
1

x21 + x22
, |∇xθ|2 =

1

r2
, |∇xr|2 = 1,

∇xφ · ∇xθ = ∇xφ · ∇xr = ∇xθ · ∇xr = 0,

and

Be · ∇xφ =
B0√
x21 + x22

, Be · ∇xθ =
B0

fq|x̄|
, Be · ∇xr = 0,

and

νφ · ∇xφ = R0|∇xφ|2 =
R0

|x̄|2
, νφ · ∇xθ = fqr cos θ|∇xθ|2 =

fq cos θ

r
,

νφ · ∇xr = fq sin θ|∇xr|2 = fq sin θ, νθ · ∇xφ = 0, νθ · ∇xθ = |x̄|2|∇xθ|2 =
|x̄|
r2
,

νθ · ∇xr = sin θ|∇xr|2 = sin θ.

Taking the scalar product with ∇xφ,∇xθ,∇xr we obtain the coefficients αφ, αθ, αr in the
decomposition of the magnetic field Be · ∇x.
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By Proposition 6.1, we have

rotx

(
ae

ωc

)
= rotx

[
a

Bωc
(αφνφ + αθνθ + αr∇xr)

]
= ∇x

(
aαφ

Bωc

)
∧ νφ +∇x

(
aαθ

Bωc

)
∧ νθ +∇x

(
aαr

Bωc

)
∧ νr,

and thanks to Proposition 5.1, we obtain〈
rotx

(
ae

ωc

)〉
= ∇x

〈
aαφ

Bωc

〉
∧ νφ +∇x

〈
aαθ

Bωc

〉
∧ νθ +∇x

〈
aαr

Bωc

〉
∧ νr

= rotx

(〈
aαφ

Bωc

〉
νφ +

〈
aαθ

Bωc

〉
νθ +

〈
aαr

Bωc

〉
νr

)
.

We can write〈
rotx

(
ae

ωc

)〉
· ∇xk[F (a)] = rotx

[
a

(〈
αφ

Bωc

〉
νφ +

〈
αθ

Bωc

〉
νθ +

〈
αr

Bωc

〉
νr

)]
· ∇xk[F (a)],

and the limit model (26) becomes

∂ta+ divx

[
a

(〈
αφ

Bωc

〉
νφ +

〈
αθ

Bωc

〉
νθ +

〈
αr

Bωc

〉
νr

)
∧∇xk[F (a)]

]
= 0, n = F (a).

7 Convergence result

We concentrate now on the asymptotic behavior as ε ↘ 0 of the family of weak solutions
(f ε, E[f ε])ε>0 of the Vlasov-Poisson-Fokker-Planck system (1), (2), and (3) and we establish
rigorously the connection to the fluid model (4), (5), and (6).
We are looking a model for the concentration nε = n[f ε] =

∫
R3f

ε dv, similar to the equation
(4) of the limit concentration n and we perform the balance of the relative entropy between
nε and n. As usual, these computations require the smoothness of the solution for the limit
model. We justify the asymptotic behavior of (f ε, E[f ε])ε>0 when ε↘ 0, provided that there
is a smooth solution (n,E[n] = −∇xΦ[n]) for the fluid model (4), (5), and (6). We do not
concentrate on the well posedness of this fluid model, nevertheless we refer to Section 6.1 for
some examples of smooth solutions. We are working with weak solutions (f ε, E[f ε])ε>0.

The balance for the number of particles writes

∂tn
ε +

1

ε
divxj

ε = 0, jε = j[f ε] =

∫
R3

f εv dv. (36)

We are using the balance momentum as well

ε∂tj
ε + divx

∫
R3

f εv ⊗ v dv − q

m
nεE[f ε]− ωc

ε
jε ∧ e = −j

ε

τ
, (37)

which allows us to express the orthogonal component of jε

jε − (jε · e)e
ε

=
nεe

ωc
∧
(
σ
∇xn

ε

nε
+

q

m
∇xΦ[f

ε]

)
+

e

ωc
∧
[
divx

∫
R3

(σ∇vf
ε + vf ε)⊗ v dv + ε∂tj

ε +
jε

τ

]
=
nεe

ωc
∧∇xk[n

ε] +
e

ωc
∧ F ε,
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where we denote

F ε = divx

∫
R3

(σ∇vf
ε + vf ε)⊗ v dv + ε∂tj

ε +
jε

τ
,

and in the above computation, we have used that divx
∫
R3σ∇vf

ε ⊗ v dv = −σ∇xn
ε.

Observe that

1

ε
divxj

ε = divx
jε − (jε · e)e

ε
+ divx

[
(jε · e)Be

Bε

]
= divx

(
nεe

ωc
∧∇xk[n

ε]

)
+ divx

(
e

ωc
∧ F ε

)
+Be · ∇x

[
(jε · e)
Bε

]
,

and finally, thanks to (36), we obtain a similar model for nε, as in (4)

∂tn
ε + divx

(
nεe

ωc
∧∇xk[n

ε]

)
+ divx

(
e

ωc
∧ F ε

)
+Be · ∇xp

ε = 0, pε =
jε · e
Bε

. (38)

We are also looking for a equation, analogous to (5), in order to complete the evolution
equation (38), involving the Lagrange multiplier pε. Considering the parallel component in
the momentum balance (37), we obtain

σe · ∇xn
ε +

q

m
nεe · ∇xΦ[n

ε] + e · F ε = 0.

Thanks to (5), the above equation also writes

e · ∇x

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
+
e

n
· F ε =

q

m

(nε − n)(E[nε]− E[n])

n
· e. (39)

We intend to estimate the modulated energy of nε with respect to n by writing E [nε|n] as

E [nε|n] = σ

∫
R3

nh

(
nε

n

)
dx+

ϵ0
2m

∫
R3

|∇xΦ[n
ε]−∇xΦ[n]|2 dx

=

∫
R3

(σnε lnnε +
ϵ0
2m

|∇xΦ[n
ε]|2) dx−

∫
R3

(σn lnn+
ϵ0
2m

|∇xΦ[n]|2) dx

−
∫
R3

{
σ(1 + lnn) +

q

m
Φ[n]

}
(nε − n) dx

:= E [nε]− E [n]−
∫
R3

k[n](nε − n) dx. (40)

We introduce as well the modulated energy of f ε with respect to nεM , given by

σ

∫
R3

∫
R3

nεMh

(
f ε

nεM

)
dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]−∇xΦ[n

εM ]|2︸ ︷︷ ︸
=0

dx

= σ

∫
R3

∫
R3

f ε ln f ε − f ε lnnε + f ε ln(2πσ)3/2 + f ε
|v|2

2σ
dvdx

=

∫
R3

∫
R3

σfε ln f ε + f ε
|v|2

2
dvdx+

ϵ0
2m

∫
R3

|∇xΦ[f
ε]|2 dx

−
∫
R3

σnε lnnε dx− ϵ0
2m

∫
R3

|∇xΦ[n
ε]|2 dx+ σ ln(2πσ)3/2

∫
R3

∫
R3

f ε dvdx

= E [f ε]− E [nε] + σ ln(2πσ)3/2
∫
R3

∫
R3

f ε dvdx.
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Thanks to the free energy balance (13) and mass conservation of (1) one gets

E [nε(t)]− E [nε(0)] + σ

∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx (41)

− σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

= − 1

ετ

∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vfε|2

f ε
dvdxds.

Thanks to Proposition 3.1 and combining (40), (41) leads to

E [nε(t)|n(t)] + σ

∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ετ

∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx−

∫ t

0

d

ds

∫
R3

k[n](nε − n) dxds.

(42)

The next task is to evaluate the time derivative of
∫
R3k[n](n

ε − n) dx. Notice that for any
smooth concentration n, we can write

ne

ωc
∧∇xk[n] =

ne

ωc
∧
(
σ
∇xn

n
+

q

m
∇xΦ[n]

)
=
σe

ωc
∧∇xn+

ne

B
∧∇xΦ[n]

= nV [n]− σrotx

(
ne

ωc

)
,

where V [n] = σrotx

(
e
ωc

)
+ e∧∇xΦ[n]

B . Clearly, we have

divx

(
ne

ωc
∧∇xk[n]

)
= divx(nV [n]). (43)

Proposition 7.1
With the notations in (4), (5), (38) and (39) we have the equality

d

dt

∫
R3

k[n(t)](nε(t, x)− n(t, x)) dx

=

∫
R3

(
p
Be

n
+

e

ωc
∧∇xk[n]

)
·
( q
m
(nε − n)(E[nε]− E[n])− F ε

)
dx.

Proof.
By straightforward computations, we obtain

d

dt

∫
R3

k[n](nε − n) dx

=

∫
R3

(
σ
∂tn

n
+

q

m
∂tΦ[n]

)
(nε − n) dx+

∫
R3

k[n](∂tn
ε − ∂tn) dx

=

∫
R3

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx (44)

+

∫
R3

k[n]

[
divx

(
ne

ωc
∧∇xk[n]

)
− divx

(
nεe

ωc
∧∇xk[n

ε]

)
− divx

(
e

ωc
∧ F ε

)]
dx,
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where in the last integral we have used the contraint Be · ∇xk[n] = 0 which allows us to
deduce that ∫

R3

k[n](Be · ∇xp−Be · ∇xp
ε) dx = 0.

