
HAL Id: hal-04044716
https://hal.science/hal-04044716v2

Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Error in ulps of the multiplication or division by a
correctly-rounded function or constant in binary

floating-point arithmetic
Nicolas Brisebarre, Jean-Michel Muller, Joris Picot

To cite this version:
Nicolas Brisebarre, Jean-Michel Muller, Joris Picot. Error in ulps of the multiplication or division by
a correctly-rounded function or constant in binary floating-point arithmetic. IEEE Transactions on
Emerging Topics in Computing, inPress, �10.1109/TETC.2023.3294986�. �hal-04044716v2�

https://hal.science/hal-04044716v2
https://hal.archives-ouvertes.fr

1

Error in ulps of the multiplication or division by a
correctly-rounded function or constant in binary

floating-point arithmetic
Nicolas Brisebarre, Jean-Michel Muller, Fellow, IEEE, Joris Picot

Abstract—Assume we use a binary floating-point arithmetic
and that RN is the round-to-nearest function. Also assume that
c is a constant or a real function of one or more variables, and
that we have at our disposal a correctly rounded implementation
of c, say ĉ = RN(c). For evaluating x · c (resp. x/c or c/x),
the natural way is to replace it by RN(x · ĉ) (resp. RN(x/ĉ) or
RN(ĉ/x)), that is, to call function ĉ and to perform a floating-
point multiplication or division. This can be generalized to the
approximation of n/d by RN(n̂/d̂) and the approximation of
n · d by RN(n̂ · d̂), where n̂ = RN(n) and d̂ = RN(d),
and n and d are functions for which we have at our disposal
a correctly rounded implementation. We discuss tight error
bounds in ulps of such approximations. From our results, one
immediately obtains tight error bounds for calculations such as
x ∗ pi, ln(2)/x, x/(y+ z), (x+ y) ∗ z, x/sqrt(y), sqrt(x)/y,
(x+ y)(z+ t), (x+ y)/(z+ t), (x+ y)/(zt), etc. in floating-
point arithmetic.

Index Terms—Floating-point arithmetic, ulp, numerical error,
correct rounding, multiplication by a constant

I. INTRODUCTION

A. Purpose of this paper and notation

MULTIPLYING a floating-point number by a real con-
stant (such as π or ln(2)), or multiplying or dividing

it by a correctly rounded function of one or more variables
(such as

√
x, x+y, or xy), or dividing a constant or correctly-

rounded function by a floating-point number are very frequent
operations in numerical computing. When last-bit accuracy is
desired, one can use specifically-designed solutions (see for
instance [1] for multiplication by a constant). However, here,
we are interested by the error of the straightforward approach.
For instance, when a programmer writes the statement

s = x ∗ pi;

he or she most probably wants to compute x · π as accurately
as possible. However the variable pi is already a floating-
point approximation of the real π, and, as a result, the error in
this computation is larger than the mere approximation caused
by the floating-point multiplication. We are also interested in
calculations such as

s = x/sqrt(y);

or

s = (x+ y) ∗ (z+ t);

N. Brisebarre is with CNRS, Lab. LIP, ENS de Lyon, Lyon, France
J.-M. Muller is with CNRS, Lab. LIP, ENS de Lyon, Lyon, France
J. Picot is with ENS de Lyon, Lab. LIP, Lyon, France

A tight bound on the relative error of such operations is very
easily obtained (see Section I-B). And yet, although relative
errors are frequently easier to manipulate, for basic functions
that can be regarded as “atomic”, errors in ulps are frequently
preferred, because they convey more information (for example,
while correct rounding implies an error less than 0.5 ulp and a
relative error less than u—see definition below—, the converse
is almost true for the error in ulps,1 and far from being true
for the relative errors). The purpose of this paper is to give
very tight bounds on the error in ulps on the multiplication
or division of a floating-point number by a real constant or a
correctly-rounded function, or on the product or quotient of
two correctly-rounded functions. As is common in rounding
error analysis of mathematical functions, we assume that the
input floating-point numbers are exact (in practice, they often
result from a previous calculation or from a measurement and
therefore contain some error, but the impact of that error on the
final result must be evaluated separately). See for instance [2].

In the following, we assume a binary, precision-p, floating-
point (FP) arithmetic, with correctly rounded (to nearest)
floating-point operations. A floating-point number is zero or a
number of the form

x =Mx · 2ex−p+1,

where Mx and ex are integers, with 2p−1 6 |Mx| 6 2p − 1.
Here, we do not assume bounds on the exponents ex, which
means that our results apply to real-life arithmetics such as
the ones specified by the IEEE 754 Standard for Floating-
Point arithmetic [3] whenever underflow and overflow do not
occur.2 In the following, if t is a real number then RN(t) is
the floating-point number nearest to t (a tie-breaking choice
is necessary if t is halfway between two consecutive floating-
point numbers: our bounds are valid whatever the tie-breaking
choice, provided that it satisfies RN(−x) = −RN(x) and
RN(2kx) = 2k RN(x), however our examples use the ties-
to-even rule, which is the default in IEEE-754 arithmetic). If
t ∈ R, t 6= 0 then
• ulp(t) (unit in the last place of t) is 2blog2 |t|c−p+1, and
• ufp(t) (unit in the first place [4] of t) is 2blog2 |t|c.

Functions ufp and ulp are defined for real numbers, not only
for FP numbers. This is why we cannot use the “exponent of
t” in their definitions. The unit round-off [5] is the number

1If we forget about tie-breaking rules, and if we are careful at powers of
2.

2In particular, we assume that there are no subnormal results.

2

u = 2−p. Note that ulp(t) is the distance between two con-
secutive FP numbers in the neighborhood of t. If 1 6 t < 2
then ulp(t) = 2u. In particular, the FP number preceding 2 is
2− 2u.

These notions are illustrated by Figure 1.

1
2 1

2u

2

ufp(x)
x

RN(x)

ulp(x) = 4u

4

y

RN(y)
(assuming ties-to-even)

8

Fig. 1. The FP numbers between 1/2 and 8 in the toy system p = 3 (i.e.,
u = 1/8).

In the following, c is either a real constant or a real function
of one or more floating-point variables. We assume that ĉ =
RN(c) is available. If c is a constant, ĉ is just the floating-
point number nearest to c. If c is an arithmetic function (e.g.,
c(x, y) = x + y or c(x, y) = xy), or the square root, then
ĉ is provided by the underlying IEEE-754 arithmetic. If c is
a more complex function, such as exp(x), ln(x), etc., ĉ can
be provided by a correctly-rounded function such as the ones
included in the CORE-MATH library [6].

