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Abstract

In the k-edge-connected spanning subgraph (kECSS) problem, our goal is to compute a minimum-cost
sub-network that is resilient against up to k link failures: Given an n-node m-edge graph with a cost
function on the edges, our goal is to compute a minimum-cost k-edge-connected spanning subgraph.
This NP-hard problem generalizes the minimum spanning tree problem and is the “uniform case” of
a much broader class of survival network design problems (SNDP). A factor of two has remained
the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even
for a special case of 2ECSS. The fastest 2-approximation algorithm is however rather slow, taking
O(mnk) time [Khuller, Vishkin, STOC’92]. A faster time complexity of O(n2) can be obtained, but
with a higher approximation guarantee of (2k − 1) [Gabow, Goemans, Williamson, IPCO’93].

Our main contribution is an algorithm that (1 + ε)-approximates the optimal fractional solution
in Õ(m/ε2) time (independent of k), which can be turned into a (2 + ε) approximation algorithm
that runs in time Õ

(
m
ε2 + k2n1.5

ε2

)
for (integral) kECSS; this improves the running time of the

aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.
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1 Introduction

In the k-Edge-Connected Spanning Subgraph problem (kECSS), we are given an undirected
n-node m-edge graph G = (V,E) together with edge costs, and want to find a minimum-cost
k-edge connected spanning subgraph.1 For k = 1, this is simply the minimum spanning tree
problem, and thus can be solved in O(m) time [29]. For k ≥ 2, the problem is a classical
NP-hard problem whose first approximation algorithm was given almost four decades ago,
where Frederickson and Jaja [19] gave a 3-approximation algorithm that runs in O(n2) time
for the case of k = 2. The approximation ratio was later improved to 2 by an Õ(mnk)-time
algorithm of Khuller and Vishkin [33].2 This approximation factor of 2 has remained the
best for more than 30 years, even for a special case of 2ECSS called the weighted tree
augmentation problem. When the running time is of the main concern, the fastest known
algorithm takes O(n2) time at the cost of a significantly higher (2k − 1)-approximation
guarantee, due to Gabow, Goemans, and Williamson [22].

This above state-of-the-arts leave a big gap between algorithms achieving the best
approximation ratio and the best time complexity. This gap exists even for k = 2. In
this paper, we improve the running time of both aforementioned algorithms of [33, 22]
while keeping the approximation ratio arbitrarily close to two. Our main contribution is a
near-linear time algorithm that (1 + ε)-approximates the optimal fractional solution.

I Theorem 1. For any ε > 0, there is a randomized Õ(m/ε2)-time algorithm that outputs a
(1 + ε)-approximate fractional solution for kECSS.

Following, in the high-level, the arguments of Chekuri and Quanrud [7] (i.e. solving
the minimum-weight k disjoint arborescences in the style of [33] on the support of the
sparsified fractional solution), the above fractional solution can be turned into a fast (2 + ε)-
approximation algorithm for the integral version of kECSS.

I Corollary 2. For any ε > 0, there exist
a randomized Õ(m/ε2)-time algorithm that estimates the value of the optimal solution
for kECSS to within a factor (2 + ε), and
a randomized Õ

(
m
ε2 + k2n1.5

ε2

)
-time algorithm that produces a feasible kECSS solution of

cost at most (2 + ε) times the optimal value.

We remark that the term Õ(k2n1.5) is in fact “tight” up to the state-of-the-art algorithm
for finding minimum-weight k disjoint arborescences.3

Prior to our results, a sub-quadratic time algorithm was not known even for special cases
of kECSS, called k-Edge-Connected Augmentation (kECA). In this problem, we are given a
(k − 1)-edge-connected subgraph H of a graph G, and we want to minimize the total cost of
adding edges in G to H so that H becomes k-edge connected. It is not hard to see that if we
can α-approximates kECSS, then we can α-approximates kECA by assigning cost 0 to all
edges in H. This problem previously admits a O(kn2)-time 2-approximation algorithm for

1 Note that this problem should not be confused with a variant that allows to pick the same edge multiple
time, which is sometimes also called kECSS (e.g., [6]). We follow the convention in [13] and call the
latter variant minimum-cost k-edge connected spanning sub-multigraph (kECSSM) problem. (See also
the work by Pritchard [40].)

2 Õ hides polylog(n) factor.
3 More formally, if a minimum-weight union of k edge-disjoint arborescences can be found in time
T (k,m, n), then our algorithm would run in time T (k, kn, n). The term O(k2n1.5) came from Gabow’s
algorithm [20] that runs in time O(km

√
n log(ncmax)).
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any even integer k [32]4. The approximation ratio of 2 remains the best even for 2ECA. Our
result in Corollary 2 improves the previously best time complexity by a Θ̃(

√
n) factor.

Perspective. The gap between algorithms with best approximation ratio and best time
complexity in fact reflects a general lack of understanding on fast approximation algorithms.
While polynomial-time algorithms were perceived by many as efficient, it is not a reality in
the current era of large data, where it is nearly impossible to take O(n3) time to process
a graph with millions or billions of nodes. Research along this line includes algorithms
for sparsest cut [31, 30, 43, 36], multi-commodity flow [23, 17, 37], and travelling salesman
problem [6, 7]. Some of these algorithms have led to exciting applications such as fast
algorithms for max-flow [44], dynamic connectivity [39, 8, 41, 46, 38], vertex connectivity
[35] and maximum matching [45].

The kECSS problem belongs to the class of survivable network design problems (SNDPs),
where the goal is to find a subgraph ensuring that every pair of nodes (u, v) are κ(u, v)-edge-
connected for a given function κ. (kECSS is the uniform version of SNDP where κ(u, v) = k

for every pair (u, v).) These problems typically focus on building a network that is resilient
against device failures (e.g. links or nodes), and are arguably among the most fundamental
problems in combinatorial optimization. Research in this area has generated a large number
of beautiful algorithmic techniques during the 1990s, culminating in the result of Jain [26]
which gives a 2-approximation algorithm for the whole class of SNDPs. Thus, achieving a
fast 2-approximation algorithm for SNDPs is a very natural goal.

Towards this goal and towards developing fast approximation algorithms in general, there
are two common difficulties:
1. Many approximation algorithms inherently rely on solving a linear program (LP) to find

a fractional solution, before performing rounding steps. However, the state-of-the-art
general-purpose linear program solvers are still quite slow, especially for kECSS and
SNDP where the corresponding LPs are implicit.
In the context of SNDP, the state-of-the-art (approximate) LP solvers still require at
least quadratic time: Fleischer [18] designs an Õ(mnk) for solving kECSS LP, and
more generally for SNDP and its generalization [18, 14] with at least Θ(mmin{n, kmax})
iterations of minimum cost flow’s computation are the best known running time where
kmax is the maximum connectivity requirements.

2. Most existing techniques that round fractional solutions to integral ones are not “friendly”
for the design of fast algorithms. For instance, Jain’s celebrated iterative rounding [26]
requires solving the LP Ω(m) times. Moreover, most LP-based network design algorithms
are fine-tuned to optimize approximation factors, while designing near-linear time LP
rounding algorithms requires limiting ourselves to a relatively small set of tools, about
which we currently have very limited understanding.

This paper completely resolves the first challenge for kECSS and manages to identify a
fundamental bottleneck of the second challenge.

Challenges for LP Solvers. Our main challenge is handling the so-called box constraints
in the LPs. To be concrete, below is the LP relaxation of kECSS on graph G = (V,E).

min{
∑
e∈E

cexe :
∑

e∈δG(S)

xe ≥ k (∀S ⊆ V ), x ∈ [0, 1]E} (1)

4 In Khuller and Vishkin [32], the kECA problem aims at augmenting the connectivity from k to (k + 1)
(but for us it is from (k − 1) to k.)
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where δG(S) is the set of edges between nodes in S and V \ S. The box constraints refer to
the constraints x ∈ [0, 1]E . Without these constraints, we can select the same edge multiple
times in the solution; this problem is called kECSSM in [13] (see Footnote 1). Removing
the box constraints often make the problem significantly easier. For example, the min-cost
st-flow problem without the box constraints become computing the shortest st-path, which
admits a much faster algorithm.

For kECSS, it can be shown that solving (1) without the box constraints can be reduced
to solving (1) with k = 1 and multiplying all xe with k. In other words, without the box
constraints, fractional kECSS is equivalent to fractional 1ECSS.This fractional 1ECSS can
be (1 + ε)-approximated in near-linear time by plugging in the dynamic minimum cut data
structure of Chekuri and Quanrud [6] to the multiplicative weight update framework (MWU).

However, with the presence of box constraints, to use the MWU framework we would
need a dynamic data structure for a much more complicated cut problem, that we call,
the minimum normalized free cut problem (roughly, this is a certain normalization of the
minimum cut problem where the costs of up to k heaviest edges in the cut are ignored.) For
our problem, the best algorithm in the static setting we are aware of (prior to this work) is to
use Zenklusen’s Õ(mn4)-time algorithm [48] for the connectivity interdiction problem.5 This
results in an Õ(kmn4)-time static algorithm. Speeding up and dynamizing this algorithm
seems very challenging. Our main technical contribution is an efficient dynamic data structure
(in the MWU framework) for the (1 + ε)-approximate minimum normalized free cut problem.
We explain the high-level overview of our techniques in Section 2.

Further Related Works. The kECSS and its special cases have been studied extensively.
For all k ≥ 2, the kECSS problem is known to be APX-hard [15] even on bounded-degree
graphs [9] and when the edge costs are 0 or 1 [40]. Although a factor 2 approximation for
kECSS has not been improved for almost 3 decades, various special cases of kECSS admit
better approximation ratios (see for instance [25, 16, 1]). For instance, the unit-cost kECSS
(ce = 1 for all e ∈ E) behaves very differently, admitting a (1 + O(1/k)) approximation
algorithm [21, 34]. For the 2ECA problem, one can get a better than 2 approximation when
the edge costs are bounded [1, 16]. Otherwise, for general edge costs, the factor of 2 has
remained the best known approximation ratio even for the 2ECA problem.

The kECSS problem in special graph classes have also received a lot of attention. In
Euclidean setting, a series of papers by Czumaj and Lingas led to a near-linear time
approximation schemes for constant k [12, 11]. The problem is solvable in near-linear time
when k and treewidth are constant [3, 5]. In planar graphs, 2ECSS, 2ECSSM and 3ECSSM
admit a PTAS [10, 4].

Organization. We provide a high-level overview of our proofs in Section 2. In Section 3,
we explain the background on Multiplicative Weight Updates (MWU) for completeness
(although this paper is written in a way that one can treat MWU as a black box). In Section 4,
we prove our main technical component. In Section 5, we present our LP solver. In Section 6,
we show how to round the fractional solution obtained from the LP solver. Due to space
limitations, many proofs are deferred to Appendix.