Thanks to (43), (39) we have∫
R3

∂tn

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx

= −
∫
R3

divx

(
ne

ωc
∧∇xk[n]

)(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx (45)

−
∫
R3

Be · ∇xp

(
σ
nε − n

n
+

q

m
(Φ[nε]− Φ[n])

)
dx

= −
∫
R3

divx(nV [n])

(
σ
nε − n

n

)
dx−

∫
R3

(
ne

ωc
∧∇xk[n]

)
· q
m
(E[nε]− E[n]) dx

+

∫
R3

pBe

n
·
[ q
m
(nε − n)(E[nε]− E[n])− F ε

]
dx

= −σ
∫
R3

divx

(
e ∧∇xΦ[n]

B

)
(nε − n) dx− σ

∫
R3

∇x lnn · V [n](nε − n) dx

−
∫
R3

(ne
B

∧∇xk[n]
)
· (E[nε]− E[n]) dx+

∫
R3

pBe

n
·
[ q
m
(nε − n)(E[nε]− E[n])− F ε

]
dx

= −
∫
R3

∇xk[n] · V [n](nε − n) dx−
∫
R3

(ne
B

∧∇xk[n]
)
· (E[nε]− E[n]) dx

+

∫
R3

pBe

n
·
[ q
m
(nε − n)(E[nε]− E[n])− F ε

]
dx.

Thanks to (43) again, the last integral in (44) writes easily∫
R3

k[n]

[
divx

(
ne

ωc
∧∇xk[n]

)
− divx

(
nεe

ωc
∧∇xk[n

ε]

)
− divx

(
e

ωc
∧ F ε

)]
dx (46)

=

∫
R3

∇xk[n] · (nεV [nε]− nV [n]) dx−
∫
R3

(
e

ωc
∧∇xk[n]

)
· F ε dx.

Observe that

nεV [nε]− nV [n]− (nε − n)V [n] = nε
e ∧∇xΦ[n

ε]

B
− n

e ∧∇xΦ[n]

B
− (nε − n)

e ∧∇xΦ[n]

B

= nε
e ∧ (∇xΦ[n

ε]−∇xΦ[n])

B
,

and finally (44), (45) and (46) yield the result.

Coming back to (42), the modulated energy balance becomes

E [nε(t)|n(t)] + σ

∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

ετ

∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vf ε|2

f ε
dvdxds

= E [nε(0)|n(0)] + σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx (47)

−
∫ t

0

∫
R3

W [n] ·
( q
m
(nε − n)(E[nε]− E[n])− F ε

)
dxds,
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where W [n] = pBe
n + e

ωc
∧∇xk[n]. In order to apply Gronwall lemma, we estimate the terms

in the last integral of (47). Thanks to the formula

q

m
(nε − n)(E[nε]− E[n]) =

ϵ0
m
[divx(E[nε]− E[n])](E[nε]− E[n])

=
ϵ0
m
divx

(
(E[nε]− E[n])⊗ (E[nε]− E[n])− |E[nε]− E[n]|2

2
I3

)
,

we obtain

−
∫
R3

W [n] ·
( q
m
(nε − n)(E[nε]− E[n])

)
dx

=
ϵ0
m

∫
R3

(
(E[nε]− E[n])⊗ (E[nε]− E[n])− |E[nε]− E[n]|2

2
I3

)
: ∂xW [n] dx

≤ ∥∂xW [n]∥L∞(R3)
ϵ0
m

(
1 +

√
3

2

)∫
R3

|E[nε]− E[n]|2 dx,

where for any matrix P ∈ M3,3(R), the notation ∥P∥ stands for (P : P )1/2. Similarly, we
have for some value C to be precised later on∫

R3

W [n] · divx
∫
R3

(σ∇vf
ε + f εv)⊗ v dv dx

= −
∫
R3

∂xW [n] :

∫
R3

(σ∇vf
ε + f εv)⊗ v dv dx

≤ ∥∂xW [n]∥L∞((0,T )×R3)

[
1

2ετC

∫
R3

∫
R3

|σ∇vf
ε + f εv|2

f ε
dvdx+ ετC

∫
R3

∫
R3

f ε
|v|2

2
dvdx

]
.

Since jε =
∫
R3(σ∇vf

ε + f εv) dv we have∫ t

0

∫
R3

W [n(s)] · (ε∂sjε +
jε

τ
) dxds

= ε

∫
R3

W [n(t)] · jε(t, x) dx− ε

∫
R3

W [n(0)] · jε(0, x) dx

+

∫ t

0

∫
R3

∫
R3

[σ∇vf
ε + f ε(s, x, v)v] ·

[
W [n(s)]

τ
− ε∂sW [n(s)]

]
dvdxds

≤
√
ε

∫
R3

∫
R3

(f ε(0, x, v) + f ε(t, x, v))

(
ε
|v|2

2
+

∥W [n]∥2L∞

2

)
dvdx

+

[
ε∥∂sW [n]∥L∞ +

∥W [n]∥L∞

τ

] ∫ t

0

∫
R3

∫
R3

{
1

2εC

|σ∇vf
ε + f εv|2

f ε
+
εC

2
f ε
}

dvdxds.
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Plugging the above computations in (47), the modulated energy balance becomes for t ∈ [0, T ]

E [nε(t)|n(t)] + σ

∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx

+
1

ετ

(
1− ∥W [n]∥L∞

2C
− ετ∥∂sW [n]∥L∞

2C
− ∥W [n]∥L∞

2C

)∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vf ε|2

f ε
dvdxds

≤ E [nε(0)|n(0)] + σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx

+ ∥∂xW [n]∥L∞

(
2 +

√
3
) ϵ0
2m

∫
R3

|E[nε]− E[n]|2 dx

+ ε
τC

2
∥∂xW [n]∥L∞

∫ T

0

∫
R3

∫
R3

f ε|v|2 dvdxdt+
√
ε sup
0≤t≤T

ε

∫
R3

∫
R3

f ε|v|2 dvdx

+
√
ε

[√
ε
CT

2

(
ε∥∂sW [n]∥L∞ +

∥W [n]∥L∞

τ

)
+ ∥W [n]∥2L∞

] ∫
R3

∫
R3

f ε(0, x, v) dvdx.

Taking 0 < ε ≤ 1 and C large enough, we obtain by Lemma 2.1 and (40), for some constant
CT , 0 ≤ t ≤ T , 0 < ε ≤ 1

E [nε(t)|n(t)] + σ

∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

2ετ

∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vfε|2

f ε
dvdxds

≤ E [nε(0)|n(0)] + σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

∫ t

0
E [nε(s)|n(s)]ds+ CT

√
ε.

Applying Gronwall lemma, we deduce that for 0 ≤ t ≤ T , 0 < ε ≤ 1

E [nε(t)|n(t)]+σ
∫
R3

∫
R3

nε(t)Mh

(
f ε(t)

nε(t)M

)
dvdx+

1

2ετ

∫ t

0

∫
R3

∫
R3

|σ∇vf
ε + vf ε|2

f ε
dvdxds

≤
[
E [nε(0)|n(0)] + σ

∫
R3

∫
R3

nε(0)Mh

(
f ε(0)

nε(0)M

)
dvdx+ CT

√
ε

]
eCT t.

The above inequality says that the particle density f ε remains close to the Maxwellian with
the same concentration, i .e., nε(t)M , and nε(t) stays near n(t), provided that analogous
behaviour occur for the initial conditions. Therefore, we are ready to prove our main theorem.

Proof. (of Theorem 1.1)
We justify the convergence of f ε toward nM in L∞(0, T ;L1(R3×R3)), the other convergences
being obvious. We use the Csisár -Kullback inequality in order to control the L1 norm by
the relative entropy, cf. [32, 45]∫

Rn

|g − g0|dx ≤ 2max

{(∫
Rn

g0dx

)1/2

,

(∫
Rn

gdx

)1/2
}(∫

Rn

g0h

(
g

g0

)
dx

)1/2

for any non negative integrable functions g0, g : Rn → R. Applying two times the Csisár
-Kullback inequality we obtain∫

R3

∫
R3

|f ε(t, x, v)− n(t, x)M(v)| dvdx

≤
∫
R3

∫
R3

|f ε(t, x, v)− nε(t, x)M(v)| dvdx+

∫
R3

|nε(t, x)− n(t, x)| dx

≤ 2
√
Min

(∫
R3

∫
R3

nε(t)M(v)h

(
f ε(t)

nε(t)M

)
dvdx

)1/2

+ 2max
{√

Min,
√
∥nin∥L1(R3)

}(∫
R3

n(t)h

(
nε(t)

n(t)

)
dx

)1/2

→ 0, as ε↘ 0.
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In the same manner we perform the balance of the relative between two smooth solutions
of the limit model.

Proposition 7.2
Assume that n, ñ are smooth solutions of (4), (5) and (6) such that nin, ñin ≥ 0, nin, ñin ∈
L1(R3), ∇xΦ[nin],∇xΦ[ñin] ∈ L2(R3), ∂xW [n] ∈ L1(0, T ;L∞(R3)), k[nin], k[ñin] ∈ ker(Be ·
∇x). Then we have the inequality

E [ñ(t)|n(t)] ≤ E [ñin|nin] exp((2 +
√
3)∥∂xW [n]∥L1(0,T ;L∞(R3))), 0 ≤ t ≤ T.

In particular, there is at most one smooth solution.

