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We provide theoretical and experimental evidence for the existence of topological Tamm states at the interface
between two stubbed photonic crystals (PCs) as a function of the period and length of the stubs. Several works
have addressed these states in the well-known Su-Schrieffer-Heeger model, a dimerized chain based on two
resonators per unit cell where the opening of a gap at a Dirac cone results in a symmetry inversion of bulk
bands between two topologically different crystals. Here, we give a detailed theoretical analysis of a mechanism
based on band-edge symmetry inversion around a flat band, i.e., when the width of the pass band vanishes,
while using only one resonator (stub) per unit cell. Then, we propose a simple versatile experimental platform
to observe such interface states, which is based on coaxial cables operating in the radio-frequency domain.
The investigation of these states was performed by using different approaches: (i) the topology of the bands
based on the Zak phase and the symmetry of the band-edge modes, (ii) the sign of the reflection phase between
each PC and a waveguide, and (iii) the dips or peaks in the reflection and transmission spectra when two finite
photonic crystals are connected together either horizontally or vertically along a waveguide. Furthermore, we
give a general rule about the existence of interface states when two PCs exhibit two common gaps with a flat band
in their middle and different bulk-edge symmetries. Also, we provide closed-form expressions of the geometrical
parameters and the frequency for which the interface state becomes bound state in the continuum (BIC). We
show that these topological BIC states are stationary states of the cavity between the two PCs, and are very
robust to any perturbation on both sides of the cavity. Finally, we show the impossibility of existence of interface
states between two PCs with identical periods and different stubs. The theoretical and experimental results are
discussed for both Neumann and Dirichlet boundary conditions at the end of the stubs.

DOI: 10.1103/PhysRevB.107.125405

I. INTRODUCTION

Tamm states are electronic surface states localized at the
surface termination of a crystal due to the periodicity break-
ing [1,2]. They appear as defect eigenmodes in the gaps of
the crystal [3]. Surface states can appear also at the bound-
aries of periodic photonic crystals (PCs), due to the similar
wave nature of electrons and photons [4–7]. These modes
are called optical Tamm states [8,9]. Surface modes in one-
dimensional (1D) dielectric Bragg mirrors or superlattices in
contact with vacuum or other homogeneous materials have
been extensively studied theoretically [4–8,10–12] and ex-
perimentally [9,13–18]. In addition to dielectric-dielectric
multilayers, surface waves in other types of periodic struc-
tures have been investigated such as dielectric-plasma [19,20],
dielectric-graphene [21,22], metamaterials [23,24], plasmonic
waveguides [25,26] and photonic circuits [27–29]. In addition
to surface states in one PC, several works have addressed
interface states between two different PCs with overlapping

*Corresponding author: elboudouti@yahoo.fr

gaps [30–32]. Surface and interface states in PCs have been
proposed for different applications such as sensors [33,34],
reduced light absorption [35,36], and polariton lasers [30,36].

Recently, considerable efforts have been dedicated to the
search of interface states between a PC and a homogeneous
material or between two PCs based on the concept of topo-
logical invariant and the geometric phases of the bulk bands
[37–51]. In 1D periodic materials, the topology of the bands
is determined via the calculation of the Zak phase [52], which
is a kind of Berry phase spanning the first Brillouin zone [53].
Experimentally, the Zak phase of the bands as well as the
topological interface states between two PCs are determined
from the reflection phase [40,41] and transmission and reflec-
tion amplitude [48,49], respectively. There exists numerous
models that enable to describe the existence of topological in-
terface states between two PCs [54]. One of the most popular
models is the Su-Schieffer-Heeger (SSH) model [55] based
on the concept of band inversion (gapless). In this model,
the interface mode is obtained by connecting two PCs with
inverted symmetry of their bulk-edge modes on both sides of
a gap opened at a Dirac point [48,49,51]. These modes are
characterized by their robustness to perturbation and disorder
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FIG. 1. (a) Symmetric unit cell in the space of interfaces {0, 1}. In the following sections, the unit cell is made of a stub of length d ′
1 inserted

in the middle of a segment of length d1. (b) Infinite PC made of periodic symmetric cells. (c) Semi-infinite PC made of periodic symmetric
cells. (d) Finite PC made of N periodic symmetric cells. (e) Interface between two semi-infinite PCs. (f) Interface between two finite PCs.
(g) Two PCs as in (f) attached to one semi-infinite waveguide. (h) Two PCs as in (f) inserted between two semi-infinite waveguides. (i) Two
PCs as in (f) grafted vertically along a waveguide.

in the system [48,49]. The SSH model has also been used
to predict the existence of surface modes in just one PC in
contact with air or another dielectric [50]. Let us mention
that for some geometrical parameters, the interface state can
become a bound state in the continuum (BIC) which is char-
acterized by an infinite lifetime (i.e., infinite quality factor)
[56]. Some recent works have addressed topological BIC in
photonic crystals based on dielectric arrays and photonic slabs
[57–61].

In the SSH model, dimerized systems with two similar
resonators in a unit cell provide another degree of freedom
compared to the simple lattice, resulting in the nontrivial
topological phase and edge states. The edge states appear
as a consequence of gap closing and reopening. Recently,
stubbed waveguides have been treated by considering two
stubs by unit cell in the framework of SSH model [51]. Here,
we provide another mechanism that enables to predict the

existence of edge states between two PCs which is based on
band closing (or flat bands). This phenomenon occurs around
flat bands where the gaps are of hybridization type instead of
being Bragg type. First, we give a general theory that enables
to study the interface states between any two PCs made of
symmetric cells. In this theory, we provide the dispersion
relation and local density of the states (LDOS) between two
semi-infinite PCs as well as the transmission and reflection co-
efficients and total DOS of two connected finite PCs. Then, we
give an application of this theory to a comb structure made of
stubs of length d ′

1 grafted in the middle of a segment of length
d1 (Fig. 1). The boundary conditions at the end of the stubs
can be either Neumann boundary condition (NBC) [i.e., van-
ishing of the magnetic field (H = 0)] or Dirichlet boundary
condition (DBC) [i.e., vanishing of the electric field (E = 0)].
Also, we provide a simple versatile experimental platform to
validate the theoretical results presented here by considering
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stubs and segments made of standard coaxial cables operating
in the radio-frequency domain. The existence of topological
interface states is carried out from the dispersion relation
and the symmetry of the band-edge states. This approach is
equivalent to the determination of the Zak phases of the bulk
bands for each of the PCs. Then, the existence and the position
of such states are proved through (i) an investigation of the
LDOS at the interface between two semi-infinite PCs, which
is essential to determine Tamm states that appear as maxima
in the LDOS inside the common gaps of the two PCs, (ii) the
sign of the phase of the reflection coefficient at the boundary
of each PC with a waveguide, and (iii) the scattering param-
eters (transmission and reflection coefficients as well as the
phase of the determinant of the scattering matrix, the so-called
Friedel phase) when two combined PCs are either attached
horizontally inside a waveguide or grafted vertically along a
waveguide. In addition, we provide closed-form expressions
of the geometrical parameters and the frequency for which
the interface state becomes a BIC. We show that these topo-
logical BICs are stationary states of the cavity between the
two PCs, and are very robust to any perturbation on both sides
of the cavity. Finally, we show the impossibility of existence
of interface states between two PCs with identical periods
and different stubs. The analytical calculations developed here
are performed by means of the Green’s function approach
[62,63]. We recently adapted the theoretical approach to the
case of acoustic waveguides [64] and it can be expected that
the experimental observation of topological interface states
can become possible in the future by means of side-coupled
Helmholtz resonators [65]. For the sake of completeness, let
us mention that preliminary theoretical results of the topolog-
ical photonic interface states in comblike structures have been
presented in a recent conference paper [66].

