Nicolas Brisebarre

Jean-Michel Muller

Joris Picot

Fellow, IEEE Jean-Michel Muller

J.-M Muller

Error in ulps of the multiplication or division by a correctly-rounded function or constant in binary floating-point arithmetic

Keywords: Floating-point arithmetic, ulp, numerical error, correct rounding, multiplication by a constant

HAL is

I. INTRODUCTION

A. Purpose of this paper and notation M ULTIPLYING a floating-point number by a real con- stant (such as π or ln(2)), or multiplying or dividing it by a correctly rounded function of one or more variables (such as √ x, x+y, or xy), or dividing a constant or correctlyrounded function by a floating-point number are very frequent operations in numerical computing. When last-bit accuracy is desired, one can use specifically-designed solutions (see for instance [START_REF] Brisebarre | Correctly rounded multiplication by arbitrary precision constants[END_REF] for multiplication by a constant). However, here, we are interested by the error of the straightforward approach. For instance, when a programmer writes the statement s = x * pi; he or she most probably wants to compute x • π as accurately as possible. However the variable pi is already a floatingpoint approximation of the real π, and, as a result, the error in this computation is larger than the mere approximation caused by the floating-point multiplication. We are also interested in calculations such as s = x/sqrt(y); or s = (x + y) * (z + t);

A tight bound on the relative error of such operations is very easily obtained (see Section I-B). And yet, although relative errors are frequently easier to manipulate, for basic functions that can be regarded as "atomic", errors in ulps are frequently preferred, because they convey more information (for example, while correct rounding implies an error less than 0.5 ulp and a relative error less than u-see definition below-, the converse is almost true for the error in ulps, 1 and far from being true for the relative errors). The purpose of this paper is to give very tight bounds on the error in ulps on the multiplication or division of a floating-point number by a real constant or a correctly-rounded function, or on the product or quotient of two correctly-rounded functions. As is common in rounding error analysis of mathematical functions, we assume that the input floating-point numbers are exact (in practice, they often result from a previous calculation or from a measurement and therefore contain some error, but the impact of that error on the final result must be evaluated separately). See for instance [START_REF] Cody | Implementation and testing of function software[END_REF].

In the following, we assume a binary, precision-p, floatingpoint (FP) arithmetic, with correctly rounded (to nearest) floating-point operations. A floating-point number is zero or a number of the form

x = M x • 2 ex-p+1 ,
where M x and e x are integers, with

2 p-1 |M x | 2 p -1.
Here, we do not assume bounds on the exponents e x , which means that our results apply to real-life arithmetics such as the ones specified by the IEEE 754 Standard for Floating-Point arithmetic [START_REF]IEEE, IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF] whenever underflow and overflow do not occur. 2 In the following, if t is a real number then RN(t) is the floating-point number nearest to t (a tie-breaking choice is necessary if t is halfway between two consecutive floatingpoint numbers: our bounds are valid whatever the tie-breaking choice, provided that it satisfies RN(-x) = -RN(x) and RN(2 k x) = 2 k RN(x), however our examples use the tiesto-even rule, which is the default in IEEE-754 arithmetic). If t ∈ R, t = 0 then • ulp(t) (unit in the last place of t) is 2 log 2 |t| -p+1 , and • ufp(t) (unit in the first place [START_REF] Rump | Accurate floating-point summation, Part I: Faithful rounding[END_REF] of t) is 2 log 2 |t| . Functions ufp and ulp are defined for real numbers, not only for FP numbers. This is why we cannot use the "exponent of t" in their definitions. The unit round-off [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF] is the number u = 2 -p . Note that ulp(t) is the distance between two consecutive FP numbers in the neighborhood of t. If 1 t < 2 then ulp(t) = 2u. In particular, the FP number preceding 2 is 2 -2u.

These notions are illustrated by Figure 1.

1 2 1 2u 2 ufp(x) x RN(x) ulp(x) = 4u
4 y RN(y) (assuming ties-to-even) 8 Fig. 1. The FP numbers between 1/2 and 8 in the toy system p = 3 (i.e., u = 1/8).