Proof.
By (40) we know that

E [ñ|n] = E [ñ]− E [n]−
∫
R3

k[n](ñ− n) dx

= σ

∫
R3

nh

(
ñ

n

)
dx+

ε0
2m

∫
R3

|∇xΦ[ñ]−∇xΦ[n]|2 dx.

Thanks to the constraint Be · ∇xk[n] = 0, Be · ∇xk[ñ] = 0, we can write

e · ∇x

(
σ
ñ− n

n
+

q

m
(Φ[ñ]− Φ[n])

)
=

q

m

(ñ− n)(E[ñ]− E[n])

n
· e.

As in the proof of Proposition 7.1, we observe that

d

dt

∫
R3

k[n](ñ− n) dx =

∫
R3

∂tn

(
σ
ñ− n

n
+

q

m
(Φ[ñ]− Φ[n])

)
dx

+

∫
R3

k[n]

[
divx

(
ne

ωc
∧∇xk[n]

)
− divx

(
ñe

ωc
∧∇xk[ñ]

)]
dx

=

∫
R3

W [n] · q
m
(ñ− n)(E[ñ]− E[n]) dx,

and the balance for the relative entropy becomes

E [ñ(t)|n(t)]− E [ñ(0)|n(0)] = − q

m

∫ t

0

∫
R3

(ñ− n)(E[ñ]− E[n]) ·W [n] dxds

≤ ∥∂xW [n]∥L∞(R3)(2 +
√
3)
ϵ0
2m

∫ t

0

∫
R3

|E[nε]− E[n]|2 dxds

≤ ∥∂xW [n]∥L∞(R3)(2 +
√
3)

∫ t

0
E [ñ(s)|n(s)]ds.

Applying Gronwall lemma completes the proof.

8 Example of smooth solutions for limit model

In this section we construct smooth solution for the limit model obtained in Section 6.1. We
focus on the existence of the limit model

∂tn+ divx

(
ne

ωc
∧∇xk[n]

)
= 0, k[n] = σ(1 + lnn) +

q

m
Φ[n], (t, x) ∈ R+ × R2 × T1, (48)
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where Φ[n] stands for the Poisson electric potential which solves

−ϵ0∆xΦ[n(t)](x) = q n(t, x), (t, x) ∈ R+ × R2 × T1. (49)

Denoting E[n(t)] = −∇xΦ[n(t)] the electric field derives from the potential Φ[n(t)]. We
supplement our model by the initial condition

n(0, x) = nin(x), x ∈ R2 × T1, (50)

where nin is a smooth function and belongs to ker(Be · ∇x). The external magnetic field we
consider here Be = (x2,−x1, 1). Notice that the vector field e/B ∈W 2,∞((R2 × T1)).
We follow the same arguments as in the well-posedness proof for the Vlasov-Poisson problem
with an external magnetic field, as discussed in [18, 19]. Our goal is to obtain a priori bounds
for the L∞ norm of E[n] and ∂xE[n], not in the full space R3, but in R2 ×T1. These bounds
rely on estimating the fundamental solution of Laplace’s equation on R2 ×T1. Therefore, we
begin by investigating the Poisson equation for a given density in this domain and finding a
fundamental solution for this purpose.

8.1 Fundamental solution of Laplace’s equation on R2 × T1

Consider a function Ξ : R2 × T1 → R satisfying

−∆xΞ = δ0(x̄, x3), x = (x̄ = (x1, x2), x3) ∈ R2 × T1, (51)

in the sense of distributions, where δ0(x) denotes the Dirac measure on R2 × T1 giving unit
mass to the point 0.

Lemma 8.1
Let x = (x̄, x3) ∈ R2 × T1. Then

Ξ(x) = − 1

4π2
ln(|x̄|) + Γ(x),

satifies (51), where

Γ(x) =

∫ ∞

0

1

4πt
e−|x̄|2/4t 1

π

[ ∞∑
n=1

e−n2t cos(nx3)

]
dt.

Proof.
We have

−∆xΞ =
1

2π

∑
n∈Z

δ0(x̄)e
inx3 , (52)

where we have used the Poisson summation formula

δ0(x3) =
1

2π

∑
n∈Z

einx3 .

Indeed, the δ0(x3) is periodic with period 2π, it can be represented as a Fourier series

δ0(x3) =
∑
n∈Z

cne
inx3 ,
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where the Fourier coefficients are

cn =
1

2π

∫ π

−π
δ0(x3)e

−inx3dx3 =
1

2π
e−i0x3 =

1

2π
.

On the other hand, as Ξ is periodic in x3 of period 2π, we also have

Ξ(x) =
∑
n∈Z

βn(x̄)e
inx3 ,

therefore
−∆xΞ(x̄, x3) =

∑
n∈Z

(−∆x̄βn(x̄) + n2βn(x̄))e
inx3 . (53)

Comparing (52) and (53) yields the following linear elliptic equation in the whole space R2

for any n ∈ Z\ {0}
−∆x̄βn(x̄) + n2βn(x̄) =

1

2π
δ0(x̄), x̄ ∈ R2. (54)

A solution to (54) can be found by using the Fourier transform for linear equation. It is
known that the solution to this equation is given in term of the Bessel potential G(x̄) as
βn(x̄) = 1

2π (U ⋆ δ0)(x̄), cf. [38] where U(x̄) =
∫∞
0

1
4πte

−|x̄|2/4te−n2tdt. Thus, we have the
solution formula

βn(x̄) =
1

2π

∫ t

0

1

4πt
e−|x̄|2/4te−n2tdt.

In the case n = 0, the equation (54) becomes the Laplace equation on R2. It is well known
that the fundamental solution is given by − 1

4π2 ln |x̄|. Finally, we obtain

Ξ(x) = − 1

4π2
ln(|x|) +

∑
n∈Z\{0}

1

2π

∫ t

0

1

4πt
e−|x̄|2/4te−n2tdt einx3

= − 1

4π2
ln(|x|) +

∫ t

0

1

4πt
e−|x̄|2/4t 1

2π

∑
n∈Z\{0}

e−n2teinx3dt

= − 1

4π2
ln(|x|) +

∫ t

0

1

4πt
e−|x̄|2/4t 1

π

[ ∞∑
n=1

e−n2t cos(nx3)

]
dt.

Let us denote Γ1,2(t, x̄) :=
1

4πte
−|x̄|2/4t and Γ3(t, x3) :=

1
2π

[
1 + 2

∑∞
n=1 e

−n2t cos(nx3)
]
. It is

know that Γ1,2 is a heat kernel on R2 of the heat equation{
∂tΓ1,2(t, x̄)−∆x̄Γ1,2(t, x̄) = 0, (t, x̄) ∈ R+ × R2,

Γ1,2|t=0(x̄) = δ0(x̄),

while Γ3 is a heat kernel on T1 of{
∂tΓ3(t, x3)− ∂2x3

Γ3(t, x3) = 0, (t, x3) ∈ R+ × T1,
Γ3|t=0(x3) = δ0(x3).

For a proof of this property, we refer to [29]. We define now G(t, x) := Γ1,2(t, x̄)Γ3(t, x3).
Then G is the fundamental solution of heat equation on R2 × T1, that means{

∂tG−∆xG = 0, (t, x = (x̄, x3)) ∈ R+ × R2 × T1,
G|t=0(x) = δ0(x).
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Thus, we have that the function Γ in the fundamental solution for Laplace’s equation (51) is
related to the previous solution of heat equation as

Γ(x) =

∫ ∞

0
Γ1,2(t, x̄)

[
Γ3(t, x3)−

1

2π

]
dt. (55)

Remark 8.1
The heat kernel Γ3 on T1 can also be given by the heat kernel kt(x3) = (4πt)−1/2e−x2

3/4t on
the real line R as follows

Γ3(x3) =
1

2π
gt(x3) :=

1

2π

[
2π
∑
n∈Z

kt(x3 + 2πn)

]
, x3 ∈ T1. (56)

Indeed, the function gt ∈ L1(T1) since

∥gt∥T1 =

∫
T1

gtdm(x3) =
∑
n∈Z

∫
T1

kt(x3 + 2πn)dx3 =

∫
R
kt(x3)dx3 = 1,

where dm(x3) is Haar measure on T1, dm(x3) = 1/(2π) dx3. Thus, the periodic function gt
can be written in the form of the Fourier serie

gt(x3) =
∑
n∈Z

ĝt(n)e
inx3 ,

where (ĝt(n))n∈Z is the sequence of the Fourier coeffiecients which is given by

ĝt(n) =
1

2π

∫
T1

gt(x3)e
−inx3dm(x3) =

1

4π2

∑
n∈Z

∫
T1

kt(x3 + 2πn)e−in(x3+2πn)dx3

=
1

4π2

∫
R
kt(x3)e

−inx3dx3 =
1

4π2
k̂t(n) =

1

2π

[
1

2π
e−n2t

]
,

where k̂t(n) is the Fourier transform of the function kt(x3).

Since we need the bounds of the function Γ and its derivatives in the following, we must to
estimate the function Γ3 − 1

2π and also the first and second derivates of Γ3 from (55). We
shall use the arguments in [50] to obtain the bound of |Γ3 − 1

2π |. Firstly, using the formula
(56), we can rewrite the function Γ3 on T1 as follows:

Lemma 8.2
For any t > 0 and for any x3 ∈ T1, we have

gt(x3) =

√
π

t
exp

(
−x23
4t

)1 + 2
∑
n≥1

exp

(
−π2n2

t

)
cosh

(πnx3
t

) .