The outline of this paper is as follows: Considering
PCs where the constitutive elements of each unit cell are
monomode waveguides, we give in Sec. II a general theory
of the dispersion relations of Tamm states between two semi-
infinite and two finite PCs as well as the local and total DOS
of two connected PCs made of symmetric cells. In Sec. III,
we adapt the theory to the case of PC constituted by periodic
stubs grafted along a waveguide and show numerical and ex-
perimental results for the effect of the periods on the existence
of topological interface states in the case of NBC (H = 0) at
the end of the stubs. Section IV shows the effect of the lengths
of the stubs on the existence of topological interface states. In
Sec. V, we give a summary of the main results of this work.
The results of DBC (E = 0) at the end of the stubs are given
in the Supplemental Material SM5 [67].

II. GENERAL THEORY OF BULK, SURFACE,
AND INTERFACE STATES

In this section, we provide the main theoretical expres-
sions that enable to derive the dispersion relations of infinite,
semi-infinite, and finite PCs. Then, we show how one can
deduce the dispersion relations of Tamm states between two
semi-infinite and two finite PCs as well as the local and total
DOS of two connected PCs. Also, we provide the analytical
expressions of the transmission and reflection coefficients as
well as the scattering matrix of two connected finite PCs.

Finally, we give an exact relation between the phase of the
determinant of the scattering matrix (the so-called Friedel
phase [68]) and the total DOS. This general theory can be used
by any reader interested in this domain for any 1D photonic
crystal made of symmetric cells without going into details. It
should be pointed out that the validity of our results is subject
to the requirement that the propagation is monomode, i.e., the
cross section of the waveguides is small compared to their
length and to the propagation wavelength.

A. Dispersion relations of infinite, semi-infinite, and finite PCs

All the analytical calculations are performed in the frame-
work of the Green’s function method [63]. As mentioned
before, in order to study topological Tamm states in 1D
systems, we need the inverse of the Green’s function of a
symmetric unit cell [Fig. 1(a)] of PC1 in its space of interface
M = {0, 1},

g−1
cell(M, M ) =

(
a1 b1

b1 a1

)
, (1)

where a1 and b1 are real quantities. The details of these ex-
pressions will be given in Sec. III for a symmetric cell made
of a stub of length d ′

1 placed in the middle of a segment of
length d1 [Fig. 1(a)].

The inverse of the Green’s function of the infinite PC made
of a periodic repetition of a given cell [Fig. 1(a)] is obtained
from a linear superposition of the (2×2) matrix in Eq. (1) in
the space of interfaces of all the sites n. We obtain a tridi-
agonal matrix where the diagonal and off-diagonal elements
are given, respectively, by a1 and b1. Taking advantage of the
Bloch theorem, the dispersion relation of the infinite periodic
PC [Fig. 1(b)] is given by [28]

cos
(
k1

Bd1
) = −a1

b1
, (2)

where k1
B is the Bloch wave vector and d1 is the period of the

PC1.
For a semi-infinite PC1 terminated by a free surface

[Fig. 1(c)], the inverse of the Green’s function in the space
at the surface {0} is given by [28]

g−1
PC1(0, 0) = a1 + b1t1, (3)

where t1 = exp(k1
Bd1). Equation (3) can be written also in the

form

g−1
PC1(0, 0) = jω

Z1
, (4)

where we introduce the surface impedance Z1 of the PC1.
For a finite PC bounded by two surfaces n = 0 and N

[Fig. 1(d)] with vanishing magnetic field (H = 0) on both
sides, the inverse of the Green’s function in the space of
interfaces M ′ = {0, N} is given by [28]

g−1
PC1(M ′, M ′) =

(
A1 B1

B1 A1

)
, (5)

where

A1 = (a1 + b1t1)
(
1 + t2N

1

)
(6)

and

B1 = −b1tN
1

(
t1 − 1

t1

)
. (7)
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B. Dispersion relations and local DOS of two connected PCs

Now, we consider two semi-infinite PCs connected in the
space of interface M0 = {0} [Fig. 1(e)]. The inverse of the
Green’s function of the whole system in the interface space
{0} is given by [63]

g−1(0, 0) = g−1
PC1(0, 0) + g−1

PC2(0, 0). (8)

The dispersion relation giving the interface states between
two PCs is given by [63] g−1(0, 0) = 0 or equivalently using
Eq. (4):

Z1 + Z2 = 0. (9)

Equation (9) is the well-known matching impedance condition
[41] that should be satisfied in order to realize interface states
between two PCs.

The LDOS at the interface between two PCs is given by
[62,63]

n(ω) = 2ω

π
Im[g(0, 0)] = 2ω

π
Im

[
gPC1(ω2)gPC2(ω2)

gPC1(ω2) + gPC2(ω2)

]
.

(10)

In order to calculate the eigenmodes of two connected finite
PCs with H = 0 boundary condition on both sides [Fig. 1(f)],
we need first to construct g−1(M ′′, M ′′) in the space of in-
terfaces M ′′ = {−N, 0, N} of the two connected PCs. From
Eq. (5), we obtain

g−1(M ′′, M ′′) =
⎛
⎝A1 B1 0

B1 A1 + A2 B2

0 B2 A2

⎞
⎠, (11)

where A2 and B2 are given by the same expressions as in
Eqs. (6) and (7) by changing the subscript 1 to 2. The eigen-
modes of the two connected PCs in Fig. 1(f) are given by
det[g−1(M ′′M ′′)] = 0 or, equivalently,

ρ = A2
(
A2

1 − B2
1

) + A1
(
A2

2 − B2
2

) = 0. (12)

C. Scattering matrix parameters and total DOS

Here, we give the expressions of transmission and reflec-
tion coefficients and the reflection delay time as well as the
phase of the determinant of the scattering matrix (the so-called
Friedel phase [68]) and their relation to the variation of the
DOS for two geometrical configurations depicted in Figs. 1(g)
and 1(i).

(i) For the system in Fig. 1(g) where the two finite PCs
are connected at their left extremity to only one semi-infinite
waveguide, the inverse Green’s function in the space of inter-
faces M ′′ = {−N, 0, N} is given by

g−1
h (M ′′, M ′′) =

⎛
⎝A1 − jF B1 0

B1 A1 + A2 B2

0 B2 A2

⎞
⎠, (13)

where − jF is the inverse Green’s function of the semi-infinite
waveguide. F = ω

Z where ω is the angular frequency and Z is
the characteristic impedance of the waveguide.

The reflection coefficient for the system in Fig. 1(g) is
given by [63]

r = −1 − 2 jFg(−N,−N ) = −ρ + jτ

ρ − jτ
, (14)

where ρ is defined in Eq. (12) and

τ = A2(A1 + A2) − B2
2. (15)

As predicted, for lossless system the incident wave is com-
pletely reflected R = |r|2 = 1 [Eq. (14)]. However, for a lossy
system a part of the energy is absorbed, then the reflection is
no longer unity and the modes of the system appear as dips in
the reflection spectra (see below).

In order to derive an analytic demonstration of the relation
between the reflection delay time and the DOS, we consider
the variation of the DOS between the two finite PCs and the
semi-infinite waveguide [Fig. 1(g)] and a reference system
made of decoupled semi-infinite waveguide and the two finite
PCs. The variation of the DOS [�n(ω)] is given by [63]

�n(ω) = 1

π

d

dω

{
arg

[
det

(
g−1

h (M ′′, M ′′)
)]}

= 1

π

d

dω

[
arctan

(
τ

ρ

)]
. (16)

Another interesting quantity that can be extracted from the
reflection coefficient is its phase delay time which represents
the time taken by the electromagnetic wave to propagate
through the structure [69]. It is defined as the first derivative
of the phase time ϕR with respect to the frequency,

τR = dϕR

dω
= 2

d

dω

[
arctan

(
τ

ρ

)]
. (17)

From Eqs. (16) and (17), one can deduce that for lossless
system the DOS of the system is related to the reflection delay
time by the relation

τR = 2π�n(ω). (18)

Let us mention that similar theoretical results can be ob-
tained for the horizontal structure in Fig. 1(h). These results
are given in Supplemental Material SM4 [67].