In the following, c is either a real constant or a real function of one or more floating-point variables. We assume that ĉ = RN(c) is available. If c is a constant, ĉ is just the floatingpoint number nearest to c. If c is an arithmetic function (e.g., c(x, y) = x + y or c(x, y) = xy), or the square root, then ĉ is provided by the underlying IEEE-754 arithmetic. If c is a more complex function, such as exp(x), ln(x), etc., ĉ can be provided by a correctly-rounded function such as the ones included in the CORE-MATH library [START_REF] Sibidanov | The CORE-MATH project[END_REF].

We first obtain tight bounds on the error, expressed in ulps, of approximating the product c • x (resp. the quotient x/c or the quotient c/x), where x is a floating-point number, by

s = RN(ĉ • x) (resp. RN(x/ĉ) or RN(ĉ/x)).
This is done in Section II for x • c, in Section III for x/c, and in Section IV for c/x.

When c is a constant, we assume that it is not a floatingpoint number (otherwise, the well-known bound 0.5 ulp applies and is optimal). Our results apply for instance to the computation of

x • cos 2kπ N ,
that appears in discrete cosine transforms, assuming that either the values RN(cos(2kπ/N)) are precomputed and stored, or that N is a power of 2, k is less than 2 p and a correctlyrounded function cospi is available (there is one for instance in the CORE-MATH library). Our results also apply to the calculation of expressions of the form

(x + y) • z, z/(x + y), (x + y)/z, (x • y) • z, z/(x • y), x • √ y,
x/ √ y, √ y/x, e x • y, x • ln(y), x/π, π/x, etc., where x, y, and z are floating-point numbers and assuming that the exponential and logarithm are correctly rounded. To the best of our knowledge, no tight error bounds in ulps for these functions have been published so far.

By "expressing the error bound in ulps" we mean that we want to find some real α, as small as possible, such that

|s -cx| α • ulp(cx).
It is wiser to measure errors in terms of ulps of the exact result instead of ulps of the computed result, because the latter choice could lead to dubious conclusions. The authors of [START_REF] Boldo | Floatingpoint arithmetic[END_REF]Section 2.5] illustrate this as follows:

Assume for instance that the exact result is the real x = 1 + u and consider two (quite poor) computed floating-point results: a = 2 -2u and b = 2 + 4u. Since x < a < b, it would make no sense to consider that b is a better approximation to x than a. And yet x is within 2 p-1 -3/2 ulp(a) from a, and within 2 p-2 + 3/4 ulp(b) from b.

In Section V, we generalize the work of the preceding sections to the approximation of m • n, where m and n are either real constants or correctly-rounded functions, by s = RN(m • n), where m = RN(m) and n = RN(n). The obtained results apply to functions such as

(x + y) • (z + t), √ x • (y • z), ln(x)
• ln(y) (assuming a correctly-rounded logarithm), etc. Finally, in Section VI, we present a similar study for the quotient of two correctly-rounded functions.

B. Just a few words on relative errors

Obtaining relative errors on the calculation of cx or x/c is straightforward. We just quickly address that question, for the sake of completeness and to show that the obtained results do not suffice for deducing a tight bound on the error in ulps. Without loss of generality, we assume c > 0 and x > 0. The relative error due to rounding to nearest a real number is bounded by u/(1+u) and that bound is optimal [8, p. 232] [9, p. 74] and has been used to obtain tight relative error bounds on various operations (see e.g. [START_REF] Jeannerod | On relative errors of floating-point operations: optimal bounds and applications[END_REF], [START_REF] Rump | Error bounds for computer arithmetics[END_REF]). Therefore

c • 1 - u 1 + u ĉ c • 1 + u 1 + u , ĉx • 1 - u 1 + u RN (ĉx) ĉx • 1 + u 1 + u , and x ĉ • 1 - u 1 + u RN x ĉ x ĉ • 1 + u 1 + u .
From this, we easily deduce that the numbers s 1 = RN (ĉx) and

s 2 = RN (x/ĉ) satisfy cx • 1 - u 1 + u 2 s 1 cx • 1 + u 1 + u 2 , and x c • 1 -u 1+u 1 + u 1+u s 2 x c • 1 + u 1+u 1 -u 1+u
, so that the relative error of the multiplication by c is bounded by

1 + u 1 + u 2 -1 = 2u + 3u 2 1 + 2u + u 2 < 2u,
and the relative error of the division by c is bounded by

max 1 - 1 -u 1+u 1 + u 1+u ; 1 + u 1+u 1 -u 1+u -1 = 1 + u 1+u 1 -u 1+u -1 = 2u.
Very similarly, the relative error of the division of c by x is bounded by