Proof.
Using the definition of gt(x3), we have

gt(x3) = 2π
∑
n∈Z

1

(4πt)1/2
exp

(
−(x3 + 2nπ)2

4t

)

=

√
π

t
exp

(
−x23
4t

)∑
n∈Z

exp
(
−πnx3

t

)
exp

(
−π2n2

t

)

=

√
π

t
exp

(
−x23
4t

)
1 +

∑
n≥1

(
exp

(πnx3
t

)
+ exp

(
−πnx3

t

))
exp

(
−π2n2

t

) ,
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which gives the claim, using cosh(y) = ey+e−y

2 .

Next, using Lemma 8.2, we obtain the following estimate

Lemma 8.3
For any t > 0 and any x3 ∈ T1 = [−π, π], we have

exp

(
−x23
4t

)
gt(0) ≤ gt(x3) ≤

[√
π

t
+ gt(0)

]
exp

(
−x23
4t

)
. (57)

Proof.
Using Lemma 8.2 and the fact that from cosh(y) ≥ 1, y ∈ R we get the lower bound. Indeed,
for any t > 0

gt(x3) ≥ exp

(
−x

2
3

4t

)√
π

t

1 + 2
∑
n≥1

exp

(
−π2n2

t

) = exp

(
−x

2
3

4t

)
gt(0).

For the upper bound, let us write

S(x3) = 1 + 2
∑
n≥1

exp

(
−π2n2

t

)
cosh

(πnx3
t

)
.

For any n ≥ 1, using |x3| ≤ π

2 cosh
(πnx3

t

)
≤ 2 cosh

(
π2n

t

)
= exp

(
π2n

t

)
+ exp

(
−π

2n

t

)
≤ 1 + exp

(
π2n

t

)
.

Therefore

S(x3) ≤ 1 +
∑
n≥1

exp

(
−π2n2

t

)(
1 + exp

(
π2n

t

))

= 1 +
∑
n≥1

exp

(
−π2n2

t

)
+ exp

(
−π

2n(n− 1)

t

)

≤ 1 +
∑
n≥1

exp

(
−π2n2

t

)
+ exp

(
−π

2(n− 1)2

t

)

= 2 + 2
∑
n≥1

exp

(
−π2n2

t

)

= 1 +

√
t

π
gt(0).

Together with gt(x3) =

√
π

t
exp

(
−x23
4t

)
S(x3) implies the upper bound we wanted to prove.

We need the estimate of the function gt(x3) at x3 = 0.

Lemma 8.4
For any t > 0, we have √

π

t
≤ gt(0) ≤ 1 +

√
π

t
,

and

2e−t ≤ gt(0)− 1 ≤ 2e−t

1− e−t
.

Consequently, there exist positive constants C1, C2 such that |gt(0)− 1| ≤ C1
e−C2t√

t
.
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Proof.
Using Lemma 8.2 with x3 = 0 gives gt(0) ≥

√
π
t . By formula (56) we have

gt(0)− 1 = 2ϕ(t), ϕ(t) = 2
∑
n≥1

e−n2t.

Since e−x2t is positive and decreasing, bounding a sum by an integral we get

ϕ(t) ≤
∫ ∞

0
e−x2tdx =

1√
t

∫ ∞

0
e−x2

dx =
1

2

√
π

t
,

hence gt(0) ≤ 1 +

√
π

t
. Moreover, ϕ(t) ≥ e−t we have gt(0) − 1 ≥ 2e−t. Finally, since

e−n2t ≤ e−nt, for any n ≥ 1, we deduce that ϕ(t) ≤ 2
∑

n≥1 e
−nt =

2e−t

1− e−t
, which gives

gt(0) − 1 ≤ 2e−t

1−e−t . To finish Lemma, it remains to prove |gt(0) − 1| ≤ e−t
√
t
, for any t > 0.

Indeed, we have

|gt(0)− 1| = (gt(0)− 1)1{0<t<1} + (gt(0)− 1)1{t≥1}

≤
√
π

t
e−tet1{0<t<1} +

2e−t

1− e−t

√
t
1√
t
1{t≥1}

≤ C1
e−C2t

√
t
,

for some positive constants C1 and C2.

Now, the following lemma provides estimates of Γ3 − 1
2π and its derivatives on T1.

Lemma 8.5
Let Γ3(t, x3) = 1

2π

[
1 + 2

∑∞
n=1 e

−n2t cos(nx3)
]
be the heat kernel on T1. Then there exist

constants C1, C2 and C3 which can change from line to line such that∣∣∣∣Γ3(t, x3)−
1

2π

∣∣∣∣ ≤ C1
1√
t
e−C2te−C3x2

3/4t, t > 0, x3 ∈ T1, (58)

|∂x3Γ3(t, x3)| ≤ C1
1

t
e−C2te−C3x2

3/4t, t > 0, x3 ∈ T1, (59)

|∂2x3
Γ3(t, x3)| ≤ C1

1

t3/2
e−C2te−C3x2

3/4t, t > 0, x3 ∈ T1. (60)

Proof.
Readers can find these results in [29], even when T1 is replaced by more general compact
manifold, cf. [57, 60]. We provide here the main lines of the proof.
For the bound (58), it is easily obtained from the consequence of Lemma 8.4 for t ≥ 1. If
t ≤ 1, first using (56) yields Γ3(t, x3)− 1

2π = 1
2π (gt(x3)− 1) then (57) we have

1

2π

[
exp

(
−x23
4t

)
gt(0)− 1

]
≤ Γ3(t, x3)−

1

2π
≤ 1

2π

[
exp

(
−x23
4t

)(√
π

t
+ gt(0)− 1

)]
. (61)

Using the upper bound in (61) and Lemma 8.4 we deduce that

Γ3(t, x3)−
1

2π
≤ 1

2π
exp

(
−x23
4t

)√
π

t
+

1

2π
exp

(
−x23
4t

)
2e−t

1− e−t
.
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If t ∈ [δ0, 1], for some δ0 ∈ (0, 1), it’s not hard to show from the previous inequality that
there exist positive constants C1, C2 and C3 such that Γ3(t, x3)− 1

2π ≤ C1
1√
t
e−C2te−C3x2

3/4t.

On the other hand, for any positive test function φ ∈ C∞
0 (R), since limt→0+

〈
Γ3 − 1

2π , φ
〉
=

(1 − 1/2π)φ(x3) and limt→0+ ⟨kt, φ⟩ = φ(x3), where kt(x3) = (4πt)−1/2e−x2
3/4t is the heat

kernel on R, we deduce that we can choose the positive constants as above to obtain the
previous estimate of Γ3 − 1/2 as t → 0+. Together, these arguments give us the upper
bound of (58). Similarly, by using the lower bound in (61), we infer the lower bound in
(58). Therefore, we obtain the estimate (58). Now, for the estimates (59) and (60), we apply
Lemma 2.1 in [57], which can be extended to the parabolic case, see Lemma 2.3 in [57]

|∇xu(t, x3)| ≤
C

r

(
1

r4

∫ r

t−r

∫
|y−x3|<r

|u(s, y)|2dyds

)1/2

,

where u is asolution of the heat equation ∂tu−∆x3u = 0 in the domain [t− r2, t]×B(x3, r),
with r =

√
t/2 for any fixed point (t, x3) ∈ R× T1.

In the next lemma, we provide estimates for the function Γ and its derivatives using the
relation (55) and the inequalities (58), (59) and (60).

Lemma 8.6
Let Γ(x) be the function on R2 × T1 provided by Lemma 8.1. Then we have the following
estimates

|Γ(x)| ≤ C

|x|
, |∂xΓ(x)| ≤

C

|x|2
, |D2

xΓ(x)| ≤
C

|x|3
,

where D2
x denotes the second order derivative. Here, C stands for a positive constant, which

can vary in each estimate.

Proof.
We will first estimate Γ(x). Thanks to (55) and (58), we deduce that

|Γ(x)| ≤ C1

4π

∫ ∞

0
t−3/2e−C2te−|x̄|2/4te−C3x2

3/4tdt

≤ C1

4π

∫ ∞

0
t−3/2e−C2te−C′

3|x|2/tdt, C ′
3 = min (1, C3)/4

=
C1

4π
e−2

√
C2C′

3|x|
∫ ∞

0
t−3/2e−C2t+2

√
C2C′

3|x|−C′
3|x|2/tdt

=
C1

4π
e−2

√
C2C′

3|x|
∫ ∞

0
e
−
(√

C′
3|x|−

√
C2t√

t

)2

2d(−t−1/2)

=
C1

2π
e−2

√
C2C′

3|x|
∫ ∞

0
e
−
(√

C′
3|x|u−

√
C2u−1

)2
du, u = t−1/2

=
C1

2π

1√
C ′
3|x|

e−2
√

C2C′
3|x|
∫ ∞

0
e
−
(
θ−
√

C2C′
3|x|θ−1

)2
dθ, θ =

√
C ′
3|x|u

≤ C

|x|
,

for some positive constant C, where we have used that∫ ∞

0
e
−
(
θ−
√

C2C′
3|x|θ−1

)2
dθ =

√
π

2
, (62)

see the proof of Lemma 8.12 in Appendix.
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Next we estimate ∇xΓ(x). Taking the derivative with respect to x in the formula (55) we
deduce that

|∇xΓ(x)| ≤
∫ ∞

0
|∇x̄Γ1,2(t, x̄)||Γ3(t, x3)−

1

2π
|dt+

∫ ∞

0
|Γ1,2(t, x̄)||∂x3Γ3(t, x3)|dt.