(ii) For the vertical structure [Fig. 1(i)], the two finite PCs
are grafted at the same site {−N} along an infinite waveguide.
The inverse of the Green’s function of the vertical structure in
the space of interfaces M ′′ = {−N, 0, N} becomes

g−1
v (M ′′, M ′′) =

⎛
⎝A1 − 2 jF B1 0

B1 A1 + A2 B2

0 B2 A2

⎞
⎠. (19)

From Eq. (19), one can deduce the transmission and reflec-
tion coefficients for the vertical structure as follows:

tv = −2 jFgv (−N,−N ) = − 2 jτ

ρ − 2 jτ
, (20)

rv = −1 − 2 jFgv (−N,−N ) = − ρ

ρ − 2 jτ
, (21)

where ρ and τ are given by Eqs. (12) and (15).
It is worth mentioning that the zeros of transmission and

reflection give a direct access to the eigenmodes of the finite
vertical structure attached to the waveguide. Indeed, the eigen-
modes of the finite PC with E = 0 boundary condition at the
bottom side and H = 0 boundary condition at the top side of
the structure are given by τ = 0 [70] which is equivalent to
vanishing the transmission tv [Eq. (20)]. Similarly, the eigen-
modes of the two finite PCs with H = 0 on both sides of the
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structure are given by ρ = 0 [70] which is equivalent to the
maxima of the transmission amplitude [Eq. (20)].

D. Conditions for BICs

BICs are obtained from vanishing both the real and imagi-
nary parts of the poles of the Green’s function or equivalently
from canceling the denominators of both the transmission
and reflection coefficients. These BICs are common modes
between the three configurations in Figs. 1(g), 1(h), and 1(i)
and are independent of the semi-infinite media (continuum) in
contact with the two connected finite PCs. One can see that
a simple analytical solution which enables to cancel simulta-
neously the real and imaginary parts of the denominators of
all the transmission and reflection coefficients obtained above
[Eqs. (14), (20), and (21)] is given by B1 = 0, B2 = 0, and
A1 + A2 = 0. From Eqs. (6) and (7), these three conditions
are equivalent to

b1 = 0, b2 = 0, and a1 + a2 = 0. (22)

III. THEORETICAL AND EXPERIMENTAL EVIDENCE
OF TOPOLOGICAL TAMM STATES IN PHOTONIC

STUBBED STRUCTURES

The purpose of this section is to demonstrate the existence
of topological Tamm states at the interface between two semi-
infinite and two finite PCs and discuss their behaviors in the
different scattering parameters such as the transmission and
reflection coefficients as well as the Friedel phase and DOS.
The PCs are composed of periodic symmetric cells [Fig. 1(a)]
with different geometrical parameters for each PC. The unit
cell is made of a stub of length d ′

i grafted in the middle of a
segment of length di [Fig. 1(a)]. Neumann boundary condition
(H = 0) is applied at the free end of the stubs. Similar results
for Dirichlet boundary conditions (E = 0) are presented in the
Supplemental Material SM5 [67].

With the help of the Green’s function approach [63], the
analytical expressions of ai and bi in Eq. (1) are given by (for
more details see the Supplemental Material SM1 [67])

ai = −F [2CiC′
i + SiS′

i]

2S′′
i [2C′

iC
′′
i + S′

iS
′′
i ]

(23)

and

bi = FC′
i

S′′
i [2C′

iC
′′
i + S′

iS
′′
i ]

, (24)

where Ci = cos(kdi ), Si = − j sin(kdi ), C′
i = cos(kd ′

i ), S′
i =

− j sin(kd ′
i ), C′′

i = cos(k di
2 ), S′′

i = − j sin(k di
2 ) (i = 1, 2). k =

ω
√

ε

c is the wave vector, F = − jω
Z , and j = √−1. ω is the

angular frequency, ε is the permittivity of the waveguide, and
Z its characteristic impedance.

From Eqs. (2), (23), and (24), one can obtain the dispersion
relation of the infinite periodic PC,

cos
(
ki

Bdi
) = Ci + 1

2

SiS′
i

C′
i

. (25)

Also, from Eqs. (22), (23), and (24), one can deduce easily an
analytical expression giving the BICs, namely,

cos(kd ′
1) = 0, cos(kd ′

2) = 0, and sin

(
k

[
d1 + d2

2

])
= 0.

(26)
In this section, we will fix d ′

1 = d ′
2 = 1 as the unit of length

and vary the periods d1 and d2. In this case, Eq. (26) enables
to fix the relationship that should be satisfied between the
geometrical lengths of the system and the BIC frequency,
namely,

d1 + d2

d ′
1

= 4n

(2n′ + 1)
(27)

and

	 = kd ′
1

π
= (2n′ + 1)

2
, (28)

where n and n′ are integers. The BIC corresponds to a standing
mode of a cavity consisting of the segment of length d1+d2

2
at the interface surrounded by two stubs of length d ′

1 such
that the electric field in the eigenfunction vanishes at the
connection points of the segment and the stubs. This mode
is independent of the number of cells N in the PCs as well as
on the semi-infinite waveguides.

A. Theoretical results: Interface states from Zak phases
and sign of the reflection phases

In 1D periodic systems, the Zak phase of a given band is
defined as [38,39]

θZak
n =

∫ π/d1

−π/d1

[
i
∫

unit cell
dx ε(x)u∗

n,q(x)∂qun,q(x)

]
dq, (29)

where x represents the spatial coordinate, ε(x) is the relative
permittivity, and un,q is the normalized periodic part of the
electric-field Bloch wave eigenfunction with a given wave
vector q. Aside from the analytical calculation based on the
Bloch eigenfunctions [Eq. (29)], the Zak phase can also be
determined from the symmetry of the band-edge states [38].
If the unit cell admits an inversion symmetry and the origin
of coordinate is fixed at the symmetry center, the Zak phase
calculated from Eq. (29) can take only two defined values, 0
or π [38,41]. If the electric field at the band edges of a given
band has identical symmetry such as both are symmetric or
antisymmetric, the Zak phase of this band is 0. Otherwise, the
Zak phase is π .

In order to demonstrate the existence of topological inter-
face states and their properties in our PC, we analyze first the
dispersion relation of an infinite PC made of periodic sym-
metric cells, where each unit cell is formed out by a stub of
length d ′

1 and a period of length d1 [Fig. 1(a)]. All the lengths
are taken in units of d ′

1. In Fig. 2(a), we plot the band-gap
structure of an infinite PC as a function of the period d1 and the
dimensionless frequency 	 = ωd ′

1
cπ

√
ε. One of the advantages

of the comblike structure is the fact that it can present two
types of gaps: Bragg gaps originating from the periodicity
of the crystal and hybridization gaps originating from local
resonances of the grafted stubs. It can be seen the existence
of band-crossing points which represent the position of the
flat bands (FBs). These FBs are obtained from the dispersion
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FIG. 2. (a) Band-gap structure of an infinite PC made of symmetric unit cells in Fig. 1(a) as a function of the length d1 and 	 for fixed
d ′

1 = 1 (considered as the unit of length) with NBC at the end of the stubs. The black dots 1 to 5 indicate the band-crossing points where
the bands close and reopen. Pink and cyan colors indicate the symmetric and antisymmetric band-edge states, respectively. Gray and dark
cyan colors give the bands for which the Zak phase is 0 and π , respectively. (b) Reflection phase at the boundary of a semi-infinite PC with a
waveguide as a function of d1. The colors indicate the reflection phase (in units of π ), which vary from −1 to 1. White lines give the limits of
the bulk bands.

relation [Eq. (25)] when both its numerator and denomina-
tor vanish together, namely, S1 = 0 (i.e., ωd1

c

√
ε = m1π ) and

C′
1 = 0 [i.e., ωd ′

1
c

√
ε = (2m′

1 + 1)π
2 ], where m1 and m′

1 being
integers. Therefore, the flat bands are given by

d1

d ′
1

= 2m1

2m′
1 + 1

, (30)

and the dimensionless frequency

	 = m′
1 + 1

2 . (31)

Black dots labeled 1 to 5 in Fig. 2(a) indicate the po-
sitions of the band crossing (flat bands) where the bands
close and reopen. They correspond to the pairs (m1, m′

1) =
(1, 0), (1, 1), (2, 1), (3, 1), (4, 1), respectively. The flat bands
appearing at higher frequencies (larger m′

1) are not presented.
To predict the existence of topological interface states in a
common gap of two PCs, we use the symmetry of the electric
field at the band-edge states. It is known [38] that if the
lower (or upper) band-gap edges of the two PCs have opposite
symmetries, the common gap must support an interface state.
This approach is equivalent to using the Zak phases of the
bulk bands which can be also identified from the symmetry
of the edge states as mentioned above. The symmetry of the
band-edge states for our PC as function of d1 is represented by
pink and cyan colors in Fig. 2(a) for symmetric and antisym-
metric states, respectively. Also, the Zak phases of the bulk
bands are indicated by gray and dark cyan colors for 0 and π ,
respectively.

