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Abstract

In decision-making problems such as the multi-
armed bandit, an agent learns sequentially by op-
timizing a certain feedback. While the mean
reward criterion has been extensively studied,
other measures that reflect an aversion to ad-
verse outcomes, such as mean-variance or con-
ditional value-at-risk (CVaR), can be of interest
for critical applications (healthcare, agriculture).
Algorithms have been proposed for such risk-
aware measures under bandit feedback without
contextual information. In this work, we study
contextual bandits where such risk measures can
be elicited as linear functions of the contexts
through the minimization of a convex loss. A
typical example that fits within this framework
is the expectile measure, which is obtained as the
solution of an asymmetric least-square problem.
Using the method of mixtures for supermartin-
gales, we derive confidence sequences for the es-
timation of such risk measures. We then propose
an optimistic UCB algorithm to learn optimal
risk-aware actions, with regret guarantees simi-
lar to those of generalized linear bandits. This
approach requires solving a convex problem at
each round of the algorithm, which we can relax
by allowing only approximated solution obtained
by online gradient descent, at the cost of slightly
higher regret. We conclude by evaluating the re-
sulting algorithms on numerical experiments.

1 INTRODUCTION

Contextual bandits are sequential decision-making models
where at each time step an agent observes a set of possi-
ble actions, or contexts, plays one of them and receives a
stochastic reward, the distribution of which is a function
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of the selected action. The goal of the agent is to learn a
policy in order to maximize rewards, facing the classical
exploitation-exploration dilemma. A prominent example
of such models is the linear bandit, which assumes a lin-
ear relationship actions and the mean rewards. In this set-
ting, a standard learning strategy consists in estimating the
reward model by ridge regression coupled with an appro-
priate exploration scheme, e.g., optimism (Abbasi-Yadkori
et al., 2011), Thompson sampling (Agrawal and Goyal,
2013; Abeille and Lazaric, 2017) or information-directed
(Russo and Van Roy, 2014; Kirschner et al., 2021).

One limitation of this setting is that real-world agents may
assess rewards with a different criterion than the mean.
While mathematically convenient, the latter is known to
equally weight large positive and negative outcomes, pos-
sibly leading to risky policies unsuitable to critical appli-
cations, and is also sensitive to outliers. In contrast, risk-
aware measures emphasize different characteristics of the
reward distribution, e.g., by stressing out the impact of
adverse outcomes (Dowd, 2007). Such measures include
the mean-variance (Markowitz, 1952), conditional Value-
at-Risk (Rockafellar et al., 2000), which is a special case of
spectral risk measures (Acerbi, 2002), entropic risk (Mail-
lard, 2013) and the expectiles (Newey and Powell, 1987).
These measures, in particular the conditional Value-at-Risk
(CVaR), have been studied as alternatives to the mean cri-
terion in classical multi-armed bandits, that is without con-
textual information (Galichet et al., 2013; Gopalan et al.,
2017; Cassel et al., 2018; Tamkin et al., 2019; Prashanth
et al., 2020; Pandey et al., 2021; Baudry et al., 2021). In
distributional reinforcement learning, quantile regression
has been studied for DQN (Dabney et al., 2017). Re-
cently, bandits with contextual mean-variance and CVaR
have been applied to vehicular communication (Wirth et al.,
2022). Despite promising empirical results, these contribu-
tions are largely devoid of theoretical regret guarantees.

In this work, we investigate an extension of the linear ban-
dit where a given risk measure, rather than the mean, is
linearly parametrized by the chosen actions. Specifically,
we consider the case of convex risk measures which can
be elicited as minimizers of certain loss functions, which
naturally extends the standard ridge regression. This def-
inition covers quantiles, expectiles and entropic risk, and
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can be extended to mean-variance and conditional value-
at-risk using multivariate risk measures. To our knowledge,
this setting is new, although related to existing approaches,
such as bandits with regression oracles (Foster and Rakhlin,
2020) and generalized linear bandits (GLB) (Filippi et al.,
2010; Li et al., 2017; Faury et al., 2020), that go beyond re-
ward linearity while still working under the mean criterion.

Contributions We introduce a generalization of LinUCB
to a large class of so-called elicitable risk measures, which
includes the expectiles and the entropic risk. In contrast
with the standard mean-linear bandit, learning the linear
mapping between actions and risk measures cannot be per-
formed sequentially, which presents theoretical and numer-
ical challenges similar to GLB. We derive time-uniform
confidence sets (Proposition 1) based on the method of
mixtures (Peña et al., 2008) and introduce a geometric con-
dition (Lemma 2) to ensure sublinear regret in this new
setting (Theorem 1). Using recent developments on time-
uniform matrix concentration, we further strengthen the re-
gret bound in the case of stochastic actions with a known
covariance lower bound (Theorem 2). To mitigate the nu-
merical burden, we introduce an episodic version of Lin-
UCB with online gradient descent approximation (Theo-
rem 3), inspired by previous works on online regression
(Korda et al., 2015) and the recent literature on approxi-
mate Thompson sampling for GLB (Ding et al., 2021).

Notations We consider the Euclidean space
(
Rd, 〈·, ·〉

)
and denote by Id the identity matrix of Rd. For a positive
definite matrix P ∈ S++

d (R) and a vector x ∈ Rd, we
define the norm ‖x‖P =

√
〈x, Px〉. When P = Id, we let

‖·‖P = ‖·‖2 be the L2 norm. Bd‖·‖(x,R) denotes the ball
in Rd centred on x of radius R with respect to the norm
‖·‖. A 4 B stands B − A ∈ Sd(R) (positive semidefinite
matrix). For K ∈ N, [K] denotes the set {1, . . . ,K}. For
a set E, 2E denotes the set of all subsets of E.

2 CONTEXTUAL BANDITS WITH RISK

We consider the standard contextual bandit setting where
an agent sequentially observes at time t ∈ N a de-
cision set Xt ⊆ Rd, then chooses an action Xt ∈
Xt and receives a stochastic reward Yt, the distribu-
tion of which is dependent on Xt. More formally, let
X = ∪t∈NXt and Φ: X → P(R) a mapping from ac-
tions to reward distributions, so that the agent receives
at time t the reward Yt ∼ Φ(Xt). We denote by
Ft = σ (X1, X1, Y1, . . . ,Xt−1, Xt−1, Yt−1,Xt, Xt) the σ-
algebra corresponding to the information available to the
agent at time t (that is after choosing the action Xt but be-
fore observing the reward Yt). Loosely speaking, the goal
of the agent is to learn a representation of the mapping Φ
in order to select actions that induce high rewards. A stan-
dard inductive bias in this context is to assume a linear re-

lation between rewards and contexts, typically of the form
Yt = 〈θ∗, Xt〉 + ηt, where η is a stochastic noise process.
In this work, we consider a slightly more general notion of
linearity by assuming instead the existence of a factoriza-
tion of the mapping between actions and rewards:

X Rp P(R)
`∗ ϕ

Φ = ϕ ◦ `∗

where `∗ : X → Rp denotes a linear map. In other words,
the reward distribution (but not necessarily its mean) is lin-
early parametrized by the chosen action. We denote such a
linear bandit by (ϕ, `∗). When the distribution depends on
a single parameter (p = 1), we represent the linear form by
`∗ : x ∈ X 7→ 〈θ∗, x〉, where θ∗ ∈ Rd, and we use the no-
tation (ϕ, θ∗), or equivalently we say that it is represented
by Y ∼ ϕ(〈θ∗, X〉). In the following, we also denote by
Θ ⊆ Rd parameter space.

As an example, let us consider the following Gaussian map-
ping Φ: x ∈ X 7→ µ(x) + σ(x)N (0, 1). If σ is constant
and µ(x) = 〈θµ, x〉, we recover a standard linear bandit
model, in which the goal is to maximize the cumulative
average rewards

∑T
t=1 µ(Xt). However, in many appli-

cations, the agent may be averse to high reward volatility,
which can be encoded by µ(x) − λσ(x) for some λ > 0.
We detail in Appendix A how many standard risk measures
(entropic, p-expectile) realize this mean-variance tradeoff.

2.1 Overview of Risk Measures

Convex Loss In the bandit setting, the agent faces the
classical dilemma between exploitation (playing the most
promising actions) and exploration (playing other actions
to gain information). In most algorithms, the exploitation
takes the form of a supervised estimation that consists in
learning the mapping ϕ at time t from the past observations
{(Xs, Ys), 1 6 s 6 t−1}. When the expected reward is
parametrized by Yt = 〈θ∗, Xt〉 + ηt with E[ηt|Ft] = 0,
a standard strategy consists in estimating θ∗ by ridge re-
gression, that is minθ∈Θ

∑t−1
s=1 (Ys − 〈θ,Xs〉)2

+ α
2 ‖θ‖

2
2,

where α > 0 is a regularization parameter. Assuming for
now the solution is in the interior of Θ, the solution can be
written as θ̂t = (V αt )

−1∑t−1
s=1 YsXs, where we define the

d× d positive definite matrix V αt :=
∑t−1
s=1XsX

>
s + αId.

This method presents several advantages: it can be com-
puted efficiently via sequential matrix inversion (with com-
plexityO(d2) at each step thanks to the Sherman-Morrison
formula for the rank-one update V αt+1 = V αt +XtX

>
t start-

ing from V α0 = αId) and explicit confidence ellipsoids for
θ∗ can be constructed analytically around θ̂t to tune explo-
ration (Abbasi-Yadkori et al., 2011). The implicit limita-
tion of this procedure is that it can only estimate the expec-
tation E[Y ] = argminθ∈Θ E[(Y − 〈θ,X〉)2]. We call this
standard setting the mean-linear bandit.
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As motivated by the example above, we aim to estimate
other statistics than the mean of the reward distribution.
Drawing inspiration from this simple case, we consider an
arbitrary convex loss function L : R×Rp → R+ and define
the risk measure associated with loss L for a distribution ν
over R as ρL(ν) = arg minξ∈Rp EY∼ν [L(Y, ξ)]. We as-
sume here that the argmin is unique for simplicity (which
is the case if L is strongly convex) and will sometimes use
the notation ρL(Y ) instead of ρL(ν) for a random variable
Y with distribution ν. Similarly, we define the conditional
risk measure ρL(ν|G) = arg minξ∈Rp EY∼ν [L(Y, ξ)|G]
for any event G with positive measure. Note that with this
definition, ρL(ν) is a vector in Rp. When p = 1, we call
these scalar risk measures. The motivation to consider
vector-valued risk measures comes from the fact that not
every measure of interest can be elicited as a scalar risk
measure, which we develop in the next paragraph.

Elicitable Risk Measure Scalar risk measures that can
be expressed as minimizers of such loss functions are
known as (first-order) elicitable risk measures (Ziegel,
2016). Examples of such measures include the mean, the
median, and more generally any quantile and expectile,
which we further discuss below as special cases of risk
measures associated with convex potentials. Other exam-
ples are any generalized moments ρ(ν) = EY∼ν [T (Y )],
where T : R → R is a ν-integrable mapping, and the en-
tropic risk defined by ρL(ν) = 1

γ logEY∼ν [eγY ] (Mail-
lard, 2013). Unfortunately, not all measures commonly en-
countered in the risk literature are first-order elicitable. In
particular, neither the variance nor the CVaR can be ex-
pressed as scalar risk measures with respect to a convex
loss (Fissler et al., 2015; Fissler and Ziegel, 2016). How-
ever, they are second-order elicitable, in the sense that the
pairs (mean, variance) and (VaR, CVaR) are jointly elic-
itable. We refer to Appendix A for a summary and further
interpretation of elicitable risk measures.

We say that the loss L is adapted to the linear bandit (ϕ, `∗)
if for all x ∈ X , `∗ is a minimizer of E [L (Y, `(x))] among
all linear forms ` : X → Rp, where Y ∼ ϕ ◦ `∗(x) denotes
the reward random variable of the linear bandit when action
x is played. Intuitively, this means that the risk measure ρL
of the reward distribution is linearly parametrized by the
actions, the same way the expected reward is a linear form
of the action in the standard mean-linear bandit.

Remark 1 The above definition is written in the gen-
eral case of a vector-valued risk measure ρL. In the
rest of this paper, we only consider scalar risk mea-
sure and leave the extension to measures like CVaR for
further work. We say that L is adapted to the linear
bandit (ϕ, θ∗) if for all x ∈ X , we have that θ∗ ∈
arg minθ∈Θ EY∼ϕ(〈θ∗,x〉) [L (Y, 〈θ, x〉)].

Table 1: Example of Risk Measures Elicited by Convex
Potentials.

Name Potential ψ(z) Risk measure ρψ

Mean z2/2 ρψ =
∫
yν(dy)

Quantile
p ∈ (0, 1)

(p− Iz<0)z
∫ ρψ
−∞ ν(dy) = p

Expectile
p ∈ (0, 1)

|p− Iz<0|z2
(1−p)

∫ ρψ
−∞|y−ρψ|ν(dy)

= p
∫∞
ρψ
|y − ρψ|ν(dy)

Convex Potential A special case of interest is when the
convex loss L = Lψ derives from a potential ψ, that is
when Lψ(y, ξ) = ψ(y−ξ). This includes the ordinary least
square potential associated to the mean, as well as quan-
tiles and expectiles. We assume the reader to be familiar
with the former, but perhaps less so with the latter. Follow-
ing Newey and Powell (1987), we define the p-expectile of
ν for p ∈ (0, 1) as argminξ∈R EY∼ν [|p− IY <ξ|(Y − ξ)2].
Expectiles have been studied in particular in the context
of risk management (Bellini and Di Bernardino, 2017) and
risk-aware Bayesian optimization (Torossian et al., 2020).
Furthermore, under some symmetry conditions, quantiles
and expectiles are known to coincide (Abdous and Remil-
lard, 1995), and thus expectiles can be seen as a smooth (in
particular differentiable) generalization of quantiles (see
Philipps (2022) for further interpretation of the notion of
expectiles). We refer the reader to Table 1 for a summary
of risk measures elicited by convex potentials.