5 In the connectivity interdiction problem, we are given G = (V,E) and k ∈ N, our goal is to compute
F ⊆ E to delete from G in order to minimize the minimum cut in the resulting graph.
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2 Overview of Techniques

In this section, we give a high-level overview of our techniques in connection to the known
results. Our work follows the standard Multiplicative Weight Update (MWU) framework
together with the Knapsack Covering (KC) inequalities (see Section 3 for more background).
Roughly, in this framework, in order to obtain a near-linear time LP solver for kECSS, it
suffices to provide a fast dynamic algorithm for a certain optimization problem (often called
the oracle problem in the MWU literature):

I Definition 3 (Minimum Normalized Free Cuts). We are given a graph G = (V,E), weight
function w : E → R≥0, integer k, and our goal is to compute a cut S ⊆ V together with
edges F ⊆ δG(S) : |F | ≤ k − 1 that minimizes the following objective6:

min
S(V,F⊆δG(S):|F |≤(k−1)

w(δG(S) \ F )
k − |F |

,

where δG(S) denotes the set of edges that has exactly one end point in S. We call the
minimizer (S, F ) the minimum normalized free cut.

This is similar to the minimum cut problem, except that we are allowed to “remove” up
to (k − 1) edges (called free edges) from each candidate cut S ⊆ V , and the cost would
be “normalized” by a factor of (k − |F |).7 Notice that there are (apparently) two sources
of complexity for this problem. First, we need to find the cut S and second, given S, to
compute the optimal set F ⊆ δG(S) of free edges. To our best knowledge, a previously fastest
algorithm for this problem takes Õ(mn4) time by reducing to the connectivity interdiction
problem [48], while we require near-linear time. This is our first technical challenge.

Our second challenge is as follows. To actually speed up the whole MWU framework, in
addition to solving the oracle problem statically efficiently, we further need to implement
a dynamic version of the oracle with polylog(n) update time. In our case, the goal is to
maintain a dynamic data structure on graph G = (V,E), weight function w, cost function c,
that supports the following operation:

I Definition 4. The PunishMin operation computes a (1 +O(ε))-approximate normalized
free cut and multiply the weight of each edge e ∈ δG(S) \ F by a factor of at most eε.8

We remark that invoking the PunishMin operation does not return the cut (S, F ), and
the only change is the weight function w being maintained by the data structure.

I Proposition 5 (Informal). Assume that we are given a dynamic algorithm that supports
PunishMin with amortized polylog(n) cost per operations, then the kECSS LP can be solved
in time Õ(m).

Let us call such a dynamic algorithm a fast dynamic punisher. The fact that a fast
dynamic punisher implies a fast LP solver is an almost direct consequence of MWU [23].

Therefore, we focus on designing a fast dynamic algorithm for solving (and punishing)
the minimum normalized free cut problem. Our key idea is an efficient and dynamic
implementation of the weight truncation idea.

6 For any function f , for any subset S of its domain, we define f(S) =
∑

s∈S f(s).
7 This is in fact a special case of a similar objective considered by Feldmann, Könemann, Pashkovich and

Sanità [14], who considered applying the MWU framework for the generalized SNDP
8 The actual weight w(e) is updated for all e ∈ δG(S) \ F : w(e) ← w(e) · exp( εcmin

ce
) where cmin is the

minimum edge capacity in δG(S) \ F .



1:6 Approximating k-ECSS via a Near-Linear Time LP Solver

Weight truncation: Let G = (V,E) and ρ ∈ R≥0 be a threshold. For any
weight function w of G, denote by wρ the truncated weight defined by wρ(e) =
min{w(e), ρ} for each e ∈ E. Call an edge e with w(e) ≥ ρ a ρ-heavy edge.

Our main contribution is to show that, when allowing (1 + ε)-approximation, we can
use the weight truncation to reduce the minimum normalized free cut to minimum cut
with O(polylog(n)) extra factors in the running time. Moreover, this reduction can be
implemented efficiently in the dynamic setting. We present the ideas in two steps, addressing
our two technical challenges mentioned above respectively. First, we show how to solve the
static version of minimum normalized free cut in near-linear time. Second, we sketch the key
ideas to implement them efficiently in the dynamic setting, which can be used in the MWU
framework.

We remark that weight truncation technique has been used in different context. For
instance, Zenklusen [48] used it for reducing the connectivity interdiction problem to O(|E|)
instances of the minimum budgeted cut problem.

2.1 Step 1: Static Algorithm
We show that the minimum normalized free cut problem can be solved efficiently in the
static setting. For convenience, we often use the term cut to refer to a set of edges instead of
a set of vertices.

Define the objective function of our problem as, for any cut C,

valw(C) = min
F⊆C:|F |≤k−1

w(C \ F )
k − |F |

.

For any weight function w, denote by OPTw = minC valw(C). In this paper, the graph G is
always fixed, while w is updated dynamically by the algorithm (so we omit the dependence
on G from the notation val and OPT). When w is clear from context, we sometimes omit
the subscript w.

We show that the truncation technique can be used to establish a connection between
our problem and minimum cut.

I Lemma 6. We are given a graph G = (V,E), weight function w, integer k, and ε > 0.
For any threshold ρ ∈ (OPTw, (1 + ε)OPTw],

any optimal normalized free cut in (G,w) is a (1 + ε)-approximate minimum cut in
(G,wρ), and
any minimum cut C∗ in (G,wρ) is a (1 + ε)-approximation for the minimum normalized
free cut.

Proof. First, consider any cut C with val(C) = OPT. Let F ⊆ C be an optimal set of free
edges for C, so we have wρ(C \ F ) ≤ w(C \ F ) = (k − |F |)OPT. Moreover, wρ(F ) ≤ |F |ρ.
This implies that

wρ(C) = wρ(C \ F ) + wρ(F ) < kρ (2)

Next, we prove that any cut in (G,wρ) is of value at least kOPT (so the cut C is a (1 + ε)
approximate minimum cut). Assume for contradiction that there is a cut C ′ such that
wρ(C ′) < kOPT. Let F ′ ⊆ C ′ be the set of ρ-heavy edges. Observe that |F ′| ≤ k − 1 since
otherwise the total weight wρ(C ′) would have already exceeded kOPT. This implies that
w(C ′ \ F ′) = wρ(C ′ \ F ′) < (k − |F ′|)OPT and that

val(C ′) ≤ w(C ′ \ F ′)
(k − |F ′|) < OPT
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which is a contradiction. Altogether, we have proved the first part of the lemma.
To prove the second part of the lemma, consider a minimum cut C∗ in (G,wρ), we have

that wρ(C∗) < wρ(C) < kρ (from Equation (2)). Again, the set of heavy edges F ∗ ⊆ C∗ can
contain at most k−1 edges, so we must have w(C∗\F ∗) < (k−|F ∗|)ρ ≤ (k−|F ∗|)(1+ε)OPT,
implying that val(C∗) < (1 + ε)OPT. J

We remark that this reduction from the minimum normalized free cut problem to the
minimum cut problem does not give an exact correspondence, in the sense that a minimum
cut in (G,wρ) cannot be turned into a minimum normalized free cut in (G,w). In other
words, the approximation factor of (1 + ε) is unavoidable.

I Theorem 7. Given a graph G = (V,E) with weight function w and integer k, the minimum
normalized free cut problem can be (1 + ε) approximated by using O( 1

ε · logn) calls to the
exact minimum cut algorithm.

Proof. We assume that the minimum normalized free cut of G is upper bounded by some
value M which is polynomial in n = |V (G)| (we show how to remove this assumption in
Appendix C.1). For each i such that (1 + ε)i ≤ M , we compute the minimum cut Ci in
(G,wρi) where ρi = (1 + ε)i and return one with minimum value val(Ci). Notice that there
must be some i∗ such that ρi∗ ∈ (OPTw, (1 + ε)OPTw] and by the lemma, we must have
that Ci∗ is a (1 + ε)-approximate solution for the normalized free cut problem. J

By using any near-linear time minimum cut algorithm e.g., [28], the collorary follows.

I Corollary 8. There exists a (1 + ε) approximation algorithm for the minimum normalized
free cut problem that runs in time Õ(|E|/ε).

2.2 Step 2: Dynamic Algorithm
The next idea we use is from Chekuri and Quanrud [6]. One of the key concepts there is that
it is sufficient to solve a “range punishing” problem in near-linear time; for completeness we
prove this sufficiency in Appendix. In particular, the following proposition is a consequence
of their work:

I Definition 9. A range punisher9 is an algorithm that, on any input graph G, initial
weight function w = winit, real numbers ε, and λ ≤ OPTwinit , iteratively applies PunishMin
on (G,w) until the optimal becomes at least OPTw ≥ (1 + ε)λ.

The following proposition connects a fast range punisher to a fast LP solver.

I Proposition 10. If there exists a range punisher running in time

Õ

(
|E|+K +

∑
e∈E

log( w(e)
winit(e) )

)
where K is the number of cuts punished, then, there exists a fast dynamic punisher, and
consequently the kECSS LP can be solved in near-linear time.

This proposition applies generally in the MWU framework independent of problems. That
is, for our purpose of solving kECSS LP, we need a fast range punisher for the minimum
normalized free cut problem. For Chekuri and Quanrud [6], they need such algorithm for the
minimum cut problem (therefore a fast LP solver for the Held-Karp bound).

9 Our range punisher corresponds to an algorithm of Chekuri and Quanrud [7] in one epoch.
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I Theorem 11 ([6], informal). There exists a fast range punisher for the minimum cut
problem.

Our key technical tool in this paper is a more robust reduction from the range punishing
of normalized free cuts to the one for minimum cuts. This reduction works for all edge
weights and is suitable for the dynamic setting. That is, it is a strengthened version of
Lemma 6 and is summarized below (see its proof in Section 4).

I Theorem 12 (Range Mapping Theorem). Let (G = (V,E),w) be a weighted graph. Let
λ > 0 and ρ = (1 + γ)λ.

1. If the value of optimal normalized free cut is in [λ, (1 + γ)λ), then the value of minimum
cut in (G,wρ) lies in [kρ/(1 + γ), kρ).

2. For any cut C where wρ(C) < kρ, then w(C\F )
k−|F | < (1 + γ)λ where F contains all ρ-heavy

edges in C. In particular, val(C) < (1 + γ)λ.

Given the above reduction, we can implement range punisher fast. We present its full
proof in Section 5 and sketch the argument below.

I Theorem 13. There exists a fast range punisher for the minimum normalized free cut
problem.