It can be seen that near to the band-crossing points (labeled
1 to 5) the band-edge states exhibit the same symmetry, due
to the existence of flat bands. This property ensures that if
we take two PCs with different values of d1 on both sides

of these points, such as the upper edge state of the first PC
and the lower edge state of the second PC exhibit the same
symmetry, the common gap between them must necessarily
support an interface state. For example, consider two PCs
around the point 4 with different values of d1 such as d1 = 1.7
and d1 = 2.3 [labeled PC2 and PC4 in Fig. 2(a)]. It is clear
that passing through the band-crossing point (labeled 4) the
upper edge state of the first PC becomes the lower edge state
of the second PC with the same symmetry (both symmet-
ric), thus, the common gap between these two PCs around
	 = 1.5 should necessarily support an interface state. This
rule can be applied around all other band-crossing points for
the lower and upper common gaps around 	 = 0.5 and 1.5,
respectively. In addition, another interesting point happens
when, at a given frequency (	 = 1.5 in the following), we
associate two PCs at the values of d1 where the flat bands
occur, namely, points 2, 3, 4, and 5 in Fig. 2(a). Indeed, a pair
of PCs will exhibit two consecutive common gaps separated
by a flat band. And, if the corresponding flat bands have
different parities, then one interface state appears in each of
the two consecutive common gaps. This statement holds for
the pairs (2-3), (2-5), (3-4), and (4-5). All these points will be
explained in more details in Figs. 3 and 9 below.

In addition to the symmetry of the bulk-edge modes, an-
other way to predict the existence of topological interface
states is based on considering the signs of the phase of the
reflection coefficient at the boundary of each semi-infinite PC
[Fig. 1(c)] with a homogeneous waveguide characterized by
the impedance Z [i.e., g−1(ω2) = jω

Z ]. Indeed, the reflection
coefficient is given by

ri = Zi − Z

Zi + Z
(i = 1, 2). (32)
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FIG. 3. (a)–(d) Band-gap structures for four PCs with different values of d1: 0.5, 1.7, 2, and 2.3 corresponding to PC1, PC2, PC3, and
PC4, respectively, in Fig. 2(a). Black and green curves give the real and imaginary parts of the Bloch wave vector in the first Brillouin zone.
The Zak phases of each bulk band are labeled by 0 or π . The pink and cyan dots represent the symmetric and antisymmetric band-edge states,
respectively. The gaps are colored in blue or red depending on whether the sign of the reflection phase is negative or positive. (e) Zoom around
the band-crossing point 4 in Fig. 2(a). (f) Band-edge states for four PCs at the flat bands labeled 2, 3, 4, and 5 in Fig. 2(a) at 	 = 1.5.

From Eq. (32), one can obtain

Zi = Z

(
1 − ri

1 + ri

)
. (33)

Therefore, Eqs. (9) and (33) enable to get the condition
r1r2 = 1 for the existence of an interface state at the boundary
of the two PCs. This condition is equivalent to |r1||r2| = 1 and

φPC1 + φPC2 = 0. (34)

Figure 2(b) gives the reflection phase (in color scale) at the
boundary of a semi-infinite PC [Fig. 1(c)] with a waveguide
as function of the length d1 and the dimensionless frequency
	. White lines indicate the limits of the bulk bands. The
colors represent the reflection phase (in units of π ), which
vary from −1 to 1. Red and blue colors in the gaps correspond
to sgn(φn) > 0 and sgn(φn) < 0, respectively. This approach
can be used to predict the existence of topological interface
states by satisfying Eq. (34) and confirm the results in Fig. 2(a)
obtained from the symmetry of the band-edge modes. A topo-
logical interface state must exist in a common gap if the signs
of the reflection phases of two PCs are opposite, i.e., the

gaps take different colors. It is clear that the gaps around the
crossing points (labeled 1 to 5) have different signs of the
reflection phase. Therefore, it is sufficient to take two PCs
with common gaps and opposite phase reflections to get an
interface state.

Let us mention that the sign of the reflection phase of the
nth gap can be also deduced from the Zak phase of the bands
below this gap using the following equation [38]:

sgn(φn) = (−1)n+1 exp

(
i

n−1∑
m=1

θZak
m

)
. (35)

Therefore, the Zak phase of the bands enables us to show the
possibility of interface states between two PCs based on the
sign of the reflection phase in each gap [Eq. (35)].

From Eq. (35), one can show easily that the Zak phase of
the nth bulk band can be derived from the sign of the reflection
phases φn and φn−1 of the nth and (n − 1)th gap surrounding
the nth band using the relation [38,40,41]

exp
(
iθZak

n

) = − sgn (φn)

sgn (φn−1)
. (36)
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TABLE I. Existence or nonexistence of topological interface states deduced from the band-edge symmetries for all possible combinations
between the four PCs in Figs. 3(a)–3(d).

Common gaps PC1-PC2 PC1-PC3 PC1-PC4 PC2-PC3 PC2-PC4 PC3-PC4

Gap 4 Yes Yes Yes No
Gap 3 No No No Yes Yes
Gap 2 Yes Yes Yes No No No
Gap 1 No No Yes No No No

In order to give a better idea about the possible combina-
tions of PCs to get topological interface states, we plot in
Figs. 3(a)–3(d) the band structures in the first Brillouin zone
for four PCs with different values of d1 selected by vertical
dashed lines in Fig. 2(a). The four PCs are chosen in such a
way as to find large common gaps between them and to get
topological interface states around the band-crossing points 1
and 4 in the lower and upper common gaps around 	 = 0.6
and 1.5, respectively. In Figs. 3(a)–3(d), the real part of the
Bloch wave vector within the first Brillouin zone is plotted by
black curves, while its imaginary part is given by green curves
inside the gaps. The symmetric and antisymmetric band-edge
modes are given by pink and cyan colors, respectively. Also,
the Zak phase of each band is noted as 0 or π . Based on the
symmetry argument, one can predict the existence of topo-
logical interface states in the common gaps for the different
combinations of the four PCs (1 to 4) in Fig. 2(a). For ex-
ample, for the pair PC1-PC2 [Figs. 3(a) and 3(b)], there exist
three common gaps around 	 = 0.5, 0.7, and 1.5. One can
predict that the second common gap around 	 = 0.7 may
support an interface state since the lower and upper edge states
at this gap have opposite symmetries. In contrast, there is
no interface state in the first and third common gaps around
	 = 0.5 and 1.5 because the lower (respectively upper) edge
states of the corresponding gaps have the same symmetry, i.e.,
they are both antisymmetric (respectively symmetric). The
same symmetry argument allows us to conclude the existence
or nonexistence of topological interface states between the
five other combinations between PC1, PC2, PC3, and PC4.
These conclusions are summarized in Table I.

In addition, the signs of the reflection phases in the gaps
for the four PCs are deduced from Fig. 2(b) and indicated
in Figs. 3(a)–3(d) by red and blue colors corresponding to
sgn(φn) > 0 and sgn(φn) < 0, respectively. As mentioned be-
fore, from the sign of the reflection phases, it is sufficient to
take two PCs with different signs (different colors) in their
common gaps to get a topological interface state. All the
conclusions deduced from the sign of the reflection phases are
in accordance with those summarized in Table I.