1 + u 1 + u 2 -1 < 2u, the relative error due to the approximation of m • n by RN(m • n) is bounded by 1 + u 1 + u 3 -1 < 3u,
and the relative error due to the approximation of n/d by RN(n/ d) is bounded by

1 + u 1+u 2 1 -u 1+u -1 = 3u + 4u 2 1 + u < 3u + u 2 3u.
Hence the relative error of the computation of cx, x/c and c/x is bounded by 2u, and the relative error of the computation of m • n and n/d are bounded by around 3u. These bounds are very tight (for instance, in binary32/single-precision arithmetic (p = 24), error 1.99902u is attained for the multiplication of c = 16779263 and x = 8392705). From these bounds the best bounds on the error in ulps one can deduce (conversions between errors in ulps and relative errors are presented for instance in [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]Section 2.3.3]) are 2 ulp for the computation of cx, x/c and c/x (resp. around 3 ulp for the computation of m•n and n/d). And yet, we are going to show the significantly better bounds 1.5 ulp (resp. 2.5 ulp).

II. MULTIPLICATION OF A FP NUMBER BY A CONSTANT OR A CORRECTLY-ROUNDED FUNCTION

Let us first establish an error bound in ulps on the computation of x • c, where x is a floating-point number and c is a constant or a correctly-rounded function. We want to bound the error of approximating x • c by RN (x • ĉ) .

We will first consider "general" bounds, applicable to any c. Then we will try to improve these bounds in the particular case where c is a constant.

A. First steps

Since ulp(2 k t) = 2 k ulp(t) and RN(2 k t) = 2 k RN(t)
We also have

|s -ĉx| 1 2 ulp(ĉx), (2)
so that, by the triangular inequality

|s -cx| x 2 ulp(c) + 1 2 ulp(ĉx). (3)
Equation (3) expresses the error in terms of ulp(c) and ulp(ĉx), whereas we need to express it in terms of ulp(cx). Since x 1 and ulp is an increasing function, ulp(c) can be bounded (although possibly non-optimally) by ulp(cx). The case of ulp(ĉx) is more difficult to handle: ĉx and cx are very close values, between 1 and 4, so that we will almost always have ulp(ĉx) = ulp(cx). However, there may be some corner cases when one of ĉx and cx is less than 2 and the other one is larger than or equal to 2. In these cases ulp(ĉx) will be either 1 2 ulp(cx) or 2 ulp(cx). Let us quickly eliminate the latter case, by showing that when ulp(ĉx) > ulp(cx) the computation is very accurate (in that case, the error will be significantly less than the general error bound we give later on).

B. The special case ulp(ĉx) > ulp(cx)

For that case to happen, we must have cx < 2 ĉx.

Since ulp(c) = 2 1-p = 2u and ĉ = RN(c), we have

c < ĉ c + u,
and we therefore deduce

cx < 2 ĉx cx + ux.
Since x is a floating-point number and x < 2, we have x 2 -2u, and therefore

cx < 2 ĉx cx + (2u -2u 2).
Hence, 2 ĉx < 2 + 2u -2u 2 . Since RN is an increasing function and RN(2) = RN(2 + 2u -2u 2) = 2 we deduce that s = RN(ĉx) = 2. Therefore,

|s -cx| = |2 -cx| 2u -2u 2 = (1 -u) • ulp(cx).

C. The general case ulp(ĉx) ulp(cx)

1) A bound that does not depend on c: In that case, (2) gives

|s -ĉx| 1 2 ulp(cx), (4)
and (3) implies

|s -cx| x 2 ulp(c) + 1 2 ulp(cx). (5)
As x 1, ulp(c) ulp(cx). Since x 2 -2u, we finally obtain

|s -cx| 3 2 -u • ulp(cx). (6)
Example 1 below shows that the bound (6) is asymptotically optimal (as u → 0 or, equivalently, as p → +∞): one cannot improve it (at least at order 0 in u) without further assumptions on c. Making further assumptions on c makes no sense if c is the result of a previous operation or function (so that the bound (6) will not be improved at order 0 in u for calculations such as

(x + y) • z, (x • y) • z, x • √ y, e x • y, x • ln(y), etc.).
However, if c is a real constant (such as π, ln(2), or one of the terms of the form cos(2kπ/N) that appear in Fourier-related transforms), it makes sense to try to find a sharper bound that depends on c.