A simple computation show that

∇x̄Γ1,2(t, x̄) =
−|x̄|
8πt2

e−|x̄|2/4t,

and thanks to the estimates (58) and (59) we obtain

|∇xΓ(x)| ≤
C1|x̄|
8π

∫ ∞

0
t−5/2e−C2te−|x̄|2/4te−C3x2

3/4tdt+
C1

4π

∫ ∞

0
t−2e−C2te−|x̄|2/4te−C3x2

3/4tdt

≤ C1|x̄|
8π

∫ ∞

0
t−5/2e−C2te−C′

3|x|2/tdt+
C1

4π

∫ ∞

0
t−2e−C2te−C′

3|x|2/tdt,

where C ′
3 = min(1, C3)/4. Using supR⋆

+
q(t) = q(C ′

3|x|2) where q(t) = t−1/2e−C′
3|x|2/2t for the

first integral on the last line of the previous inequality, we deduce that

|∇xΓ(x)| ≤

(
C1

8π

1√
C ′
3e

+
C1

4π

)∫ ∞

0
t−2e−C′

3|x2|/2tdt

=

(
C1

8π

1√
C ′
3e

+
C1

4π

)
2

C ′
3|x|2

∫ ∞

0

d

dt
e−C′

3|x2|/2tdt

≤ C

|x|2
,

for some positive constant C.
Finally, we estimate D2

xΓ(x). By direct computation in (58), we have

|D2
xΓ(x)| ≤

∫ ∞

0
|D2

x̄Γ1,2(t, x̄)||Γ3(t, x3)−
1

2π
|dt+

∫ ∞

0
|∇x̄Γ1,2(t, x̄)||∂x3Γ3(t, x3)|dt

+

∫ ∞

0
|Γ1,2(t, x̄)||∂2x3

Γ3(t, x3)|dt.

Since

D2
x̄Γ1,2(t, x̄) =

1

8πt2

[
−I2 +

x̄⊗ x̄

2t

]
e−|x̄|2/4t,

it implies that

|D2
x̄Γ1,2(x̄)| ≤

1

8πt2
e−|x̄|2/4t +

|x̄|2

16πt3
e−|x̄|2/4t.

Using the inequalities (58), (59) and (60) we deduce that

|D2
xΓ(x)| ≤

C1

8π

∫ ∞

0
t−5/2e−C2te−|x̄|2/4te−C3x2

3/4tdt

+
C1|x̄|2

16π

∫ ∞

0
t−7/2e−C2te−|x̄|2/4te−C3x2

3/4tdt

+
C1|x̄|
8π

∫ ∞

0
t−3e−C2te−|x̄|2/4te−C3x2

3/4tdt

+
C1

4π

∫ ∞

0
t−5/2e−C2te−|x̄|2/4te−C3x2

3/4tdt

=: I1 + I2 + I3 + I4.
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The estimates of the integrals I1 and I4 are performed as above. Thus we get

I1 ≤
C

|x|3
, I4 ≤

C

|x|3
.

For the integral I3, we have that

I3 ≤
C1|x|
8π2

∫ ∞

0
t−3e−C2te−C′

3|x|2/tdt, C ′
3 = min(1, C3)/4.

Using again supR⋆
+
h(t) = h(C ′

3|x|2) where h(t) = t−1/2e−C′
3|x|2/2t, we obtain that I3 ≤ C

|x|3
,

for some positive constant C. Similarly for integral I2, we also have

I2 ≤
C1|x|2

32π2

∫ ∞

0
t−7/2e−C2te−C′

3|x|2/tdt, C ′
3 = min(1, C3)/4

≤ C1|x|2

32π2
1√
C ′
3e|x|

∫ ∞

0
t−3e−C2te−C′

3|x|2/2tdt

≤ C

|x|3
.

Together, the estimations of Ii, for any i = 1, ..., 4 will provide us the estimate of D2
xΓ(x).

Thanks to Lemma 8.1 and the L∞ estimate for the function Γ in Lemma 8.6, and following
the same arguments as in the proof for Poisson’s equation in R3, we can show that the solution
of the Poisson equation (49) is given by

Φ[n](x) =
q

ϵ0
Ξ ⋆ n(x) =

q

ϵ0

∫ π

−π

∫
R2

Ξ(x− y)n(y) dȳdy3. (63)

8.2 Estimations for the electric field and its gradient on R2 × T1

We give now some estimates of the electric field E[n] = −∇xΦ[n] which can be proved by
treating the singular term in the fundamental solution Ξ as in, cf. [3] for the space domain
x ∈ R3 and [43] for x ∈ T3.

Lemma 8.7
Let n be a positive concentration and belongs to L1(R2 × T1) ∩ L∞(R2 × T1). Then, there
exists a constant C > 0 such that the electric field E[n] satisfies the following estimate:

∥E[n]∥L∞ ≤ C(∥n∥L∞ + ∥n∥L1).

Proof.
For any x = (x̄, x3) ∈ R2 × [−π, π], by the formula (63) we have

∇xΦ[n](x) = − q

4π2ϵ0

∫ π

−π

∫
R2

∇x̄ ln |x̄− ȳ|n(y) dȳdy3 +
q

ϵ0

∫ π

−π

∫
R2

∇xΓ(x− y)n(y) dȳdy3

= − q

4π2ϵ0

∫ π

−π

∫
R2

x̄− ȳ

|x̄− ȳ|2
n(y) dȳdy3 +

q

ϵ0

∫ x3+π

x3−π

∫
R2

∇xΓ(x− y)n(y) dȳdy3.

The first integral in the previous expression can be estimated as

q

4π2ϵ0

(∫ π

−π

∫
R2

∇x̄ ln |x̄− ȳ|1{|x̄−ȳ|≤1}n(y) dȳdy3 +

∫ π

−π

∫
R2

∇x̄ ln |x̄− ȳ|1{|x̄−ȳ|≥1}n(y) dȳdy3

)
≤ C(∥n∥L∞ + ∥n∥L1).
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For the second integral, we make a decomposition of R2 × T1 in the following way

R2 × [x3 − π, x3 + π] := I ∪ J,

where
I =

{
y ∈ R3 : |x− y| ≥ 1

}
∩ R2 × [x3 − π, x3 + π],

J =
{
y ∈ R3 : |x− y| ≤ 1

}
.

It is obviously that J ⊆ R2 × [x3 − π, x3 + π]. Thus the last integral in the previous equality
can be written∫ x3+π

x3−π

∫
R2

∇xΓ(x− y)n(y) dȳdy3 =

∫
I
∇xΓ(x− y)n(y)dy +

∫
J
∇xΓ(x− y)n(y)dy.

Thanks to Lemma 8.6, we deduce that

q

ϵ0

∫ x3+π

x3−π

∫
R2

∇xΓ(x− y)n(y) dȳdy3 ≤ C

[∫
I

1

|x− y|2
n(y)dy +

∫
J

1

|x− y|2
n(y)dy

]
≤ C

[∫ x3+π

x3−π

∫
R2

n(y) dȳdy3 +

∫
|x−y|≤1

1

|x− y|2
n(y)dy

]

≤ C

[∫ π

−π

∫
R2

n(y) dȳdy3 + 4π∥n∥L∞

]
≤ C(∥n∥L1 + ∥n∥L∞),

where we have used that
∫
|x−y|≤1

1
|x−y|2dy = 4π. Combining these estimates, we obtain the

desired result in Lemma.

Lemma 8.8
Let n ∈ L1(R2 × T1) ∩W 1,∞(R2 × T1) and n ≥ 0. There exists a constant C > 0 such that
the gradient of the electric field E[n] satisfies the following estimates

∥∇xE[n]∥L∞ ≤ C
(
1 + ∥n∥L∞(1 + ln+(∥∇xn∥L∞)) + ∥n∥L1

)
,

where the notation ln+ stands for the positive part of ln.

Proof.
Observe that

Φ[n](x) = − q

4π2ϵ0

∫ π

−π

∫
R2

ln(|x̄− ȳ|)n(y) dȳdy3 +
q

ϵ0

∫ π

−π

∫
R2

Γ(x− y)n(y) dȳdy3

= − q

4π2ϵ0

∫ π

−π

∫
R2

ln(|ȳ|)n(x̄− ȳ, x3 − y3) dȳdy3 +
q

ϵ0

∫ π

−π

∫
R2

Γ(y)n(x− y) dȳdy3,

because the functions Γ and n are periodic with respect to x3 of period 2π. We estimate now
∂2x1

Φ[n](x). In other cases, we can do the same. Taking the derivative in the variable x1 of
the above equality, we have

∂x1Φ[n](x) = − q

4π2ϵ0

∫ π

−π

∫
R2

ln(|ȳ|)∂x1n(x̄− ȳ, x3 − y3) dȳdy3 +
q

ϵ0

∫ π

−π

∫
R2

Γ(y)∂x1n(x− y) dȳdy3

=
q

4π2ϵ0

∫ π

−π

∫
R2

ln(|ȳ|)∂y1n(x̄− ȳ, x3 − y3) dȳdy3 −
q

ϵ0

∫ π

−π

∫
R2

Γ(y)∂y1n(x− y) dȳdy3

=
q

4π2ϵ0

∫ π

−π

∫
R2

ln(|x̄− ȳ|)∂y1n(ȳ, y3) dȳdy3 −
q

ϵ0

∫ π

−π

∫
R2

Γ(x− y)∂y1n(y) dȳdy3,
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which implies that

∂2x1
Φ[n](x) =

q

4π2ϵ0

∫ π

−π

∫
R2

∂x1 ln(|x̄− ȳ|)∂y1n(ȳ, y3) dȳdy3 −
q

ϵ0

∫ π

−π

∫
R2

∂x1Γ(x− y)∂y1n(y) dȳdy3

=
q

4π2ϵ0

∫ π

−π

∫
R2

x1 − y1
|x̄− ȳ|2

∂y1n(ȳ, y3) dȳdy3 −
q

ϵ0

∫ x3+π

x3−π

∫
R2

∂x1Γ(x− y)∂y1n(y) dȳdy3

=: K1 +K2.