To give a better insight about the edge modes symmetry
inversion process around the flat bands, proposed here to
display the possibility of topological interface states, we focus
on three band structures in Figs. 3(b)–3(d) around the flat band
labeled 4 in Fig. 2(a) and magnified in Fig. 3(e). One can see
that the band just above 	 = 1.5 in Fig. 3(b) (d1 = 1.7) with
positive group velocity (Vg = dω

dkB
> 0) becomes flat for d1 =

2 and 	 = 1.5 in Fig. 3(c) (Vg = 0) and then its slope becomes
inverted just below 	 = 1.5 in Fig. 3(d) for d1 = 2.3 (Vg < 0).
All these bands are characterized by the same symmetry at
their edges (here symmetric). Therefore, the symmetry of the

upper band-edge mode for PC2 at d1 = 1.7 [labeled A in
Fig. 3(a)] and the lower band-edge mode for PC4 [labeled C
in Fig. 3(d)] for d1 = 2.3 are the same. This is due to the ex-
istence of the flat band at 	 = 1.5 for d1 = 2 that exhibits the
same symmetry at its band edges [labeled B in Fig. 3(b)]. This
property is sufficient to ensure that two PCs chosen around
the flat band should present a common gap that must support
a topological interface state. In addition to the common gap
of hybridization type around 	 = 1.5 for PC2 and PC4, there
exists a common Bragg gap type around 	 = 1.8 [Figs. 3(b)
and 3(d)] which must also support an interface state. These
common gaps must support an interface state since their lower
and upper edge states have opposite symmetries. In Figs. 3(a)–
3(d), we give by green curves the imaginary parts of the Bloch
wave vector in the gaps. It can be seen that the imaginary part
diverges inside the hybridization gap at the frequency of the
flat band (	 = 1.5) while it remains finite in the Bragg gap
around 	 = 1.8. This means that the interface state falling
within the hybridization gap is more localized than the one
appearing inside the Bragg gap. This represents an advantage
of our proposed PC in comparison with those based on only
Bragg gaps. Another interesting idea consists in considering
two PCs characterized by two common gaps with a flat band
falling in the middle, but with different symmetries; this is
the case for PCs at points (2,3), (2,5), (3,4), and (4,5) in
Fig. 2(a) around 	 = 1.5. Indeed, any combination of these
two PCs gives rise to two topological interface states in two
successive common gaps separated by a flat band. This result
is better explained in Fig. 3(f) where we have plotted the
band-edge modes with their symmetries for the flat bands 2
to 4 in Fig. 2(a). The common gaps between the successive
PCs decrease as a function of d1. Obviously, based on the
symmetry argument or on the sign of the reflection phase one
can obtain two topological interface states if we combine two
PCs at the flat bands (2,3), (2,5), (3,4), and (4,5).

B. Theoretical results: Interface states from dispersion
relation and local density of states

Now, we analyze the existence of interface states through
the dispersion curves and the LDOS of two connected
semi-infinite PCs [Fig. 1(e)]. The first and second PCs are
characterized by periods of lengths d1 and d2 and stubs of
lengths d ′

1 and d ′
2, respectively, with d ′

1 = d ′
2 = 1. To this end,

we have fixed the length of the first PC at d1 = 0.5 and vary
the length of the second period d2. Figure 4(a) shows the
projected band structure as a function of d2 and 	. The values
of d2 have been chosen to discuss the topological interface
states in the lower and upper common gaps around 	 = 0.6
and 1.5, respectively. The shaded areas in Fig. 4(a) represent
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FIG. 4. (a) Projected band-gap structure and interface states between two semi-infinite PCs as a function of the period d2 of the second
PC. The other lengths are fixed at d1 = 0.5, d ′

1 = d ′
2 = 1. The shaded areas represent the bulk bands, while white areas show the common gaps

of the two PCs. The blue branches indicate the localized interface states. (b) LDOS spectra versus 	 for three values of d2 such as d2 = 1.7,
d2 = 2, and d2 = 2.3 indicated by dashed vertical lines in (a).

the bulk bands, while the white areas display the common
gaps of the two PCs. The blue branches inside the common
gaps indicate the positions of localized Tamm states obtained
from the maxima of the LDOS [Eq. (10)]. The existence and
the position of localized interface states vary as a function
of d2. The frequencies of the localized Tamm states decrease
as d2 increases until they merge in the bulk bands and be-
come resonant states. This plot gives us a map about the
existence of localized Tamm states between two semi-infinite
PCs. Figure 4(b) illustrates three examples of LDOS spectra
as a function of 	 for three values of d2 such as d2 = 1.7
(PC2), d2 = 2 (PC3), and d2 = 2.3 (PC4) indicated by vertical
dashed lines in Fig. 4(a). Obviously, the Tamm states appear
as well-defined peaks inside the common gaps of the two PCs,
their frequency positions depend on the value of d2. These
results are in accordance with those predicted in Table I (see
the first three columns). In the following two subsections,
we will give an experimental validation of all the theoretical
results discussed above by considering two connected finite
PCs either attached to one semi-infinite waveguide [Fig. 1(g)]
or grafted vertically at one point of a horizontal waveguide
[Fig. 1(i)].

C. Experimental results: Horizontal structure

In this section, we will give first an experimental demon-
stration of the Zak phase of the bulk bands for three PCs: PC1,
PC2, and PC4 in Figs. 2(a) and 3(a), 3(b), and 3(d). For this
reason, we consider the total reflection configuration depicted

in Fig. 1(g). As mentioned in Sec. II C, the reflection rate is
unity for lossless system [Eq. (14)]; however, as demonstrated
in Sec. III A the sign of the phase of the reflected wave of two
successive gaps surrounding a given band can inform us about
the Zak phase of this band [Eq. (36)].

Figures 5(a), 5(b), and 5(f) show the numerical (green
curves) and experimental (open circles) reflection phases of
PC1, PC2, and PC4, respectively. The gray areas show the
gaps of each PC. The lengths of the stubs are chosen such
that d ′

1 = d ′
2 = 1 m. The details of the experimental setup

used here are given in the Supplemental Material SM2 [67].
The E = 0 boundary condition corresponds to short-circuit
termination at the end of the stubs, while the H = 0 boundary
condition corresponds to open-circuit termination (see Fig. S2
[67]). For the considered losses in coaxial cables, the latter
equation [Eq. (36)] remains valid and enables us to deduce
the experimental Zak phases and to predict the existence of
topological interface states. From the sign of the reflection
phases in the gaps, we can deduce the Zak phase of each
band using Eq. (36). These results are reported in Table II and
confirm the theoretical predictions in Figs. 3(a), 3(b), and 3(d)
for PC1, PC2, and PC4, respectively.

Now, from the phases φPC1 and φPC2 of PC1 and PC2
[Figs. 5(a) and 5(b)], one can predict the position of the
interface state falling in their common gaps when these two
PCs are connected together using Eq. (34) of phase matching
(i.e., φPC1 + φPC2 = 0). The vertical arrows in Figs. 5(a) and
5(b) show the frequency (	 = 0.66) where the latter equa-
tion is fulfilled in the second common gap. In order to give an
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FIG. 5. (a) Reflection phase of PC1 with d1 = 0.5 as a function of 	. (b) Minus the reflection phase of PC2 with d1 = 1.7 as a function of
	. (c) Reflection amplitude for a finite PC made of PC1-PC2 as a function of 	. (d) Reflection delay time and the variation of DOS [2π�n(ω)]
as a function of 	 for a finite PC made of PC1-PC2. Solid lines represent the theoretical results in presence of loss, while open circles give
the experimental measurements. Green dashed curves give the variation of the DOS. (e)–(h) Same as (a)–(d) but for PC1 (d1 = 0.5) and PC4
(d1 = 2.3). The gray areas in (a), (b), (e), and (f) indicate the gaps of each PC, while the gray areas in (c), (d), (g), and (h) represent the common
gaps between each combination of PCs: PC1-PC2 and PC1-PC4. The arrows indicate the position of the topological interface states.

experimental validation of this result, we plotted in Fig. 5(c)
the reflection spectrum for two finite PCs (PC1-PC2), each
one is composed of N = 2 stubs. One can see clearly the
existence of a dip in the second common gap (labeled G2)
at 	 = 0.66 which is a signature of the interface Tamm state.
As mentioned previously, without loss the amplitude of the
reflection is unity, however, in presence of loss the modes
of the two PCs appear as dips in the reflection amplitude.
The intensity of the reflection dips depends on the strength of
loss in the system; in our case the reflection amplitude almost
vanishes at 	 = 0.66 giving rise to a near perfect absorption
at this frequency [71,72].