We first obtain tight bounds on the error, expressed in ulps,
of approximating the product c · x (resp. the quotient x/c or
the quotient c/x), where x is a floating-point number, by

s = RN(ĉ · x) (resp. RN(x/ĉ) or RN(ĉ/x)).

This is done in Section II for x · c, in Section III for x/c, and
in Section IV for c/x.

When c is a constant, we assume that it is not a floating-
point number (otherwise, the well-known bound 0.5 ulp ap-
plies and is optimal). Our results apply for instance to the
computation of

x · cos
(
2kπ

N

)
,

that appears in discrete cosine transforms, assuming that either
the values RN(cos(2kπ/N)) are precomputed and stored, or
that N is a power of 2, k is less than 2p and a correctly-
rounded function cospi is available (there is one for instance
in the CORE-MATH library). Our results also apply to the
calculation of expressions of the form

(x+ y) · z, z/(x+ y), (x+ y)/z, (x · y) · z, z/(x · y), x · √y,
x/
√
y,
√
y/x, ex · y, x · ln(y), x/π, π/x, etc.,

where x, y, and z are floating-point numbers and assuming
that the exponential and logarithm are correctly rounded. To
the best of our knowledge, no tight error bounds in ulps for
these functions have been published so far.

By “expressing the error bound in ulps” we mean that we
want to find some real α, as small as possible, such that

|s− cx| 6 α · ulp(cx).

It is wiser to measure errors in terms of ulps of the exact
result instead of ulps of the computed result, because the latter

choice could lead to dubious conclusions. The authors of [7,
Section 2.5] illustrate this as follows:

Assume for instance that the exact result is the real
x = 1 + u and consider two (quite poor) computed
floating-point results: a = 2 − 2u and b = 2 + 4u.
Since x < a < b, it would make no sense to consider
that b is a better approximation to x than a. And yet
x is within

(
2p−1 − 3/2

)
ulp(a) from a, and within(

2p−2 + 3/4
)
ulp(b) from b.

In Section V, we generalize the work of the preceding
sections to the approximation of m · n, where m and n
are either real constants or correctly-rounded functions, by
s = RN(m̂ · n̂), where m̂ = RN(m) and n̂ = RN(n). The
obtained results apply to functions such as (x + y) · (z + t),√
x · (y · z), ln(x) · ln(y) (assuming a correctly-rounded

logarithm), etc. Finally, in Section VI, we present a similar
study for the quotient of two correctly-rounded functions.

B. Just a few words on relative errors

Obtaining relative errors on the calculation of cx or x/c is
straightforward. We just quickly address that question, for the
sake of completeness and to show that the obtained results do
not suffice for deducing a tight bound on the error in ulps.
Without loss of generality, we assume c > 0 and x > 0.
The relative error due to rounding to nearest a real number is
bounded by u/(1+u) and that bound is optimal [8, p. 232] [9,
p. 74] and has been used to obtain tight relative error bounds
on various operations (see e.g. [10], [11]). Therefore

c ·
(
1− u

1 + u

)
6 ĉ 6 c ·

(
1 +

u

1 + u

)
,

ĉx ·
(
1− u

1 + u

)
6 RN(ĉx) 6 ĉx ·

(
1 +

u

1 + u

)
,

and
x

ĉ
·
(
1− u

1 + u

)
6 RN

(x
ĉ

)
6
x

ĉ
·
(
1 +

u

1 + u

)
.

From this, we easily deduce that the numbers s1 = RN(ĉx)
and s2 = RN(x/ĉ) satisfy

cx ·
(
1− u

1 + u

)2

6 s1 6 cx ·
(
1 +

u

1 + u

)2

,

and
x

c
·
1− u

1+u

1 + u
1+u

6 s2 6
x

c
·
1 + u

1+u

1− u
1+u

,

so that the relative error of the multiplication by c is bounded
by (

1 +
u

1 + u

)2

− 1 =
2u+ 3u2

1 + 2u+ u2

< 2u,

and the relative error of the division by c is bounded by

max

{
1−

1− u
1+u

1 + u
1+u

;
1 + u

1+u

1− u
1+u

− 1

}
=

1 + u
1+u

1− u
1+u

− 1

= 2u.

3

Very similarly, the relative error of the division of c by x is
bounded by (

1 +
u

1 + u

)2

− 1 < 2u,

the relative error due to the approximation of m ·n by RN(m̂ ·
n̂) is bounded by(

1 +
u

1 + u

)3

− 1 < 3u,

and the relative error due to the approximation of n/d by
RN(n̂/d̂) is bounded by(

1 + u
1+u

)2
1− u

1+u

− 1 =
3u+ 4u2

1 + u

< 3u+ u2 ' 3u.

Hence the relative error of the computation of cx, x/c and c/x
is bounded by 2u, and the relative error of the computation of
m · n and n/d are bounded by around 3u. These bounds are
very tight (for instance, in binary32/single-precision arithmetic
(p = 24), error 1.99902u is attained for the multiplication of
c = 16779263 and x = 8392705). From these bounds the
best bounds on the error in ulps one can deduce (conversions
between errors in ulps and relative errors are presented for
instance in [12, Section 2.3.3]) are 2 ulp for the computation
of cx, x/c and c/x (resp. around 3 ulp for the computation of
m·n and n/d). And yet, we are going to show the significantly
better bounds 1.5 ulp (resp. 2.5 ulp).

II. MULTIPLICATION OF A FP NUMBER BY A CONSTANT
OR A CORRECTLY-ROUNDED FUNCTION

Let us first establish an error bound in ulps on the compu-
tation of x · c, where x is a floating-point number and c is a
constant or a correctly-rounded function. We want to bound
the error of approximating x · c by

RN(x · ĉ) .

We will first consider “general” bounds, applicable to any c.
Then we will try to improve these bounds in the particular
case where c is a constant.