Proof. (sketch) We are given λ and weighted graph (G,w) : w = winit such that OPTwinit ≥
λ. Our goal is to punish the normalized free cuts until the optimal value in (G,w) becomes at
least (1 + ε)λ. We first invoke Theorem 7 to get a (1 + ε)-approximate cut, and if the solution
is already greater than (1 + ε)2λ, we are immediately done (this means OPT > (1 + ε)λ).

Now, we know that OPT ≤ (1 + ε)2λ ≤ (1 + 3ε)λ. We invoke Lemma 12(1) with γ = 3ε.
The minimum cut in (G,wρ) has size in the range [kρ/(1 + 3ε), kρ). We invoke (one iteration
of) Theorem 11 with λ′ = kρ(1 + 3/ε) to obtain a cut C whose size is less than kρ and
therefore, by Lemma 12(1), val(C) < (1 + 3ε)λ. This is a cut that our algorithm can punish
(we ignore the detail of how we actually punish it – we would need to do that implicitly since
the cut itself may contain up to m edges). We repeat this process until all cuts whose values
are relevant have been punished, that is, we continue this process until the returned cut C
has size at least kρ.

The running time of this algorithm is

Õ

(
|E|+K +

∑
e∈E

log( wρ(e)
winit
ρ (e) )

)
≤ Õ

(
|E|+K +

∑
e∈E

log( w(e)
winit(e) )

)
Notice that we rely crucially on the property of our reduction using truncated weights. J

We remark that in the actual proof of Theorem 13, there are quite a few technical
complications (e.g., how to find optimal free edges for a returned cut C?), and we cannot
invoke Theorem 11 in a blackbox manner. We refer to Section 5 for the details.

2.3 LP Rounding for kECSS
Most known techniques for kECSS (e.g. [22, 34]) rely on iterative LP rounding, which is com-
putationally expensive. We achieve fast running time by making use of the 2-approximation
algorithm of Khuller and Vishkin [32].

Roughly speaking, this algorithm creates a directed graph H from the original graph G
and then compute on H the minimum-weight k disjoint arboresences. The latter can be
found by Gabow’s algorithms, in either Õ(|E||V |k) or Õ(k|E|

√
|V | log cmax) time.
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To use their algorithm, we will construct H based on the support of the fractional solution
x computed by the LP solver. By the integrality of the arborescence polytope [42], an integral
solution is as good as the fractional solution. However, the support of x can be potentially
large, which causes Gabow’s algorithm to take longer time. Here our idea is a sparsification
of the support, by extending the celebrated sparsification theorem of Benzcur and Karger [2]
to handle our problem, i.e., we prove the following (see Section 6 for the proofs):

I Theorem 14. Let G be a graph and cG its capacities. There exists a capacitated graph
(H, cH) on the same set of vertices that can be computed in Õ(m) such that (i) |E(H)| =
Õ(nk), and (ii) for every cut S and F ⊆ S : |F | ≤ (k−1), we have cG(S \ F ) = (1 ± ε) cH(S \ F ).

Benzcur and Karger’s theorem corresponds to this theorem when k = 1. We believe that
this theorem might have further applications, e.g., for providing a fast algorithm for the
connectivity interdiction problem. Our result implies the following (see Section 6 for the
proof):

I Theorem 15. Assume that there exists an algorithm that finds a minimum-weight k-
arborescences in an m-edge n-node graph in time Tk(m,n). Then there exists a (2 + ε)
approximation algorithm for kECSS running in time Õ(m/ε2 + Tk(kn/ε2, n))

Applying Theorem 15 with the Gabow’s algorithm (see Theorem 35 in Section 6), we
obtain Corollary 2.

3 Preliminaries

In this section, we review the multiplicative-weight update (MWU) framework for solving
a (covering) LP relaxation of the form min{c · x : Ax ≥ 1, x ≥ 0}, where A is an m-by-n
matrix with non-negative entries and c ∈ Rn≥0. Our presentation abstracts away the detail of
MWU, so readers should feel free to skip this section.

Let A1, . . . , Am be the rows of matrix A. Here is a concrete example:
Held-Karp Bound: The Held-Karp bound on input (G, c) aims at solving the LP:10

min{
∑

e∈E(G)

cexe :
∑
e∈S

xe ≥ 2 for any cut S ⊆ E}

Matrix A = AG is a cut-edge incidence matrix of graph G where each row Aj corresponds
to a cut Fj ⊆ E(G), so there are exponentially many rows. Each column corresponds to
an edge e ∈ E(G). There are exactly |E(G)| columns. The matrix is implicitly given as
an input graph G.

We explain the MWU framework in terms of matrices. Some readers may find it more
illustrative to work with concrete problems in mind.

MWU Framework for Covering LPs:

In the MWU framework for solving covering linear programs, we are given as input an
m-by-n matrix A and cost vectors c associated with the columns.11 Let ε > 0 be a parameter;

10We refer the readers to [6] for more discussion about this LP and Held-Karp bound.
11There are several ways to explain such a framework. Chekuri and Quanrud [6] follow the continuous

setting of Young [47]. We instead follow the combinatorial interpretation of Garg and Könemann [23].
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that is, we aim at computing a solution x that is (1 + ε) approximation of the optimal LP
solution. Denote by MinRow(A,w) the value minj∈[m] Ajw. We start with an initial weight
vector w(0)

i = 1/ci for i ∈ [n]. On each day t = 1, . . . , T , we compute an approximately
“cheapest” row j∗ such that Aj∗w(t−1) ≤ (1 + ε)MinRow(A,w(t−1)), and update the weight
w(t)
i ← w(t−1)

i exp
(
εAj∗,icmin

ci

)
where cmin = mini∈[n]

ci
Aj∗,i

.12 After T = O(n logn/ε2) many
days, the solution can be found by taking the best scaled vectors; in particular, observe that,
for any day t, the scaled vector w̄(t) = w(t)/

(
minj∈[m] Ajw(t)) is always feasible for the LP.

The algorithm returns w̄(t) which has minimum cost. The following theorem shows that at
least one such solution is near-optimal.

I Theorem 16. For T = O(n logn
ε2 ), one of the solutions w̄(t) for t ∈ [T ] is a (1 +O(ε)) ap-

proximation of the optimal solution min{c · x : Ax ≥ 1, x ≥ 0}.

Since we use slightly different language than the existing proofs in the literature, we
provide a proof in the appendix.

KC Inequalities:

Our LP is hard to work with mainly because of the mixed packing/covering constraints
x ∈ [0, 1]n. There is a relatively standard way to get rid of the mixed packing/covering
constraints by adding Knapsack covering (KC) inequalities into the LP. In particular, for
each row (or constraint) j ∈ [m], we introduce constraints:

(∀F ⊆ supp(Aj), |F | ≤ (k − 1)) :
∑

i∈[n]\F

Aj,ixi ≥ k − |F |, or
∑

i∈[n]\F

Aj,i
(k − |F |)xi ≥ 1

Let Akc be the new matrix after adding KC inequalities, that is, imagine the row indices
of Akc as (j, F ) where j ∈ [m] and F ⊆ supp(Aj); we define Akc

(j,F ),i = Aj,i/(k − |F |). The
actual number of rows in Akc can be as high as m · nO(k), but our algorithm will not be
working with this matrix explicitly.

The following lemma shows that we can now remove the packing constraints. We defer
the proof to Appendix.

I Lemma 17. Any solution to {x ∈ Rn : Akcx ≥ 1, x ≥ 0} is feasible for {x ∈ Rn : Ax ≥
k, x ∈ [0, 1]}. Conversely, for any point z in the latter polytope, there exists a point z′ in the
former such that z′ ≤ z.

I Corollary 18. For any cost vector c ∈ Rn≥0,

min{cTx : Akcx ≥ 1, x ≥ 0} = min{cTx : Ax ≥ k, x ∈ [0, 1]}

4 Range Mapping Theorem

The goal of this section is to prove Theorem 12, a cornerstone of this paper. We emphasize
that it works for any weight function w. First, we introduce more notations for convenience.
For any cut C ∈ C, and any subset of edges F ⊆ E, we define valw(C,F ) = w(C\F )

k−|F | if F ⊆ C
and |F | < k; otherwise, valw(C,F ) = ∞. Also, denote valw(C) = minF⊆E valw(C,F ). By

12 In the MWU literature, this is often referred to as an oracle problem.
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definition, we have valw(C) = mini≤k−1 valw(C,Fi) where Fi is the set of heaviest i edges in
C with respect to weight function w. We let mincutwρ

be the value of a minimum cut with
respect with weight wρ. When it is clear from context, we sometimes omit the subscript w.
For any positive number ρ, let Hw,ρ = {e ∈ E : w(e) ≥ ρ} be the set of ρ-heavy edges.13
Define the weight truncation wρ(e) = min{w(e), ρ}.

I Theorem 19 (Restatement of Theorem 12). We are given a weighted graph (G,w), λ > 0
be a parameter and ρ = (1 + γ)λ. Then we have the following:
1. If OPTw ∈ [λ, (1 + γ)λ), then mincutwρ ∈ [kρ/(1 + γ), kρ), and
2. if a cut C satisfies wρ(C) < kρ, then valw(C,Hw,ρ ∩ C) < (1 + γ)λ.

Notice that the above theorem not only gives a mapping between solutions of the two
problems but also that the heavy edges can be used as a set of free edges. We say that a cut
C is interesting if it contains at most k − 1 heavy edges, i.e., |Hw,ρ ∩ C| < k.

I Proposition 20. If cut C ⊆ E is not interesting (i.e., |Hw,ρ ∩ C| ≥ k), then valw(C) ≥ ρ
and wρ(C) ≥ kρ.

Proof. The fact that wρ(C) ≥ kρ follows immediately from the definition of heavy edges.
Let Fi be the set heaviest i edges in C with respect to w. Since C contains at least k heavy
edges, we have that for all i < k, C \ Fi contains at least k − i heavy edges. Therefore, we
have valw(C) = mini≤k−1

w(C\Fi)
k−i ≥ mini≤k−1

(k−i)ρ
k−i = ρ. J

Proposition 20 says that if a cut is not interesting it must be expensive as a normalized free
cut (i.e., high valw(C)) and as a graph cut (i.e., high wρ(C)). We next give a characterization
that relates valw and the sizes of the cuts for interesting cuts.

I Lemma 21. Let C be an interesting cut. Then valw(C) ≤ valw(C,Hw,ρ ∩ C) < ρ if and
only if wρ(C) < kρ.