This result is also confirmed by the reflection delay time
in Fig. 5(d) which provides a clear signature of the topolog-

ical interface state inside the second common gap; however,
there is no interface state in the first and third common gaps.
We have checked that in lossless and low-loss systems the
phase of the two connected PCs vanishes (i.e., φPC1-PC2 = 0)
at the same frequency. However, for high losses which go
beyond the coaxial cable structure, the latter relation is no
longer valid but the interface state gives a signature in the
reflection delay time of the two connected PCs [Fig. 5(d)].
This result can be also obtained in the total DOS (green dashed
lines) which shows almost the same behavior as the reflection
delay time despite the presence of loss. In the absence of
loss, the variation of the DOS is identical to the reflection
delay time [Eq. (18)]. For low-loss systems, these two latter
quantities remain approximately equivalent [69]. However, for
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TABLE II. Experimental Zak phases of PC1, PC2, and PC4 deduced from Figs. 5(a), 5(b), and 5(f).

PC1 PC2 PC4
Sign of the Sign of the Sign of the

Band/gap reflection phase Zak phase Band/gap reflection phase Zak phase Band/gap reflection phase Zak phase

Band 7 π

Gap 6 +
Band 6 π Band 6 0
Gap 5 − Gap 5 −
Band 5 0 Band 5 0
Gap 4 + Gap 4 +
Band 4 0 Band 4 π

Gap 3 − Gap 3 +
Band 3 0 Band 3 π Band 3 0
Gap 2 + Gap 2 − Gap 2 −
Band 2 π Band 2 0 Band 2 0
Gap 1 + Gap 1 + Gap 1 +
Band 1 0 Band 1 0 Band 1 0

high losses the DOS and the reflection delay time exhibit dif-
ferent behaviors at some frequencies where the latter changes
sign and appears as negative delta peak in the reflection delay
time. The DOS represents an essential quantity to study and
measure the modes of the system in particular topological
interface modes [73].

Similar results are found for PC1 (d1 = 0.5) and PC4
(d2 = 2.3) [Figs. 5(e) and 5(f)] for the Zak phases of the
bands (see Table II). However, in this case, one can predict
topological interface states for PC1-PC4 both in the first and
second common gaps since the condition φPC1 + φPC4 = 0 is
satisfied in these two gaps as shown by the vertical arrows at
	 = 0.58 and 1.6 in Figs. 5(e) and 5(f), respectively. Now,
by associating in tandem these two PCs [Fig. 5(g)], one can
see that the lower interface mode at 	 = 0.58 in the first
common gap (denoted G1) appears as a dip in the reflection
spectrum, however, the upper interface mode at 	 = 1.6 in the
second common gap (denoted G2) did not give any signature
in the reflection spectrum [Fig. 5(g)]. Indeed, this mode falls
at the vicinity of the BIC given by Eqs. (27) and (28), namely,
dBIC

2 = 2.16 and 	BIC = 1.5 for n = 2 and n′ = 1. Therefore,
its width is very small which prevents its experimental ob-
servation due to the absorption in the cables. The existence
and frequency of the experimental topological interface states
for the combinations PC1-PC2 and PC1-PC4 are given in
Table III. The frequencies of these interface modes are quite
similar to those found theoretically in Fig. 4(a) for the inter-
face between two semi-infinite PCs: PC1-PC2 and PC1-PC4.

TABLE III. Existence and frequency of experimental topological
interface states for the two combinations PC1-PC2 and PC1-PC4 in
Figs. 5(c) and 5(g), respectively.

Interface state (	)

Common gaps PC1-PC2 PC1-PC4

Gap 3 No
Gap 2 Yes (	 = 0.66) Yes (	 = 1.6)
Gap 1 No Yes (	 = 0.58)

In order to show the evolution of the interface modes and
their quality factors around the two BICs mentioned before,
we have plotted in Fig. 6(a) some spectra of the DOS around
dBIC

2 = 2.16 and 	BIC = 1.5. Obviously, for d2 = 2 and 2.1,
the topological interface state appears as well-defined peak
in the DOS spectra, its width decreases as d2 increases giv-
ing rise to a topological BIC at dBIC

2 = 2.16 and 	BIC = 1.5
(indicated by a vertical arrow). This mode is given by
Eqs. (27) and (28) for n = 2 and n′ = 1. For d2 > dBIC

2 ,
the peak reappears again at 	 < 1.5. In Fig. 6(b), we have
presented the quality factor as a function of d2 around the
topological BIC obtained from the peaks in the DOS spectra in
Fig. 6(a). One can notice that the quality factor depends on d2

and reaches a high value when d2 tends to dBIC
2 . For dBIC

2 , the
quality factor diverges to infinity giving rise to a topological
BIC.

Figure 7(a) shows a better insight about the evolution of the
modes of the horizontal configuration depicted in Fig. 1(g) as
a function of d2 and 	 for fixed d1 = 0.5 and d ′

1 = d ′
2 = 1.

The shaded areas show the bulk bands of the infinite systems,
while the white areas represent the common gaps as func-
tion of d2. The modes are deduced from the minima of the
reflection amplitude in the reflection spectra as depicted in
Figs. 5(c) and 5(g) (see also Fig. S3 in Supplemental Mate-
rial SM3 [67]). In Fig. 7(a), we reported the minima of the
reflection amplitude for two finite PCs, each one being made
of N = 2 stubs. Within the common gaps (white areas), the
blue branches represent the topological interface states. Open
circles give the experimental measurements which reproduce
very well the theoretical results inside the bulk bands and
within the lower common gap around 	 = 0.6, while the
modes inside the upper common gap around 	 = 1.5 are not
detected. This is again due to the proximity of the interface
state with the BIC which makes its observation difficult due
to the losses in the coaxial cables. These modes can be also
deduced from the peaks of the reflection delay time spectra
for different values of d2 [see Figs. 5(d) and 5(h) and also
Fig. S3 in Supplemental Material SM3 [67]). Despite the
small number of cells considered (N = 2), these results give
an experimental validation of the theoretical results discussed
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FIG. 6. (a) DOS spectra for certain values of d2 around the topological BIC that falls in the upper common gap around 	BIC = 1.5. The
BIC falls at 	BIC = 1.5 for dBIC

2 = 2.16. (b) Q factor of the topological BIC deduced from the peaks in (a) as a function of d2.

in Fig. 4(a) for the interface states between two semi-infinite
PCs.

To show the spatial localization of the interface state be-
tween two PCs, we plot in Fig. 7(b) the square modulus of the
electric field along the finite horizontal structure illustrated
in Fig. 1(g) for the Tamm state labeled 1 at 	 = 0.58 in
Fig. 7(a). As predicted, the Tamm state is strongly localized
at the interface between the two PCs and decreases in the bulk
of these two systems.