In the terminology defined above, the ordinary least square
potential is adapted to the mean-linear reward model Yt =
〈θ∗, Xt〉 + ηt with E[ηt|Ft] = 0. More generally, such
an additive decomposition exists for losses derived from
potentials (see Lemma 4 in Appendix B).

Non-unicity of Adapted Loss In general, a risk measure
can be described by multiple different adapted losses. First,
the set of losses that elicit a given risk measure is a cone
invariant by scalar translation, i.e., ραL+β = ρL for all
α > 0 and β ∈ R. Other less trivial examples of non-
unicity arise even for the simple mean criterion. Theorem 1
in Banerjee et al. (2005) shows that EY∼ν [Y ] = ρBψ (ν)
where ψ is any strictly convex, differentiable function and
Bψ : (y, ξ) 7→ ψ(y)−ψ(ξ)−ψ′(ξ)(y−ξ) is the Bregman di-
vergence induced by ψ, which generalizes the quadratic po-
tential. In fact, every continuously differentiable loss that
elicits the mean has this form (Theorem 3 and 4 in Baner-
jee et al. (2005)). Similarly, the pairs (mean, variance) and
(VaR, CVaR) can be elicited by families indexed by differ-
entiable, strictly convex functions (Table 3, Appendix A).

2.2 Contextual Bandits with Elicitable Risk Measures

Regret For a linear bandit (ϕ, θ∗), we de-
fine the pseudo-regret associated to a risk mea-
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sure ρL and a sequence of actions (Xt)16t6T as

RT =
∑T
t=1 ρL (ϕ(〈θ∗, X∗t 〉))−ρL (ϕ(〈θ∗, Xt〉)), where

X∗t = argmaxx∈Xt ρL (ϕ(〈θ∗, x〉)) is the optimal action
w.r.t the risk measure ρL. By definition, if the loss L is
adapted to the linear bandit, this notion of regret reduces
to RT =

∑T
t=1〈θ∗, X∗t 〉 − 〈θ∗, Xt〉, which is formally

the same as the standard regret for mean-linear bandits.
What differs though is the meaning of 〈θ∗, Xt〉, which
now represents an elicitable risk measure for the reward
distribution. As an example, this paves a way for expectile-
linear bandit of the form Yt = 〈θ∗, Xt〉 + ηt where the
conditional expectile of ηt is zero and expectile rewards
are measured as linear forms of the actions 〈θ∗, Xt〉.

Supervised Estimation of θ∗ Similarly to how ridge re-
gression provides natural estimators of the mean, we define
θ̂t ∈ argminθ∈Θ

∑t−1
s=1 L(Ys, 〈θ,Xs〉) + α

2 ‖θ‖
2
2, which

corresponds to the empirical risk minimization associated
to loss L, with L2 regularization parameter α > 0. As-
suming that L is differentiable and that θ̂t is in the in-
terior of Θ, this estimator is characterized by the equa-
tion αθ̂t = −

∑t−1
s=1 ∂L(Ys, 〈θ̂t, Xs〉)Xs, where ∂L(y, ξ)

stands for the derivative of ξ 7→ L(y, ξ). When θ̂t is
not in the interior of Θ, an additional projection onto Θ
is necessary, which we denote by the operator Π (such
an operator is detailed in Section 3.1). We also define
Hα
t (θ) =

∑t−1
s=1 ∂

2L (Ys, 〈θ,Xs〉)XsX
>
s +αId the Hes-

sian of the empirical loss at θ of the minimization problem.

We note that when L derives from the quadratic potential
ψ(ξ) = ξ2/2, it holds that Hα

t (θ) = V αt and we thus fall
back to the mean-linear case. For all other choices of the
loss function L, the Hessian Hα

t depends on θ, and in par-
ticular no closed-form expression of θ̂t in terms of the in-
verse of Hα

t is available. As we detail in the next sections,
this introduces technical challenges to the analysis of linear
bandit algorithms and forces the use of convex program-
ming algorithms to numerically evaluate θ̂t.

Remark 2 Similar complications arise in the case of gen-
eralized linear bandits (GLB) Yt = µ(〈θ∗, Xt〉) + ηt, with
E[ηt|Ft] = 0 and µ a nonlinear link function. Under para-
metric assumptions on Yt (typically one-dimensional expo-
nential family), GLB can be seen as a special case of the
risk-aware setting with L the negative log-likelihood loss,
with the analogy µ ↔ ∂L. Despite this formal similar-
ity, GLB is designed solely to optimize the mean criterion.
Another difference with our setting is that regret for GLB
is commonly defined as

∑T
t=1 µ(〈θ∗, X∗t 〉) − µ(〈θ∗, Xt〉),

which is smaller thanRT when µ is contracting.

Extension of LinUCB to Convex Losses The main ben-
efit of the formulation of risk-awareness in terms of con-
vex losses is that it suggests a transparent generalization of
the standard LinUCB algorithm (OFUL in Abbasi-Yadkori

et al. (2011), Ch.19 in Lattimore and Szepesvári (2020)),
essentially substituting the least-squares estimate with the
empirical risk minimizer associated with L. The general
idea of such optimistic algorithms is to play at time t the
action x ∈ Xt with the highest plausible reward. In the
mean-linear case with ridge regression, this highest plausi-
ble reward takes the form of 〈θ̂t, x〉+γt(x), where γt(x) is
a certain action-dependent quantity also known as the ex-
ploration bonus. We write the general structure of our ex-
tension of LinUCB (CR for Convex Risk) in Algorithm 1.

Algorithm 1 LinUCB-CR
Input: regularisation parameter α, projection Π,
exploration bonus sequence (γt)t∈N.
Initialization: Observe X1.
for t = 1, . . . , T do

θ̂t ∈ arg minRd
∑t−1
s=1 L(Ys, 〈θ,Xs〉) + α

2 ‖θ‖
2
2 ;

. Empirical risk minimization

θ̄t = Π(θ̂t) ; . Projection
Xt = arg maxx∈Xt〈θ̄t, x〉+ γt(x) ; . Play arm
Observe Yt and Xt+1.

3 ANALYSIS OF LinUCB-CR

The goal of this section is to derive an exploration bonus
sequence (γt)t∈N and a projection operator Π¸ that ensure
sub-linear regret of the corresponding LinUCB instance.
To this end, we introduce the following control on the cur-
vature of the adapted loss L.

Assumption 1 (Bounded Loss Curvature) There exists
m and M such that

∀y, ξ ∈ R, m 6 ∂2L(y, ξ) 6M .

We call the parameter κ = M
m the conditioning of L.

Remark 3 This assumption is reminiscent of the standard
lower bound on the derivative of the link function µ′ com-
monly encountered in the GLB literature.

3.1 Martingale Property and Concentration

A key property for the analysis of mean-linear bandits
is that the sum process

∑t−1
s=1 ηsXs naturally defines a

vector-valued martingale in Rd with respect to the filtra-
tion Ft (Abbasi-Yadkori et al., 2011). This is not the
case in general for bandits associated with generic convex
losses. Instead, for a given loss L, we know that θ∗ =
argminθ E[L(Yt, 〈θ,Xt〉)|Ft]. Assuming L is differen-
tiable and using the shorthand ∂jL∗t = ∂jL(Yt, 〈θ∗, Xt〉)
for j ∈ N and t ∈ N, this implies E[∂1L∗t |Ft] = 0 since
Xt is measurable with respect to Ft. A direct consequence
of this is that St =

∑t−1
s=1 ∂

1L∗sXs defines a F-martingale.
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This process is at the heart of the next proposition, which
establishes confidence bounds using the method of mix-
ture (see Peña et al. (2008) in general and Abbasi-Yadkori
et al. (2011); Faury et al. (2020) for specific applications to
contextual bandits). To this end, we detail below a helpful
transformation of the sum process S into a nonnegative su-
permartingales (Lemma 1) under a standard sub-Gaussian
assumption (Assumption 2) and state the high-probability
uniform deviation bound we obtain (Proposition 1), the
proof of which is deferred to Appendix C.

Assumption 2 (Sub-Gaussian) ∂1L∗ is a conditionally
sub-Gaussian process, i.e., there exists R > 0 such that

∀t ∈ N, ∀λ ∈ R, logE
[
exp

(
λ∂1L∗t

)
|Ft
]
6
λ2R2

2
.

Lemma 1 (Supermartingale Control) Under Assump-
tions 1-2, there exists σ > 0 such that for any t ∈ N and
λ ∈ Rd, the following holds:

E
[
exp

(
〈λ,Xt〉∂1L∗t −

σ2

2
〈λ,Xt〉2∂2L∗t

)∣∣∣∣Ft] 6 1 .

Proposition 1 (Method of Mixtures with Convex Loss)
Let β > 0. Under Assumptions 1-2, with probability at
least 1− δ, for all t ∈ N, it holds that

‖St‖2Hβt (θ∗)−1 6 σ
2

(
2 log

1

δ
+ log

detHβ
t (θ∗)

detβId

)
.

Discussion on Lemma 1 and Assumption 2 As shown
in the proof, Lemma 1 alone implies Proposition 1. While
this lemma may be valid in more general settings, we show
in Appendix C how it is conveniently implied by Assump-
tion 1 and the sub-Gaussian control of Assumption 2. In the
rest of the paper, in particular in the regret bounds of The-
orem 1, 2 and 3, σ will refer to the parameter that appears
in the supermartingale control of Lemma 1.

Regarding Assumption 2, note that for a mean-linear bandit
Yt = 〈θ∗, Xt〉+ ηt with adapted loss L(y, ξ) = 1

2 (y− ξ)2,
we have that ∂L∗t = ηt, which is classically assumed to
be sub-Gaussian. For other bandits, and thus other adapted
losses, it may be more convenient to make assumptions on
the distribution of observable quantities such as Xt and Yt
rather than directly on ∂L∗t . Formally, this raises the ques-
tion of how the sub-Gaussian property of a random variable
Z transfers to f(Z) for a given mapping f . While to our
knowledge no complete answer is available, several partial
results are available in the concentration literature.

(i) If Z is Gaussian with variance σ2 and f is
M -Lipschitz, the Tsirelson-Ibragimov-Sudakov inequality
(Boucheron et al., 2013, Theorem 5.5) shows that f(Z) is
Mσ-sub-Gaussian. In particular, the Lipschitz assumption

holds for ∂L if the loss curvature is bounded from above
by M . More generally, if Z can be written as a σ-Lipschitz
function of a N (0, 1), then f(Z) is Mσ-sub-Gaussian.

(ii) If the density of Z is strongly log-concave, then
f(Z) is sub-Gaussian (with parameter related to the largest
eigenvalue of the Hessian of the log-density, see Vershynin
(2018, Theorem 5.2.15)).

(iii) If Z is bounded (i.e., actions and rewards are
bounded) and f is Lipschitz and separately convex, then
f(Z) is sub-Gaussian (application of the entropy method,
see e.g., Boucheron et al. (2013, Theorem 6.10)). The
boundedness assumption can be lifted at the cost of a
slightly more stringent condition than the sub-Gaussianity
of Z, see Adamczak (2005, Theorem 3).

In short, Assumption 2 holds in a variety of settings, under
rather mild assumptions on either Xt and Yt or the loss L.
Also of note, ∂1L is M -Lipschitz under Assumption 1.

Confidence Set for θ∗ To help write the above con-
fidence set in terms of θ∗ and the empirical estima-
tor θ̂t, we introduce the function Fαt : θ ∈ Θ 7→∑t−1
s=1 ∂L (Ys, 〈θ,Xs〉)Xs + αθ ∈ Rd. As seen above,

Fαt (θ̂t) = 0 and Fαt (θ∗) = St + αθ∗. Noticing that
‖Fαt (θ∗) − Fαt (θ̂t)‖2Hβt (θ∗)−1

= ‖St + αθ∗‖Hβt (θ∗)−1 6

‖St‖Hβt (θ∗)−1+α‖θ∗‖Hβt (θ∗)−1 , we immediately derive the
following result (note the use of a priori different regular-
ization parametersα and β, which we exploit in the sequel).

Corollary 1 For t ∈ N, δ ∈ (0, 1), α, β > 0, let

Θ̂δ
t =

{
θ ∈ Θ, ‖Fαt (θ)− Fαt (θ̂t)‖Hβt (θ)−1

6 σ

√
2 log

1

δ
+ log

detHβ
t (θ)

detβId
+ α‖θ‖Hβt (θ)−1

}
.

Then under Assumptions 1-2, it holds that

P
(
∀t ∈ N, θ∗ ∈ Θ̂δ

t

)
> 1− δ .

We constantly use this result in the following, in particular
to construct the projection operator Π. Indeed, if we define
θ̄t := Π(θ̂t) as argminθ∈Θ‖Fαt (θ)− Fαt (θ̂t)‖Hβt (θ)−1 , we

have the property that Π(θ̂t) ∈ Θ̂δ
t with high probability.