Proof. (→) By definition of wρ, we have

wρ(C) = w(C \ (Hw,ρ ∩ C)) + ρ|Hw,ρ ∩ C|. (3)

If valw(C,Hw,ρ ∩ C) < ρ, then w(C \Hw,ρ ∩ C) < ρ(k − |Hw,ρ ∩ C|). By Equation (3), we
have wρ(C) < kρ.

(←) Denote F = Hw,ρ ∩ C. By definition of val, we have

valw(C) ≤ valw(C,F ) = w(C \ F )
k − |F |

(3)= wρ(C)− ρ|F |
k − |F |

<
kρ− ρ|F |
k − |F |

= ρ.

J

Proof of Theorem 19. For the first part, we begin by proving that mincutwρ
< kρ. Let C∗

be a cut such that valw(C∗) = OPTw. By Proposition 20, C∗ must be interesting. Since
valw(C∗) = OPTw < (1 + γ)λ = ρ, Lemma 21 implies that we have wρ(C∗) < kρ. Therefore,
mincutwρ

< kρ.

13When it is clear from the context, for brevity, we might say that e is a heavy edge instead of ρ-heavy
edge.
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Next, we prove that mincutwρ ≥ kρ/(1 + γ). Let C be a cut, and denote F = Hw,ρ ∩ C.
If C is not interesting, then Proposition 20 implies that wρ(C) ≥ kρ ≥ kρ/(1 + γ). If C is
interesting, by definition of wρ, we have

wρ(C) = w(C \ F ) + ρ|F | ≥ OPTw(k − |F |) + ρ

1 + γ
|F | ≥ ρk

1 + γ
.

The last inequality follows since by assumption OPTw ≥ ρ/(1 + γ).
For the second part of the theorem, as wρ(C) < kρ, Proposition 20 implies that C is

interesting. By Lemma 21, valw(C,Hw,ρ ∩ C) < ρ = (1 + γ)λ. J

5 Fast Approximate LP Solver

In this section, we construct the fast range punisher for the normalized free cut problem.
Our algorithm cannot afford to maintain the actual MWU weights, so it will instead keep
track of lazy weights. From now on, we will use wmwu to denote the actual MWU weights
and w the weights that our data structure maintains.

I Theorem 22 (Fast Range Punisher). Given graph G initial weight function winit and two
real values λ, ε > 0 such that λ ≤ OPTwinit , there is a randomized algorithm that iteratively
applies PunishMin until the optimal with respect to the final weight function wmwu becomes
at least OPTwmwu ≥ (1 + ε)λ, in time Õ(|E|+ K + 1

ε

∑
e∈E log(·w

mwu(e)
winit(e) )), where K is the

number of cuts punished.

The following theorem is almost standard: the fast range punisher, together with a fast
algorithm for approximating OPTw for any weight w, implies a fast approximate LP solver
(e.g., see [6, 18]). For completeness, we provide the proof in the Appendix.

I Theorem 23 (Fast LP Solver). Given a fast range punisher as described in Theorem 22,
and a near-linear time algorithm for approximating OPTw for any weight function w, there
is an algorithm that output (1 +O(ε))-approximate solution to kECSS LP in Õ(m/ε2) time.

Notice that the above theorem implies our main result, Theorem 1. The rest of this
section is devoted to proving Theorem 22. Following the high-level idea of [6], our data
structure has two main components:

Range cut-listing data structure: This data structure maintains dynamic (truncated)
weighted graph (G,wρ) and is able to find a (short description of) (1+O(ε))-approximate
cut whenever one exists, that is, it returns a cut of size between λ and (1 +O(ε))λ for
some parameter λ. Since our weight function w changes over time, the data structure
also has an interface that allows such changes to be implemented. The data structure
can be taken and used directly in a blackbox manner, thanks to [6].
Lazy weight data structures: Notice that a fast range punisher can only afford the
running time of Õ

(∑
e log wmwu(e)

winit(e)

)
for updating weights, while in the MWU framework,

some edges would have to be updated much more often. We follow the idea of [6] to
maintain approximate (lazy) weights that do not get updated too often but are still
sufficiently close to the real weights. We remark that wmwu only depends on the sequence
of cuts, that PunishMin actually punishes. This lazy weight data structure is responsible
for maintaining w that satisfies the following invariant:
I Invariant 24. We have (1− ε)wmwu ≤ w ≤ wmwu.
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That is, we allow w to underestimate weights, but they cannot deviate more than by
a factor of (1 − ε). In this way, our data structure only needs to update the weight
implicitly and output necessary increments to the cut listing data structure whenever the
invariant is violated.

In sum, our range punisher data structures deal with three weight functions w (lazy
weights), wρ (truncated lazy weights, used by the range cut listing data structure) and wmwu

(actual MWU weights, maintained implicitly).
The rest of this section is organized as follows. In Section 5.1–Section 5.3, we explain the

components that will be used in our data structure, and in Section 5.4, we prove Theorem 22
using these components.

5.1 Compact representation of cuts
This part serves as a “communication language” for various components in our data structure.
Since a cut can have up to Ω(m) edges, the data structure cannot afford to describe it
explicitly. We will use a compact representation of cuts [6], which allows us to describe any
(1 + ε)-approximate solution in a given weighted graph using Õ(1) bits; notice that, in the
MWU framework, we only care about (punishing) near-optimal solutions, so it is sufficient
for us that we are able to concisely describe such cuts.

Formally, we say that a family F of subsets of edges is ε-canonical for (G,w) if (i)
|F| ≤ Õ(|E|), (ii) any (1 + ε)-approximate minimum cut of (G,w) is a disjoint union of at
most Õ(1) sets in F , (iii) any set S ∈ F can be described concisely by Õ(1) bits, and (iv)
every edge in the graph belongs to Õ(1) sets in F . It follows that any (1 + ε)-approximate
cut admits a short description. Denote by [[S]] a short description of cut S ∈ F , and for
each (1 + ε) approximate cut C, [[C]] a short description of C.

I Lemma 25 (implicit in [6]). There exists a randomized data structure that, on input (G,w),
can be initialized in near-linear time, (w.h.p) constructs an ε-canonical family F ⊆ 2E(G),
and handles the following queries:

Given a description [[C]] of a (1 + ε)-approximate cut, output a list of Õ(1) subsets in F
such that C is a disjoint union of those subsets in Õ(1) time.
Given a description of [[S]], S ∈ F , output a list of edges in S in Õ(|S|) time.

5.2 Range Cut-listing Data Structure
The cut listing data structure is encapsulated in the following theorem.

I Theorem 26 (Range Cut-listing Data Structure [6]). The cut-listing data structure, denoted
by D, maintains dynamically changing weighted graph (G, ŵ) and supports the following
operations.
D.Init(G,winit, λ, ε) where G is a graph, ŵ is an initial weight function, and mincutŵ ≥ λ:
initialize the data structure and the weight ŵ← winit in Õ(m) time.
D.FindCut() : output either a short description of a (1 + O(ε))-approximate mincut
[[C]] or ∅ (when mincutŵ > (1 + ε)λ). The operation takes amortized Õ(1) time.
D.Increment(∆) where ∆ = {(e, δe)} is the set of increments (defined by a pair of an
edge e ∈ E and a value δe ∈ R≥0): For each (e, δe) ∈ ∆, ŵ(e)← ŵ(e)+δe. The operation
takes Õ(|∆|) time (note that |∆| corresponds to the number of increments).

As outlined earlier, the cut listing data structure will be invoked with ŵ = wρ.
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5.3 Truncated Lazy MWU Increment

The data structure is formally summarized by the definition below.

I Definition 27 (Truncated Lazy MWU Increment). A truncated lazy MWU increment denoted
by L maintains the approximate weight function w explicitly, and exact weight wmwu implicitly
and supports the following operations:14

L.Init(G,winit, ρ) where G is a graph, winit is the initial weight function, ρ ∈ R>0:
Intialize the data structure, and set w← winit.

L.Punish([[C]]) where C is a cut: Internally punish the free cut (C,F ) for some F (to
be made precise later) and output a list of increment ∆ = {(e, δe)} so that for each e ∈ E,
winit(e) plus the total increment over e is wρ(e).

L.Flush(): Return the exact weight wmwu.

Remark that the output list of increments returned by Punish is mainly for the purpose
of syncing with the cut listing data structure (so it aims at maintaining wρ instead of w).
Also, in the Punish operation, the data structure must compute the set F ⊆ C of free
edges efficiently (these are the edges whose weights would not be increased). This is one
of the reasons for which we cannot use the lazy update data structure in [6] as a blackbox.
Section A will be devoted to proving the following theorem.

I Theorem 28. There exists a lazy MWU increment with the following time complexity:
(i) init operation takes Õ(m) time, (ii) Punish takes Õ(K) + Õ

(∑
e log wmwu(e)

winit(e)

)
time in

total where K is the number of calls to Punish and outputs at most Õ
(∑

e log wmwu(e)
winit(e)

)
increments, and (iii) flush takes Õ(m) time. Moreover, the Invariant 24 is maintained
throughout the execution.

5.4 A Fast Range Punisher for Normalized Free Cut Problem

Now we have all necessary ingredients to prove Theorem 22. The algorithm is very simple and
described in Algorithm 1. We initialize the cut-listing data structure D so that it maintains
the truncated weight wρ and the lazy weight data structure L. We iteratively use D to find
a cheap cut in (G,wρ) until no such cut exists. Due to our mapping theorem, such a cut
found can be used for our problem, and the data structure L is responsible for punishing the
weights (Line 8) and returns the list of edges to be updated (this is for the cut-listing D to
maintain its weight function wρ).

14This is implicit in the sense that w is divided into parts and they are internally stored in different
memory segments. Whenever needed, the real weight can be constructed from the memory content in
near-linear time.
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Algorithm

Algorithm 1 FastRangePunisher(G,w, λ)

Input: G,winit, λ, ε such that OPTwinit ≥ λ.
Output: a correct weight function w = wmwu such that OPTw ≥ (1 + ε)λ.

1 w← winit and ρ← (1 + ε)λ
2 Let wρ be the truncated weight function of w.
3 if mincutwρ ≥ kρ then return w.
4 Let D and L be cut listing data structure, and truncated lazy MWU increment.
5 D.Init(G,wρ, kρ/(1 + ε), ε)
6 L.Init(G,w, ρ, ε)
7 while D.FindCut() returns [[C]] do
8 ∆← L.Punish([[C]])
9 D.Increment(∆)

10 w← L.Flush()
11 return w.

Analysis

By input assumption, we have OPTw ≥ λ. If w is returned at line 3, then mincutwρ ≥ kρ.
By Theorem 19(1), OPTwmwu ≥ OPTw ≥ ρ = (1 + ε)λ, and we are done (since minimum cut
can be computed in near-linear time). Now, we assume that w is returned at the last line.
The following three claims imply Theorem 22.