In order to check the robustness of the topological BIC
against structural perturbations in comparison with other in-
terface modes of the system, we introduce a disorder by
changing the lengths of the stubs and periods of two PCs,
each one being made of N = 5 cells. We keep the cavity of
length d1+d2

2 and the two surrounding stubs of lengths d ′
1 = 1

unperturbed and we introduce the disorder in the other lengths
of the stubs and periods around this cavity. Figure 8(a) shows
a zoom of the DOS spectra versus 	 and d2 of the upper

     
     

 

FIG. 7. (a) Reflection minima deduced from the reflection spectra inside the gaps (white areas) and bulk bands (gray areas) as a function
of d2 and 	 for d1 = 0.5 m and d ′

1 = d ′
2 = 1 m. Open circles give the experimental measurements deduced from the minima of the reflection

spectra for certain values of d2. T refers to the topological interface branch and the cross indicates the position of the BIC. (b) Square modulus
of the electric field along the two finite horizontal PCs illustrated in Fig. 1(g) for the Tamm state labeled 1 in (a) at 	 = 0.58.
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FIG. 8. (a) Zoom of DOS spectra (in color scale) in the upper common gap around 	BIC = 1.5 and dBIC
2 = 2.16. (b) Evolution of the

interface states marked by crosses in (a) for 10 realizations of disorder by varying the disorder strength δ for: BIC (blue curve), mode 1 (green
curve), mode 2 (cyan curve), and mode 3 (brown curve).

interface branch. In order to compare the robustness of the
BIC with three other modes labeled 1 to 3 near to the BIC
[Fig. 8(a)], we numerically implement a disorder realization
of strength δ ranging from zero (unperturbed system) to 0.1
(perturbed system). The lengths of the periods di are uni-
formly random in the interval [di − δdi, di + δdi] (i = 1, 2),
and the lengths of the stubs d ′

i = 1 are uniformly random in
the interval [d ′

i − δd ′
i , d ′

i + δd ′
i ] (i = 1, 2). For each strength

of perturbation, 10 different disorder realizations were con-
sidered. Figure 8(b) gives a comparison of the effect of the
disorder on the BIC (at dBIC

2 = 2.16) and the three modes
labeled 1 to 3 in Fig. 8(a). The results in Fig. 8(b) are obtained
from the variation of the DOS in Fig. 8(a) which gives a
signature of the BIC mode at 	 = 1.5. As predicted, one can
see that BIC is much more robust to the disorder strength δ in
comparison with the other modes; this is due to the property of
the BIC which is a decoupled mode from the rest of the system
and depends only on the cavity of length d1+d2

2 surrounded by
two stubs of lengths d ′

1 with vanishing electric field at their
connection points. As δ increases, the BIC stays pinned at
the same frequency 	 = 1.5, while the other modes fluctuate.
Also, one can notice that as d2 goes away from dBIC

2 = 2.16,
the mode becomes more sensitive to the disorder strength.

To give an experimental evidence of the idea discussed in
Fig. 3(f) about the existence of two topological interface states
when two PCs are taken exactly at two successive flat bands,
we give in Fig. 9 an example of two successive flat bands
labeled 2 (at d1 = 2

3 ) and 3 (at d1 = 4
3 ) in Fig. 3(f) which fall

at the same frequency 	 = 1.5. Figures 9(a) and 9(b) repre-
sent the band structures for PC5 with d1 = 2

3 and PC6 with
d1 = 4

3 . The colors in the gaps and band edges have the same
meaning as in Fig. 3. These two PCs exhibit two consecutive
common gaps separated by a flat band at 	 = 1.5 and the
symmetries of their band edges are different. Therefore, if
we combine these two PCs (PC5-PC6), one can predict two
topological interface states in the two successive common
gaps. However, there is no interface state in the lower common
gap (around 	 = 0.6) since the lower band edges of PC5 and
PC6 are characterized by the same symmetries (or equiva-
lently by the same sign of the reflection phase). This result

is confirmed in the reflection amplitude and the correspond-
ing delay time and DOS for a finite PC made of PC5-PC6
in Figs. 9(c) and 9(d). The common gaps between the two
PCs are indicated by gray areas. Solid lines represent the
theoretical results in presence of loss, while open circles give
the experimental measurements. We can see that there is no
interface state in the lower common gap of PC5-PC6 and
two interface states appear in the two common gaps around
	 = 1.5 [Fig. 9(c)]. These two modes appear also as well-
defined peaks in the variation of the DOS (green dashed lines)
in Fig. 9(d). In the presence of loss, these modes appear as
negative delta peaks in the reflection delay time (blue lines
and open circles).

Let us mention here that all these discussions about topo-
logical interface states and their behaviors in the different
scattering parameters can be also obtained by considering a
transmission configuration consisting of two finite PCs in-
serted between two semi-infinite waveguides [Fig. 1(h)]. The
results of this configuration are given in the Supplemental
Material SM4 [67].

D. Experimental results: Vertical structure

In this section, we propose another configuration to ob-
serve all the eigenmodes of two combined PCs and in
particular the topological interface states. The structure con-
sists in two finite PCs grafted vertically along a waveguide
[Fig. 1(i)]. The advantage of the vertical structure lies in the
possibility to deduce the eigenmodes of the isolated structure
[Fig. 1(f)] with either H = 0 or E = 0 boundary condition at
its bottom side. As it was demonstrated in Sec. II C, the eigen-
modes of the two finite PCs with E = 0 boundary condition at
the bottom side and H = 0 boundary condition at the top side
of the structure can be obtained from the zeros of the transmis-
sion tv = 0 [i.e., τ = 0 in Eq. (20)]. Similarly, the eigenmodes
of the two finite PCs with H = 0 boundary condition on
both sides of the structure can be deduced from the zeros of
the reflection coefficient rv = 0 [i.e., ρ = 0 in Eq. (21)], or
equivalently from the maxima of the transmission. Figure 10
illustrates the eigenmodes of the finite structure depicted in
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FIG. 9. (a), (b) Band-gap structures for PC5 with d1 = 2
3 and PC6 with d1 = 4

3 corresponding to flat bands 2 and 3 in Fig. 3(f), respectively.
The Zak phases of each bulk band are labeled by 0 or π . The pink and cyan dots represent the symmetric and antisymmetric band-edge states,
respectively. The gaps are colored in blue or red depending on whether the sign of the reflection phase is negative or positive. (c) Reflection
amplitude for a finite PC made of PC5-PC6. Gray areas indicate common gaps between the two PCs. (d) The corresponding delay time in
comparison with the variation of the DOS [2π�n(ω)]. Solid lines represent the theoretical results in presence of loss, while open circles give
the experimental measurements. Green dashed curve in (d) gives the variation of the DOS.

Fig. 1(f) as a function of d2 for d1 = 0.5 and d ′
1 = d ′

2 = 1.
The shaded areas show the common bulk bands of the infinite
systems, while white areas represent the common gaps as
a function of d2. In Fig. 10(a), we report the eigenmodes
(black curves) of two finite PCs, each one being composed

of N = 2 stubs with H = 0 on both sides. These modes are
obtained from the maxima of the transmission coefficient [i.e.,
ρ = 0 in Eq. (20)]. Within the common gaps (white areas),
the green branches represent the topological interface states.
Open circles give the experimental results which reproduce

FIG. 10. (a) Eigenmodes of two finite PCs [Fig. 1(f)] with H = 0 boundary condition on their both sides as a function of d2 and 	 for
d1 = 0.5 and d ′

1 = d ′
2 = 1. (b) Same as in (a) but for E = 0 boundary condition at the bottom side and H = 0 boundary condition at the top

side of two finite PCs [Fig. 1(f)]. T refers to the topological interface branch and the cross indicates the position of the BIC. (c) Zoom of the
interface branch in the upper common gap around BIC at 	BIC = 1.5 and dBIC

2 = 2.16.