Remark 4 Although we formulated the bounded curvature
condition (Assumption 1) globally, we note that we only re-
quire it to hold in a convex neighborhood of θ∗ contain-
ing θ̄t, and Corollary 1 shows that with high probability,
‖θ∗ − θ̄t‖2 is bounded (going from the Hβ

t (θ∗)−1 norm to
the Euclidean norm can be done by simple positive definite
matrix inequalities). Therefore, one could instead assume
a local curvature control on ∂L(y, 〈θ, x〉) for x ∈ Xt and
θ in a ball around θ∗, in the same spirit as Assumption 1 in
Li et al. (2017) for GLB.



Risk-aware linear bandits with convex loss

3.2 Optimism and Local Metrics

We recall here the principle of optimism in the face of un-
certainty and adapt it to the framework of elicitable risk
measures. We denote by rt = 〈θ∗, X∗t 〉 − 〈θ∗, Xt〉 the in-
stantaneous regret, where 〈θ∗, X∗t 〉 = maxx∈Xt〈θ∗, x〉 is
the optimal risk measure associated with L at time for the
actions available at time t. Then, simple algebra shows that

rt = 〈θ∗ − θ̄t, X∗t 〉 − 〈θ∗ − θ̄t, Xt〉+ 〈θ̄t, X∗t −Xt〉
= ∆(X∗t , θ̄t) + ∆(Xt, θ̄t) + 〈θ̄t, X∗t −Xt〉 ,

where we define for x ∈ X and θ ∈ Θ, ∆(x, θ) =
|〈θ∗ − θ, x〉| the absolute error made by θ with respect to
the true parameter of the linear bandit θ∗ in the direction
of x. If we know a sequence of functions γt : X → R+

such that with high probability, for all t ∈ N and x ∈ Xt,
∆(x, θ̄t) 6 γt(x), then the principle of optimism recom-
mends the action Xt ∈ argmaxx∈Xt〈θ̄t, x〉 + γt(x), i.e.,
the one leading to the best plausible reward with respect
to the confidence on the prediction error of θ̄t. In this case,
rt 6 ∆(X∗t , θ̄t)+∆(Xt, θ̄t)+γt(Xt)−γ(X∗t ) 6 2γt(Xt)

with high probability, and hence RT 6 2
∑T
t=1 γt(Xt).

We detail below how Corollary 1 coupled with standard as-
sumptions provides such a bound.

Bound on the Prediction Error We follow the stan-
dard strategy of decoupling the dependency on θ̄t and x
in ∆(x, θ̄t). By Cauchy-Schwarz’s inequality, we have, for
some positive definite matrix P to be determined later,

∆(x, θ̄t) = |〈P 1
2 (θ∗ − θ̄t), P−

1
2x〉| 6 ‖θ∗ − θ̄t‖P ‖x‖P−1 .

As we see below, a natural choice for P is the (average)
Hessian of the empirical risk minimization problem, and
therefore the term ‖x‖P−1 can be handled by the ellipti-
cal potential lemma (Lemma 11 in Abbasi-Yadkori et al.
(2011)). To control the remainder term in θ∗ − θ̄t, we bor-
row technical tools from the classical approach developed
for generalized linear bandits (Filippi et al., 2010; Faury
et al., 2020) and note that

Fαt (θ∗)− Fαt (θ̄t) = H̄α
t (θ∗, θ̄t)(θ

∗ − θ̄t) ,

where H̄α
t (θ∗, θ̄t) =

∫ 1

0
Hα
t (uθ∗ + (1 − u)θ̄t)du is the

average of the Hessian matrices along the segment [θ̄t, θ
∗]1

(this follows from the observation that the differential of
Fαt is Hα

t ). Therefore the choice P = H̄α
t (θ∗, θ̄t) yields

‖θ∗ − θ̄t‖P = ‖Fαt (θ∗)− Fαt (θ̄t)‖H̄αt (θ∗,θ̄t)−1

6 ‖Fαt (θ∗)− Fαt (θ̂t)‖H̄αt (θ∗,θ̄t)−1

+ ‖Fαt (θ̄t)− Fαt (θ̂)‖H̄αt (θ∗,θ̄t)−1 .

1One could also use H̄α
t (θ∗, θ̄t) =

∫ 1

0
Hα
t (γu)du where

γ : [0, 1] → Θ is smooth, unit speed path connecting θ̄t and θ∗.

To conclude, we need to find a way to relate the local met-
ric defined by H̄α

t (θ∗, θ̄t)
−1 to those defined by Hβ

t (θ∗)−1

andHβ
t (θ̄t)

−1, for which we have high confidence bounds.
This motivates the following assumption.

Lemma 2 (Transportation of Local Metrics) Under As-
sumption 1, for α>0, there exists κ>0, β>0 such that

H̄α
t (θ∗, θ̄t) <

1

κ
Hβ
t (θ∗) and H̄α

t (θ∗, θ̄t) <
1

κ
Hβ
t (θ̄t) .

We detail in Appendix D that a suitable choice of parameter
is β = κα with κ = M

m the conditioning of the loss L,
which is a direct consequence of Assumption 1. Again, we
keep the formulation fairly generic as Lemma 2 may hold
beyond losses with bounded curvature. For instance, in a
special case of GLB, namely the logistic bandit, it is shown
in Faury et al. (2020) that this lemma holds thanks to self-
concordance properties of the sigmoid link function.

3.3 Examples

We conclude this section by discussing examples of stan-
dard losses and whether they satisfy the above conditions.

Example 1 (Expectile) The expectile loss is derived from
the potential ψ2(z) = |p − Iz<0|z2, the second derivative
of which is ψ′′2 (z) = 2|p−Iz<0|. Thus, Assumption 1 holds
with m = 2 min(p, 1− p) and M = 2 max(p, 1− p).

Example 2 (Quantiles) The quantile loss is derived from
the potential ψ1(z) = (p− Iz<0)z, which is piecewise lin-
ear. In particular, it is not strongly convex and thus does
not satisfy Assumption 1. Bandits with quantile regression
are therefore outside the scope of this work.

3.4 Regret Analysis

We make two additional standard assumptions that prior
bounds are known on θ∗ and on the actions X =

⋃
t∈N Xt,

which is standard in the existing literature on linear bandits.

Assumption 3 (Prior Bound on Parameters) All param-
eters are bounded by S, i.e., Θ ⊆ Bd‖·‖2(0, S). In particu-
lar, this implies that ‖θ∗‖Hβt (θ∗)−1 6 S√

β
for any β > 0.

Assumption 4 (Prior Bound on Actions) All actions are
bounded by L, i.e., X ⊆ Bd‖·‖2(0, L).

We now obtain a high probability upper bound on the re-
gret incurred by Algorithm 1 for an explicit choice of ex-
ploration bonus sequence (γt)t∈N and projection Π. As
is standard for contextual bandits, this bound is minimax
(worst-case) as it does not depend explicitly on the opti-
mality gaps 〈θ∗, X∗t 〉 − 〈θ∗, Xt〉.
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Theorem 1 (Regret upper bound for LinUCB-CR - 1)
Let δ ∈ (0, 1), α > max(1, L2) and define for t ∈ N the
exploration bonus

γt : x ∈ Xt 7→ cδt‖x‖Hκαt (θ̄t)−1 ,

cδt = 2κ

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
and the projection operator

Π: θ̂ ∈ Rd 7→ argmin
θ∈Θ

‖Fαt (θ)− Fαt (θ̂)‖Hκαt (θ)−1 .

Under Assumptions 1-2-3-4, with probability at least 1−δ,
the regret of Algorithm 1 is bounded by

RT 6 2cδT max

(
1√
m
,
L√
κα

)√
2Td log

(
1+

mTL2

dκα

)
.

In particular, we haveRT = O
(
κσd√
m

√
T log TL2

d

)
.

The proof of this result follows the standard regret analysis
of LinUCB, up to the modification detailled in the previous
sections. We report the detailed arguments in Appendix E.

Remark 5 This regret bound scales with κm−1/2, where
m is the minimum curvature of the loss L and κ the coef-
ficient of transportation of local metrics. Under Assump-
tion 1, this scales as m−3/2. In the limit of flattening loss
m→0, learning with this strategy becomes impossible. We
show in Appendix E that a small modification of the explo-
ration sequence reduces this dependency to κ1/2m−1/2, at
the cost of loosing local information carried by Hκα

t (θ̄t).
An analogous dependency on m−1 was observed for GLB
in Filippi et al. (2010). In the special case of logistic ban-
dit, Faury et al. (2020) obtained a κ independent of m us-
ing self-concordance, and even pushed the dependency on
m−1/2 to higher order terms in T using a more intricate
algorithmic design. We conjecture that a similar construc-
tion could apply here but leave this open for future work.

Remark 6 In the mean-linear case, m=M = κ= 1 and
Hα
t = V αt , thus this result is compatible with the minimax

lower bound O(d
√
T ) for actions in Bd‖·‖(0, 1) (Lattimore

and Szepesvári, 2020, Theorem 24.2) and matches the stan-
dard LinUCB upper bound (Abbasi-Yadkori et al., 2011).

Theorem 1 holds for arbitrary (potentially adversarial) se-
quence of action sets (Xt)t∈N. If these are instead stochas-
tically generated, the regret bound can be further tightened.

Assumption 5 (Stochastic action sets) Let νX a proba-
bility measure on 2B

d
‖·‖2

(0,L) (i.e., samples drawn from νX
are sets of vectors of L2 norm at most L).

(i) For t∈N, Xt ∼ νX defines an i.i.d. sequence of ran-
dom action sets.

(ii) Recall that Xt∈Xt denotes the action selected by the
agent at time t ∈ N. Then E

[
XtX

>
t |Ft−1

]
<ρXL2Id>0.

Theorem 2 (Regret upper bound for LinUCB-CR - 2)
Under Assumptions 1-2-3-4-5, with probability at least
1− 2δ, the regret of Algorithm 1 is bounded by

RT 6 4cδT

√
2T

mρX

(
1 +

C√
T

)
,

where C is a constant independent of T . In particular, we

haveRT = O
(
κσ
√

dT
mρX

log TL2

d

)
.

The lower bound on conditional covariance of actions
of Assumption 5 is new, although related to more stan-
dard settings. In the case of finite action sets Xt =
{Xk,t, k ∈ [K]}, Li et al. (2017); Kim et al. (2022) con-
sidered a lower bound on the unconditional average co-
variance across arms E

[
1
K

∑
k∈[K]Xk,tX

>
k,t

]
. We argue

that this assumption is quite mild in the sense that for non-
degenerate νX , the conditioning is essentially irrelevant. At
time t, Xt is drawn independently of Ft−1, and Xt ∈ Xt
is selected in a Ft−1-measurable fashion. To violate the
covariance inequality, there should exist a fixed strict sub-
space V ⊂ Rd such that with some probability Xt ∩ V 6= ∅
(when randomizing over the action set Xt) and Xt should
be one of the vectors in V; however, if, e.g., νX spans
an open set, this almost surely cannot happen. In other
words, Theorem 2 shows that if action sets Xt are gen-
erated with enough diversity and no adversarial bias, the
regret of optimistic strategies can be slightly improved by
a factor O(log(T )). Finally, note that Assumption 5 and
ρX do not influence the design of Algorithm 1, only the
O (log T ) term in its regret upper bound.

In general, ρ−1
X > d and in many cases ρ−1

X = O(d) (see
Appendix F), hence the regret upper bound scales linearly
with d. Compared to Kim et al. (2022), our proof relies on
line crossing arguments developed in Howard et al. (2020)
rather than on a crude union bound, leading to improved
constants and higher order terms (even in the mean-linear
case). We refer to Appendix F for additional details.

4 APPROXIMATE STRATEGY WITH
ONLINE GRADIENT DESCENT

So far, we have shown that the standard LinUCB princi-
ple can be extended to the convex loss setting with similar
regret guarantees under some curvature assumption. How-
ever, this comes at the cost of a significant computational
overhead since the estimator θ̂t needs to be calculated from
scratch at each step as argminθ∈Rd

∑t−1
s=1 L(Ys, 〈θ,Xs〉)+

α
2 ‖θ‖

2
2. As a reminder, in the standard mean-linear case,

this estimator has an analytical expression that amounts to
incrementally inverting the matrix V αt , which can be done
efficiently from the knowledge of the inverse of V αt−1 via
the Sherman-Morrison formula.
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We propose an alternative algorithm that exploits online
gradient descent (OGD) to compute a fast approximation
of the empirical risk minimizer θ̂t. This may be of practical
interest to deploy risk-aware linear bandits in time-sensitive
environments, such as in real-time online recommendation
systems. Moreover, it can also be relevant in the mean-
linear setting with high dimensional action sets, where
computing gradients may be more tractable than inverting
a large d × d matrix. For θ̂ ∈ Rd, we use the shorthand
∇αn,h(θ̂) =

∑h
k=1 ∂L(Y(n−1)h+k, 〈θ̂, X(n−1)h+k〉)+αθ̂.