The estimation of K1, see [3]. We estimate now K2. Let r,R > 0 such that 0 < r < R < ∞
verify {

y ∈ R3 : |x− y| < R
}
⊂ R2 × [x3 − π, x3 + π].

Then we make a decomposition of R2 × [x3 − π, x3 + π] in the following way

R2 × [x3 − π, x3 + π] := J1 ∪ J2 ∪ J3,

where
J1 =

{
y ∈ R3 : |x− y| > R

}
∩ R2 × [x3 − π, x3 + π],

J2 =
{
y ∈ R3 : r < |x− y| < R

}
, J3 =

{
y ∈ R3 : |x− y| < r

}
.

For the integral on J1, thanks to the integration by parts with respect to y1 and noticing
that the boundary of J1 is ∂J1 =

{
y ∈ R3 : |x− y| = R

}
∪ R2 × {x3 − π, x3 + π}, we get

−
∫
J1

∂x1Γ(x− y)∂y1n(y)dȳdy3

=

∫
J1

∂y1∂x1Γ(x− y)n(y)dȳdy3 −
∫
|x−y|=R

∂x1Γ(x− y)n(y)
−(x1 − y1)

|x− y|
dσ(y)

−
∫
R2

[∂x1Γ(x− (ȳ, x3 + π))n(ȳ, x3 + π)− ∂x1Γ(x− (ȳ, x3 − π))n(ȳ, x3 − π)]︸ ︷︷ ︸
=0

dȳ. (64)

Similarly, the integral on J2 can be written as

−
∫
J2

∂x1Γ(x− y)∂y1n(y)dȳdy3

=

∫
J2

∂y1∂x1Γ(x− y)n(y)dȳdy3 −
∫
|x−y|=R

∂x1Γ(x− y)n(y)
(x1 − y1)

|x− y|
dσ(y)

−
∫
|x−y|=r

∂x1Γ(x− y)n(y)
−(x1 − y1)

|x− y|
dσ(y). (65)

For the integral on J3, since ∂y1n(y) = ∂y1 [n(y) − n(x)] and then using the integration by
parts, we obtain

−
∫
J3

∂x1Γ(x− y)∂y1n(y)dȳdy3 = −
∫
J3

∂x1Γ(x− y)∂y1 [n(y)− n(x)]dȳdy3

=

∫
J3

∂y1∂x1Γ(x− y)[n(y)− n(x)]dȳdy3 −
∫
|x−y|=r

∂x1Γ(x− y)[n(y)− n(x)]
(x1 − y1)

|x− y|
dσ(y).

(66)
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Combining the equalities (64), (65) and (66) we deduce that

∂2x1
Φ[n](x) =

∫
J1

∂y1∂x1Γ(x− y)n(y)dȳdy3 +

∫
J2

∂y1∂x1Γ(x− y)n(y)dȳdy3

+

∫
J3

∂y1∂x1Γ(x− y)[n(y)− n(x)]dȳdy3

+

∫
|x−y|=r

∂x1Γ(x− y)n(x)
(x1 − y1)

|x− y|
dσ(y)

:= I1 + I2 + I3 + I4.

Thanks to Lemma 8.6, we will estimate the integrals Ii, for any i = 1, ..., 4.
For the integral I4, using the L∞ estimate of ∂xΓ we have

I4 ≤ C

∫
|x−y|=r

1

|x− y|2
dσ(y)∥n∥L∞ = 4πC∥n∥L∞ .

For the integral I3, using the L∞ estimate of ∂2xΓ we also get

I3 ≤ C

∫
|x−y|<r

1

|x− y|3
|x− y|dy∥∇xn∥L∞ = 2π2Cr∥∇xn∥L∞ .

Similarly for the integral I2 and the integral I1, we obtain

I2 ≤ C

∫
r<|x−y|<R

1

|x− y|3
dy∥n∥L∞ = 2π2C ln(R/r)∥n∥L∞ ,

I1 ≤ C

∫
J1

1

|x− y|3
n(y)dy ≤ C

R3
∥n∥L1 .

Finally, together these estimates of Ii, for any i = 1, ..., 4 we obtain

K2 ≤ C

(
1

R3
∥n∥L1 + ln(R/r)∥n∥L∞ + r∥∇xn∥L∞ + ∥n∥L∞

)
.

Taking r = 1
1+∥∇n∥L∞ and R = 1 which gives us the result of the lemma.

8.3 Local existence of smooth solutions

Let’s begin to establish strong solutions for the limit model. It is sufficient to construct
a solution on some time interval [0, T ], T > 0. We present only the main arguments, the
other details being left to the reader. We assume that the initial condition nin satisfies the
hypotheses

H1) nin ≥ 0,

H2) nin ∈W 1,∞(R2 × T1) ∩W 1,1(R2 × T1).

Solution integrated along the characteristics
A standard computation, we can rewrite the equation (48) as

∂tn+
(
E ∧ e

B

)
· ∇xn+σrotx

(
e

ωc

)
· ∇xn− rotx

( e
B

)
·En = 0, (t, x) ∈ R+×R2×T1. (67)
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For any smooth field E ∈ L∞(0, T ;W 1,∞(R2×T1)), we consider the associated characteristics
flow of this equation

d

dt
Π(t; s, x) = E(t,Π(t; s, x)) ∧ e(Π(t; s, x))

B(Π(t; s, x))
+ σrotx

(
e

ωc

)
(Π(t; s, x)),

Π(s; s, x) = x ∈ R2 × T1,
(68)

where Π(t; s, x) is the solution of the ODE, t represents the time variable, s is the initial time
and x is the initial position. Π(s; s, x) = x is our initial condition. Notice that the vector
field e

B is also smooth and belongs to W 2,∞(R2 × T1). Therefore, the characteristics in (68)
are well defined for any (s, x) ∈ [0, T ] × R2 × T1 and there are smooth with respect to x.
From (68), the equation (67) can be written as

d

dt
n(t,Π(t; s, x))− rotx

( e
B

)
(Π(t; s, x)) · E(t,Π(t; s, x))n(t,Π(t; s, x)) = 0.

The solution of the transport equation (67) is given by

n(t, x) = nin(Π(0; t, x)) exp

(∫ t

0
rotx

( e
B

)
(Π(s; t, x)) · E(s,Π(s; t, x))ds

)
. (69)

Conservation law on a volume
We have the following conservation law∫

R2×T1

n(t, x) dx =

∫
R2×T1

nin(x) dx, 0 ≤ t ≤ T. (70)

Indeed, we denote J(t; s, x) is the Jacobian matrix of Π(t; s, x) with respect to x at (t; s, x).
The determinant of the Jacobian matrix J(t; s, x) is given by

d

dt
det (J(t; s, x)) = divx

(
E(t) ∧ e

B
+ σrotx

(
e

ωc

))
(Π(t; s, x))det (J(t; s, x)) ,

det(J(t; t, x)) = 1.

Hence, we obtain

det (J(t; s, x)) = exp

(
−
∫ t

0
rotx

( e
B

)
(Π(θ; s, x)) · E(θ,Π(θ; s, x))dθ

)
.

Integrating the equality (69) with respect to x and then changing the variable x to Π(t; 0, x),
we obtain∫

R2×T1

n(t, x) dx

=

∫
R2×T1

nin(x) exp

(∫ t

0
rotx

( e
B

)
(Π(s; 0, x)) · E(s,Π(s; 0, x))ds

)
det (J(t; 0, x)) dx

=

∫
R2×T1

nin(x) dx.

A priori estimates
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The bound in L∞(0, T ;W 1,∞(R2 × T1)) of the solutions
We have the following bounds

sup
t∈[0,T ]

∥n(t)∥L∞(R2×T1) ≤ ∥nin∥L∞(R2×T1) exp(CBT sup
t∈[0,T ]

∥E(t)∥L∞), (71)

∥∇xn(t)∥L∞(R2×T1) ≤(∥nin∥L∞ + exp(C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞))∥∇xnin∥L∞) (72)

exp(C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)),

where we denote the constants CB = ∥e/B∥W 2,∞(R2×T1) and C0 = C(σ, q,m,B).
We will first prove (71). By the formular (69), for any t ∈ [0, T ] we have

∥n(t)∥L∞ ≤ ∥nin∥L∞

∥∥∥∥exp(∫ t

0
rotx

( e
B

)
(Π(s; t, x)) · E(s,Π(s; t, x))ds

)∥∥∥∥
L∞

≤ ∥nin∥L∞ exp(T∥∂x(e/B)∥L∞ sup
t∈[0,T ]

∥E(t)∥L∞)

≤ ∥nin∥L∞ exp(CBT sup
t∈[0,T ]

∥E(t)∥L∞).