A. First steps

Since ulp(2kt) = 2k ulp(t) and RN(2kt) = 2k RN(t) for
any integer k and real t), without loss of generality, we can
assume 1 6 c < 2 and 1 6 x < 2. Since ĉ is c rounded to
nearest, we have

|c− ĉ| 6 1

2
ulp(c),

and therefore
|cx− ĉx| 6 x

2
ulp(c). (1)

We also have
|s− ĉx| 6 1

2
ulp(ĉx), (2)

so that, by the triangular inequality

|s− cx| 6 x

2
ulp(c) +

1

2
ulp(ĉx). (3)

Equation (3) expresses the error in terms of ulp(c) and
ulp(ĉx), whereas we need to express it in terms of ulp(cx).
Since x > 1 and ulp is an increasing function, ulp(c) can be
bounded (although possibly non-optimally) by ulp(cx). The
case of ulp(ĉx) is more difficult to handle: ĉx and cx are
very close values, between 1 and 4, so that we will almost
always have ulp(ĉx) = ulp(cx). However, there may be some
corner cases when one of ĉx and cx is less than 2 and the
other one is larger than or equal to 2. In these cases ulp(ĉx)
will be either 1

2 ulp(cx) or 2 ulp(cx). Let us quickly eliminate
the latter case, by showing that when ulp(ĉx) > ulp(cx) the
computation is very accurate (in that case, the error will be
significantly less than the general error bound we give later
on).

B. The special case ulp(ĉx) > ulp(cx)

For that case to happen, we must have

cx < 2 6 ĉx.

Since ulp(c) = 21−p = 2u and ĉ = RN(c), we have

c < ĉ 6 c+ u,

and we therefore deduce

cx < 2 6 ĉx 6 cx+ ux.

Since x is a floating-point number and x < 2, we have x 6
2− 2u, and therefore

cx < 2 6 ĉx 6 cx+ (2u− 2u2).

Hence, 2 6 ĉx < 2 + 2u − 2u2. Since RN is an increasing
function and RN(2) = RN(2+2u−2u2) = 2 we deduce that
s = RN(ĉx) = 2. Therefore,

|s− cx| = |2− cx|
6 2u− 2u2

= (1− u) · ulp(cx).

C. The general case ulp(ĉx) 6 ulp(cx)

1) A bound that does not depend on c: In that case, (2)
gives

|s− ĉx| 6 1

2
ulp(cx), (4)

and (3) implies

|s− cx| 6 x

2
ulp(c) +

1

2
ulp(cx). (5)

As x > 1, ulp(c) 6 ulp(cx). Since x 6 2− 2u, we finally
obtain

|s− cx| 6
(
3

2
− u
)
· ulp(cx). (6)

Example 1 below shows that the bound (6) is asymptotically
optimal (as u→ 0 or, equivalently, as p→ +∞): one cannot
improve it (at least at order 0 in u) without further assumptions
on c. Making further assumptions on c makes no sense if c
is the result of a previous operation or function (so that the
bound (6) will not be improved at order 0 in u for calculations
such as (x + y) · z, (x · y) · z, x · √y, ex · y, x · ln(y), etc.).

4

However, if c is a real constant (such as π, ln(2), or one of the
terms of the form cos(2kπ/N) that appear in Fourier-related
transforms), it makes sense to try to find a sharper bound that
depends on c.

2) Improving the bound when c is a constant: We obtained
(5) by adding (4) and (1). Now, we will keep (4)—which
cannot be improved, unless ĉ is a power of 2—unchanged,
and try to improve on (1), by introducing a new bound on
|cx− ĉx| that depends on c. We start from

|cx− ĉx| = x · |c− ĉ| .

Two cases may occur:

• if x < 2/c then ulp(cx) = ulp(c) = 21−p = 2u, and
therefore

|cx− ĉx| < 2p ·
∣∣∣∣c− ĉc

∣∣∣∣ · ulp(cx); (7)

• if x > 2/c then ulp(cx) = 2 ulp(c) = 22−p, and
therefore

|cx− ĉx| < 2p−1 · |c− ĉ| · ulp(cx). (8)

Since c is between 1 and 2, the bound (8) is always less than
the bound (7). Hence, the bound (7) holds in all cases.

We immediately deduce

|s− cx| 6
(
1

2
+ 2p ·

∣∣∣∣c− ĉc
∣∣∣∣) · ulp (cx). (9)

Note that the bound (9) varies with p. One may obtain a
bound that no longer depends on p, but is in general looser,
by defining

mant(c) =
c

ufp(c)
=

c

2blog2(c)c

(it is the “infinite precision significand” of c—up to now, in
our proofs, we used 1 6 c < 2, in which case mant(c) = c,
but to give a final result that is valid for all positive c, we need
here to use function mant). If we note that |c− ĉ| 6 u ·ufp(c),
we obtain

|s− cx| 6
(
1

2
+

1

mant(c)

)
· ulp (cx).

3) Summary: We finally obtain
Property 2.1: Assume radix-2, precision-p floating-point

arithmetic. If c is a real constant or a real function of one or
more variables, x is a floating-point number, and ĉ = RN(c)
is the correctly-rounded (to nearest) implementation of c then,
barring underflow and overflow, the FP number s = RN(ĉ ·x)
satisfies

|s− cx| 6
(
3

2
− u
)
· ulp (cx) < 3

2
ulp (cx). �

Property 2.2: Assume radix-2, precision-p floating-point
arithmetic. If c is a nonzero real constant, x is a floating-point

number, and ĉ = RN(c) then, barring underflow and overflow,
the FP number s = RN(ĉ · x) satisfies

|s− cx| 6
(
1

2
+

1

mant(c)

)
· ulp (cx),

|s− cx| 6
(
1

2
+ 2p ·

∣∣∣∣c− ĉc
∣∣∣∣) · ulp (cx). �

The bound of Property 2.1 is general. The first bound of
Property 2.2 is tighter but requires c to be a constant and
depends on its value. The second bound of Property 2.2 is
even tighter but depends on the values of c and p.

The following “generic” (i.e., parameterized by the preci-
sion p) example shows that in the general case of an arbitrary
constant c, the bound given by Property 2.1 is asymptotically
optimal.

Example 1: Assume RN breaks ties to even. If p is even,
the choice

x = 2p − 2p/2,
c = 1 + 2−p/2−1 − 2−p,

gives
ĉ = 1 + 2−p/2−1,

cx = 2p − 2p/2−1 − 3
2 + 2−p/2,

s = RN(ĉx) = 2p − 2p/2−1,

resulting in an error

|s− cx| =
(
3

2
− 2−p/2

)
ulp(cx).

If p is odd, the choice

x = 2p − 2(p−1)/2,
c = 1 + 2−(p+1)/2 − 2−p,

gives
ĉ = 1 + 2−(p+1)/2,

cx = 2p − 3
2 + 2(−p−1)/2,

s = RN(ĉx) = 2p,

resulting in an error

|s− cx| =
(
3

2
− 2−(p+1)/2

)
ulp(cx).