2) Improving the bound when c is a constant: We obtained (5) by adding (4) and [START_REF] Brisebarre | Correctly rounded multiplication by arbitrary precision constants[END_REF]. Now, we will keep (4)-which cannot be improved, unless ĉ is a power of 2-unchanged, and try to improve on (1), by introducing a new bound on |cx -ĉx| that depends on c. We start from

|cx -ĉx| = x • |c -ĉ| .
Two cases may occur:

• if x < 2/c then ulp(cx) = ulp(c) = 2 1-p = 2u, and therefore |cx -ĉx| < 2 p • c - ĉ c • ulp(cx); (7)
• if x 2/c then ulp(cx) = 2 ulp(c) = 2 2-p , and therefore

|cx -ĉx| < 2 p-1 • |c -ĉ| • ulp(cx). (8
)
Since c is between 1 and 2, the bound (8) is always less than the bound [START_REF] Boldo | Floatingpoint arithmetic[END_REF]. Hence, the bound [START_REF] Boldo | Floatingpoint arithmetic[END_REF] holds in all cases. We immediately deduce

|s -cx| 1 2 + 2 p • c - ĉ c • ulp (cx). (9)
Note that the bound (9) varies with p. One may obtain a bound that no longer depends on p, but is in general looser, by defining

mant(c) = c ufp(c) = c 2 log 2 (c)
(it is the "infinite precision significand" of c-up to now, in our proofs, we used 1 c < 2, in which case mant(c) = c, but to give a final result that is valid for all positive c, we need here to use function mant). If we note that |c-ĉ| u•ufp(c), we obtain

|s -cx| 1 2 + 1 mant(c)
• ulp (cx). • ulp (cx),

|s -cx| 1 2 + 2 p • c - ĉ c • ulp (cx).
The bound of Property 2.1 is general. The first bound of Property 2.2 is tighter but requires c to be a constant and depends on its value. The second bound of Property 2.2 is even tighter but depends on the values of c and p.

The following "generic" (i.e., parameterized by the precision p) example shows that in the general case of an arbitrary constant c, the bound given by Property 2.1 is asymptotically optimal.

Example 1: Assume RN breaks ties to even. If p is even, the choice

x = 2 p -2 p/2 , c = 1 + 2 -p/2-1 -2 -p , gives ĉ = 1 + 2 -p/2-1 , cx = 2 p -2 p/2-1 -3 2 + 2 -p/2 , s = RN(ĉx) = 2 p -2 p/2-1 , resulting in an error |s -cx| = 3 2 -2 -p/2 ulp(cx).
If p is odd, the choice

x = 2 p -2 (p-1)/2 , c = 1 + 2 -(p+1)/2 -2 -p , gives ĉ = 1 + 2 -(p+1)/2 , cx = 2 p -3 2 + 2 (-p-1)/2 , s = RN(ĉx) = 2 p , resulting in an error |s -cx| = 3 2 -2 -(p+1)/2 ulp(cx).
For instance, if p = 24, our example gives c = 16779263/2 24 , x = 16773120, and an error equal to 1.499756 Table IV presents, for various values of n, the largest value of the second bound of Property 2.2 for all constants cos(2kπ/2 n) that appear in a FFT or DCT of size 2 n , assuming p = 24. For instance, from that table, someone wanting to do an error analysis of a DCT of 2 12 elements in binary32 arithmetic can assume that all multiplications by the terms cos(2kπ/2 n) are performed with an error less than 1.4502 ulp.

Example 1 establishes the asymptotical optimality of the bound of Property 2.1 when c is a constant, but it also gives information for some particular functions:

• since the values of c used in Example 1 can straightforwardly be obtained by adding two precision-p floatingpoint numbers, we also deduce the asymptotic optimality of the bound of Property 2.1 for the calculation of z * (x + y); • in the particular cases (but they are the ones that matter the most in practice, since they correspond to binary32/single-precision, binary64/double-precision and binary128/quad-precision arithmetics) p = 24, p = 53 and p = 113, factorizations of the particular values of c given in the example show that these values are the product of two floating-point numbers. This immediately shows that errors 1.499756 the error made when computing x √ y is 1.4991 ulp(x √ y).