We then prove (72). By taking the derivative with respect to x in the formula (69), we imply

∥∇xn(t)∥L∞ ≤ ∥nin(Π(0; t, ·))∥W 1,∞

∥∥∥∥exp(∫ t

0
rotx

( e
B

)
(Π(s; t, ·)) · E(s,Π(s; t, ·))ds

)∥∥∥∥
W 1,∞

.

We estimate now ∥nin(Π(0; t, x))∥W 1,∞ . Since

∥nin(Π(0; t, ·))∥W 1,∞ ≤ ∥nin∥L∞ + ∥∂xΠ(0; t, ·)∥L∞∥∇nin∥L∞ ,

therefore it remains to estimate supt∈[0,T ] ∥∂xΠ(0; t, ·)∥L∞ . Taking the derivative with respect
to x in (68), we deduce that

∥∂xΠ(0; t, ·)∥L∞ ≤ 1 +

∫ t

0
(∥E(s) ∧ (e/B)∥W 1,∞ + σ∥e/ωc∥W 2,∞)∥∂xΠ(0; s, ·)∥L∞ds

≤ 1 + (1 + C(σ, q,m,CB))

∫ t

0
(1 + ∥E(s)∥W 1,∞)∥∂xΠ(0; s, ·)∥L∞ds,

for some constant C(σ, q,m) depending on σ, q,m. Thanks to Grönwall’s inequality, we have

∥∂xΠ(0; t, ·)∥L∞ ≤ exp((1 + C(σ, q,m,CB))t(1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)), t ∈ [0, T ], (73)

which implies for anty t ∈ [0, T ] that

∥nin(Π(0; t, ·))∥W 1,∞ ≤ ∥nin∥L∞+exp((1+C(σ, q,m,CB))T (1+ sup
t∈[0,T ]

∥E(t)∥W 1,∞))∥∇nin∥L∞ .

Next we estimate the following norm

I(t) :=

∥∥∥∥exp(∫ t

0
rotx

( e
B

)
(Π(s; t, ·)) · E(s,Π(s; t, ·))ds

)∥∥∥∥
W 1,∞

.
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A straightforward computations and then using (73) yield

I(t) ≤
∥∥∥∥exp(∫ t

0
rotx

( e
B

)
· E(s)ds

)∥∥∥∥
L∞

(
1 +

∫ t

0

∥∥∥rotx ( e
B

)
· E(s)|Π(s;t,x)

∥∥∥
W 1,∞

ds

)
≤ exp(CBt sup

t∈[0,T ]
∥E(t)∥L∞)

(
1 +

∫ t

0
CB∥E(s)∥W 1,∞(1 + ∥∂xΠ(s; t, ·)∥L∞)ds

)
≤ exp(CBt sup

t∈[0,T ]
∥E(t)∥L∞)(

1 +

∫ t

0
CB sup

[0,T ]
∥E(s)∥W 1,∞ exp((1 + C(σ, q,m,CB)t(1 + sup

[0,T ]
∥E(s)∥W 1,∞))ds

)
≤ exp(CBt sup

t∈[0,T ]
∥E(t)∥L∞)

(1 + CBt sup
[0,T ]

∥E(s)∥W 1,∞ exp((1 + C(σ, q,m,CB))t(1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)))

≤ exp(C(σ, q,m,B)t(1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)),

for some constant C(σ, q,m,B) depending on σ, q,m,CB. Combining these estimates yield

∥∇xn(t)∥L∞ ≤ (∥nin∥L∞ + exp (C0T (1 + ∥E∥W 1,∞)) ∥∇nin∥L∞) exp(C0T (1 + ∥E∥W 1,∞)),

where we used the notation C0 for a universal constant depending on σ, q,m,B.

The bound in L∞(0, T ;W 1,1(R2 × T1)) of the solutions

∥n(t)∥L1 = ∥nin∥L1 , t ∈ [0, T ], (74)

∥∇xn∥L1 ≤ exp(C0t(1 + sup
t∈[0,T ]

∥E∥W 1,∞))(∥∇nin∥L1 + tC0 sup
t∈[0,T ]

∥E(t)∥W 1,∞∥nin∥L1), (75)

where C0 is the constant depending on σ, q,m,B. Now we will prove (75). By taking the
derivative with respect to x in (69), we have

∇xn(t, x) = exp

(∫ t

0
rotx

( e
B

)
· E(s)|Π(s;t,x)ds

)[
t∂xΠ(0; t, x)∇xnin(Π(0; t, x))

+nin(Π(0; t, x))

∫ t

0

t∂xΠ(s; t, x)∇x

{
rotx

( e
B

)
· E(s)

}
|Π(s;t,x)ds

]
.

Then, we integrate with respect to x and change the variable x to Π(t; 0, x). Notice that the
Jacobian formula is given by

exp

(
−
∫ t

0
rotx

( e
B

)
· E(s)|Π(s;0,x)ds

)
,

therefore we deduce that∫
R2×T1

|∇xn| dx ≤
∫
R2×T1

∥∂xΠ(0; t, ·)∥L∞ |∇xnin| dx

+ CB

∫
R2×T1

nin(x)

∫ t

0
∥∂xΠ(s; t, ·)∥L∞∥E(s, ·)∥W 1,∞ds dx.

Thanks to (73) we obtain∫
R2×T1

|∇xn| dx ≤ exp(C0t(1 + sup
t∈[0,T ]

∥E∥W 1,∞))(∥∇nin∥L1 + tC0 sup
t∈[0,T ]

∥E(t)∥W 1,∞∥nin∥L1),

where we use same the notation C0 for a universal constant depending on σ, q,m,B.
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Local existence of solutions
We define

Σ :=

{
E ∈ L∞(0, T ;W 1,∞(R2 × T1)) : sup

[0,T ]
∥E(t)∥L∞ ≤M1, sup

[0,T ]
∥∂xE(t)∥L∞ ≤M2

}
,

where Mi, i = 1, 2 are two constants to be fixed later. Given an electric field E in Σ. We
consider the solution by characteristic of the equation (67) on R2 × T1, corresponding to
the electric field E and denote by nE which is given by the formula (69). We construct the
following map F on Σ, whose fixed point gives the solution of the system (67), (49) and (50)
at least locally in time such solutions exist

E → F(E) =
q

ϵ0

∫
R2×T1

∇xΞ(x− y)nE(t, y) dy. (76)

We will prove that the map F is left invariant on the set Σ for a convenient choice of the
constants M1 and M2, then we want to establish an estimate like

∥FE(t)−FẼ(t)∥L∞ ≤ CT

∫ t

0
∥E(s)− Ẽ(s)∥L∞ds, E, Ẽ ∈ Σ, t ∈ [0, T ], (77)

for some constant CT , not depending on E and Ẽ. After that, the existence of the system
(67), (49) and (50) immediately, based on the construction of an iterative method for F .

Lemma 8.9
There exist positive constants M1, M2 and T = T (M1,M2) such that F(Σ) ⊂ Σ.

Proof.
Let E ∈ Σ. Thanks to Lemma 8.7 and the formulas (71) and (74), we have

∥F(E)(t, ·)∥L∞ ≤ C(∥nin∥L∞ exp(CBT sup
t∈[0,T ]

∥E(t)∥L∞) + ∥nin∥L1)

≤ C(∥nin∥L∞ + ∥nin∥L1)(exp(CBT sup
t∈[0,T ]

∥E(t)∥L∞) + 1)

≤ C(∥nin∥L∞ + ∥nin∥L1) exp(CBT sup
t∈[0,T ]

∥E(t)∥L∞ + 1).

Here, we fix M1 as a constant such that Ce2(∥nin∥L∞ + ∥nin∥L1) ≤ M1 , and we choose
T = 1

max(CB ,C0)(M1+M2)
, where C0 = C(σ, q,m,B) is a universal constant. Hence, we obtain

sup
t∈[0,T ]

∥F(E)(t, ·)∥L∞ ≤M1.

The bound of L∞ norm for the density n(t) in (71) becomes

∥n(t)∥L∞ ≤ e∥nin∥L∞ . (78)

It remains to estimate ∥∂xF(E)(t, ·)∥L∞ . Thanks to Lemma 8.8, we need to estimate
ln+(∥∇xn(t)∥). By the formula (72) we have

ln+(∥∇xn(t)∥L∞) ≤ ln+(∥nin∥L∞ + exp(C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞))∥∇xnin∥L∞)

+ C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)

≤ ln+(∥nin∥W 1,∞(1 + exp(C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞))))

+ C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞)

≤ ln+(∥nin∥W 1,∞) + 1 + 2C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞).
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Thus, together with (78) we deduce that

∥∂xF(E)(t, ·)∥L∞ ≤ C(1 + e∥nin∥L∞(2 + ln+(∥nin∥W 1,∞) + 2C0T (1 + sup
t∈[0,T ]

∥E(t)∥W 1,∞) + ∥nin∥L1)

≤ 2C(1 + e∥nin∥L∞(2 + ln+(∥nin∥W 1,∞)) + ∥nin∥L1)(1 + C0T sup
t∈[0,T ]

∥E(t)∥W 1,∞).

Here, we fixM2 as a constant such that 2C(1+e∥nin∥L∞(2+ln+(∥nin∥W 1,∞))+∥nin∥L1) ≤ M2
2

and we take T = 1
max(CB ,C0)(M1+M2)

. Therefore we obtain

∥∂xF(E)(t, ·)∥L∞ ≤ M2

2
2 =M2.