Algorithm 2 LinUCB-OGD-CR
Input: horizon T , regularisation parameter α, projection

Π, exploration bonus sequence (γOGD
t,T )t6T , step se-

quence (εt)t∈N, episode length h > 0.
Initialization: Observe X1, set θ̂OGD

0 , t = 1, n = 1.
for t = 1, . . . , T do

if t = nh+ 1 then
θ̂OGD
n = θ̂OGD

n−1 − εn−1∇αn,h(θ̂OGD
n−1) ; . OGD

θ̄OGD
n = 1

n

∑n
j=1 Π(θ̂OGD

j ) ; . Average
n← n+ 1

a Xt = arg maxx∈Xt〈θ̄OGD
n , x〉+ γOGD

t,T (x) ; . Play

with same parameter for h steps
Observe Yt and Xt+1 ;
t← t+ 1 ;

The intuition behind Algorithm 2 is that at time t = nh+1,
the approximation error between the OGD estimate θ̄OGD

n

and the exact minimizer of the empirical risk θ̂t induces
additional exploration, which translates into an increased
regret compared to LinUCB. In other words, LinUCB-
OGD trades off accuracy for computational efficiency. The
episodic structure is borrowed from Ding et al. (2021) and
is key to ensure sufficient convexity of the aggregate loss
∇αn,h(θ̂). This allows to leverage the strong approxima-
tion guarantees of OGD, which we extend in the follow-
ing proposition by relaxing the standard boundedness re-
quirement of the gradient (Theorem 3.3, Hazan (2019)) to
a weaker sub-Gaussian control at a given parameter. We
prove in Appendix G an extension of the following propo-
sition, with an explicit bound on the OGD regret, which we
report below in the O notation for the sake of concision.

Proposition 2 (OGD Regret, Sub-Gaussian Gradients)
Let C a convex subset of Rd and Π the projection operator
onto C. For j = 1, . . . , N , let `j : C −→ R+ a twice
differentiable convex function and a,A > 0 such that
aId 4 ∇2`j(z) 4 AId for all z ∈ C. Define the OGD
update at step j by zj = Π(zj−1 − εj−1∇`j(zj−1)) and
z̄n = arg minz∈C

∑n
j=1 `j(z). Assume that there exists

z∗ ∈ C such that ∇`j(z∗) = gj + α
nz
∗ with α > 0 and g

a centered, Rd-valued σ-sub-Gaussian process, and also
that C is bounded, i.e., diam(C) = supz,z′∈C‖z−z′‖ <∞.
Then with probability at least 1−δ, the OGD regret with

step size εj= 3
aj is bounded uniformly in N → +∞ by

N∑
j=1

`j(zj)− `j(z̄N ) = O
(
dσ2

a
log2N

)
.

Our final result, which we prove in Appendix H, states that
the approximation error of OGD induces at most a polylog
correction in the regret of LinUCB-OGD-CR.

Theorem 3 (Regret of LinUCB-OGD-CR) Let εh > 0
and h = d 2εh

ρXL2 + 8
ρ2X

log 2
δ e. Assume that ∂L(Yt, 〈θ∗, Xt〉)

is
√
mσ-sub-Gaussian for all t 6 T . Under Assump-

tions 1-2-3-4-5, there exists constants C,C ′ > 0 such that
with probability at least 1− (1 +T/h)δ the regret of Algo-
rithm 2 with exploration bonus sequence

γOGD
t,T : x ∈ Xt 7→ (cδt + cOGD,δ

t,T )‖x‖Hκαt (θ̄OGD
bt−1
h
c
)−1 ,

cOGD,δ
t,T =

√(
L2+

α

mMt

)(2κC ′dh2σ2

ε2
h

log

(
2dT

hδ

)
log

(
t

h

))
,

and the OGD step sequence of Proposition 2 satisfies

RT = O

(
σ

√
κdT

mρX

(√
κ log

(
TL2

d

)
+ h log (dT )

))
.

The episode length h scales as O(ρ−2
X ), which grows at

least as fast as O(d2) in the action dimension d. This is
sufficient to bound with high probability the smallest eigen-
value of the Hessian of the aggregate losses ∇αn,h and thus
ensure their strong convexity. However, longer episodes
also means less frequent updates of θ̄OGD

n , i.e., less learn-
ing, which is materialized by the additional dependency on
h in the regret. In Appendix H, Lemma 7, we deduce a
tighter, more intricate expression for h, although still scal-
ing as O(ρ−2

X ). We only report the simpler expression here
to avoid cluttering.

Remark 7 The union bound used in Proposition 2 imposes
the knowledge of the horizon T at runtime (in the definition
of γt,T ), thus making Algorithm 2 not anytime.

5 EXPERIMENTS

We conducted three numerical experiments to illustrate the
performance of both risk-aware algorithms, under expec-
tiles and entropic risk criteria. In Figure 1, we consid-
ered an expectile-based asymmetric distribution (Torossian
et al., 2020) with context-dependent p-expectiles. This dis-
tribution is log-concave, thus fitting the scope of the su-
permartingale control of Lemma 1. As recalled in Sec-
tion 3.3, the corresponding loss satisfies Assumption 1 with
m = 2 min(p, 1−p) and M = 2 max(1−p, p). Note that
the more risk-averse (p → 0), the flatter the loss (m → 0)
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Figure 1: Two-armed linear 10%-expectile bandit with R3

contexts and expectile-based asymmetric noises. Thick
lines denote median cumulative regret over 500 indepen-
dent replications. Dotted lines denote the 25 and 75 regret
percentiles. Shaded areas denote the 5 and 95 percentiles.

and thus the harder it is to learn. This matches the intu-
ition on risk-aware measures: by focusing on the more ex-
treme events, they require more samples to reach the same
statistical accuracy. More details, including the other two
experiments, are postponed to Appendix I. As far as we
are aware, no algorithm exists for the expectile criterion;
for entropic risk, Maillard (2013) analyzes a variant of KL-
UCB but only for the non-contextual multi-armed bandit
problem (and without numerical evidences).

The settings of these numerical experiments were designed
so that the optimal arms were different depending on the
criterion of interest (mean versus risk-aware). Instances
of the classical LinUCB algorithm (Abbasi-Yadkori et al.,
2011) were indeed deceived and accumulated linear risk-
aware regret, while Algorithms 1 and 2 exhibited milder
sublinear trends. As expected, the LinUCB-OGD variant
accumulated slightly more regret and showed higher vari-
ability across independent replications compared to Lin-
UCB with the exact minimization of the empirical risk, at
the benefit of improved runtimes (Table 2).

6 CONCLUSION

We have introduced a new setting for contextual bandits,
building on the recent interest for risk-awareness in multi-
armed bandits. We reviewed the literature on risk measures,
in particular the notion of elicitability, that allows to extend
the risk minimization framework of ridge regression be-

Table 2: Runtimes for the Classical LinUCB and Algo-
rithms 1 (LinUCB for Convex Risk) and 2 (LinUCB-OGD
for Convex Risk), Reported in Seconds as Mean ± Stan-
dard Deviation, Estimated Across 500 Independent Repli-
cations with Time Horizon T = 1500.

Algorithm Runtime

LinUCB (mean) 37.2± 4.9

LinUCB-CR (expectile) 814.8± 88.3

LinUCB-OGD-CR (expectile) 60.2± 12.0

yond standard mean-linear bandits. To lift the regret analy-
sis of optimistic algorithms to the setting of scalar risk mea-
sures ρL elicited by a convex loss L, we showed that uni-
formly bounding the curvature of the loss (Assumption 1)
is sufficient to maintain satisfying theoretical guarantees
(O(
√
T ) worst-case regret, up to polylog terms (Theorem 1

and 2). More precisely, we identified two key conditions,
namely a supermartingale control (Lemma 1) and a trans-
portation inequality (Lemma 2), that guarantee sublinear
regret; while these are direct consequences of the bounded
curvature assumption, they may hold in different settings,
as was recently discovered in GLB.

Going further, we believe it would be interesting to ex-
tend the linear model between actions and risk measures to
generalized linear models (ρL(Yt) = µ(〈θ,Xt〉) for some
link function µ : R → R), kernelized bandits (ρL(Yt) =
f(Xt) where f belongs to some RKHS) or neural ban-
dits (ρL(Yt) = fθ(Xt) where fθ is a neural network with
weights θ). Moreover, capturing well-established risk mea-
sures such as mean-variance, conditional value-at-risk or
quantiles would require to adapt the theory to high-order
elicitable measures and to non-smooth losses. Finally, we
believe the technical results developed here, in particular
the supermartingale control and the transportation inequal-
ity, can pave a way for the design and analysis of Thompson
sampling strategies in the contextual risk-aware setting.
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A SUMMARY AND INTERPRETATION OF ELICITABLE RISK MEASURES

We report in Table 3 an overview of common elicitable risk measures and their associated loss functions. We recall
that for a distribution ν over R and a loss function L : R × Rp → R, we defined the risk measure elicited by L as
ρL(ν) = arg minξ∈Rp EY∼ν [L(Y, ξ)]. Note that the pairs (mean, variance) and (VaR, CVaR) are second-order elicitable
but neither the variance nor the CVaR are first-order elicitable. For these pairs, we report the generic form of elicitation
losses, which depend on arbitrary convex functions ψ1 and ψ2, as well as instances of such losses obtained for the natural
choice ψ1(ξ) = ψ2(ξ) = ξ2/2.

We provide below some intuition about these commonly used measures in risk management.

Mean-Variance Assessing the risk-reward tradeoff of an underlying distribution ν by penalizing its mean by a higher
order moment (typically the variance) is perhaps the most intuitive of risk measures. Following Markowitz (1952), the
mean-variance risk measure at risk aversion level λ ∈ R is defined by ρMV1

(ν) = µ−λσ, where µ and σ denote the mean
and standard deviation of ν. Alternatively, it can also be defined as ρMV2(ν) = µ− λ

2σ
2, using the variance rather than the

standard deviation in the penalization term. Both measures are especially well-suited for Gaussian distributions as µ and σ
fully characterize this family.

VaR and CVaR For a distribution with continuous cdf (i.e., it has no atom), the Value-at-Risk VaRα(ν) at level α ∈ (0, 1)
is equivalent to the α quantile, and a simple change of variable reveals that the Conditional Value-at-Risk CVaRα(ν) is
thus E [X | X 6 VaRα(ν)]. Intuitively, a random variable with a high CVaRα distribution takes on average relatively
high values in the ”α% worst-case” scenario. For α → 1−, CVaRα(ν) → EY∼ν [Y ] and thus the risk measure becomes
oblivious to the tail risk; on the contrary, the case α→ 0+ emphasizes only the worst outcomes.

In the Gaussian case ν ∼ N (µ, σ), using the notations φ and Φ respectively for the pdf and cdf of the standard normal
distribution, simple calculus shows that

VaRα(ν) = µ+ σΦ−1(α) ,

CVaRα(ν) = µ− σ

α
√

2π
φ
(
Φ−1(α)

)
,

i.e., CVaRα(ν) = ρMV1
(ν) with risk aversion level λ = 1

α
√

2π
φ
(
Φ−1(α)

)
. In particular, increasing the variance σ2

reduces CVaRα(ν), corresponding to the intuition of higher volatility risk.

Entropic Risk The non-elicitability of CVaRα motivated the use of the entropic risk as an alternative measure. This
measures rewrites as (see Brandtner et al. (2018))

ργ(ν) = sup
ν′ probability measure

{
EY∼ν′ [Y ]− 1

γ
KL(ν′‖ν)

}
.

The intuition here is similar to the mean-variance measure, i.e., penalizing the expected value by a measure of uncertainty,
but differs by the use of the Kullback-Leibler divergence KL(ν′‖ν) = EY∼ν′ [log dν′

dν ] instead of the variance. The entropic
risk measure can be interpreted as the largest expected value that a mispecified model ν′ (in place of the true underlying
distribution ν) may have, where KL(ν′‖ν) controls the magnitude of the mispecification.

Again, in the Gaussian case, this measure reduces to ργ(ν) = µ+ γ
2σ

2 = ρMV2
(ν) at risk aversion level λ = −γ.

Expectile Beyond their interpretation as generalized, smooth quantiles, expectiles can also be understood in light of the
financial risk management literature. Let ep(ν) denote the p-expectile of ν for a given probability p ∈ (0, 1). Then, simple
calculus shows that

(1− p)EY∼ν [(ep(ν)− Y )+] = pEY∼ν [(Y − ep(ν))+] ,

where z+ = max(z, 0). If ν represents the distribution of a tradeable asset Y at time T , then the p-expectile is the strike
K = ep(ν) such that call and put on Y struck at K at maturity T are in proportion 1−p

p to each other, where we define the
call and put prices (with zero time discounting) by respectively

C(ν,K) = EY∼ν [(Y −K)+] ,

P (ν,K) = EY∼ν [(K − Y )+] .



Saux, Maillard

Table 3: Example of Elicitable Risk Measures.

Name ρL(ν) Associated loss L(y, ξ) Domain

Mean EY∼ν [Y ]

(y − ξ)2

Bregman divergence Bψ(y, ξ)
ψ(y)− ψ(ξ)− ψ′(ξ)(y − ξ),
ψ differentiable,
strictly convex.

ξ ∈ R

Derived from potential ψ argminξ∈R EY∼ν [ψ(Y − ξ)] ψ(y − ξ) ξ ∈ dom(ψ)

Generalized moment
T : R→ R EY∼ν [T (Y )] 1

2ξ
2 − ξT (y) ξ ∈ R

Entropic risk, γ 6= 0
(Example 1,
Embrechts et al. (2021))

1
γ logEY∼ν [eγY ] ξ + 1

γ (eγ(y−ξ) − 1) ξ ∈ R

(mean, variance)
(Example 1.23,
Brehmer (2017))

µ = EY∼ν [Y ]
σ2 = EY∼ν [Y 2]− µ2

1
2ξ

2
1 + 1

2 (ξ2 + ξ2
1)2

−ξ1y − (ξ2 + ξ2
1)y2

−ψ1(ξ1)− ψ′1(ξ1)(y − ξ1)
−ψ2(ξ2 + ξ2

1)
−ψ′2(ξ2 + ξ2

1)(y2 − ξ2 − ξ2
1)),

ψ1, ψ2 differentiable,
strictly convex.