B Claim 29. For every cut [[C]] returned by the range cut listing data structure during
the execution of Algorithm 1, we have that (C,Hw,ρ ∩ C) is a (1 +O(ε))-approximation to
OPTwmwu at the time [[C]] is returned.

We remark that it is important that our cut punished must be approximately optimal
w.r.t. the actual MWU weight.

Proof. By definition of L.Flush() operation, we always have that the exact weight function
and approximate weight function are identical at the beginning of the loop. By definition of
L.Punish([[C]]), the total increment plus the initial weight at the beginning of the loop for
every edge e is wρ(e) and Invariant 24 holds. Therefore, by definition of D.Increment(∆),
the range cut-listing data structure maintains the weight function wρ internally. We now
bound the approximation of each cut [[C]] that D.FindCut() returned. Let F = Hw,ρ∩C. By
definition of FindCut(), we have that wρ(C) < kρ. By Theorem 19(2), valw(C,F ) < (1+ε)λ.
By Invariant 24, we have that valwmwu(C, F̃ ) < (1 +O(ε))λ. Since OPTwmwu ≥ OPTwinit ≥ λ,
we have (C,F ) is a (1 +O(ε))-approximation to OPTw. J

B Claim 30. At the end of Algorithm 1, we have OPTwmwu ≥ (1 + ε)λ.

Proof. Consider the time when D.FindCut() outputs ∅. The fact that this procedure
terminates means that mincutwρ ≥ kρ. Therefore, Theorem 19(1) implies that OPTw ≥
(1 + ε)λ. Let (C∗, F ∗) be an optimal normalized free cut with respect to wmwu. We have
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OPTwmwu = valwmwu(C∗, F ∗)
≥ valw(C∗, F ∗)
≥ OPTw

≥ (1 + ε)λ

where the first inequality follows from Invariant 24. J

B Claim 31. Algorithm 1 terminates in Õ(m+K + 1
ε ·
∑
e∈E log( w(e)

winit(e) )) time where K is
the number of Punish operations.

Proof. We first bound the running time due to truncated lazy MWU increment. By
Theorem 28, the total running time due to L (i.e., L.Init,L.Punish,L.Flush) is Õ(m +
K + 1

ε ·
∑
e∈E log( w(e)

winit(e) )) time where K is the number of Punish operations. We bound
the running time due to cut-listing data structure. Observe that the number of cuts listed
equals the number of calls of Punish operations, and the total number of edge increments
in D is Õ

(
1
ε ·
∑
e∈E log( w(e)

winit(e) )
)
. By Theorem 26, the total running time due to D (i.e,

D.Init,D.FindCut(),D.Increment(∆)) is as desired. J

6 LP Rounding for kECSS (Proof of Theorem 15)

In this section, we show how to round the LP solution x found by invoking Theorem 1. The
main idea is use a sampling technique to sparsify the support of x. On the subgraph G′ ⊆ G
based on this sparsified support, we apply the 2-approximation algorithm of Khuller and
Vishkin [33] to obtain a (2 + ε)-approximation solution.

Let G be a graph with capacities c (we omit capacities whenever it is clear from the
context). Our algorithm performs the following steps.

Step 1: Sparsification.

We will be dealing with the following LP relaxation for kECSS.

min{
∑

e∈E(G)

c(e)xe :
∑
e∈C\S

xe ≥ k − |S|, ∀C ∈ C ∀S ∈ {F : |F | ≤ k − 1 ∧ F ⊆ C}, x ≥ 0}

Denote by LPkECSS(G) the optimal LP value on input G. We prove the following lemma in
Appendix B.1 that will allow us to sparsify our graph without changing the optimal fractional
value by too much:

I Lemma 32. Given an instance (G, c), and in Õ(m/ε2) time, we can compute a subgraph
G′ having at most Õ(nk/ε2) edges such that LPkECSS(G′) = (1±O(ε))LPkECSS(G).

The first step is simply to apply this lemma to obtain G′ from G.

Step 2: Reduction to k-arborescences.

Next, we reduce the kECSS problem to the minimum-cost k-arborescence problem which, on
capacitated directed graph (H, cH), can be described as the following IP:

min{
∑

e∈E(H)

cH(e)ze :
∑

e∈δ+(C)

ze ≥ k for C ∈ C; z ∈ {0, 1}E(H)}
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where C is the set of all cuts C such that {r} ⊆ C ( V (G). Denote by OPTar(H) and
LPar(H) the optimal integral and fractional values15 of the minimum-cost k-arborescence
problem respectively. We use the following integrality of its polytope:

I Theorem 33 ([42], Corollary 53.6a). The minimum-cost k-arborescence’s polytope is integral,
so we have that OPTar(H) = LPar(H) for every capacitated input graph H.

For any undirected graph G, denote by D[G] the directed graph obtained by creating, for
each (undirected) edge uv in G, two edges (u→ v) and (v → u) in D[G] whose capacities
are just c(uv). We will use the following theorem by Khuller and Vishkin (slightly modified)
that relates the optimal values of the two optimization problems.

I Theorem 34. For any graph (H, c), the following properties hold:
LPar(D[H]) ≤ 2LPkECSS(H), and
Any feasible solution for k-arborescences in D[H] induces a feasible kECSS solution in
H of at most the same cost.

Note that Theorem 33 and the algorithm by Khuller and Vishkin imply that the integrality
gap of the kECSS LP is at most 2. While this result is immediate, it seems to be a folklore.
To the best of our knowledge, it was not explicitly stated anywhere in the literature. This
integrality gap allows us to obtain the first part of Corollary 2. We defer the proof of
Theorem 34 to Appendix B.2. Our final tool to obtain Theorem 15 (and the second part of
Corollary 2) is Gabow’s algorithm:

I Theorem 35 ([20]). Given a graph G = (V,E, c) with positive cost function c, a fixed
root r ∈ V , and let cmax be the maximum cost on edges, there exists an algorithm that in
Õ(km

√
n log(ncmax)) time outputs the integral minimum-cost k-arborescence.

Algorithm of Theorem 15.

Now, using the graph G′ created in the first step, we create D[G′], and invoke Gabow’s
algorithm to compute an optimal k-arborescence in D[G′]. Let S ⊆ E(G) be the induced
kECSS solution.

The cost of S is at most:

OPTar(D[G′]) ≤ LPar(D[G′])
≤ 2LPkECSS(G′)
≤ 2(1 +O(ε))LPkECSS(G)
≤ 2(1 +O(ε))OPTkECSS(G)

The first inequality is due to Theorem 33. The second one is due to Theorem 34 (first bullet).
The third one is due to Lemma 32.

Analysis

Step 1 takes Õ(m/ε2) time, by Lemma 32. As the sparsified G′ has m′ = Õ(nkε2 ) edges,
for Step 2, by Theorem 35, we can compute the arborescence in O(km′

√
n log(ncmax)) =

Õ(k
2n1.5

ε2 log cmax) time. We show in Appendix B.3 how to remove the term log cmax in our

15The relaxation is simply min{
∑

e∈E(H) cH(e)ze :
∑

e∈δ+(C) ze ≥ k for C ∈ C; z ∈ [0, 1]E(H)}
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case. In summary, the total running time is Õ
(
m
ε2 + k2n1.5

ε2

)
. Notice that the running time

can be Õ(mε2 + Tk(kn/ε2, n)) if we let the running time of Theorem 35 be Tk(m,n), this
complete the proof for Theorem 15.
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A Truncated Lazy MWU Increment (Proof of Theorem 28)

A.1 Additive Accuracy
Notice that, at any time, we always have wmwu(e) = 1

c(e) ·exp (vmwu(e)s(e)) for some positive
real numbers vmwu(e) and s(e) = ε

c(e) . For the true vector vmwu, the update rule for (C,F )
becomes the following: vmwu(e)← vmwu(e) + cmin for all e ∈ C \ F . This update causes all
edges in C \ F to increase their vmwu(e) by the same amount of cmin. By Theorem 19(2),
it is enough to use F to be always Hρ,w ∩ C, i.e., the set of heavy edges with respect to w
inside C. From now on, we always use Hw,ρ ∩ C as a free edge set whenever we punish C.

Instead of maintaining the approximate vector w for the real vector wmwu, we instead
work with the additive form of the approximate vector v for the real vector vmwu, and we
bound the additive error:

∀e ∈ E,vmwu(e)− η/s(e) ≤ v(e) ≤ vmwu(e) (4)

Next, we show that it is enough to work on vmwu with additive errors.

I Proposition 36. If Equation (4) holds, then ∀e ∈ E,wmwu(e)(1− η) ≤ w(e) ≤ wmwu(e).

Proof. Fix an arbitrary edge e ∈ E, we have w(e) ≤ wmwu(e). Moreover,

w(e) ≥ 1
c(e) exp((vmwu(e)− η/s(e))s(e)) = 1

c(e) ·
exp(vmwu(e)s(e))

exp(η) ≥ (1− η)wmwu(e).

J

A.2 Local Bookkeeping
We describe the set of variables to maintain in order to support Punish operation efficiently.
Let F be a ε-canonical family of subsets of edges (as defined in Lemma 25). We call each
subset of edges in F as a canonical cut. Let Ē = E \Hw,ρ be the set of non-heavy edges
where Hρ,w = {e ∈ E : w(e) ≥ ρ} is the set of heavy edges. We define a bipartite graph
B = (F , Ē, EB) where the first vertex partition is the set of canonical cuts F , the second
vertex partition is Ē, and for each S ∈ F and for each e ∈ Ē, we add an edge (S, e) to EB if
and only if e ∈ S. Let q(B) = the maximum degree of nodes in Ē in graph B. Since F is
ε-canonical, q(B) = Õ(1). By Lemma 25, given a description [[C]] of 1 or 2−repsecting cut,
we can compute a list of at most Õ(1) canonical cuts in F in Õ(1) time.

We maintain the following variables:
1. For each canonical cut S ∈ F ,

a. we have a non-negative real number ref(S) representing the reference point for the
total increase in S so far.

b. Also, we create a min priority queue QS containing the set of neighbors NB(S) (which
is the set of edges in Ē that S contains).

c. Also, we define cB(S) = mine∈NB(S) c(e) for the purpose of computing cmin which is
the minimum capacity c(e) for all edge e in the cut (excluding heavy edges) that we
want to punish.

2. For each edge (S, e) ∈ EB, we have a number last(S, e) representing the last update point
for e in S.

3. For each edge e ∈ E, we maintain v(e).
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For each edge (S, e) ∈ EB, we define diff(S, e) = ref(S)− last(S, e) ≥ 0. This difference
represents the total slack from the exact weight of e on S (we will ensure that the slack
is non-negative by being “lazy”). When summing over all canonical cuts that contains e,
we ensure that

∑
S3e diff(S, e) = vmwu(e)− v(e). More formally, we maintain the following

invariants throughout the execution of the truncated lazy increment.