• • • ulp(cx) (in binary32 arith- metic), 1.49999999254942 • • • ulp(cx) (in

III. DIVISION OF A FP NUMBER BY A CORRECTLY-ROUNDED FUNCTION

Now we consider approximating x/c, where x is a floatingpoint number and c is either a real constant or a real function of one or more FP variables, by

s = RN(x/ĉ),
where, as previously, ĉ = RN(c). Here, the case where c is a constant is of little interest, since one seldom divides by a constant (multiplying by the reciprocal of that constant c is in general a much better option, unless c is much closer to a FP number than 1/c, in which case the division, although in general significantly slower, will be more accurate than the multiplication). However the other cases are important: the results we give below cover computations such as x/(y + z), x/ √ y, x/(y•z), x/ cos(y), etc., where x, y, and z are floatingpoint numbers and assuming function cos is correctly rounded. Without loss of generality, we assume 1 x < 2 (so that, since x is a FP number, 1

x 2 -2u), and 1 c < 2 (which implies 1 ĉ 2). We have

1 c - 1 ĉ = |ĉ -c| ĉc u ĉc u. (10)
Let us first eliminate a few particular cases

• if x = 1 and ĉ = 1 then s - x c RN 1 ĉ - 1 ĉ + 1 c - 1 ĉ 0 + u,
and that bound u is equal to ulp(1/c) if c > 1 (and to (1/2) ulp(1/c) if c = 1 but in that straightforward case, the error is obviously zero); • x = 1 and ĉ > 1 (which implies ĉ 1+2u and c 1+u) then, using [START_REF] Jeannerod | On relative errors of floating-point operations: optimal bounds and applications[END_REF],

s - x c RN 1 ĉ - 1 ĉ + 1 c - 1 ĉ u 2 + u (1 + 2u)(1 + u) = 3 2 u - 3u 2 + 2u 3 1 + 3u + 2u 2 = 3 2 - 3u + 2u 2 1 + 3u + 2u 2 ulp 1 c .
and that bound is less than

3 2 -3u + 7u 2 ulp 1 c ; • if ĉ = 1 and x = 1 (so that x 1 + 2u) then s = RN(x/ĉ) = x/ĉ, so that s - x c = x • 1 c - 1 ĉ x • u ĉc 2u -2u 2 ,
and ĉ = 1 implies 1 c 1 + u, so that

x c 1 + 2u 1 + u > 1,
hence ulp(x/c) = 2u and therefore

s - x c (1 -u) ulp x c .
We can now assume 1+2u x 2-2u and 1+2u ĉ 2 (so that 1 + u c 2). We have

s - x c RN x ĉ - x ĉ + x c - x ĉ .
• If c x then ĉ x (since RN is an increasing function and RN(x) = x) and therefore ulp(x/c) = ulp(x/ĉ). Also,

RN x ĉ - x ĉ u,
and x c - x ĉ x • u ĉc (2 -2u) • u (1 + 2u)(1 + u) , so that s - x c u • 1 + 2 -2u (1 + 2u)(1 + u) = 3u - 4u 2 (2 + u) 1 + 3u + 2u 2 ,
and ulp(x/c) = 2u, so that

s - x c 3 2 - 4u + 2u 2 1 + 3u + 2u 2 ulp x c 3 2
-4u + 10u 2 ulp x c .

• If c > x then ĉ x (since RN is an increasing function).

We have

RN x ĉ - x ĉ u 2 , and x c - x ĉ x • u ĉc = x c • u ĉ < 1 • u 1 + 2u ,
and ulp(x/c) = u, so that s -x c

1 2 + 1 1 + 2u ulp x c = 3 2 - 2u 1 + 2u ulp x c 3 2 -2u + 4u 2 ulp x c .
Putting all this together, we obtain Property 3.1: Assume radix-2, precision-p floating-point arithmetic. If c is a real constant or a real function of one or more variables, x is a floating-point number, and ĉ = RN(c) is the correctly-rounded (to nearest) implementation of c then, barring underflow and overflow, the FP number s = RN(x/ĉ) satisfies s -x c