For instance, if p = 24, our example gives

c = 16779263/224,
x = 16773120,

and an error equal to 1.499756 · · · ulp(cx); if p = 53, it gives

c = 9007199321849855/253,
x = 9007199187632128,

and an error 1.49999999254942 · · · ulp(cx); and if p = 113 it
gives

c = 10384593717069655329118586696368127/2113,
x = 10384593717069655185003398620512256,

and an error

1.499999999999999993061106 · · · ulp(cx).

Tables I, II, and III present the various bounds one ob-
tains from Properties 2.1 and 2.2 in the cases c = π,

5

TABLE I
THE VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = π, COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED THROUGH

EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).

p 8 16 24 53 113

bound of Prop. 2.1 1.496093750 1.499984741 1.499999940 1.500000000 1.500000000
1st bound of Prop. 2.2 1.136619772 1.136619772 1.136619772 1.136619772 1.136619772

2nd bound of Prop. 2.2 .5788515082 .6858466083 .9668685680 .8511161042 .7866483180
actual largest error .5176877776 .6825298419

TABLE II
THE VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = cos(5π/32), COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED

THROUGH EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).

p 8 16 24 53 113

bound of Prop. 2.1 1.496093750 1.499984741 1.499999940 1.500000000 1.500000000
1st bound of Prop. 2.2 1.066944035 1.066944035 1.066944035 1.066944035 1.066944035

2nd bound of Prop. 2.2 .7587037370 .9626486317 1.013690470 .7026621871 .8537866473
actual largest error .7004712694 .9585313311

TABLE III
THE VARIOUS BOUNDS GIVEN BY PROPERTIES 2.1 AND 2.2 IN THE CASE c = 263/256, COMPARED WITH THE ACTUAL LARGEST ERROR OBTAINED

THROUGH EXHAUSTIVE TESTING (FOR SMALL VALUES OF p ONLY).

p 8 16 24 53 113

bound of Prop. 2.1 1.496093750 1.499984741 1.499999940 1.500000000 1.500000000
1st bound of Prop. 2.2 1.473384030 1.473384030 1.473384030 1.473384030 1.473384030

2nd bound of Prop. 2.2 1.473384030 .5000000000 .5000000000 .5000000000 .5000000000
actual largest error 1.437500000 .5000000000

c = cos(5π/32), and c = 263/256, and for various values
of the precision p ranging from 8 to 113. For small values of
p an exhaustive search for the actual largest error was possible:
it shows that the second bound of Property 2.2 is very tight.

n 2nd bound of Prop. 2.2

4 1.0140506566
5− 7 1.2984865212

8 1.3717040024
9− 12 1.4501519783

13 1.4616997574
14 1.4761273962

15− 18 1.4940991041
19− 20 1.4970223192

· · · · · ·
32 1.4999503673

TABLE IV
FOR VARIOUS VALUES OF n, WE GIVE THE LARGEST VALUE OF THE 2ND

BOUND OF PROP. 2.2 FOR ALL CONSTANTS cos(2kπ/2n) THAT APPEAR IN
A FFT OR DCT OF SIZE 2n , ASSUMING p = 24, WHICH CORRESPONDS TO

BINARY32 ARITHMETIC.

Table IV presents, for various values of n, the largest
value of the second bound of Property 2.2 for all constants
cos(2kπ/2n) that appear in a FFT or DCT of size 2n,
assuming p = 24. For instance, from that table, someone
wanting to do an error analysis of a DCT of 212 elements
in binary32 arithmetic can assume that all multiplications by
the terms cos(2kπ/2n) are performed with an error less than
1.4502 ulp.

Example 1 establishes the asymptotical optimality of the

bound of Property 2.1 when c is a constant, but it also gives
information for some particular functions:
• since the values of c used in Example 1 can straightfor-

wardly be obtained by adding two precision-p floating-
point numbers, we also deduce the asymptotic optimality
of the bound of Property 2.1 for the calculation of
z ∗ (x+ y);

• in the particular cases (but they are the ones that
matter the most in practice, since they correspond to
binary32/single-precision, binary64/double-precision and
binary128/quad-precision arithmetics) p = 24, p = 53
and p = 113, factorizations of the particular values of
c given in the example show that these values are the
product of two floating-point numbers. This immediately
shows that errors 1.499756 · · · ulp(cx) (in binary32 arith-
metic), 1.49999999254942 · · · ulp(cx) (in binary64 arith-
metic), and 1.499999999999999993061106 · · · ulp(cx)
(in binary128 arithmetic) can be attained when calculat-
ing z ∗ (x ∗ y), showing that for that function, the bound
of Property 2.1 is very tight.

For various other functions, we have built examples that show
the sharpness of the bound of Property 2.1. For instance, in
binary64 arithmetic, with

x = 9007197761440759

and
y = 4503599630388691/252

the error made when computing x
√
y is 1.4991 ulp(x

√
y).

6

III. DIVISION OF A FP NUMBER BY A
CORRECTLY-ROUNDED FUNCTION

Now we consider approximating x/c, where x is a floating-
point number and c is either a real constant or a real function
of one or more FP variables, by

s = RN(x/ĉ),

where, as previously, ĉ = RN(c). Here, the case where c is
a constant is of little interest, since one seldom divides by a
constant (multiplying by the reciprocal of that constant c is
in general a much better option, unless c is much closer to
a FP number than 1/c, in which case the division, although
in general significantly slower, will be more accurate than the
multiplication). However the other cases are important: the
results we give below cover computations such as x/(y + z),
x/
√
y, x/(y ·z), x/ cos(y), etc., where x, y, and z are floating-

point numbers and assuming function cos is correctly rounded.
Without loss of generality, we assume 1 6 x < 2 (so that,

since x is a FP number, 1 6 x 6 2 − 2u), and 1 6 c < 2
(which implies 1 6 ĉ 6 2). We have∣∣∣∣1c − 1

ĉ

∣∣∣∣ = |ĉ− c|ĉc
6

u

ĉc
6 u. (10)

Let us first eliminate a few particular cases
• if x = 1 and ĉ = 1 then∣∣∣s− x

c

∣∣∣ 6 ∣∣∣∣RN(1

ĉ

)
− 1

ĉ

∣∣∣∣+ ∣∣∣∣1c − 1

ĉ

∣∣∣∣
6 0 + u,

and that bound u is equal to ulp(1/c) if c > 1 (and to
(1/2) ulp(1/c) if c = 1 but in that straightforward case,
the error is obviously zero);