I Invariant 37. Let η′ = η/ q(B).
(a) for all e ∈ Ē, η

s(e) ≥
∑
S:(S,e)∈EB diff(S, e) = vmwu(e)− v(e),

(b) for all (S, e) ∈ EB, QS .priority(e) = last(S, e) + η′

s(e) , and
(c) for all e ∈ Hw,ρ, vmwu(e) = v(e).

Intuitively, the first invariant means for each e ∈ Ē, the total difference over all S 3 e is
bounded. The second invariant ensures that ref(S) ≤ QS .priority(e) if and only if diff(S, e)
is small, and we can apply extract min operations on QS to detect all edges whose priority
exceeds the reference point efficiently. The third invariant means we restore the exact value
for all heavy edges.

I Proposition 38. Invariant 37a implies Equation (4).

Also, this invariant allows us to “reset” v to be vmwu efficiently.
Algorithm 2 Reset(e)

1 v(e)← v(e) +
∑
S:(S,e)∈EB diff(S, e)

2 for each S : (S, e) ∈ EB do
3 last(S, e)← ref(S)
4 QS .priority(e)← last(S, e) + η′

s(e)

Since priority queue supports the change of priority in O(logm) time, we have:

I Proposition 39. The procedure Reset can be implemented in time O(q(B) · logm) = Õ(1).

A.3 Init
Define v = v0 where v0 is the additive form of w0. We construct the bipartite graph
B = (F , Ē, EB) as defined in Appendix A.2. We use Lemma 25 to construct B in Õ(m) time.
For each S ∈ F , we create a min priority queue QS containing all the elements in NB(S)
where for each e ∈ NB(S), we set Qs.priority(e) = η′/s(e). We also define ref(S) = 0 for all
S ∈ F , and last(S, e) = 0 for all (S, e) ∈ EB. By design, the invariants are satisfied. The
total running time of this step is Õ(m).

A.4 Punish
Given a short description of 1 or 2-respecting cut [[C]], we apply Lemma 25 to obtain a set
S ⊆ F of Õ(1) canonical cuts whose disjoint union is C in Õ(1) time. Recall that the update
increases vmwu(e) by cmin for each e ∈ C −Hw,ρ where cmin = mine∈C−Hw,ρ c(e).

B Claim 40. We can compute cmin in Õ(1) time.

Proof. By definition of cB(S), minS∈S cB(S) = minS∈S mine∈NB(S) c(e) = mine∈C−Hw,ρ c(e) =
cmin. The claim follows because there are Õ(1) canonical cuts in S and we maintain the
value cB(S) for every S ∈ F . J
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In the first step, for each S ∈ S, we set ref(S) ← ref(S) + cmin. This takes Õ(1) time
because |S| = Õ(1) and potentially causes a violation to Invariant 37a.

In the second step, we check and fix the invariant violation as follows. For each S ∈ S,
let WS = {e ∈ S \Hw,ρ : ref(S) > QS .priority(e)} be the set of all edges in S \Hw,ρ whose
priority in QS is smaller than the reference point ref(S). For each e ∈ WS , we call the
procedure Reset(e). This take times O(r · q(B) logm) = Õ(r) where r is the number of calls
to Reset procedure. There will be new heavy edges after this step, which means we need to
update B to correct the set Ē.

In the third step, we identify new heavy edges from the set of edges that we called Reset
procedure in the second step, then we remove each edge in the set from the associated priority
queues and from the graph B as follows. Let U =

⋃
S∈SWS . Define UH = {e ∈ U : w(e) ≥ ρ}.

For each e ∈ UH , for all D ∈ NB(e), remove e from the priority queue QD and update the
value cB(D) (to get a new minimum after removing e). Finally, delete all nodes in UH from
B. The third step takes O(|U | + |UH | q(B) logm + |UH | q(B)) = Õ(r) time. The running
time follows because the |U | = r and |UH | ≤ |U |.

Finally, we output ∆ where ∆ is constructed as follows. For each e ∈ U , let w′(e) be
the weight of e before Reset(e) is invoked. If e 6∈ UH , then we define δe = w(e) −w′(e).
Otherwise, we define δe = ρ−w′(e). Then, we add (e, δe) to ∆.

I Lemma 41. If Invariant 37 holds before calling Punish([[C]]), then Invariant 37 holds
afterwards.

Proof. In the first step, we have
⋃
S3S NB(S) = C \ Hw,ρ, and thus the violation to

Invariant 37a can only happen due to some edge e ∈ C \Hw,ρ. Because the unions are over
disjoint sets, for each edge e ∈ C \Hw,ρ, there is a unique canonical cut Se ∈ S such that
NB(Se) 3 e.

B Claim 42. If there is a violation to Invariant 37a due to an edge e ∈ C \ Hw,ρ, then
Reset(e) is invoked in the second step.

Proof. Since Invariant 37a is violated due to an edge e, we have
∑
S′:(S′,e)∈EB diff(S′, e) >

η/s(e). By averaging argument, there is a canonical cut S∗ such that diff(S∗, e) > η
s(e) · q(B).

Since diff(Se, e) is the only term in the summation that is increased, we have S∗ = Se.
Therefore, we have

η

s(e) · q(B) < diff(Se, e) = ref(Se)− last(Se, e)
b= ref(Se)−QSe .priority(e) + η′

s(e) .

Therefore, ref(Se) > QSe .priority(e), and so e ∈ WS as defined in the second step. Hence,
Reset(e) is invoked. J

Since Reset(e) is invoked for every violation, we have that Invariant 37a is maintained.
By design, the second invariant is trivially maintained whenever Reset is invoked, and
also the last invariant is automatically maintained by the third step. This completes the
proof. J

A.5 Flush
For each e ∈ Ē, we call the procedure Reset(e). Then, we output w which is the same as
wmwu. The total running time is O(q(B)|Ē|) = Õ(m).
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A.6 Total Running Time
The initialization takes Õ(m). Let K be the number of calls to Punish([[C]]) and let I be
the number of calls to Reset(e) before calling Flush(). The total running time due to the
first step is O(K log2 n) = Õ(K), and total running time due to the second and third steps
is Õ(I). It remains to bound I, the total number of calls to Reset(e). Since each Reset(e)
increases of weight wmwu(e) by a factor of 1 + η′, the total number of resets is

O(
∑
i∈[n]

log1+O(η′)

(
wmwu(e)
winit(e)

)
) = O

q(B)
η
·
∑
i∈[n]

log(wmwu(e)
winit(e) )


= Õ

1
η
·
∑
i∈[n]

log(wmwu(e)
winit(e) )

 .

B Omitted Proofs in Section 6

B.1 Proof of Lemma 32
It suffices to prove the following lemma.

I Lemma 43. Given a feasible solution x to kECSS, and a non-negative cost function
: E → R≥0, and ε > 0, there is an algorithm that runs in Õ(m) time, and w.h.p., outputs
another feasible solution y to kECSS such that∑

e∈E ceye ≤ (1 + ε)
∑
e∈E cexe.

support(y) ⊆ support(x).
| support(y)| = O

(
kn logn
ε2

)
.

We devote the rest of this subsection to proving Lemma 43.
Let x be a near-optimal kECSS fractional solution obtained by Theorem 1. Compute the

solution y using Lemma 43. Create a graph G′ by keeping only edges in the support of y.
Before proving the lemma, we first develop an extension to the sparsification theorem

from the paper of Benczur and Karger.
We follow the definitions by [2, 7].

I Definition 44 (Edge stength). Let G = (V,E,w) be a weighted undirected graph.

G is k-connected if every cut in G has weight at least k.
A k-strong component is a maximal non-empty k-connected vertex-induced subgraph of G.
The strength of an edge e, denoted as κe is the maximum k such that both endpoints of e
belong to some k-strong component.

I Lemma 45 ([2]). ∑
e∈E

we
κe
≤ n− 1

I Lemma 46 ([2]). In Õ(m) time, we can compute approximate stength κ̃e for each edge
e ∈ E such that κ̃e ≤ κe and

∑
e∈E

we
κ̃e

= O(n)

Given a cut C and a subset S ⊆ C of its edges, where |S| ≤ k − 1, we say C§ is a
constrained cut. The next theorem states that all constrained cuts would have their weights
closed to their original weights after the sampling.
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I Theorem 47 (Extension to Compression Theorem [2]). Given G = (V,E,w), let p : E →
[0, 1] be a probability function over edges of G. We construct a random weighted graph
H = (V,EH , w′) as follows. For each edge e ∈ E, we independently add edge e into EH
with weight w′e = we/pe, with probability pe. For δ ≥ Ω(kd logn), if pe ≥ min{1, δweκe } for
all e ∈ E, then with high probability

(
over 1− 1

nd

)
, every constrained cut in H has weight

between (1− ε) and (1 + ε) times its value in G.

Proof. This theorem follows almost closely the proof of Benczur-Karger. We sketch here the
part where we need a minor modification.

The proof of Benczur-Karger roughly has two components. The first reduces the analysis
for general case to the “weighted sum” of the “uniform” cases where the minimum cut is
large, i.e. edge weights are at most 1 and minimum cut at least D = Ω (kd logn). This first
component works exactly the same in our case.

Now in each uniform instance which is the second component of Benczur-Karger, the
probabilistic arguments can be made in the following way: For each cut C, since edges are
sampled independently, we can use Chernoff bound to upper bound the probability that each
cut C deviates more than (1 + ε) factor (after sampling). Let µC denote this probability.
Therefore, the bad event that there is a cut deviating too much is upper bounded by

∑
C µC .

Benczur-Karger analyzes this probability by constructing an auxiliary experiment: Imagine
each edge is deleted with probability p, then the sum is exactly the expected number of
“empty cuts” in the resulting graph. They upper bound this by using the term E[2R] where R
is the (random) number of connected components in the resulting graph. They show (using a
coupling argument) that E[2R] = O

(
n2pD

)
, which vanishes whenever D = Ω (d logn). Here

is where we need to slightly change the proof. The bad even that we need to bound is not

just all the cuts
(∑

C

µC

)
, but also all the constraint cuts. Let µC\S be the probability of

the bad event that the constraint cut C \ S is deviating too much. We want to bound∑
C

∑
S⊆C,|S|≤k−1

µC\S .

We will create, by enumerating,
(
m
k

)
different graphs H so that each H has at most k

edges removed from G. Note that all constrained cuts are now defined in these graphs H. In
the original sampling, if an edge G is removed, then we remove it similarly in all graphs H
(ignoring it is present in H or not).