3 2 - 2u 1 + 2u ulp x c 3 2 -2u + 4u 2 ulp x c .
The following example shows that when c is an arbitrary real constant, the bound of Property 3.1 is asymptotically optimal. Example 2: If p is even and larger than 4, the choice

x = 2 -2 -p/2 , c = 1 + 2 -p/2-1 -2 -p , gives ĉ = 1 + 2 -p/2-1 , x/c = 2 -2 -p/2+1 + 3 • 2 -p + O 2 -3p/2 , RN(x/ĉ) = 2 -2 -p/2+1 ,
resulting in an error

x c -RN x ĉ = 3 2 + O 2 -p/2 ulp x c .
If p is odd and larger than 5, the choice

x = 1, c = 1 + 2 -(p+1)/2 -2 -p , gives ĉ = 1 + 2 -(p+1)/2 , x/c = 1 -2 -(p+1)/2 + 3 • 2 -p-1 + O 2 -3p/2 , RN(x/ĉ) = 1 -2 -(p+1)/2 ,
resulting again in an error

x c -RN x ĉ = 3 2 + O 2 -p/2 ulp x c .
For instance, if p = 24, our example gives Example 2 establishes the asymptotical optimality when c is a constant, but also gives information for some particular functions. It turns out that the values of c in Example 2 are the same as those in Example 1, so the reasoning is the same:

• since the values of c used in Example 2 can straightforwardly be obtained by adding two FP numbers, we also deduce the asymptotic optimality of the bound of Property 3.1 for the calculation of z/(x + y). • in the particular cases p = 24 (binary32 arithmetic), p = 53 (binary64) and p = 113 (binary128), factorizations of the particular values of c given in the example show that these values can be obtained by multiplying FP numbers. This immediately shows that errors 1.49957 where, as previously, ĉ = RN(c). Since the reasoning is highly similar to that of Section III, we only outline the major points. The cases where c or x are a power of 2 are straightforward, so without loss of generality, we assume 1 < x < 2 (so that, since x is a FP number, 1 + 2u x 2 -2u), and 1 < c < 2 (which implies 1 ĉ 2).

• if c < x then ĉ x, and therefore ĉ

x -RN ĉ x u 2 , and ĉ x - c x = 1 x • |ĉ -c| 1 1 + 2u • u, so that s - c x 3u + 2u 2 2 + 4u = 3 + 2u 2 + 4u • ulp c x .
• if c x then ĉ x, and therefore ĉ

x -RN ĉ x u, and ĉ x - c x = 1 x • |ĉ -c| 1 1 + 2u • u < u,
and therefore

s - c x < 2u = ulp c x .
Putting all this together, we conclude Property 4.1: Assume radix-2, precision-p floating-point arithmetic. If c is a real constant or a real function of one or more variables, x is a floating-point number, and ĉ = RN(c) is the correctly-rounded (to nearest) implementation of c then, barring underflow and overflow, the FP number s = RN(ĉ/x) satisfies

s - c x 3 + 2u 2 + 4u • ulp c x 3 2 -2u + 4u 2 ulp c x .
Property 4.1 covers calculations such as ln(2)/x, √ x/y, (x + y)/z, . . . In the general case, the bound given by Property 4.1 is very tight. For instance, if p = 53, c = 2 53 + 1, and x = 2 52 + 2 25 , assuming RN breaks ties to even, we obtain ĉ = 2 53 and s = 134217727/2 26 , resulting in an error

1.4999999888241291 • • • ulp(c/x).
That example can be transformed into a "generic" example, that shows that the bound of Property 4.1 is asymptotically optimal for odd values of p (at least assuming that RN breaks ties to even which is the default in IEEE 754 arithmetic). This is done as follows. Let p be an odd integer, let c = 2 p + 1 (hence ĉ = 2 p) and x = 2 p-1 + 2 (p-3)/2 .

We have ĉ x = 2 p 2 p-1 + 2 (p-3)/2 = 2 where m = RN(m) and n = RN(n) (the case where both m and n are constants is of course of little interest). To deal with this case, we need the following lemma.

Lemma 5.1: Let x and y be real numbers satisfying 1 x, y 2.

If xy 2 then

x + y 3.