• x = 1 and ĉ > 1 (which implies ĉ > 1+2u and c > 1+u)
then, using (10),∣∣∣s− x

c

∣∣∣ 6 ∣∣∣∣RN(1

ĉ

)
− 1

ĉ

∣∣∣∣+ ∣∣∣∣1c − 1

ĉ

∣∣∣∣
6
u

2
+

u

(1 + 2u)(1 + u)

=
3

2
u− 3u2 + 2u3

1 + 3u+ 2u2

=

(
3

2
− 3u+ 2u2

1 + 3u+ 2u2

)
ulp

(
1

c

)
.

and that bound is less than(
3

2
− 3u+ 7u2

)
ulp

(
1

c

)
;

• if ĉ = 1 and x 6= 1 (so that x > 1 + 2u) then s =
RN(x/ĉ) = x/ĉ, so that∣∣∣s− x

c

∣∣∣ = x ·
∣∣∣∣1c − 1

ĉ

∣∣∣∣
6 x · u

ĉc

6 2u− 2u2,

and ĉ = 1 implies 1 6 c 6 1 + u, so that

x

c
>

1 + 2u

1 + u
> 1,

hence ulp(x/c) = 2u and therefore∣∣∣s− x

c

∣∣∣ 6 (1− u) ulp
(x
c

)
.

We can now assume 1+2u 6 x 6 2−2u and 1+2u 6 ĉ 6 2
(so that 1 + u 6 c 6 2). We have∣∣∣s− x

c

∣∣∣ 6 ∣∣∣RN(x
ĉ

)
− x

ĉ

∣∣∣+ ∣∣∣x
c
− x

ĉ

∣∣∣ .
• If c 6 x then ĉ 6 x (since RN is an increasing function

and RN(x) = x) and therefore ulp(x/c) = ulp(x/ĉ).
Also, ∣∣∣RN(x

ĉ

)
− x

ĉ

∣∣∣ 6 u,
and ∣∣∣x

c
− x

ĉ

∣∣∣ 6 x · u
ĉc
6 (2− 2u) · u

(1 + 2u)(1 + u)
,

so that ∣∣∣s− x

c

∣∣∣ 6 u · (1 + 2− 2u

(1 + 2u)(1 + u)

)
= 3u− 4u2(2 + u)

1 + 3u+ 2u2
,

and ulp(x/c) = 2u, so that∣∣∣s− x

c

∣∣∣ 6 (3

2
− 4u+ 2u2

1 + 3u+ 2u2

)
ulp
(x
c

)
6

(
3

2
− 4u+ 10u2

)
ulp
(x
c

)
.

• If c > x then ĉ > x (since RN is an increasing function).
We have ∣∣∣RN(x

ĉ

)
− x

ĉ

∣∣∣ 6 u

2
,

and ∣∣∣x
c
− x

ĉ

∣∣∣ 6 x · u
ĉc

=
(x
c

)
· u
ĉ

< 1 · u

1 + 2u
,

and ulp(x/c) = u, so that∣∣∣s− x

c

∣∣∣ 6 (1

2
+

1

1 + 2u

)
ulp
(x
c

)
=

(
3

2
− 2u

1 + 2u

)
ulp
(x
c

)
6

(
3

2
− 2u+ 4u2

)
ulp
(x
c

)
.

Putting all this together, we obtain
Property 3.1: Assume radix-2, precision-p floating-point

arithmetic. If c is a real constant or a real function of one or
more variables, x is a floating-point number, and ĉ = RN(c)
is the correctly-rounded (to nearest) implementation of c then,

7

barring underflow and overflow, the FP number s = RN(x/ĉ)
satisfies ∣∣∣s− x

c

∣∣∣ 6 (3

2
− 2u

1 + 2u

)
ulp
(x
c

)
6

(
3

2
− 2u+ 4u2

)
ulp
(x
c

)
. �

The following example shows that when c is an arbitrary real
constant, the bound of Property 3.1 is asymptotically optimal.

Example 2: If p is even and larger than 4, the choice{
x = 2− 2−p/2,
c = 1 + 2−p/2−1 − 2−p,

gives

ĉ = 1 + 2−p/2−1,
x/c = 2− 2−p/2+1 + 3 · 2−p +O

(
2−3p/2

)
,

RN(x/ĉ) = 2− 2−p/2+1,

resulting in an error∣∣∣x
c
− RN

(x
ĉ

)∣∣∣ = (3

2
+O

(
2−p/2

))
ulp
(x
c

)
.

If p is odd and larger than 5, the choice{
x = 1,
c = 1 + 2−(p+1)/2 − 2−p,

gives

ĉ = 1 + 2−(p+1)/2,
x/c = 1− 2−(p+1)/2 + 3 · 2−p−1 +O

(
2−3p/2

)
,

RN(x/ĉ) = 1− 2−(p+1)/2,

resulting again in an error∣∣∣x
c
− RN

(x
ĉ

)∣∣∣ = (3

2
+O

(
2−p/2

))
ulp
(x
c

)
.

For instance, if p = 24, our example gives

c = 16779263/224,
x = 8191/4096,

and an error equal to 1.49957 · · · ulp(x/c); if p = 53, it gives

c = 9007199321849855/253,
x = 1,

and an error 1.49999998137 · · · ulp(x/c); and if p = 113 it
gives

c = 10384593717069655329118586696368127/2113

x = 1,

and an error 1.49999999999999998265 · · · ulp(x/c).
Example 2 establishes the asymptotical optimality when c

is a constant, but also gives information for some particular
functions. It turns out that the values of c in Example 2 are
the same as those in Example 1, so the reasoning is the same:
• since the values of c used in Example 2 can straight-

forwardly be obtained by adding two FP numbers, we
also deduce the asymptotic optimality of the bound of
Property 3.1 for the calculation of z/(x+ y).

• in the particular cases p = 24 (binary32 arithmetic),
p = 53 (binary64) and p = 113 (binary128),

factorizations of the particular values of c given in
the example show that these values can be obtained
by multiplying FP numbers. This immediately shows
that errors 1.49957 · · · ulp(x/c) (in single precision),
1.49999998137 · · · ulp(x/c) (in double precision), and
1.49999999999999998265 · · · ulp(x/c) (in quad preci-
sion) can be attained when calculating z/(x ∗ y), showing
that for that function, the bound of Property 3.1 is very
tight.