Given that there are R connected components in H, there are O(2R) empty cuts. We
consider

(
m
k

)
different graphs derived from H by exhaustively remove a subset S ⊆ E

of k edges. Some edges in S might already be removed in H, so some configurations
will be identical. We now count the empty cuts in these

(
m
k

)
graphs. To upper bound∑

C

∑
S⊆C,|S|≤k−1 µC\S , we just need to compute the total number of “empty cuts” in all

these graphs H.
In each H, there are at most R + k connected components. Hence, each graph has at

most 2R+k empty cuts. Sum up this number among all the graphs, we get that∑
C

∑
S⊆C,|S|≤k−1

µC\S ≤ E
[(
m

k

)
2R+k

]
.

Since E[2R] = O(n2pD), we get that∑
C

∑
S⊆C,|S|≤k

µC\S = O

((
m

k

)
2kn2pD

)
= O

((
2em
k

)k
n2pD

)
,
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which again vanishes if D is large enough (at least Ω(kd logn)).
J

We are now ready to prove Lemma 43. In fact the same proof in [7] can be applied once
we have Theorem 47.

Proof of Lemma 43. We first use Lemma 46 to compute approximate edge strength κ̃e for
each edge e ∈ E so that κ̃e ≤ κ and

∑
e∈E

we
κ̃e

= O(n) in Õ(m) time. Let δ = Θ(kd logn) for
some large constant d. Let cost(x) =

∑
e∈E cexe . For each edge e ∈ E let pe = min{1, δxeε2κ̃e

},
and qe = min{1, δcexe

ε2cost(x)}, and define re = max(pe, qe).
We will focus on x from the perspective of kECSS LP with knapsack constraints.
We construct a random graph H = (V,E′, x′) using r as a probability function over

edges of G and we x as weight function of the graph as follows. For each edge e ∈ E, we
independently sample edge e into E′ with weight x′e = xe/re with probability re. Since

re = max(pe, qe) ≥ pe = min{1, δxe
ε2κ̃e

} ≥ min{1, δ xe
κe
}

for sufficiently large constant d, by Theorem 47, we get w.h.p.,

∀C ∈ C∀S ∈ C, |S| ≤ k − 1,
∑
e∈C\S

x′e ≥ (1− ε)
∑
e∈C\S

xe ≥ (1− ε)(k − |S|).

Observe that ∑
e∈E

re ≤
∑
e∈E

pe +
∑
e∈E

qe = O(nδ
ε2 + δ

ε2 ) = O(nδ
ε2 )

By Chernoff bound, we have

P (
∑
e∈E

cex
′
e ≥ (1 + ε)

∑
e∈E

cexe) ≤ exp(−Ω(δ))

and,
P (|E′| ≥ (1 + ε)O(nδ

ε2 )) ≤ exp(−δ/ε2)

By the union bound, we have the followings w.h.p.∑
e∈C\S

x′e ≥ (1− ε)(k − |S|), ∀C ∈ C,∀S ∈ C, |S| ≤ k − 1,

| support(x′)| ≤ O(nδ
ε2 ) and

∑
e∈E

cex
′
e ≤ (1 + ε)

∑
e∈E

cexe

Therefore, y′ = (1 + ε)x′ is a feasible solution to kECSS. Also, | support(y′)| ≤ O(nδε2 ),
and

∑
e∈E cey

′
e ≤ (1 + ε)2∑

e∈E cexe. Finally, we can get (1 + ε′)
∑
e∈E cexe by a proper

scaling factor for ε.
J

B.2 Proof of Theorem 34
For the first part of the theorem, let x denote the optimal solution in the relaxed LP of
kECSS of graph H. We create a fractional solution z in D[H] as follows: for every edge
e ∈ E in H, if e1 and e2 are the two opposite directed edges in D[H] derived from e, we
set ze1 = ze2 = xe. It is clear that c(z) = 2c(x). We just need to argue that z is feasible in
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the relaxed k-arboresences problem. Consider a cut C ∈ C (where r ∈ C and C 6= V ). As
x(C) ≥ k,

∑
e∈δ+(C) ze ≥ k. Furthermore, by Lemma 17, x satisfies the boxing constraint,

that is, 0 ≤ xe ≤ 1 for all edges e ∈ H, implying that 0 ≤ ze ≤ 1 for all directed edges
e ∈ D[H]. This shows that z is feasible and the first part of the theorem is proved.

For the second part, consider a feasible solution for k-arborescences in D[H]. If any of
the two opposite directed edges is part of the k-arborescences, we include its corresponding
undirected edge in H as part of our induced solution. Clearly, the cost of the induced solution
cannot be higher and it is a feasible kECSS solution, since it guarantees that the cut value is
at least k for all cuts.

B.3 Polynomially bounded costs
Since Gabow’s algorithm for arborescences has the running time depending on cmax, the
maximum cost of the edges, we discuss here how to ensure that cmax is polynomially bounded.

Let x be the LP solution obtained from our LP solver. Denote by C∗ =
∑
e∈E cexe, so

we have that C∗ is between OPT/2 and OPT, where OPT is the optimal integral value.
First, whenever we see an edge e ∈ E with ce > 2C∗, we remove such an edge from the

graph G. For each remaining edge e ∈ E, we round the capacity ce up to the next multiple
of M = dεC∗/|E|e. So, after this rounding up, we have the capacities in {M, 2M, . . . , C∗},
and we can then scale them down by a factor of M so that the resulting capacities c′e are
between 1 and O(|E|/ε). It is an easy exercise to verify that any α-approximation algorithm
for (G, c′) can be turned into an α(1 + ε)-approximation algorithm for (G, c).

C Omitted Proofs

C.1 Polynomially Bounded Cost in Proof of Theorem 7
Let us assume that the costs ce are integers (but they can be exponentially large in values).
Karger’s sampling [28] gives a near-linear time algorithm to create a skeleton graph H so
that all cuts in H are approximately preserved, and the minimum cut value is O(log |E|).
It only requires an easy modification of Karger’s arguments to show that we can create a
skeleton H such that all k-free minimum cuts are approximately preserved, and that the
value of the minimum k-free cuts is Θ(k log |E|). We will run our static algorithm in graph H
instead. As outlined in Karger’s paper [27], the assumption that we do not know the value of
the optimal can be resolved by enumerating them in the geometric scales, and the sampling
will guarantee that the running time would not blow up by more than a constant factor.

C.2 Proof of Theorem 16
The proof is done via duality. The primal and dual solutions will be maintained and updated,
until the point where one can argue that their values converge to each other; this implies
that both the primal and dual solutions are approximately optimal. Recall the primal LP is
the covering LP:

min{cTx : Ax ≥ 1, x ≥ 0}

The dual LP is the following packing LP:

max{yT1 : yTA ≤ cT , y ≥ 0}

For the primal LP, we maintain vectors w(t) ∈ Rn, where w(0)
i = 1/ci for each i ∈ [n]. The

tentative primal solution on day t is w̄(t) = w(t)/MinRow(A,w(t)). For the dual packing
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LP, we maintain vectors f(t) ∈ Rm where f(0) = 0. The tentative dual solution on day t is
defined as f̄(t) = f (t)/cong(f(t)), where cong(f) is the maximum ratio of violated constraints
by f, that is,

cong(f) = max
i∈[n]

(fTA)i
ci

. (5)

Notice that f̄(t) is a feasible dual solution on each day.
Now we explain the update rules on each day. Let j(t) be the row that achieves

Aj(t)w(t−1) ≤ (1 + ε)MinRow(A,w(t−1)).
Update f(t)

j(t) ← f(t−1)
j(t) + δ(t) where δ(t) = mini∈[n]

ci
Aj(t),i

is the “increment” on day t.

Update w(t)
i ← w(t−1)

i exp
(
ε · δ(t)Aj(t),i

ci

)
for each i ∈ [n].

Denote the primal value at time t by P (t) = cT w̄(t) and the dual by D(t) = ||̄f(t)||1; so
we have P (t) ≥ D(t) for all t.

I Theorem 48. Let t∗ be the day t for which P (t) is minimized and N = Ω( nε2 lnn) be the
total number of days. Then we have that P (t∗) ≤ (1 +O(ε))D(N). In particular, w̄(t∗) and
f̄(N) are near-optimal primal and dual solutions.

Our proof relies on the estimates of a potential function defined as Φ(t) = cTw(t) =∑
i∈[n] ciw

(t)
i .

I Lemma 49. We have, on each day t,

exp(ε · cong(f(t))) ≤ Φ(t) ≤ n · exp

ε(1 + 3ε)
∑

0<t′≤t

δ(t′)
P (t′ − 1)

 .

Proof. First we show the lower bound of Φ(t). Fix column i ∈ [n] such that ((f(t))TA)i
ci

=
cong(f(t)). Notice that the value of ciw(t)

i is equal to:

exp

 ε

ci
·
∑
t′≤t

δ(t′)Aj(t′),i

 .

The term δ(t′)Aj(t),i is exactly the increase in ((f(t))TA)i at time t, so we have that

ciw(t)
i ≥ exp

(
ε

ci
· ((f(t))TA)i

)
= exp(ε · cong(f(t))),

as desired.
Next, we prove the upper bound on the potential function. Observe that16 w(t)

i ≤
w(t−1)
i (1 + ε(1 + ε) · δ(t)Aj(t),i

ci
). This formula shows the increase of potential at time t to be

at most

Φ(t) ≤ Φ(t−1)+
∑
i∈[n]

ε(1+ε)·δ(t)Aj(t),iw
(t−1)
i ≤ Φ(t−1) exp

ε(1 + ε)δ(t)
Φ(t−1) ·

∑
i∈[n]

Aj(t),iw
(t−1)
i


16 In particular, we use the inequality eγ ≤ 1+γ+γ2 for γ ∈ [0, 1) and the fact that the ratio δ(t)Aj(t),i/ci

is at most 1.
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Notice that
∑
i∈[n] Aj(t),iw

(t−1)
i = (Aj(t)w(t−1)) is at most (1 + ε)MinRow(A,w(t−1)) by

the choice of the update rules. The term reduces further to:

Φ(t) ≤ Φ(t−1) exp
(
ε(1 + ε)2δ(t)
P (t− 1)

)
≤ Φ(t−1) exp

(
ε(1 + 3ε)δ(t)
P (t− 1) .