The proof of Lemma 5.1 is simple: xy 2 implies x 2/y, therefore x+y 2/y+y. Since y > 0, the number 2/y+y-3 has the same sign as P (y) = y 2 -3y + 2.

The roots of polynomial P are 1 and 2 and we immediately deduce that P (y) 0 for y between 1 and 2.

Let us now bound the error |s -mn|. Without loss of generality, we assume 1 m < 2 and 1 n < 2. We have

|s -mn| = |RN (m • n) -mn| |RN (m • n) -m • n| + | m • n -mn| ,

3) Summary: We finally obtain Property 2 . 1 :Property 2 . 2 :

 2122 Assume radix-2, precision-p floating-point arithmetic. If c is a real constant or a real function of one or more variables, x is a floating-point number, and ĉ = RN(c) is the correctly-rounded (to nearest) implementation of c then, barring underflow and overflow, the FP number s = RN(ĉ • x) satisfies |s -cx| 3 2 -u • ulp (cx) < 3 2 ulp (cx). Assume radix-2, precision-p floating-point arithmetic. If c is a nonzero real constant, x is a floating-point number, and ĉ = RN(c) then, barring underflow and overflow, the FP number s = RN(ĉ • x) satisfies |s -

c

 = 16779263/2 24 , x = 8191/4096, and an error equal to 1.49957 • • • ulp(x/c); if p = 53, it gives c = 9007199321849855/2 53 , x = 1, and an error 1.49999998137 • • • ulp(x/c); and if p = 113 it gives c = 10384593717069655329118586696368127/2 113 x = 1, and an error 1.49999999999999998265 • • • ulp(x/c).

1 1 + 2 - 2 - 2 + 2 -

 12222 (p+1)/2 = 2(1 -2 -(p+1)/2 + ε p), with |ε p | < 2 -(p+1) . Therefore, RN(ĉ/x) = 2(1 -2 -(p+1)/2), 1 -2 -(p+1)/2) -(2 + 2 -(p-1))(1 -2 -(p+1)/2 + 2 -(p+1) + η p), where |η p | < 2 -3(p+1)/2 . It then follows (p+1)/2 + 2 -(p+1) + η p (1 + 2 p) ulp c x = 3 (p+1)/2 γ p ulp c x ,where |γ p | < 3.V. PRODUCT OF TWO CORRECTLY-ROUNDED FUNCTIONSWe now consider the approximation of m • n, where m and n are either real constants or correctly-rounded functions, by s = RN (m • n) ,

• 2 , 4 • 5 . 2 :

 2452 and | m • n -mn| m • |n -n| + n • | m -m| (m + n) • u. • if mn 2 and mn 2 then |RN (m • n) -m • n| u. Furthermore, Lemma 5.1 implies m+n 3 and therefore m + n 3 + u. All this gives |s -mn| 4u + u 2 , and since ulp(mn) 2u, we find |s -mn| (2 + u/2) ulp(mn); • if mn > 2 then |RN (m • n) -m • n| 2u and m + n 4, so that |sif mn 2 and mn > 2 then |RN (m • n) -m • n| 2u and (from Lemma 5.1) m + n 3 + u, so that |s -mn| 5u + u ulp(mn) when mn = 2. We finally obtain Property Assume radix-2, precision-p floating-point arithmetic. If m and n are real constants or real functions

 for any integer k and real t), without loss of generality, we can

	assume 1	c < 2 and 1	x < 2. Since ĉ is c rounded to
	nearest, we have		
			|c -ĉ|	1 2	ulp(c),
	and therefore	|cx -ĉx|		x 2	ulp(c).

TABLE I THE

 I VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = π, COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED THROUGH EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).

	p	8	16	24	53	113
	bound of Prop. 2.1	1.496093750	1.499984741	1.499999940	1.500000000	1.500000000
	1st bound of Prop. 2.2	1.136619772	1.136619772	1.136619772	1.136619772	1.136619772
	2nd bound of Prop. 2.2	.5788515082	.6858466083	.9668685680	.8511161042	.7866483180
	actual largest error	.5176877776	.6825298419			
			TABLE II			
	THE VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = cos(5π/32), COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED
		THROUGH EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).	
	p	8	16	24	53	113
	bound of Prop. 2.1	1.496093750	1.499984741	1.499999940 1.500000000	1.500000000
	1st bound of Prop. 2.2	1.066944035	1.066944035	1.066944035 1.066944035	1.066944035
	2nd bound of Prop. 2.2	.7587037370	.9626486317 1.013690470	.7026621871	.8537866473
	actual largest error	.7004712694	.9585313311			