Now we establish the inequality (77). Consider E and Ẽ ∈ Σ and denote by nE and ñẼ the
solutions by characteristics of (67), (50) with the same initial data nin corresponding to the
electric fields E and Ẽ, respectively. It is easily seen from Lemma 8.7 that

∥F(E)(t)−F(Ẽ)(t)∥L∞ ≤ C(∥nE(t)− ñẼ(t)∥L∞ + ∥nE(t)− ñẼ(t)∥L1).

Notice that the constant C is not depend on E and Ẽ.

Lemma 8.10
We have

∥nE(t)− ñẼ(t)∥L∞ ≤ C

∫ t

0
∥E(s)− Ẽ(s)∥L∞ds,

for some positive constant C, not depending on E, Ẽ.

Proof.
Thanks to (69), we deduce that

|nE(t, x)− ñẼ(t, x)|

≤ |nin(ΠE(0; t, x))− nin(Π̃
Ẽ(0; t, x))| exp

(∫ t

0
rotx

( e
B

)
· E(s)|ΠE(s;t,x)ds

)
+ nin(Π̃

Ẽ(0; t, x))

[
exp

(∫ t

0
rotx

( e
B

)
· E(s)|ΠE(s;t,x)ds

)
− exp

(∫ t

0
rotx

( e
B

)
· Ẽ(s)|

Π̃Ẽ(s;t,x)
ds

)]
=: I1 + I2,

where ΠE and Π̃Ẽ denote the characteristic of (68) corresponding to the vector fields E and
Ẽ. We estimate now the integral I1. Since

|nin(ΠE(0; t, x))− nin(Π̃
Ẽ(0; t, x))| ≤ |ΠE(0; t, x)− Π̃Ẽ(0; t, x)|∥∇xnin∥L∞ ,

so we need to estimate supt,s∈[0,T ] ∥ΠE(t; s, ·)− Π̃Ẽ(t; s, ·)∥L∞ . We claim that

sup
t,s∈[0,T ]

∥ΠE(t; s, ·)− Π̃Ẽ(t; s, ·)∥L∞ ≤ C0e
C0T (1+M1+M2)

∫ t

0
∥E(s, ·)− Ẽ(s, ·)∥L∞ds, (79)

for some constant C0 depending on σ, q,m,B. Indeed, from the equations in (68) we imply
that

d

dt
(ΠE − Π̃Ẽ)(t; s, x) =

(
E(t) ∧ e

B
|Π(t;s,x) − Ẽ(t) ∧ e

B
|Π(t; s, x)

)
+
(
Ẽ(t) ∧ e

B
|Π(t; s, x)− Ẽ(t) ∧ e

B
|Π̃(t; s, x)

)
+ σrotx

(
e

ωc

)
(Π(t; s, x))− σrotx

(
e

ωc

)
(Π̃(t; s, x)),

(ΠE − Π̃Ẽ)(s; s, x) = 0.
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Integrating between s and t we find

|(ΠE − Π̃Ẽ)(t; s, x)| ≤ C0

∫ t

0
∥E(s)− Ẽ(s)∥L∞ds

+ C0

∫ t

0
∥Ẽ∥W 1,∞ |(ΠE − Π̃Ẽ)(τ ; s, x)|dτ + C0

∫ t

0
|(ΠE − Π̃Ẽ)(τ ; s, x)|dτ.

Notice that supt∈[0,T ] ∥Ẽ(t)∥W 1,∞ ≤M1+M2, since Ẽ ∈ Σ. Then, the Gronwall lemma allows
us to conclude that (79) holds. Therefore we have

I1 ≤ C

∫ t

0
∥E(s, ·)− Ẽ(s, ·)∥L∞ds.

Next, we estimate the integral I2. We utilize the inequality |ex − ey| ≤ ex+y|x− y|, valid for
any x, y ∈ R. Applying the same argument as in the estimate of I1, we obtain

I2 ≤ C

∫ t

0
∥E(s, ·)− Ẽ(s, ·)∥L∞ds.

Notice that, for the sake of simplicity, we use the same notation C in the inequalities for
both I1 and I2 standing for a universal constant depending on T,M1,M2, B, nin. Finally, we
combine the estimate for the integrals I1 and I2 to derive the result.

Lemma 8.11
We have

∥nE(t)− ñẼ(t)∥L1 ≤ C

∫ t

0
∥E(s)− Ẽ(s)∥L∞ds,

for some positive constant C, not depending on E, Ẽ.

Proof.
Since nE and ñẼ are the solutions of (67) therefore we deduce that

∂t(n
E(t)− ñẼ(t)) +

(
(E − Ẽ) ∧ e

B

)
· ∇xn

E +
(
Ẽ ∧ e

B

)
· ∇x(n

E − ñẼ)

+σrotx

(
e

ωc

)
· ∇x(n

E − ñẼ)− rotx

( e
B

)
· (E − Ẽ)nE − rotx

( e
B

)
· Ẽ(nE − ñẼ) = 0,

nE(0)− ñẼ(0) = 0.

Multiplying this equation by sign(nE − ñẼ), then integrating with respect to x, we obtain

∂t

∫
R2×T1

|nE(t)− ñẼ(t)| dx+

∫
R2×T1

sign(nE − ñẼ)
(
(E − Ẽ) ∧ e

B

)
· ∇xn

E dx

−
∫
R2×T1

sign(nE − ñẼ)rotx

( e
B

)
· (E − Ẽ)nE dx−

∫
R2×T1

rotx

( e
B

)
· Ẽ|nE − ñẼ | dx = 0.

Using the inequality (75) and a straightforward estimations yield

∂t

∫
R2×T1

|nE(t)− ñẼ(t)| dx ≤ C

(
∥E(t)− Ẽ(t)∥L∞ +

∫
R2×T1

|nE − ñẼ | dx
)
,

for some positive constant C depending only on q,m,B,M1,M2, nin. Integrating between 0
and t and thanks to the Gronwall lemma we obtain the desired result.
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Based on these arguments and Proposition 7.2, we establish the following result

Proposition 8.1
Assume that the initial condition nin satisfies the hypotheses H1 and H2. There exists T > 0
and a local time strong solution (n,E) on [0, T ] for the limit model (48), (49) and (50). The
solution is unique and satisfies

n ≥ 0, n ∈ L∞(0, T ;W 1,∞(R2 × T1)) ∩ L∞(0, T ;W 1,1(R2 × T1)),

E ∈ L∞(0, T ;W 1,∞(R2 × T1)).

Appendix

Lemma 8.12
For any r ∈ R+, we have ∫ ∞

0
e−(θ−rθ−1)2dθ =

√
π

2
.

Proof.
Let us denote I(r) =

∫∞
0 e−(θ−rθ−1)2dθ. It is easily seen that

I(0) =

∫ ∞

0
e−θ2 =

√
π

2
.

For any r > 0, by taking the derivative with respect to r, we obtain that

I ′(r) = 2

∫ ∞

0
θ−1(θ − rθ−1)e−(θ−rθ−1)2dθ

which yields

I ′(r) = 2I(r)− 2r

∫ ∞

0
θ−2e−(θ−rθ−1)2dθ. (80)

Observer that

2r

∫ ∞

0
θ−2e−(θ−rθ−1)2dθ = −2

∫ ∞

0
e−(θ−rθ−1)2d(rθ−1)

and by changing the variable u = rθ−1 one gets

2r

∫ ∞

0
θ−2e−(θ−rθ−1)2dθ = −2

∫ 0

∞
e−(ru−1−u)2du = 2I(r).

Substituting in (80), we have
I ′(r) = 0, r > 0

which implies I(r) is independant of value of r and thus I(r) =
√
π
2 , for any r ∈ R+.

Acknowledgement
This work has been carried out within the framework of the EUROfusion Consortium, funded
by the European Union via the Euratom Research and Training Programme (Grant Agree-
ment No 101052200 — EUROfusion). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the Euro-
pean Commission. Neither the European Union nor the European Commission can be held
responsible for them.

53



References

[1] N.B. Abdallah, R. El Hajj, Diffusion and guiding center approximation for particle
transport in strong magnetic fields, Kinet. Relat. Models, 1 (2008), 331-354.

[2] C.W. Bardos, F. Golse, Toan T. Nguyen, R. Sentis, The Maxwell–Boltzmann approx-
imation for ion kinetic modeling, Physica D: Nonlinear Phenomena, 376-377 (2016),
94-107.

[3] J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J.
Diff. Equations, 25(1977) 342-364.

[4] F. Berthelin, A. Vasseur, From Kinetic Equations to Multidimensional Isentropic Gas
Dynamics Before Shocks, SIAM Journal on Mathematical Analysis. 36(2005) 1807-1835.

[5] L. L. Bonilla, J. A. Carrillo and J. Soler, Asymptotic behaviour of the initial boundary
value problem for the three dimensional Vlasov–Poisson–Fokker–Planck system, SIAM
J. Appl. Math. 57 (1997) 1343–1372.

[6] M. Bostan, The Vlasov–Maxwell System with Strong Initial Magnetic Field: Guiding-
Center Approximation. Multiscale Modeling & Simulation, 6 (2007) 1026-1058.

[7] M. Bostan, T. Goudon, High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck
system. Annales de l’I.H.P. Analyse non linéaire, 25 (2008) 1221-1251.
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