)
By applying the fact that Φ(0) = n and the above fact iteratively, we get the desired
bound. J

Finally, we argue that the lemma implies Theorem 48. Consider the last day N . Taking
logarithms on both sides gives us:

cong(f(N)) ≤ lnn
ε

+ (1 + 3ε)
∑

0<t′≤N

δ(t′)
P (t′ − 1) ≤

lnn
ε

+ (1 + 3ε) ||f
(N)||1
P (t∗)

The second inequality uses the fact that ||f (N)||1 =
∑
t′ δ(t′) and that P (t∗) ≤ P (t) for all t.

B Claim 50. cong(f(N)) ≥ N/n, so this implies that cong(f(N)) ≥ lnn/ε2 when N ≥ n lnn/ε2.

Proof. We will argue that
∑
i∈[n]

f(t)A
ci

increases by at least one on each day. Since this
sum is at most ncong(f(t)), we have the desired result. To see the increase, let i be the
column that defines δ(t), that is i = arg mini∈[n] ci/Aj(t),i. Notice that ((f(t+1))TA)i =
((f(t))TA)i + δ(t)Aj(t),i ≥ ((f(t))TA)i + ci. This shows an increase of one in the above
sum. J

Plugging in this term, we have that:

cong(f(N)) ≤ εcong(f(N)) + (1 + 3ε) ||f
(N)||1
P (t∗)

This implies that P (t∗) ≤ (1 + 6ε)D(N).

C.3 Proof of Lemma 17
Let x be a feasible solution Akcx ≥ 1. Consider x′i = min(xi, 1) for each i ∈ [n]. We claim that
x′ satisfies Ax′ ≥ κ. Consider the constraint Ajx′ ≥ κj . Let F = {i ∈ supp(Aj) : xi > 1}. If
|F | ≥ κj , it would imply that Ajx′ ≥ κj and we are done. Otherwise, we have |F | ≤ κj − 1,
and the KC constraints guarantee that∑

i∈supp(Aj)

x′i =
∑

i∈supp(Aj)\F

xi + |F | ≥ κj

Conversely, let x be a feasible solution Ax ≥ κ, x ∈ [0, 1]n. Consider any KC constraint:
For any j ∈ [m] and F ⊆ supp(Aj), |F | ≤ κj − 1∑

i∈supp(Aj)\F

xi =
∑

i∈supp(Aj)

xi −
∑
i∈F

xi ≥ κj − |F |

This implies that x itself is feasible for Akcx ≥ 1.

C.4 Proof of Theorem 23
By Lemma 17, it is enough to solve kECSS LP with KC inequalities.
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C.4.1 Interpretation of MWU Framework

We interpret the analysis in Appendix C.2 in the language of graphs. An interesting feature
is that the dual variables are only used in the analysis; it is not used in the implementation
at all.

We use wmwu to be the weights that the primal LP maintains. Let {(C(t), F (t), c
(t)
min)}t≤T

a sequence of normalized free cuts (C(t), F (t)) and the value c(t)
min = mine∈C(t)\F (t) c(e)

obtained by the MWU algorithm up to day T . For each edge e, we define congestion
cong(e) = 1

c(e) ·
∑
t≤T : e∈C(t)\F (t) c

(t)
min. The congestion of the graph is denoted as cong(G) =

maxe∈E cong(e). Note that cong(G) is precisely the same as cong in Equation (5) when we
restrict the LP instance to kECSS LP. Furthermore, by definition, we have

∀e,wmwu(e) ≤ 1
c(e) · exp(εcong(G)) (6)

Since the running time of the Range Punisher depends on the change of weights, we need
to ensure that the total change (the sum-of-log (SOL) terms) is at most near-linear. We
bound the SOL term using a slightly different stopping criteria: Observe that the analysis rely
crucially on the fact that congestion cong(G) ≥ 1

ε2 lnm. We could also use cong(G) ≥ 1
ε2 lnm

as a stopping condition (instead of running up to O( 1
ε2m logm) days), and the stopping

condition implies the number of days is at most O( 1
ε2m logm).

We can infer cong(G) from the weight function wmwu by the following. Let φmwu(e) :=
1
ε · ln(c(e) · wmwu(e)) for all e ∈ E. By definition of cong(e), we have wmwu(e) = 1

c(e) ·
exp(εcong(e)), and so φmwu(e) = cong(e). Therefore, we have

‖φmwu‖∞ = cong(G). (7)

C.4.2 Algorithm

For the implementation, recall that we denote wmwu to be the real weights on MWU
framework, and w to be the approximate weight that the data structure maintains.

We describe extra bookkeeping from RangePunisher to construct to the final solution.
First, it outputs a pair of weight function (wmwu,wsol) where wmwu is the weights at the
end of RangePunisher and wsol = winit

valwinit (C,F ) where winit is the initial weight function
for RangePunisher, and (C,F ) is the first normalized mincut obtained during the range
punisher.

Since the range punisher maintains approximate weights, we next explain how to detect
the stopping condition using approximate weights. We want to stop as soon as ‖φmwu‖∞ >
1
ε2 ·lnm. Since we can only keep the approximate weights, we can only detect the approximate
value with O(1/ε)-additive error as follows. First, it keeps track of φ(e) := 1

ε · ln(c(e) ·w(e))
for all e ∈ E, and early stop as soon as ‖φ‖∞ > 1

ε · lnm. Since w is (1 + ε)-approximation
to the real weight wmwu, it implies that with respect to weight right before the stopping day,
‖φmwu‖∞ ≤

1
ε · lnm+O(ε−1) = O( 1

ε lnm).
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The algorithm for LP solver is described in Algorithm 3.
Algorithm 3 kECSSLPSolver(G, c, ε)

Input: An undirected graph G = (V,E), a cost function c, ε ∈ (0, 1)
Output: A fractional solution wsol.

1 ∀e ∈ E,wmwu(e)← 1
c(e)

2 Let λ̃ be an (1 + ε)-approximation to OPTwmwu

3 λ← λ̃
1+ε

4 wbest ← wmwu

λ̃

5 repeat
6 (wmwu,wsol)← RangePunish(G,wmwu, λ)
7 λ← λ(1 + ε)
8 if cTwbest > cTwsol then wbest ← wsol.
9 until ∃ a day such that ‖φ‖∞ > 1

ε2 · lnm (and early terminate)
10 return wbest.

Correctness
We first show that Algorithm 3 punish a sequence of (1 + O(ε))-approximate normalized
free cuts with respect to wmwu where the weight update rule is defined in the PunishMin
operations. Initially, wmwu(e) = 1

c(e) for all e ∈ E. By definition, OPTwmwu ∈ [λ̃/(1 + ε), λ̃)
and thus OPTwmwu ∈ [λ, (1 + ε)λ). For each iteration where OPTwmwu ∈ [λ, (1 + ε)λ), the
range punisher (Theorem 22) keeps punishing (1 +O(ε))-approximate normalized free cuts
until OPTwmwu ≥ (1 + ε)λ.

By discussion in Appendix C.4.1, and Theorem 48, there must be a day t∗ such that
in some range such that w(t∗)

val
w(t∗) (C(t∗),F (t∗)) is (1 +O(ε))-approximation to the LP solution

where w(t∗) is wmwu at day t∗. Since each normalized cut value is within (1 + ε) factor
from any other cut inside the same range, we can easily show that the first cut in the
range is (1 + ε)-competitive with any cut in the range. Therefore, Algorithm 3 outputs
(1 +O(ε))-approximate solution to kECSS LP.

Running Time
By Corollary 8, the running time for computing the value λ̃ is Õ( 1

ε ·m). By Theorem 22,
the total running time is

Õ(m`+K + 1
ε
·
∑
e∈E

log(wmwu(e)
winit(e) )),

where ` is the number of iterations, and K is the total number of normalized free cuts
punished (including all iterations), wmwu is the final weight at the end of the algorithm, and
winit(e) = 1/c(e) for all e.

Since we early stop as soon as ‖φ‖∞ > 1
ε2 · lnm, it means that the day right before we

stop we have ‖φmwu‖∞ = O( 1
ε2 · lnm). By the stopping condition,

cong(G) (7)= ‖φmwu‖∞ = O( 1
ε2 · lnm). (8)

The following three claims finish the proof.
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B Claim 51. ` = O( 1
ε2 logm).

Proof. Initially, we have OPTwmwu ∈ [λ, (1 + ε)λ). By Equation (6), we have wmwu(e) ≤
1
c(e) · exp(εcong(G)) (8)= O( 1

c(e) ·m
O( 1

ε )) for all e ∈ E. Let (C(0), F (0)) be the first normalized
free cut that we punish. Let λ0 be the value of that cut. We have that each edge is increase by
at most a factor of mO( 1

ε ), and thus the cut at day right before the stopping happens must be
smaller than λ0 ·mO( 1

ε ). Therefore, the number of ranges is log1+ε(mO( 1
ε )) = O( 1

ε2 logm). J

B Claim 52. K = O( 1
ε2m logm).

Proof. Observe that for each normalized free cut (C,F ) that we punish there exists a
bottleneck edge e ∈ C \F whose c(e) is minimum. By the weight update rule, the congestion
is this edge is increased by exactly 1. Therefore, the number of normalized free cuts is at
most O(m · cong(G)) (8)= O( 1

ε2m logm). J

B Claim 53. For each e, log( wmwu(e)
winit(e) )) = O( 1

ε logm).

Proof. Recall that the initial weight winit(e) = 1/c(e) for all e. Therefore,

∀e ∈ E, log(wmwu(e)
winit(e) ))

(6)
≤ εcong(G)

(8)
≤ O(1

ε
· logm).

J


	1 Introduction
	2 Overview of Techniques
	2.1 Step 1: Static Algorithm
	2.2 Step 2: Dynamic Algorithm
	2.3 LP Rounding for kECSS

	3 Preliminaries
	4 Range Mapping Theorem
	5 Fast Approximate LP Solver
	5.1 Compact representation of cuts
	5.2 Range Cut-listing Data Structure
	5.3 Truncated Lazy MWU Increment
	5.4 A Fast Range Punisher for Normalized Free Cut Problem

	6 LP Rounding for kECSS (Proof of thm: fast rounding)
	A Truncated Lazy MWU Increment (Proof of thm:tlmi)
	A.1 Additive Accuracy
	A.2 Local Bookkeeping
	A.3 Init
	A.4 Punish
	A.5 Flush
	A.6 Total Running Time

	B Omitted Proofs in sec: rounding
	B.1 Proof of lem:spase graph
	B.2 Proof of thm: KV
	B.3 Polynomially bounded costs

	C Omitted Proofs
	C.1 Polynomially Bounded Cost in Proof of thm: warmup
	C.2 Proof of Theorem 16
	C.3 Proof of lem:KC for box
	C.4 Proof of thm:fast LP solver
	C.4.1 Interpretation of MWU Framework
	C.4.2 Algorithm