ξ1 ∈ R
ξ2 > 0

(VaRα,CVaRα),
α ∈ (0, 1)
(Corollary 5.5,
Fissler and Ziegel (2016))

VaRα = inf{y ∈ R,
∫ y
−∞ dν > α}

CVaRα = 1
α

∫ α
0

VaRada

(ξ1 − y)+ − αξ1
+ξ2( 1

α (ξ1 − y)+ − ξ1)
+ 1

2ξ
2
2

(Iy6ξ1 − α)ψ′1(ξ1)
−Iy6ξ1ψ′1(y)
+ψ′2(ξ2)(ξ2−ξ1+ 1

α Iy6ξ1(ξ1−y))
−ψ2(ξ2) + c(y),
ψ1 convex,
ψ2 strictly convex and increasing,
c : R→ R.

ξ1 > ξ2



Risk-aware linear bandits with convex loss

Similarly, Keating and Shadwick (2002) introduced the notion of Omega ratio as a risk-return performance measures. It is
defined at level K by

Ω(K) =

∫ +∞
K

(1− F (y)) dy∫K
−∞ F (y)dy

,

where F is the cdf of ν. This ratio can also be viewed as a call-put ratio, hence another definition of the p-expectile is via
the implicit equation Ω(K) = 1−p

p for K = ep(ν).

Contrary to the previous risk measures, it may not be clear from this definition alone that expectiles do encode a notion
of aversion to risk. The next proposition shows that p-expectiles of many distributions, including normal and adjusted
lognormal, are decreasing functions of their variances when p < 1

2 , thus penalizing more volatile distributions, making
them suitable for risk management. We provide an elementary proof using the tools of the financial mathematics literature,
where such risk measures were extensively studied.

Proposition 3 Let I ⊆ R∗+ an open set and {νσ, σ ∈ I} a family of probability distributions such that

(i) the expectation mapping σ ∈ I 7→ EY∼νσ [Y ] is constant,

(ii) both the call and put mappingsC(·,K) : σ ∈ I 7→ EY∼νσ
[
(Y −K)+

]
and P (·,K) : σ ∈ I 7→ EY∼νσ

[
(K − Y )+

]
are differentiable and nondecreasing, for any K ∈ R.

For p ∈ (0, 1), we let ep(σ) = ep(νσ). Then sign d
dσ ep(σ) = sign(p− 1

2 ).

Before we proceed to the proof, let us note that two classical families of distributions satisfy these assumptions (see
(Merton, 1973, Theorem 8) for a a general result).

• Normal: for µ0 ∈ R, {νσ = N (µ0, σ
2), σ ∈ R∗+}, for which EY∼νσ [Y ] = µ0.

• Adjusted lognormal: for µ0 ∈ R, {νσ = exp
(
N (µ0, σ

2)− σ2

2

)
, σ ∈ R∗+}, for which EY∼νσ [Y ] = eµ0 .

In particular in the normal case, it follows from Lemma 3 that ep(ν) = µ0 + σep(N (0, 1)) = ρMV1(νσ) at risk aversion
level λ = −ep(N (0, 1)) (positive if p < 1

2 ).

Proof We first recall the call-put parity principle, which states that for any distribution νσ and strike K ∈ R, the following
equality holds:

C(σ,K)− P (σ,K) = EY∼νσ [Y ]−K ,

where we write C(νσ,K) = C(σ,K) and P (νσ,K) = P (σ,K).

Notice that the call-parity principle and the assumption that d
dσEY∼νσ [Y ] = 0 implies that ∂σC = ∂σP . We denote

this quantity by V . First, note that σ ∈ I 7→ ep(σ) is differentiable (implicit function theorem). From the equation
C(σ, ep(σ)) = (1− p)/pP (σ, ep(σ)), we deduce that

d

dσ
C(σ, ep(σ)) = ∂σC(σ, ep(σ)) + ∂KC(σ, ep(σ))

d

dσ
ep(σ) ,

d

dσ
P (σ, ep(σ)) = ∂σP (σ, ep(σ)) + ∂KP (σ, ep(σ))

d

dσ
ep(σ) ,

and thus

1− 2p

p
V +

d

dσ
ep(σ)

(
1− p
p

∂KP (σ, ep(σ))− ∂KC(σ, ep(σ))

)
= 0 .

Elementary option pricing principles show that V > 0, i.e., the call and put prices both increase with higher volatility, as
well as ∂KC 6 0 and ∂KP > 0. Therefore, we deduce that d

dσ ep(σ) 6 0. �

In particular for p = 1/2, the p-expectile corresponds to the strike K at which call and put have equal prices, which by
the call-put parity principle (with zero discounting) implies that K = E[Y ], thus giving an alternative derivation of the
equivalence between 1/2-expectile and mean.
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B PROPERTIES OF CONVEX LOSSES AND POTENTIALS

Before we prove Lemma 4, we write the following technical lemma.

Lemma 3 (Risk Measures ρψ Are Additive) Let ψ : R → R be a strongly convex, differentiable function, ν be a distri-
bution over R and c ∈ R. Then ρψ(ν + c) = ρψ(ν) + c.

Proof For the sake of simplicity, we assume ν admits a density p (with respect to the Lebesgue measure) and that ψ and
p are regular enough to allow for differentiation under the following integral. Then the risk measure associated with Lψ
reads ρψ(ν) = argminξ∈R

∫
ψ (y − ξ) p(y)dy and the first order condition gives

∫
ψ′(y − ρψ(ν))p(y)dy = 0. Similarly,

for any c ∈ R, we have
∫
ψ′(y − ρψ(ν + c))p(y − c)dy = 0 since the density of ν + c is p(· − c). We now deduce from a

simple change of variable z = y − c that
∫
ψ′(z + c − ρψ(ν + c))p(z)dz = 0, which shows that ρψ(ν + c) − c is also a

minimizer of ξ 7→
∫
ψ (y − ξ) p(y)dy. By uniqueness (ψ is strongly convex), we deduce that ρψ(ν + c) = ρψ(ν) + c. �

Noise Additivity for Losses Derived From Potentials

Lemma 4 Assume Lψ is adapted to the linear bandit (ϕ, θ∗) and ψ is strongly convex and differentiable. Then there exists
a stochastic process η such that the bandit is represented at time t by Yt ∼ 〈θ∗, Xt〉+ ηt and ρψ(η|Ft) = 0.

Proof Define the process η at time t by ηt = Yt − 〈θ∗, Xt〉. To compute ρψ(ν|Ft), note that Xt is measurable with
respect to Ft, therefore by Lemma 3 and the properties of conditional expectation, we have that ρψ(ηt|Ft) = ρψ (Yt|Ft)−
〈θ∗, Xt〉 = ρψ (ϕ (〈θ∗, Xt〉) |Ft)− 〈θ∗, Xt〉 = 0 by definition of Lψ being adapted to the bandit (ϕ, θ∗).

�

C PROOF OF LEMMA 1 AND PROPOSITION 1

Lemma 1 (Supermartingale Control) Under Assumptions 1-2, there exists σ > 0 such that for any t ∈ N and λ ∈ Rd,
the following holds:

E
[
exp

(
〈λ,Xt〉∂1L∗t −

σ2

2
〈λ,Xt〉2∂2L∗t

)∣∣∣∣Ft] 6 1 .

Proof Assumption 1 implies that ∂2L∗t > m, therefore it is sufficient to show that there exists σ > 0 such that

E
[
exp

(
〈λ,Xt〉∂1L∗t −

mσ2

2
〈λ,Xt〉2

)∣∣∣∣Ft] 6 1 .

Since Xt is Ft-measurable, this is equivalent to

E
[
exp

(
〈λ,Xt〉∂1L∗t

∣∣Ft]) 6 exp

(
mσ2

2
〈λ,Xt〉2

)
,

which follows from the sub-Gaussian property of the process ∂1L∗ (Assumption 2).

Proposition 1 (Method of Mixtures with Convex Loss) Let β > 0. Under Assumptions 1-2, with probability at least
1− δ, for all t ∈ N, it holds that

‖St‖2Hβt (θ∗)−1 6 σ
2

(
2 log

1

δ
+ log

detHβ
t (θ∗)

detβId

)
.

Proof The proof follows the method of mixture techniques, popularized in bandits by Abbasi-Yadkori et al. (2011).
For λ ∈ Rd, we define the process Mλ

t = exp
(
λ>St − σ2

2 ‖λ‖
2
H0
t (θ∗)

)
. We recall the expression of the Hessian

H0
t (θ) =

t−1∑
s=1

∂2L (Ys, 〈θ,Xs〉)XsX
>
s and that in particular ‖λ‖2

H0
t (θ∗)

=
t−1∑
s=1

∂2L (Ys, 〈θ,Xs〉)
(
λ>Xs

)2
. This process
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is nonnegative and defines as supermartingale since

E
[
Mλ
t+1

∣∣Ft] = E
[
exp

(
λ>St+1 −

σ2

2
‖λ‖2H0

t+1(θ∗)

)∣∣∣∣Ft]
= E

[
exp

(
λ>St −

σ2

2
‖λ‖2H0

t (θ∗) + ∂L (Yt, 〈θ∗, Xt〉)λ>Xt −
σ2

2
∂2L (Yt, 〈θ∗, Xt〉)

(
λ>Xt

)2)∣∣∣∣Ft]
= exp

(
λ>St −

σ2

2
‖λ‖2H0

t (θ∗)

)
E
[
exp

(
∂L (Yt, 〈θ∗, Xt〉)λ>Xt −

σ2

2
∂2L (Yt, 〈θ∗, Xt〉)

(
λ>Xt

)2)∣∣∣∣Ft]
6 exp

(
λ>St −

σ2

2
‖λ‖2H0

t (θ∗)

)
(Lemma 1)

= Mλ
t .

Now we construct a new supermartingale by mixing all the Mλ. More formally, let Λ a Rd-valued random variable

independent of the rest and define Mt = E
[
MΛ
t

∣∣F∞] where F∞ = σ

( ⋃
t∈N
Ft
)

. If Λ has density p with respect to the

Lebesgue measure, this means that Mt =
∫
RdM

λ
t p(λ)dλ. For the choice Λ ∼ N (0, 1

βσ2 Id) with β > 0, we have, by
completing the square in the exponential:

Mt =
(βσ2)d/2

(2π)d/2

∫
Rd

exp

(
−λ>St +

σ2

2

(
λ>
(
H0
t (θ∗) + βId

)
λ
))

dλ

=
(βσ2)d/2

(2π)d/2
exp

(
σ2

2
λ̄>Hβ

t (θ∗)λ̄

)∫
Rd

exp

(
−σ

2

2

(
λ− λ̄

)>
Hβ
t (θ∗)

(
λ− λ̄

))
dλ

=

(
βd

detHβ
t (θ∗)

) 1
2

exp

(
σ2

2
λ̄>Hβ

t (θ∗)λ̄

)
,

where λ̄ = 1
σ2H

β
t (θ∗)−1St and Hβ

t (θ) = H0
t (θ) + βId is the regularized Hessian, which is positive definite and hence

invertible. This expression further simplifies to Mt =
(

det βId
detHβt (θ∗)

) 1
2

exp
(

1
2σ2 ‖St‖2Hβt (θ∗)−1

)
.

From there, the argument is standard: Mλ is a nonnegative supermartingale, and therefore the pointwise limit Mλ
∞ =

limt→+∞Mλ
t exists almost surely (Doob’s supermartingale convergence theorem, Ch. 11 in (Williams, 1991)). Therefore

for any F-stopping time τ , Mλ
τ is well-defined, and thus so is and Mτ . By Fatou’s lemma and Doob’s stopping theorem,

we have that E[Mτ ] = E[lim inft→+∞ E[Mt∧τ | F∞]] 6 lim inft→+∞ E[E[Mt∧τ | F∞]] 6 1. Finally, the particular
choice of τ = inf

{
t ∈ N, ‖St‖2Hβt (θ∗)−1

> σ2
(

2 log 1
δ + log det βId

detHβt (θ∗)

)}
and a straightforward application of Markov’s

inequality reveals that

P (τ <∞) = P
(
∃t ∈ N, Mτ >

1

δ

)
6 E[Mτ ]δ 6 δ ,

which is exactly the expected result. �

D ASSUMPTION 1 =⇒ LEMMA 2

First, we recall the two assumptions of interest.

Assumption 1 (Bounded Loss Curvature) There exists m and M such that

∀y, ξ ∈ R, m 6 ∂2L(y, ξ) 6M .

We call the parameter κ = M
m the conditioning of L.

Lemma 2 (Transportation of Local Metrics) Under Assumption 1, for α>0, there exists κ>0, β>0 such that

H̄α
t (θ∗, θ̄t) <

1

κ
Hβ
t (θ∗) and H̄α

t (θ∗, θ̄t) <
1

κ
Hβ
t (θ̄t) .
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Now simple calculations show that:

H̄α
t (θ∗, θ̄t) =

t−1∑
s=1

∫ 1

0

∂2L(Ys, 〈uθ∗ + (1− u)θ̄t, Xs〉)duXsX
>
s + αId

=

t−1∑
s=1

∫ 1

0

∂2L(Ys, 〈θ∗, Xs〉)
∂2L(Ys, 〈uθ∗ + (1− u)θ̄t, Xs〉)

∂2L(Ys, 〈θ∗, Xs〉)
duXsX

>
s + αId

<
m

M

t−1∑
s=1

∂2L(Ys, 〈θ∗, Xs〉)XsX
>
s + αId

=
1

κ

(
t−1∑
s=1

∂2L(Ys, 〈θ∗, Xs〉)XsX
>
s + καId

)

=
1

κ
Hκα
t (θ∗) ,

which is the desired result if β = κα. The other inequality with H̄β
t (θ̄t) is derived similarly.