For other functions, testings in small precisions show
that the bounds are tight. For instance, if p = 24 (which
corresponds to binary32/single-precision arithmetic), error
1.4959 ulp(x/

√
y) is attained when computing x/

√
y for

x = 16763899

and
y = 8396805/2.

For the same function in binary64 arithmetic, error
1.49906 ulp(x/

√
y) is attained for

x = 9007198105271337

and
y = 4503599631275935/252.

IV. DIVIDING A CORRECTLY-ROUNDED FUNCTION BY A
FP NUMBER

Now we consider approximating c/x, where x is a FP
number and c is either a real constant or a real function of
one or more FP variables, by

s = RN(ĉ/x)

where, as previously, ĉ = RN(c). Since the reasoning is highly
similar to that of Section III, we only outline the major points.
The cases where c or x are a power of 2 are straightforward,
so without loss of generality, we assume 1 < x < 2 (so that,
since x is a FP number, 1+2u 6 x 6 2−2u), and 1 < c < 2
(which implies 1 6 ĉ 6 2).
• if c < x then ĉ 6 x, and therefore∣∣∣∣ ĉx − RN

(
ĉ

x

)∣∣∣∣ 6 u

2
,

and ∣∣∣∣ ĉx − c

x

∣∣∣∣ =
1

x
· |ĉ− c|

6
1

1 + 2u
· u,

so that ∣∣∣s− c

x

∣∣∣ 6 3u+ 2u2

2 + 4u

=
3 + 2u

2 + 4u
· ulp

(c
x

)
.

• if c > x then ĉ > x, and therefore∣∣∣∣ ĉx − RN

(
ĉ

x

)∣∣∣∣ 6 u,

8

and ∣∣∣∣ ĉx − c

x

∣∣∣∣ =
1

x
· |ĉ− c|

6
1

1 + 2u
· u < u,

and therefore ∣∣∣s− c

x

∣∣∣ < 2u = ulp
(c
x

)
.

Putting all this together, we conclude
Property 4.1: Assume radix-2, precision-p floating-point

arithmetic. If c is a real constant or a real function of one or
more variables, x is a floating-point number, and ĉ = RN(c)
is the correctly-rounded (to nearest) implementation of c then,
barring underflow and overflow, the FP number s = RN(ĉ/x)
satisfies ∣∣∣s− c

x

∣∣∣ 6 3 + 2u

2 + 4u
· ulp

(c
x

)
6

(
3

2
− 2u+ 4u2

)
ulp
(c
x

)
. �

Property 4.1 covers calculations such as ln(2)/x,
√
x/y,

(x + y)/z, . . . In the general case, the bound given by Prop-
erty 4.1 is very tight. For instance, if p = 53, c = 253+1, and
x = 252 + 225, assuming RN breaks ties to even, we obtain
ĉ = 253 and s = 134217727/226, resulting in an error

1.4999999888241291 · · · ulp(c/x).

That example can be transformed into a “generic” example,
that shows that the bound of Property 4.1 is asymptotically
optimal for odd values of p (at least assuming that RN breaks
ties to even which is the default in IEEE 754 arithmetic). This
is done as follows. Let p be an odd integer, let c = 2p + 1
(hence ĉ = 2p) and

x = 2p−1 + 2(p−3)/2.

We have

ĉ

x
=

2p

2p−1 + 2(p−3)/2
= 2

1

1 + 2−(p+1)/2

= 2(1− 2−(p+1)/2 + εp),

with |εp| < 2−(p+1). Therefore,

RN(ĉ/x) = 2(1− 2−(p+1)/2),

and

RN

(
ĉ

x

)
− c

x
= 2(1− 2−(p+1)/2)− 2 + 2−(p−1)

1 + 2−(p+1)/2

= 2(1− 2−(p+1)/2)

− (2 + 2−(p−1))(1− 2−(p+1)/2 + 2−(p+1) + ηp),

where |ηp| < 2−3(p+1)/2. It then follows∣∣∣∣RN(ĉx
)
− c

x

∣∣∣∣
=

(
3

2
− 2−(p+1)/2 + 2−(p+1) + ηp(1 + 2p)

)
ulp
(c
x

)
=

(
3

2
+ 2−(p+1)/2 γp

)
ulp
(c
x

)
,

where |γp| < 3.

V. PRODUCT OF TWO CORRECTLY-ROUNDED FUNCTIONS

We now consider the approximation of m ·n, where m and
n are either real constants or correctly-rounded functions, by

s = RN(m̂ · n̂) ,

where m̂ = RN(m) and n̂ = RN(n) (the case where both m
and n are constants is of course of little interest). To deal with
this case, we need the following lemma.

Lemma 5.1: Let x and y be real numbers satisfying

1 6 x, y 6 2.

If xy 6 2 then
x+ y 6 3. �

The proof of Lemma 5.1 is simple: xy 6 2 implies x 6 2/y,
therefore x+y 6 2/y+y. Since y > 0, the number 2/y+y−3
has the same sign as

P (y) = y2 − 3y + 2.

The roots of polynomial P are 1 and 2 and we immediately
deduce that P (y) 6 0 for y between 1 and 2.

Let us now bound the error |s − mn|. Without loss of
generality, we assume 1 6 m < 2 and 1 6 n < 2. We
have

|s−mn| = |RN(m̂ · n̂)−mn|
6 |RN(m̂ · n̂)− m̂ · n̂|+ |m̂ · n̂−mn| ,

and

|m̂ · n̂−mn| 6 m̂ · |n̂− n|+ n · |m̂−m|
6 (m̂+ n) · u.

• if mn 6 2 and m̂n̂ 6 2 then |RN(m̂ · n̂)− m̂ · n̂| 6 u.
Furthermore, Lemma 5.1 implies m+n 6 3 and therefore
m̂+ n 6 3 + u. All this gives |s−mn| 6 4u+ u2, and
since ulp(mn) > 2u, we find

|s−mn| 6 (2 + u/2) ulp(mn);

• if mn > 2 then |RN(m̂ · n̂)− m̂ · n̂| 6 2u and m̂+n 6
4, so that

|s−mn| 6 6u =
3

2
ulp(mn);

• if mn 6 2 and m̂n̂ > 2 then |RN(m̂ · n̂)− m̂ · n̂| 6 2u
and (from Lemma 5.1) m̂+ n 6 3 + u, so that

|s−mn| 6 5u+ u2,

and this last bound is(
5

2
+
u

2

)
· ulp(mn)

when mn < 2, and(
5

4
+
u

4

)
· ulp(mn)

when mn = 2.
We finally obtain

Property 5.2: Assume radix-2, precision-p floating-point
arithmetic. If m and n are real constants or real functions

9

of one or more variables, m̂ = RN(m) and n̂ = RN(n) then,
barring underflow and overflow, the floating-point number
s = RN(m̂ · m̂) satisfies

|s−mn| 6
(
5

2
+
u

2

)
ulp (mn) . �

The bound given by Property 5.2 is very tight. It is asymptot-
ically optimal for even values of p . This is shown when RN
breaks ties to even by considering{

m = 2p + 2p/2 − 1, and
n = 2p+1 − 2p/2+1 + 3,

for which we obtain
m̂ = 2p + 2p/2

n̂ = 2p+1 − 2p/2+1 + 4
mn = 22p+1 − 2p + 5 · 2p/2 − 3

s = 22p+1 + 2p+2.