TABLE III THE

 III VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = 263/256, COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED THROUGH EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).

		p	8	16	24	53	113
	bound of Prop. 2.1	1.496093750 1.499984741	1.499999940	1.500000000	1.500000000
	1st bound of Prop. 2.2	1.473384030 1.473384030	1.473384030	1.473384030	1.473384030
	2nd bound of Prop. 2.2	1.473384030	.5000000000	.5000000000	.5000000000	.5000000000
	actual largest error	1.437500000	.5000000000		
	n 2nd bound of Prop. 2.2			
	4	1.0140506566			
	5 -7	1.2984865212			
	8	1.3717040024			
	9 -12	1.4501519783			
	13	1.4616997574			
	14	1.4761273962			
	15 -18	1.4940991041			
	19 -20	1.4970223192			
	• • •	• • •				
	32	1.4999503673			

c = cos(5π/32), and c = 263/256, and for various values of the precision p ranging from 8 to 113. For small values of p an exhaustive search for the actual largest error was possible: it shows that the second bound of Property 2.2 is very tight.

TABLE IV FOR

 IV VARIOUS VALUES OF n, WE GIVE THE LARGEST VALUE OF THE 2ND BOUND OF PROP. 2.2 FOR ALL CONSTANTS cos(2kπ/2 n) THAT APPEAR IN A FFT OR DCT OF SIZE 2 n , ASSUMING p = 24, WHICH CORRESPONDS TO

	BINARY32 ARITHMETIC.

If we forget about tie-breaking rules, and if we are careful at powers of

[START_REF] Cody | Implementation and testing of function software[END_REF] In particular, we assume that there are no subnormal results.

ACKNOWLEDGEMENT

This work is partly sponsored by the ANR Nuscap (ANR-20-CE48-0014) project of the French Agence Nationale de la Recherche.

The bound given by Property 5.2 is very tight. It is asymptotically optimal for even values of p . This is shown when RN breaks ties to even by considering m = 2 p + 2 p/2 -1, and n = 2 p+1 -2 p/2+1 + 3, for which we obtain m = 2 p + 2 p/2 n = 2 p+1 -2 p/2+1 + 4 mn = 2 2p+1 -2 p + 5

With another tie-breaking rule, adding a very small > 0 to m and n gives the same m and n and the same s. We conjecture that the bound is also asymptotically optimal for odd values of the precision p but we have no proof. For instance, in binary32 arithmetic (p = 24), the error committed when computing (x + y) • (z + t), where x, y, z, and t are the 4 FP numbers defined as follows:

is equal to

Therefore, in all cases,

Putting all this together, we obtain,

which immediately gives:

• if n d then ulp(n/d) = 2u and

We therefore obtain Property 6. The bound given by Property 6.1 is very tight. In the general case, assuming RN breaks ties to even, it is asymptotically optimal, as one may check using the generic values

Let us quickly detail the case p odd: let v = 2 (-p+1)/2 so that v 2 = 2 -p+1 = 2u. We have

From n = 2 p and d = 2 p + 2 (p-1)/2 we obtain

Hence the error is

For instance, consider the computation of (x + y)/(z + t) in binary64 arithmetic, where x, y, z and t are the four following binary64 numbers:

This corresponds to Property 6. For other functions, we also found cases where the actual error is very close to the bound 2.5 ulp. For instance, in binary64 floating-point arithmetic (p = 53), error 2.4994 ulp is attained when computing

These two cases correspond to Property 6.1 with

CONCLUSION

We have given sharp error bounds in ulps for computations in binary floating-point arithmetic of the form x • c, x/c, c/x, m • n and n/d, where x is a floating-point number and c, n, m and d are either real constants or correctly-rounded functions of one or more variables. Examples of functions for which our work gives tight bounds are x * pi, ln(2)/x, x/(y + z), (x + y) * z, x/sqrt(y), sqrt(x)/y, (x + y)(z + t), (x + y)/(z + t), (x + y)/(zt), etc.

In several cases, we have been able to show that our bounds are asymptotically optimal.