E PROOF OF THEOREM 1

In this section, we prove the main regret theorem for LinUCB with convex risk, which we restate below.

Theorem 1 (Regret upper bound for LinUCB-CR - 1) Let δ ∈ (0, 1), α >max(1, L2) and define for t ∈ N the explo-
ration bonus

γt : x ∈ Xt 7→ cδt‖x‖Hκαt (θ̄t)−1 ,

cδt = 2κ

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
and the projection operator

Π: θ̂ ∈ Rd 7→ argmin
θ∈Θ

‖Fαt (θ)− Fαt (θ̂)‖Hκαt (θ)−1 .

Under Assumptions 1-2-3-4, with probability at least 1− δ, the regret of Algorithm 1 is bounded by

RT 6 2cδT max

(
1√
m
,
L√
κα

)√
2Td log

(
1+

mTL2

dκα

)
.

In particular, we haveRT = O
(
κσd√
m

√
T log TL2

d

)
.

Proof We will prove the regret bound in two steps. First, we justify the choice of exploration sequence (γt)t∈N, which
naturally derives from the optimistic principle and the analysis of local metrics. Then, we use a somewhat crude bound on
the Hessian to simplify the analysis and reduce it to the so-called elliptic potential lemma.

Indeed, as established in Section 3.2, the cumulative regret up to time T , denoted byRT , is upper bounded with probability
at least 1− δ by 2

∑T
t=1 γt(Xt) provided that P

(
∀t 6 T, ∆(Xt, θ̄t) 6 γt(Xt)

)
> 1− δ, where

∆(Xt, θ) = |〈θ∗ − θ,Xt〉| 6 ‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄t)‖Xt‖H̄αt (θ∗,θ̄t)−1 .

Tuning of the Exploration Bonus Sequence The transportation of local metrics (Lemma 2, implied by the curvature
bound of Assumption 1) reveals that

‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄t) 6 ‖F
α
t (θ∗)− Fαt (θ̂t)‖H̄αt (θ∗,θ̄t)−1 + ‖Fαt (θ̄t)− Fαt (θ̂)‖H̄αt (θ∗,θ̄t)−1

6
√
κ
(
‖Fαt (θ∗)− Fαt (θ̂t)‖Hβt (θ∗)−1 + ‖Fαt (θ̄t)− Fαt (θ̂)‖Hβt (θ̄t)−1

)
.
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Thanks to the supermartingale control of Lemma 1, we deduce from Corollary 1 that with probability at least 1 − δ, the
following inequalities hold for all t 6 T :

‖Fαt (θ∗)− Fαt (θ̂t)‖Hβt (θ∗)−1 6 σ

√
2 log

1

δ
+ log

detHβ
t (θ∗)

detβId
+ α‖θ∗‖Hβt (θ∗)−1 ,

‖Fαt (θ̄t)− Fαt (θ̂t)‖Hβt (θ̄t)−1 6 σ

√
2 log

1

δ
+ log

detHβ
t (θ̄t)

detβId
+ α‖θ̄t‖Hβt (θ̄t)−1 .

The prior bound on parameters (Assumption 3) yields ‖θ‖Hβt (θ)−1 6 S√
β

for θ ∈ {θ∗, θ̄t}. Furthermore, the curvature

bound (Assumption 1) implies that Hβ
t (θ) 4 MV

β/M
t , and therefore detHβ

t (θ) 6 Md detV
β/M
t for θ ∈ {θ∗, θ̄t}.

Combining this together and substituting the expression of β = κα, where κ = M
m is the conditioning of the convex loss

L, we obtain:

‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄t) 6 2
√
κ

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
.

By the same arguments, it holds that H̄α
t (θ∗, θ̄t)

−1 4 κHκα
t (θ̄t)

−1 and therefore ‖Xt‖H̄αt (θ∗,θ̄t)−1 6
√
κ‖Xt‖Hκαt (θ̄t)−1 .

This shows that

γt : x ∈ Xt 7→ 2κ

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
︸ ︷︷ ︸

=: cδt

‖x‖Hκαt (θ̄t)−1

is a valid choice of exploration sequence.

Bounding the Regret Going back to the cumulative regret RT , we notice that (cδt )t=1,...,T is a positive, nondecreasing
sequence, therefore we have with probability at least 1− δ that

RT 6 2

T∑
t=1

γt(Xt) 6 2cδT

T∑
t=1

‖Xt‖Hκαt (θ̄t)−1 .

A priori, the direct analysis of the right-hand side is tedious due to the dependency on θ̄t in the local metric. However,
we notice that the curvature bound (Assumption 1) also implies the weaker control Hκα

t (θ̄t)
−1 4 1

m (V
κα
m
t )−1, which

translates to ‖Xt‖Hκαt (θ̄t)−1 6 1√
m
‖Xt‖

(V
κα
m
t )−1

. This bound is less informative as it looses the local information carried

by θ̄t, but still sufficient to obtain sublinear regret growth. We recall the following result, which is a direct consequence of
the deterministic elliptic potential lemma (Lemma 11, Abbasi-Yadkori et al. (2011)) and the Cauchy-Schwarz inequality.

Lemma 8 (Deterministic elliptic potential) Let (xt)t∈N denote an arbitrary sequence of vectors in Bd‖·‖(0, L), ε > 0 and

vt =
∑t−1
s=1 xsx

>
s + εId ∈ Sd(R) for t ∈ N. Then

t∑
s=1

‖xs‖v−1
s
6 max(1,

L√
ε

)

√
2td log

(
1+

tL2

dε

)
.

Note that this result holds in our case (with ε = κα
m ) thanks to the prior bound on actions (Assumption 4).

Conclusion With high probability, the regret of LinUCB with convex risk is bounded by

RT 6 2

T∑
t=1

γt(Xt) 6 2cδT max

(
1√
m
,
L√
κα

)√
2Td log

(
1+

m¸TL2

dκα

)
.
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Going back to the expression of cδT , it follows from simple algebra (see e.g., Lattimore and Szepesvári (2020, proof of

Lemma 19.4)) that detV
α
m
t 6

(
α
m + TL2

d

)d
, and thus cδT = O

(
κσ
√
d log TL2

d

)
when T → +∞. A simpler asymptotic

bound on the regret is therefore

RT = O
(
κσd√
m

√
T log

TL2

d

)
.

�

Impact of using the local Hessian metric Ht versus the global metric Vt To highlight the benefit of using local
metrics, we detail here the regret bound obtained using the above proof with the natural global metric induced by V α/m

(independent of the local point θ). Instantiating the positive definite matrix P to V α/mt instead of H̄α(θ∗, θ̄t) in the bound
on the prediction error of Section 3.2 yields

∆(x, θ̄t) 6 ‖θ∗ − θ̄t‖V α/mt
‖x‖

(V
α/m
t )−1

= ‖Fαt (θ∗)− Fαt (θ̄t)‖H̄αt (θ∗,θ̄t)−1V
α/m
t H̄αt (θ∗,θ̄t)−1‖x‖(V α/mt )−1

6
1√
m
‖Fαt (θ∗)− Fαt (θ̄t)‖H̄αt (θ∗,θ̄t)−1‖x‖

(V
α/m
t )−1

6 2

√
κ

m

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
‖x‖

(V
α/m
t )−1 .

Similarly to the above proof, this shows that

γglobal
t : x ∈ Xt 7→ 2

√
κ

m

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)
‖x‖

(V
α/m
t )−1

is also a valid choice of exploration sequence. Finally, a straightforward application of Lemma 8 shows the regret of the
corresponding LinUCB-CR strategy is upper bounded with probability at least 1− δ by

4

√
κ

m

(
σ

√
2 log

1

δ
+ d log

m

α
+ log detV

α
m
t +

√
α

κ
S

)√
2Td log

(
1 +

mTL2

dα

)
.

Compared to the local analysis, this improves the scaling of the regret in κ by a factor
√
κ. However, it forces the use of

the global metric ‖·‖
(V

α/m
t )−1 instead of the local one ‖·‖Hκαt (θ̄t)−1 , thus ignoring the precise shape of the loss function L.

Looking at our proof, we see that κ andm fulfil two different roles.
√
κ is the price to pay in order to transport local metrics

Hα
t (θ) between θ = θ∗ (true parameter) and θ = θ̄t (estimate); it is paid once to bound the prediction error ∆(Xt, θ) using

the concentration bound of Proposition 1, and it is also paid a second time if local metrics are used in the exploration bonus
when moving from H̄t(θ

∗, θ̄t)
−1 to H̄t(θ̄t)

−1 (the former cannot be used directly in the algorithm as it depends on the a
priori unknown paramter θ∗). On the other hand, m−1/2 is the price paid in both the local and global analyses to move
from Ht(θ̄t)

−1 to V −1
t in order to apply the elliptic potential lemma, which is in general incompatible with local metrics.

A similar phenomenon is observed in the analysis of Faury et al. (2020): the regret of their algorithm Logistic-UCB-1
(global) scales as

√
κ while that of Logistic-UCB-2 (local) scales as κ. In addition to local metrics, Logistic-UCB-2 also

makes use of an intricate projection step that allows for a new elliptic potential lemma compatible with local metrics, thus
removing the factor m−1 (at least from the first order contribution to the regret in T ). We conjecture that a similar analysis
could be unlocked in the present risk-aware setting and leave it open for future investigation.

We reiterate that in the logistic setting, κ is derived from self-concordance properties of the link function and is in particular
independent of the curvature lower bound represented by m (it is in fact equal to 1 + 2S where S is an upper bound on the
parameter space Θ, as in Assumption 3). By analogy with logistic bandits, we argue that the exact scaling in κ is likely not
too harmful for the practical performances of Algorithm 1 and we therefore recommend the use of local metrics instead.

F PROOF OF THEOREM 2

In this section, we prove the regret bound of Theorem 2 in the stochastic i.i.d. actions setting of Assumption 5. We first
state the full regret bound with an explicit higher order term.
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Theorem 4 (Regret of LinUCB-CR with stochastic actions) Let δ ∈ (0, 1) and t0 = d 8
ρ2X

log 2
δ −

2β
mρXL2 e. Under

Assumptions 1-2-3-4-5, for T > t0, with probability at least 1− 2δ, the regret of Algorithm 1 is bounded by

RT 6 4cδT

√
2T

mρX

(
1 +

C√
T

)
,

where

C =
1

L2

√
κα− 4mL

2

ρX
log 2

δ

2mρX
− 1

2L

√
t0 − 1 +

2(κα− 4mL2

ρX
log 2

δ )

mρXL2
+

1

2
max

(
1, L

√
m

κα

)√
ρXdt0 log

(
1 +

mL2t0
dκα

)
.

In particular, we haveRT = O
(
κσ
√

dT
mρX

log TL2

d

)
.

The main difference with the proof of Theorem 1 is the use of an alternative stochastic elliptic potential lemma, mirroring
the classical result of Lemma 8, that exploits the lower bound on the covariance of actions (Assumption 5). This proof
technique is adapted from Kim et al. (2022), although we use a different, sharper concentration result (Proposition 4 below).

Lemma 5 (Stochastic elliptic potential lemma) Let β > 0, (θt)t∈N a sequence of vectors in Θ ⊆ Rd and (Xt)t∈N a

sequence of random variables in Rd. Recall thatHβ
t (θt) =

t−1∑
s=1

∂2L(Ys, 〈Xs, θt〉)XsX
>
s +βId and V βt =

t−1∑
s=1

XsX
>
s +βId

for t ∈ N. Under Assumptions 4 and 5, let δ ∈ (0, 1) and t0 = d 8
ρ2X

log 2
δ −

2β
mρXL2 e. For T > t0, with probability at least

1− δ, it holds that
T∑
t=1

‖Xt‖Hβt (θt)−1 6 2

√
2T

mρX

(
1 +

C√
T

)
,

where

C =
1

L2

√
β − 4mL

2

ρX
log 2

δ

2mρX
− 1

2L

√
t0 − 1 +

2(β − 4mL2

ρX
log 2

δ )

mρXL2
+

√
ρX

2
max

(
1, L

√
m

β

)√
t0d log

(
1 +

mL2t0
dβ

)
.

The intuition about this result is the following: if the matrix norms induced by Hβ
t (θt) grow at least linearly in t, then the

left-hand side should scale like
∑T
t=1

1√
t

= O(
√
T ), without the extra O(

√
log T ) factor present in Lemma 8. The lower

curvature bound of Assumption 1 shows that it is enough to look at the norms induced by V β/mt , at the cost of an extra
m−1/2 factor (in particular Lemma 5 holds for any sequence (θt)t∈N, not just the sequence of estimators used in the bandit
algorithms). Because of the stochastic sampling of actions (Assumption 5), it is likely that the sequence (Xt)t∈N spans all
directions of Rd quite fast; in other words, each new XtX

>
t will contribute at least a fixed amount to the sum that defines

V
β/m
t , leading to the linear growth of the induced norms.

We formalize this intuition in Lemma 6 below, which relies on the following concentration bound in Hilbert spaces.

Proposition 4 (Time-uniform line crossing inequality for martingales with bounded increments in a Hilbert space)
Let (H, 〈·, ·〉) a Hilbert space and (Mt)∈N aH-valued martingale (with respect to a filtration (Ft)t∈N) such that M0 = 0.
Assume that there exists a sequence of positive scalars (ct)t∈N such that ‖Mt+1 −Mt‖ 6 ct for all t ∈ N, where ‖·‖
denotes the norm induced by the scalar product. Then for any η > 0 and δ ∈ (0, 1), it holds that

P

(
∃t ∈ N, ‖Mt‖ >

1

2η
log

2

δ
+ η

t∑
s=1

c2s

)
6 δ .