With another tie-breaking rule, adding a very small ε > 0 to m
and n gives the same m̂ and n̂ and the same s. We conjecture
that the bound is also asymptotically optimal for odd values of
the precision p but we have no proof. For instance, in binary32
arithmetic (p = 24), the error committed when computing
(x + y) · (z + t), where x, y, z, and t are the 4 FP numbers
defined as follows:

x = 224 = 16777216;
y = 212 − 1 = 4095;
z = 225 − 213 = 33546240;
t = 3;

is equal to

2.4993897 · · · ulp
(
(x+ y) · (z + t)

)
(this corresponds to Property 5.2, with m = x + y and n =
z+ t). Even if we have no proof of asymptotic optimality for
odd p, we have found cases for which the error is very close
to the bound. For instance if p = 53, with

m = 9007199877083003, and
n = 18014397264798047,

the error is 2.4999982 ulp(mn). As m is the product of the
two binary64 numbers

e = 290554834744613

and
f = 31,

and n is the product of the two binary64 numbers

g = 29

and
h = 621186112579243,

error 2.4999982 ulp(efgh) is attained when computing
(e ∗ f) ∗ (g ∗ h) in binary64/double-precision arithmetic,
which is very close to the bound of Property 5.2. Property 5.2
covers calculations such as π ·

√
x, (x + y) · (z + t), etc. If

an FMA (fused multiply-add) instruction is available, it also
covers computations of the form

(ax+ b)(cy + d),

where a, b, c, d, x, and y are FP numbers.

VI. QUOTIENT OF TWO CORRECTLY-ROUNDED FUNCTIONS

We finally consider the approximation of n/d, where n and
d are either real constants or correctly-rounded functions, by

s = RN

(
n̂

d̂

)
,

where n̂ = RN(n) and d̂ = RN(d) (the case where both n
and d are constants is of course of little interest). We assume
that n and d are not FP numbers (that case is covered by
Sections III and IV), so that without loss of generality, we can
assume 1 < n < 2 and 1 < d < 2, which implies |n̂−n| 6 u
and |d̂− d| 6 u. We have∣∣∣∣ n̂d̂ − n

d

∣∣∣∣ 6 ∣∣∣∣ n̂d̂ − n

d̂

∣∣∣∣+ ∣∣∣∣nd̂ − n

d

∣∣∣∣
=

1

d̂
· |n̂− n|+ n

d
·

∣∣∣∣∣ d̂− dd̂
∣∣∣∣∣

6
(
1 +

n

d

)
· u
d̂
.

If n̂ = d̂ or n̂ = 2d̂ or n̂ = d̂/2 then s = n̂/d̂, and otherwise
n < d ⇒ d̂/2 < n̂ < d̂ and n > d ⇒ n̂ > d̂ > n̂/2 so that
ulp(n̂/d̂) = ulp(n/d). Therefore, in all cases,∣∣∣∣s− n̂

d̂

∣∣∣∣ 6 1

2
ulp
(n
d

)
.

Putting all this together, we obtain,∣∣∣s− n

d

∣∣∣ 6 1

2
ulp
(n
d

)
+
(
1 +

n

d

)
· u
d̂
,

which immediately gives:
• if n > d then ulp(n/d) = 2u and(

1 +
n

d

)
· u
d̂
6 3u,

so that ∣∣∣s− n

d

∣∣∣ 6 2 ulp
(n
d

)
;

• if n < d then ulp(n/d) = u and(
1 +

n

d

)
· u
d̂
6 2u,

so that ∣∣∣s− n

d

∣∣∣ 6 5

2
ulp
(n
d

)
.

We therefore obtain
Property 6.1: Assume radix-2, precision-p floating-point

arithmetic. If n and d are real constants or real functions of
one or more variables, n̂ = RN(n) and d̂ = RN(d) then,
barring underflow and overflow, the floating-point number
s = RN(n̂/d̂) satisfies∣∣∣s− n

d

∣∣∣ 6 5

2
ulp
(n
d

)
. �

Property 6.1 covers calculations such as π/
√
x, (x+y)/(z+

t), (xy)/(z+t), etc. If an FMA instruction is available, it also
covers computations of the form

ax+ b

cy + d
,

10

where a, b, c, d, x, and y are FP numbers.
The bound given by Property 6.1 is very tight. In the general

case, assuming RN breaks ties to even, it is asymptotically
optimal, as one may check using the generic values
• if p is odd: n = 2p + 1 and d = 2p + 2(p−1)/2 − 1;
• if p is even: n = 2p+2p/2−1+1 and d = 2p+2p/2− 1.

Let us quickly detail the case p odd: let v = 2(−p+1)/2 so that
v2 = 2−p+1 = 2u. We have

n

d
=

1 + 2−p

1 + 2(−p−1)/2 − 2−p
=

1 + v2/2

1 + v/2− v2/2
.

From n̂ = 2p and d̂ = 2p + 2(p−1)/2 we obtain
n̂

d̂
=

1

1 + v/2
= 1− v/2 + v2/4− v8/8 + · · · ,

from which we obtain RN(n̂/d̂) = 1 − v/2. Hence the error
is∣∣∣∣∣(1− v

2

)
−

(
1 + v2

2

1 + v
2
− v2

2

)∣∣∣∣∣ =
5

4
v2 +O(v3)

=

(
5

2
+O(u3/2)

)
ulp
(n
d

)
.

For instance, consider the computation of (x+ y)/(z + t) in
binary64 arithmetic, where x, y, z and t are the four following
binary64 numbers:

x = 253,
y = 1,
z = 253,
t = 226 − 1.