125405-14



FLAT BAND INDUCED TOPOLOGICAL PHOTONIC TAMM … PHYSICAL REVIEW B 107, 125405 (2023)

FIG. 11. (a)–(d) Transmission spectra as a function of 	 for d1 = 0.5, d ′
1 = d ′

2 = 1 and some values of d2 for the vertical configuration
in Fig. 1(i) such that (a) d2 = 1.5, (b) d2 = 1.7, (c) d2 = 2, and (d) d2 = 2.3. Blue and green dashed curves represent the theoretical results
without and with loss, respectively, while open circles show the experimental results. T refers to the topological interface state lying inside the
common gaps (gray areas).

very well the theoretical results inside the bulk bands and
within the lower common gap around 	 = 0.6, while the
modes inside the upper common gap around 	 = 1.5 are not
detected because this upper branch falls near to the BIC. The
modes around the BIC become very narrow in the spectra (see
below) which prevents their observation due to the loss in the
system. These results corroborate those obtained previously
in Fig. 7(a). Similarly, Fig. 10(b) shows the eigenmodes of
the finite structure with E = 0 at the bottom side and H = 0
at the top side of the structure. These modes are obtained
from the minima of the transmission coefficient [i.e., τ = 0
Eq. (20)]. In general, the eigenmodes inside the bulk bands of
both structures in Figs. 10(a) and 10(b) are different; however,
the branches associated to the interface states inside the com-
mon gaps are very close, the small difference resulting from
the finite sizes of the two PCs. This is shown in Fig. 10(c)
where we plot both interface branches (green and blue) in
the upper gap. We can see that these two branches are very
close to each other as the interface modes weakly depend
on the boundary conditions at the extremities of the structure
and coincide exactly at the BIC for which τ = ρ = 0, while

around the BIC we have τ � ρ � 0 and these modes can be
qualified as quasi-BICs.

Figure 11 shows some examples of the transmission spec-
tra for the vertical structure [Fig. 1(i)] for d1 = 0.5, d ′

1 =
d ′

2 = 1 and some values of d2 such as d2 = 1.5 [Fig. 11(a)],
d2 = 1.7 [Fig. 11(b)], d2 = 2 [Fig. 11(c)], and d2 = 2.3
[Fig. 11(d)]. The blue and green curves represent the the-
oretical results without and with loss, while open circles
correspond to the experimental data. For d2 = 1.5 [Fig. 11(a)]
the interface mode appears in the second and third common
gaps (gray areas). For d2 = 1.7 [Fig. 11(b)], the interface state
appears only in the second common gap around 	 = 0.7.
This interface state appears in the shape of a Fano resonance
[74] (i.e., a maximum of the transmission in the vicinity of a
minimum of the transmission). For d2 � 2 [Figs. 11(c) and
11(d)] an interface state starts to appear also in the upper
common gap as a quasi-BIC for the lossless system (blue
curve). This interface state appears in the shape of a Fano
resonance, its width decreases as d2 increases until it becomes
a BIC for dBIC

2 = 2.16 and 	BIC = 1.5 and reappears again
when d2 deviates from the BIC position. In the experiments
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FIG. 12. (a) Band-gap structure as a function of the length of the stub d ′
1 and 	 for a fixed period at d1 = 1. The black dots 1 to 6 indicate

the flat bands where the bands close and reopen. Gray and dark cyan colors give the bands where the Zak phase is 0 or π , respectively.
(b) Theoretical and experimental transmission coefficient for PCI-PCII in the case of the horizontal configuration in Fig. 1(h). The lengths of
the stubs are chosen such that d ′

1 = 0.4 m, d ′
2 = 1.1 m, and fixed periods d1 = d2 = 1 m. Blue and green dashed curves represent the theoretical

results without and with loss, respectively, while open circles show the experimental results. (c) Derivative of the phase of det(Sh ) (noted τs)
as a function of 	 (blue and red circles), and the variation of the DOS [2π�nh(ω)] (green dashed curves).

(open circles), the interface state in the upper common gap is
not detected because of the losses in the cables that prevent the
observation of a very-high-quality mode before considering
the dissipation.

It is worth mentioning that the three configurations in
Figs. 1(g)–1(i) support each other and show the same interface
states in the different scattering parameters.

IV. EFFECT OF THE LENGTHS OF THE STUBS

In all the previous results, we have fixed the lengths of the
stubs at d ′

1 = d ′
2 = 1 and discussed the existence of topolog-

ical interface states as a function of the length of the periods
d1 and d2. Here, we show the impossibility of existence of
interface states as a function of the lengths of the stubs when
both PCs have the same period. To this end, we display in
Fig. 12(a) the band-gap structure of an infinite PC as a func-
tion of the length of the stubs d ′

1 and 	 = ωd1
cπ

√
ε for a fixed

period d1 = 1 m. Black dots 1 to 6 indicate the position of the
flat bands, i.e., the band-crossing points where the bands close
and reopen. These points are given by

d ′
1

d1
= 2m′

1

2m′
2 + 1

(37)

and the dimensionless frequency

	 = m′
1. (38)

Points 1 to 6 in Fig. 12(a) correspond to the pairs (m′
1, m′

2) =
(1, 0), (1, 1), (2, 0), (2, 1), (2, 2), and (2, 3), respectively. By
varying d ′

1, one can obtain a common gap of two PCs chosen
appropriately. The symmetries of the band-edge states are
shown by pink and cyan colors for symmetric and antisym-
metric states, respectively. From the symmetry argument, one
can deduce the Zak phase of the bulk bands as a function
of d ′

1. The Zak phases of the bulk bands are indicated by
gray and dark cyan colors for 0 and π , respectively. It can
be noticed that all the common gaps are characterized by the
same symmetry at their lower and upper band-edge states
(i.e., both symmetric or both antisymmetric) whatever the
value of d ′

1. Therefore, it is impossible to get an interface
state in any common gap of two PCs with different values
of d ′

1 and the same periods d1 = d2 = 1. For example, if we
consider two PCs with d ′

1 = 0.4 and d ′
1 = 1.1 [labeled PCI

and PCII in Fig. 12(a)], one can obtain a large common
gap of these two PCs around 	 = 1.3 (indicated by large
circles), however, this gap cannot support an interface state.
To confirm this result, we plotted in Figs. 12(b) and 12(c)
the theoretical and experimental transmission and DOS spec-
tra for PCI-PCII in the case of the horizontal configuration
in Fig. 1(h) (see the Supplemental Material SM4 [67]). As
predicted, it can be seen clearly that there is no interface
state within the common gap indicated by the gray area
in Figs. 12(b) and 12(c).

Finally, it is worth mentioning that all the discussions
about the existence of topological interface states and their
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properties in the scattering parameters can be also obtained
for Dirichlet boundary condition, i.e., vanishing of the elec-
tric field (E = 0) at the end of the stubs. These results are
discussed in the Supplemental Material SM5 [67].

V. CONCLUSION

In several papers, the concept of topological Tamm states
between two one-dimensional photonic crystals is discussed
in the frame of the SSH model based on band inversion
around a gap closure. In this work, we proposed a concept
based on band inversion around a band closure (i.e., a flat
band). This concept is demonstrated in a simple platform
composed of periodic stubs with different lengths and periods.
The advantage of such a mechanism lies in the existence of
common gaps of hybridization type where the Tamm states
are very well localized in comparison with the usual Bragg
gaps. In particular, there are two interface states in such gaps
when two PCs exhibit flat bands that fall at the same fre-
quency in the middle of a large common gap with different

band-edge symmetries. The existence of these interface states
is proved both theoretically and experimentally through an
analysis of the dispersion relations, Zak phases, densities of
states, scattering matrix, and transmission and reflection co-
efficients for two connected PCs. Also, we have given the
analytical expressions of the geometrical parameters and the
frequency when the Tamm states transform to BICs. We have
shown that these BICs are induced by the cavity between
the two PCs and are protected from any perturbation or dis-
order on both sides of the cavity. Finally, we have shown
the impossibility of existence of interface states between
two PCs with similar periods and different stubs. The theo-
retical and experimental results are discussed for Neumann
(H = 0) boundary conditions at the end of the stubs. The
results for the case Dirichlet (E = 0) boundary conditions
are postponed to the Supplemental Material SM5 [67]. All
these results can be straightforwardly transposed to acoustic
waves in slender tubes [65,75] and plasmonic metal-insulator-
metal waveguides operating in the telecommunication domain
[43,76].
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