Interestingly, this concentration bound does not depend on the dimension of H, and in particular remains valid even if
the ambient space is infinite-dimensional. Moreover, this bound controls the probability that any deviation occurs in
the sequence (‖Mt‖)t∈N, which is much stronger than controlling the deviation probability individually at each time
t ∈ N. The proof relies on martingale arguments rather than a crude union bound over a finite set of individual deviation
probabilities, which yields anytime (t ∈ N rather than t 6 T for some known horizon T ) and typically tighter bounds.
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Proof This result is directly taken from Howard et al. (2020). More precisely, Howard et al. (2020, Theorem 1) shows
a variety of equivalent time-uniform line crossing inequalities for martingales, and Howard et al. (2020, Corollary 10)
applies this generic result to concentration of norm-like operators in Banach spaces. In order to get the most convenient
form for our problem, we derive Proposition 4 from the generic theorem rather than the specific corollary.

The proofs of Pinelis (1992, Theorem 3) and Pinelis (1994, Theorem 3) reveals that for any λ ∈ R, the exponential process

Lt = cosh (λ‖Mt‖) exp(−λ
2

2

t∑
s=1

cs) is a nonnegativeF-supermartingale. Therefore, Howard et al. (2020, Theorem 1, (a))

shows that for any a, b > 0,
P (∃t ∈ N, St > a+ bVt) 6 2e−aD(b) ,

where St = ‖Mt‖, Vt =
t∑

s=1
c2s and D(b) = 2b. Equating the right-hand side to δ and letting b = η concludes the proof,

with a = 1
2η log 2

δ . �

In the next lemma, we show that the smallest eigenvalue of Hβ
t (θt), which provides a lower bound to the corresponding

induced norm, does indeed grow linearly with t on an event of high probability. For a given symmetric matrix A ∈ Sd(R),
we denote by λmin(A) its smallest eigenvalue.

Lemma 6 (Smallest eigenvalue of Hβ
t (θt) grows linearly with t with high probability) Under Assumptions 1-4-5, it

holds that

P
(
∃t ∈ N, λmin

(
Hβ
t+1(θt+1)

)
6 β − 4mL2

ρX
log

2

δ
+
mρXL

2

2
t

)
6 δ .

Proof First notice that Assumption 1 implies

λmin

(
Hβ
t+1(θt+1)

)
> mλmin

(
V 0
t+1

)
+ β .

The idea is to relate λmin

(
V 0
t+1

)
to the norm of some martingale in order to apply Proposition 4. In the stochastic actions

setting (Assumption 5), a natural martingale is defined the following sum of random matrices:

Mt =

t∑
s=1

XsX
>
s − E

[
XsX

>
s |Fs−1

]
= V 0

t+1 − V̄ 0
t+1 ,

where we defined V̄ 0
t+1 =

t∑
s=1

E
[
XsX

>
s |Fs−1

]
. We recall that a consequence of Weyl’s inequality on eigenvalues is that

for any A,B ∈ Sd(R), the following inequality holds:

λmin(A) + λmin(B) 6 λmin(A+B) .

Applying this to A = Mt and B = V̄ 0
t+1 yields λmin (Mt) + λmin

(
V̄ 0
t+1

)
6 λmin

(
V 0
t+1

)
. Now, notice that λmin(A) =

−λmax(A) > −‖A‖ where ‖·‖ is the matrix norm induced by the scalar product 〈A,B〉 = Tr
(
A>B

)
(also known as the

Frobenius norm). Moreover, the conditional covariance lower bound of Assumption 5 and another application of Weyl’s
inequality imply that

λmin

(
V̄ 0
t+1

)
>

t∑
s=1

λmin

(
E
[
XsX

>
s |Fs−1

])
> ρXL

2t .

Combining these together, we obtain that for arbitrary a ∈ R and b > 0, the following inequality holds:

P
(
∃t ∈ N, λmin

(
Hβ
t+1(θt+1)

)
6 a+ bt

)
6 P

(
∃t ∈ N, ‖Mt‖ >

β − a
m

+

(
ρXL

2 − b

m

)
t

)
. (1)

Notice that ‖Mt+1 −Mt‖ = ‖XtX
>
t − E

[
XtX

>
t |Ft−1

]
‖ 6 2L2 (Assumption 4). Now if we choose b = 1

2mρXL
2 and

a = β − 4mL2

ρX
log 2

δ , the bound from Proposition 4 holds with η = ρX
8L2 and δ ∈ (0, 1) and ct = 2L2, thus proving the

result.

�
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We are now ready to prove the stochastic elliptic potential lemma.

Proof of Lemma 5 We fix t0 ∈ N arbitrarily for now and let T > t0. We start by splitting the sum in two and by applying
the deterministic elliptic potential lemma (Lemma 8) up to time t0:

T∑
t=1

‖Xt‖Hβt (θt)−1 =

t0∑
t=1

‖Xt‖Hβt (θt)−1 +

T∑
t=t0+1

‖Xt‖Hβt (θt)−1

6
1√
m

t0∑
t=1

‖Xt‖(
V
β/m
t

)−1 +

T∑
t=t0+1

‖Xt‖Hβt (θt)−1 (Assumption 1)

6

(
1√
m
,
L√
β

)√
2t0d log

(
1 +

mL2t0
dβ

)
+

T−1∑
t=t0

‖Xt+1‖Hβt+1(θt+1)−1 (Assumption 4) .

Now let Eδt =
{
∀t′ > t, λmin

(
Hβ
t+1(θt+1)

)
> β − 4mL2

ρX
log 2

δ + mρXL
2

2 t
}

. It is clear that Eδt0 ⊆ E
δ
0 , and thus by

Lemma 6, P
(
Eδt0
)
> 1− δ. The choice t0 = d 8

ρ2X
log 2

δ −
2β

mρXL2 e implies that the right-hand side in the definition of Et0
is positive. On this event, we bound the second sum as follows:

T−1∑
t=t0

‖Xt+1‖Hβt+1(θt+1)−1 6 L
T−1∑
t=t0

1√
a+ bt

6
2L

b

(√
a+ b(T − 1)−

√
a+ b(t0 − 1)

)
6

2L

b

(√
bT +

√
a−

√
a+ b(t0 − 1)

)
,

where we use the shorthand a = β − 4mL2

ρX
log 2

δ and b = 1
2mρXL

2 (the penultimate line comes from sum-integral
comparison while the last one follows from the inequality

√
x+ y 6

√
x +
√
y). After collecting the dominating term in√

T , the two sums give the following upper bound:

T∑
t=1

‖Xt‖Hβt (θt)−1 6 2L

√
T

b

(
1 +

C√
T

)
with

C =

√
a

b
−
√
a+ b(t0 − 1)

b
+

√
b

2L

(
1√
m
,
L√
β

)√
2t0d log

(
1 +

mL2t0
dβ

)
.

Substituting a and b with their expressions yields the result.

�

We finally prove the regret bound in the stochastic i.i.d. actions setting.

Proof of Theorem 4 We follow the exact same steps as with Theorem 1 in order to bound the regret by

RT 6 2cδT

T∑
t=1

‖Xt‖−1
Hκαt (θ̄t)

,

with probability at least 1− δ. The sum on the left-hand side is controlled by Lemma 5 also with probability at least 1− δ.
A simple union argument over both events concludes the proof, resulting in a regret upper bound with probability at least
1− 2δ.

�

We conclude this section with two remarks.

Remark 9 (Dependency of ρX on d) We recall that in the stochastic actions setting (Assumption 5), ρX is a lower bound
on the conditional covariance of actions, which can be equivalently formulated as ρXL2 6 λmin

(
E
[
XtX

>
t |Ft−1

])
for
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all t ∈ N. Following the argument of Kim et al. (2021) in the case of unconditional covariance control, we obtain the
following bound on ρX :

dρXL
2 6 dλmin

(
E
[
XtX

>
t |Ft−1

])
6
∑
λ∈St

λ = Tr
(
E
[
XtX

>
t |Ft−1

])
= E

[
Tr
(
XtX

>
t

)
|Ft−1

]
6 L2 ,

where St denotes the spectrum of the symmetric matrix E
[
XtX

>
t |Ft−1

]
and Tr the trace operator. Therefore ρX 6 d−1.

Moreover, Bastani et al. (2021); Kim et al. (2021, 2022) identified two families of examples where ρX = O(d−1) in the
unconditional case:

• If the distribution of X ∈ Xt (marginal distribution of a each action) admits a density p with respect to the
Lebesgue measure supported in Bd‖·‖2(0, L) and such that p(x) > pmin > 0 for all x ∈ Bd‖·‖2(0, L), then

ρX = pmin

(d+2) vol
(
Bd‖·‖2(0, 1)

)
is a suitable choice (Kim et al., 2022, Lemma C.1). In general, the volume of the

Euclidean unit ball in Rd is vol
(
Bd‖·‖2(0, 1)

)
= πd/2

Γ( d2 +1)
∼ 1√

dπ

(
2πe
d

) d
2 , which goes to 0 when d→ +∞. In certain

cases though, such as the uniform and truncated Gaussian distributions, pmin is proportional to vol
(
Bd‖·‖2(0, 1)

)
,

thus leading to ρX = O(d−1).

• If the covariance matrix E
[
XX>

]
exhibits a certain structure, for instance AR(1), tridiagonal or block diagonal,

then ρX = O(d−1), regardless of the marginal distributions.

Remark 10 (Previous results about the growth of the smallest eigenvalue) Kim et al. (2021, 2022) prove similar re-
sults on the linear growth of the smallest eigenvalues of a different sequence of Hessian matrices. More precisely, they
consider a fixed number K of arms, i.e., action sets of the form Xt = {Xk,t, k ∈ [K]} and Hessian matrices constructed
from all actions V [K]

t+1 =
∑
k∈[K]

∑t
s=1Xk,sX

>
k,s, instead of using only the actions played at previous time steps. This is

made possible in their analyses by resorting to a doubly robust imputation of unobserved rewards associated to unplayed
actions, which is significantly different from our approach. One theoretical benefit of their method is that the sequence
(V

[K]
t+1 )t∈N can be more easily transformed into a F-martingale using only the unconditional lower bound on the covari-

ance, as opposed to the conditional one of Assumption 5.

Of note, Li et al. (2017) also questions the feasibility of a linear lower bound on the smallest eigenvalue of V 0
t+1 but con-

cludes that it requires more stringent assumption as Lai and Wei (1982, Example 1) seemingly provides a counterexample
of sublinear growth in the context of a regression problem. However, this counterexample studies autoregressive actions
instead of i.i.d. action sets, which leads to E

[
XtX

>
t |Ft−1

]
→ 0 when t→ +∞. Therefore, this is different from what we

consider in Assumption 5 and does not invalidate our analysis.

G PROOFS OF OGD CONCENTRATION

We reformulate below Proposition 2 in full details and provide a proof of the OGD regret.

Proposition 5 (OGD Regret, Sub-Gaussian Gradients) Let C a convex subset of Rd and Π the projection operator onto
C. For j = 1, . . . , N , let `j : C −→ R+ a twice differentiable convex function and a,A > 0 such that aId 4 ∇2`j(z) 4
AId for all z ∈ C. Define the OGD update at step j by zj = Π(zj−1−εj−1∇`j(zj−1)) and z̄n = arg minz∈C

∑n
j=1 `j(z).

Assume that there exists z∗ ∈ C such that ∇`j(z∗) = gj + α
nz
∗ with α > 0 and g a centered, Rd-valued σ-sub-Gaussian

process, and also that C is bounded, i.e diam(C) = supz,z′∈C‖z − z′‖ <∞. Then with probability at least 1−δ, the OGD
regret with step size εj= 3

aj is bounded for all n 6 N by

n∑
j=1

`j(zj)− `j(z̄n) 6
9

2a

(
2dσ2 log

2dN

δ
+A2diam(C)2 +

α2

n2
‖z∗‖2

)
(1 + log n) .

This can be written more concisely as
∑N
j=1 `j(zj) − `j(z̄N ) = O(dσ

2

a log2N) when N → +∞. In addition, if g is
uniformly bounded by a constant G > 0, the regret with step size εs= 1

aj can be reduced to the almost sure bound:

n∑
j=1

`j(zj)− `j(z̄n) 6
G2

2a
(1 + log n) .
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Proof Let j 6 n. The uniform lower bound on the Hessian of `j makes it a-strongly convex, which implies

`j(zj)− `j(z̄) 6 〈∇`j(zj), zj − z̄n〉 −
a

2
‖z̄ − zj‖2.

By definition of the OGD scheme, the following holds:

‖zj+1 − z̄n‖2 = ‖Π (zj − εj∇`j(zj))− z̄n‖2

6 ‖zj − εj∇`j(zj)− z̄n‖2 (projection onto a convex set)

6 ‖zj − z̄n‖2 + ε2
j‖∇`j(zj)‖2 − 2εj〈∇`j(zj), zj − z̄n〉 ,

from which we deduce

〈∇`j(zj), zj − z̄n〉 6
‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

2εj
+
εj
2
‖∇`j(zj)‖2 .

Bounded Gradients
This case is covered by Theorem 3.3 in Hazan (2019). We reproduce the proof here for reference and as a first step toward
the more general setting of sub-Gaussian gradients.

Let G > 0 be such that ‖∇`j(zj)‖ 6 G for all j = 1, . . . , n. This allows to upper bound the above equation, leading to

〈∇`j(zj), zj − z̄n〉 6
‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

2εj
+
εj
2
G2.