This corresponds to Property 6.1, with n = x+y and d = z+t.
We have

x+ y

z + t
=

9007199254740993

9007199321849855

= 0.999999992549419680631925 · · ·

and the computed result is

134217727

134217728
= 0.999999992549419403076 · · · ,

resulting in an error

2.49999997392 · · · ulp
(
x+ y

z + t

)
.

Interestingly enough, these values of n = 253 + 1 and d =
253 + 226 − 1 can be written as the product of two binary64
FP numbers, since

n = 321.× 28059810762433.,

and
d = 34292630015.× 262657.

As a consequence, the same error 2.49999997392 · · · ulp is
also attained for computations of the form (xy)/(z + t);
(x+ y)/(zt); and (xy)/(zt) in binary64 arithmetic. This can
be generalized to odd values of the precision p, as d can be
factored (2(p−1)/2+1)(21+(p−1)/2−1) and n is a multiple of 3.
For other functions, we also found cases where the actual error

is very close to the bound 2.5 ulp. For instance, in binary64
floating-point arithmetic (p = 53), error 2.4994 ulp is attained
when computing

x1 + y1√
z

or
x2y2√
z
,

with
x1 = 9007199312857556,
y1 = 1,
x2 = 1870953,
y2 = 4814230669,
z = 4503599859833552,

These two cases correspond to Property 6.1 with

n = x1 + y1
= x2y2

and
d =
√
z.

CONCLUSION

We have given sharp error bounds in ulps for computations
in binary floating-point arithmetic of the form x · c, x/c, c/x,
m ·n and n/d, where x is a floating-point number and c, n, m
and d are either real constants or correctly-rounded functions
of one or more variables. Examples of functions for which our
work gives tight bounds are

x ∗ pi, ln(2)/x, x/(y+ z), (x+ y) ∗ z, x/sqrt(y),
sqrt(x)/y, (x+ y)(z+ t), (x+ y)/(z+ t), (x+ y)/(zt),

etc.

In several cases, we have been able to show that our bounds
are asymptotically optimal.

ACKNOWLEDGEMENT

This work is partly sponsored by the ANR Nuscap (ANR-
20-CE48-0014) project of the French Agence Nationale de la
Recherche.

REFERENCES

[1] N. Brisebarre and J.-M. Muller, “Correctly rounded multiplication by
arbitrary precision constants,” IEEE Trans. Comput., vol. 57, no. 2, pp.
165–174, Feb. 2008.

[2] W. J. Cody, “Implementation and testing of function software,” in
Problems and Methodologies in Mathematical Software Production,
International Seminar. Berlin, Heidelberg: Springer-Verlag, 1980, p.
24–47.

[3] IEEE, IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-
2019), Jul. 2019. [Online]. Available: https://ieeexplore.ieee.org/servlet/
opac?punumber=8766227

[4] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-point summation,
Part I: Faithful rounding,” SIAM J. Sci. Comput., vol. 31, no. 1, pp.
189–224, 2008. [Online]. Available: https://doi.org/10.1137/050645671

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
SIAM, Philadelphia, PA, 2002.

[6] A. Sibidanov, P. Zimmermann, and S. Glondu, “The CORE-MATH
project,” in 29th IEEE Symposium on Computer Arithmetic, 2022,
preprint available at https://hal.inria.fr/hal-03721525.

[7] S. Boldo, C.-P. Jeannerod, G. Melquiond, and J.-M. Muller, “Floating-
point arithmetic,” Acta Numer., vol. 32, p. 203–290, 2023.

https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://doi.org/10.1137/050645671
https://hal.inria.fr/hal-03721525

11

[8] D. E. Knuth, The Art of Computer Programming, 3rd ed. Addison-
Wesley, Reading, MA, 1998, vol. 2.

[9] P. H. Sterbenz, Floating-Point Computation. Englewood Cliffs, NJ:
Prentice-Hall, 1974.

[10] C.-P. Jeannerod and S. M. Rump, “On relative errors of floating-point
operations: optimal bounds and applications,” Math. Comp., vol. 87, pp.
803–819, 2018.

[11] S. M. Rump, “Error bounds for computer arithmetics,” in 26th IEEE
Symposium on Computer Arithmetic, 2019, pp. 1–14.

[12] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic, 2nd edition. Birkhäuser Boston, 2018, ACM
G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1., ISBN 978-3-319-76525-9.

Nicolas Brisebarre was born in Bordeaux, France,
in 1971. He received his Ph.D. in pure mathematics
from the Université Bordeaux I, France, in 1998. He
is Chargé de recherche (junior researcher) at CNRS,
France, and he is a member of the LIP laboratory
(LIP is a joint computer science laboratory of CNRS,
École Normale Supérieure de Lyon, INRIA, and
Université Claude Bernard Lyon 1). His research
interests are in computer arithmetic, number theory,
validated computing and computer algebra.

Jean-Michel Muller was born in Grenoble, France,
in 1961. He received his Ph.D. degree in 1985 from
the Institut National Polytechnique de Grenoble. He
is Directeur de Recherches (senior researcher) at
CNRS, France, and he is the co-head of GDR-IM.
His research interests are in Computer Arithmetic.
He is the author of several books, including “Ele-
mentary Functions, Algorithms and Implementation”
(3rd edition, Birkhauser, 2016), and he coordinated
the writing of the “Handbook of Floating-Point
Arithmetic” (2nd edition Birkhäuser, 2018). He is

currently associate editor in chief of the IEEE Transactions on Emerging
Topics in Computing. He is a fellow of the IEEE.

Joris Picot was born in Troyes, France, in 1985.
He received his Ph.D. degree in 2013 from the
Université de Toulouse. He spent seven years in
the developement of computational fluid dynamics
software, and he is Research Engineer at École
Normale Supérieure de Lyon, France. His research
interests are in Rigorous Computing.

	Introduction
	Purpose of this paper and notation
	Just a few words on relative errors

	Multiplication of a FP number by a constant or a correctly-rounded function
	First steps
	The special case `39`42`"613A``45`47`"603Aulp(x) > `39`42`"613A``45`47`"603Aulp(cx)
	The general case `39`42`"613A``45`47`"603Aulp(x) `39`42`"613A``45`47`"603Aulp(cx)
	A bound that does not depend on c
	Improving the bound when c is a constant
	Summary

	Division of a FP number by a correctly-rounded function
	Dividing a correctly-rounded function by a FP number
	Product of two correctly-rounded functions
	Quotient of two correctly-rounded functions
	References
	Biographies
	Nicolas Brisebarre
	Jean-Michel Muller
	Joris Picot