The online regret of OGD is therefore

n∑
j=1

`j(zj)− `j(z̄n) 6
1

2

n∑
j=1

‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

εj
− a‖zj − z̄n‖2 +

G2

2

n∑
j=1

εj .

The first sum can be rewritten after a simple index shift and the convention 1/ε0 := 0:

1

2

n∑
j=1

‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

εj
− a‖zj − z̄n‖2 =

1

2

n∑
j=1

‖zj − z̄n‖2
(

1

εj
− 1

εj−1
− a
)
− 1

εn
‖zn+1 − z̄n‖2

6
1

2

n∑
j=1

‖zj − z̄n‖2
(

1

εj
− 1

εj−1
− a
)

= 0

for the choice εj = 1
aj . Consequently, the online regret can be simplified as

n∑
j=1

`j(zj)− `j(z̄n) 6
G2

2

n∑
j=1

εj

=
G2

2a

n∑
j=1

1

j

6
G2

2a
(1 + log n) .
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Sub-Gaussian Gradients

We do not assume here that ∇`j(zj) is uniformly bounded, but instead rely on the weaker assumption that ∇`j(z∗) is
sub-Gaussian. The strategy is to control the variation between ∇`j(zj) and ∇`j(z∗) on the one hand, and bound in high
probability∇`j(z∗) on the other hand.

Notice that∇`j(zj) = gj+
α
nz
∗+∇`j(zj)−∇`j(z∗) and that there exists z̄n ∈ [zj , z

∗] ⊂ C such that∇`j(zj)−∇`j(z∗) =
∇2`j(z̄n) (zj − z∗) thanks to the mean value theorem and the convexity of C. This yields

‖∇`j(φj)‖2 6 3‖gj‖2 +
3α2

n2
‖z∗‖2 + 3‖∇`j(zj)−∇`j(z∗)‖2

6 3‖gj‖2 +
3α2

n2
‖z∗‖2 + 3A2‖zj − z∗‖2 ,

since ∇`j is A-Lipschitz. Combining this with the above yields

〈∇`j(zj), zj − z̄n〉 6
3

2

‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

εj
+

3

2
εj‖gj‖2 +

3

2
εj
α2

n2
‖z∗‖2 +

3

2
εjA

2‖zj − z∗‖2

6
3

2

‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

εj
+

3

2
εj

(
‖gj‖2 +

α2

n2
‖z∗‖2

)
+

3

2
εjA

2diam(C)2 .

The online regret of OGD is therefore

n∑
j=1

`j(zj)− `j(z̄n) 6
3

2

n∑
j=1

‖zj − z̄n‖2 − ‖zj+1 − z̄n‖2

εj
− a

3
‖zj − z̄n‖2

+
3

2
A2diam(C)2

n∑
j=1

εj +
3

2

n∑
j=1

εj

(
‖gj‖2 +

α2

n2
‖z∗‖2

)
.

As in the bounded case, the choice εj = 3
aj makes the first sum vanish. Moreover, a simple union argument over the

Chernoff bound for the σ-sub-Gaussian random variables (gj)j=1,...,n reveals that

En =

{
∀j = 1, . . . , n, ‖gj‖ 6 σ

√
2d log

2dn

δ

}
holds with probability at least 1− δ for δ ∈ (0, 1). Therefore, the following holds with probability at least 1− δ:

n∑
j=1

εj‖gj‖2 6
n∑
j=1

εj‖gj‖2IEn 6 2dσ2 log
2dn

δ

n∑
j=1

εj .

Therefore, with probability at least 1− δ, we obtain the following online regret:
n∑
j=1

`j(zs)− `j(z̄n) 6
3

2

(
2dσ2 log

2dn

δ
+A2diam(C)2 +

α2

n2
‖z∗‖2

) n∑
j=1

εj

=
9

2a

(
2dσ2 log

2dn

δ
+A2diam(C)2 +

α2

n2
‖z∗‖2

) n∑
j=1

1

j

6
9

2a

(
2dσ2 log

2dn

δ
+A2diam(C)2 +

α2

n2
‖z∗‖2

)
(1 + log n) .

�
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H PROOFS OF THEOREM 3

In this section, we adapt the regret analysis of LinUCB to the LinUCB-OGD variant that relies on online gradient approx-
imation of the empirical risk minimizer.

Theorem 3 (Regret of LinUCB-OGD-CR) Let εh > 0 and h = d 2εh
ρXL2 + 8

ρ2X
log 2

δ e. Assume that ∂L(Yt, 〈θ∗, Xt〉)
is
√
mσ-sub-Gaussian for all t 6 T . Under Assumptions 1-2-3-4-5, there exists constants C,C ′ > 0 such that with

probability at least 1− (1 + T/h)δ the regret of Algorithm 2 with exploration bonus sequence

γOGD
t,T : x ∈ Xt 7→ (cδt + cOGD,δ

t,T )‖x‖Hκαt (θ̄OGD
bt−1
h
c
)−1 ,

cOGD,δ
t,T =

√(
L2+

α

mMt

)(2κC ′dh2σ2

ε2
h

log

(
2dT

hδ

)
log

(
t

h

))
,

and the OGD step sequence of Proposition 2 satisfies

RT = O

(
σ

√
κdT

mρX

(√
κ log

(
TL2

d

)
+ h log (dT )

))
.

Proof Let `j(θ) =
h∑
k=1

L(Y(j−1)h+k, 〈θ,X(j−1)h+k〉)+ α
2N ‖θ‖

2
2, whereN = dT−1

h e denotes the total number of episodes

of length h. For simplicity, we assume that θ̄t = θ̂t for all t 6 T , i.e., the empirical risk minimizer is always in the
stable set of the projection operator Π. We recall that

∑n
j=1∇`j(θ̄t) = 0 for n = t−1

h (i.e., after episode n, when θ̂OGD
n

is updated). In the general case, replacing θ̂t by θ̄t induces an extra correction factor in the inequalities below which is at
most polylogarithmic in T (a consequence of Corollary 1), and hence does not change the conclusion. Again, we point out
that, similarly to the generalized linear bandit setting (Filippi et al., 2010; Faury et al., 2020), θ̂t is often in the stable set of
Π in practice.

We use the notations of Proposion 2 and define:

zj = θ̂OGD
j ,

z̄n = θ̄t ,

z∗ = θ∗ .

We also denote by z̃n = θ̄OGD
n = 1

n

∑n
j=1 zj the average of the past n OGD updates.

Bound on ‖z̃n− z̄n‖2 Without loss of generality, we assume here that ∂L∗ is a
√
mσ sub-Gaussian process (this follows

in variety of settings from the discussion of Assumption 2 and Lemma 1; the conclusions are essentially unchanged when
assuming only Assumption 2, at the cost of slightly heavier notations).

We first note that ∇`j(θ∗) = gj(θ
∗) + α

N θ
∗, where gj(θ∗) =

∑h
k=1 ∂L∗(j−1)h+k and j ∈ [N ], is

√
hmσ-sub-Gaussian

(sum of h random variables, each of them being drawn from a
√
mσ-sub-Gaussian distribution). Setting the episode length

to h = d 2εh
ρXL2 + 8

ρ2X
log 2

δ emakes the one-step losses `j mεh-strongly convex with high probability. Indeed, let us define for

h′ ∈ N the function f(h′) = ρXL
2

2 h′ − 4L2

ρX
log 2

δ and the event Ej,h′ =

{
λmin

(
h∑
k=1

X(j−1)h′+kX
>
(j−1)h′+k

)
> f(h′)

}
.

First, notice that Ej,h ⊇
⋂
h′∈N
Ej,h′ and that

h∑
k=1

X(j−1)h′+kX
>
(j−1)h′+k has the same distribution as V 0

h′+1 by Assumption 5.

We deduce from Lemma 6 applied to V 0
h+1 (that is with β = 0 and m = 1), that

P (Ej,h) > P(
⋂
h′∈N
Ej,h′) = P

(
∀h′ ∈ N, λmin

(
V 0
h′+1

)
> −4L2

ρX
log

2

δ
+
ρXL

2

2
h′
)
> 1− δ .
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In particular for the value of h defined above, we have Ej,h ⊆
{
λmin

(
h∑
k=1

X(j−1)h′+kX
>
(j−1)h′+k

)
> εh

}
, which gives

the mεh-strong convexity of `j by the usual minoration ∂2L > m (Assumption 1). In the rest of this proof, we assume to
be on the event

⋂
j∈[N ]

Ej,h, the probability of which is at least 1−Nδ by a simple union argument.

Now, we apply the bound on the OGD regret of Proposition 5 with a = mεh, A = hML2, namely that the good event

∀n 6 N,
n−1∑
j=1

`j(zj)− `j(z̄n) 6
C ′dhσ2

εh
log

(
2dN

δ

)
log(n) ,

holds with probability at least 1− δ, for some constant C ′ > 0 (in which we hide the dependency on h,M,L, α and S to
avoid further cluttering). We assume to be on this event in the rest of the proof, which we combine to the previous events
with a union argument, leading to a probability ot at least 1− (N + 1)δ.

The crux of the argument is similar to the proof of Lemma 2 in (Ding et al., 2021) and exploits the strong convexity of the
losses `j to relate the online regret to a control on the distance ‖z̃n − z̄n‖. By Jensen’s inequality, we have

n∑
j=1

`j(z̃n)− `j(z̄n) 6
Cdhσ2

εh
log

(
2dN

δ

)
log(n) .

Strong convexity also implies the following inequality:

`j(z̃n)− `j(z̄n) > 〈∇`j(z̄n), z̃n − z̄n〉+
mεh

2
‖z̃n − z̄n‖22 .

Summing over j = 1, . . . , n and exploiting the fact that the sum of gradients vanishes at z̄n, we obtain after some simple
algebra:

‖z̃n − z̄n‖22 6
2Cdhσ2

mε2
hn

log

(
2dN

δ

)
log(n) .

Regret Analysis of LinUCB-OGD Mirroring the regret proof of LinUCB, we see that we need

∀t 6 T, ∆(Xt, θ̄
OGD
n ) 6 γt(Xt)

to hold with high probability, for a certain exploration sequence (γt)t∈N. This amount to controlling the following norm:

‖θ∗ − θ̄OGD
n ‖H̄αt (θ∗,θ̄OGD

n ) 6 ‖θ∗ − θ̄t‖H̄αt (θ̄t,θ̄OGD
n ) + ‖θ̄OGD

n − θ̄t‖H̄αt (θ̄t,θ̄OGD
n )

6 ‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄OGD
n ) +

√
M‖θ̄OGD

n − θ̄t‖
V
α
m
t

6 ‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄OGD
n ) +

√
M
(
L2t+

α

m

)
‖θ̄OGD
n − θ̄t‖2 .

The first term can be controlled by transportation of local metrics in the same way as in the proof of Theorem 1, i.e.,

‖θ∗ − θ̄t‖H̄αt (θ∗,θ̄OGD
n ) 6

√
κ
(
‖Fαt (θ∗)− Fαt (θ̂t)‖Hβt (θ∗)−1 + ‖Fαt (θ̄t)− Fαt (θ̂)‖Hβt (θ̄t)−1

)
,

and thus this term adds the same contribution to the design of the exploration bonus sequence and to the regret bound. For
the second term, we apply the previous bound on ‖z̃n − z̄n‖2 = ‖θ̄OGD

n − θ̄t‖2. Combining these two inequalities results
in the following control:

‖θ∗ − θ̄OGD
n ‖H̄αt (θ∗,θ̄OGD

n ) 6 cδt︸︷︷︸
same as in
the proof of
Theorem 1

+

√(
L2 +

α

mMt

)(2κCdh2σ2

ε2
h

log

(
2dT

hδ

)
log

(
t

h

))
︸ ︷︷ ︸

=: cOGD,δ
t,T = O(σL

√
κd log T)

.
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The rest of the proof is now identical to that of Theorem 4, i.e., we use the exploration bonus sequence

γOGD
t,T : x ∈ Xt 7→ (cδt + cOGD,δ

t,T )‖x‖Hκαt (θ̄OGD
bt−1
h
c
)−1 ,

and control
T∑
t=1
‖Xt‖Hκαt (θ̄OGD

bt−1
h
c
)−1 using an elliptical potential lemma (since we operate under Assumption 5 for the strong

convexity of the episodic losses `j , we use the strong regret guarantee provided by Lemma 5; note that the high probability
event on which this lemma applies is already included in the above events, for a total probability of at least 1− (N + 1)δ).

�

Remark 11 (The importance of strong convexity) The key argument behind the proof of Theorem 3 is that the aggre-

gated loss over an episode `n : θ ∈ Θ 7→
h∑
k=1

L(Y(n−1)h+k, 〈θ,X(n−1)h+k〉)+ α
2N ‖θ‖

2
2 is mεh strongly convex. With

simple convexity only, the online regret guarantee of the OGD approximation scales like O(
√
T ) instead of logarithmi-

cally. This would only guarantee ‖θ̄OGD
n − θ̄t‖2 = O(

√
t), resulting in linearO(T ) bandit regret after multiplying this term

with the contribution of the elliptic potential lemma. Moreover, although `n is always trivially at least α
N -strongly convex,

it is necessary to ensure non-vanishing strong convexity when T → +∞ (we recall that N = dT−1
h e). Indeed, substituting

εh with α
N in the regret bound above givesRT 6 O(ε−1

h ) = O(T ).

Scaling of episode length h As shown in the proof, non-vanishing strong convexity of `n can be deduced from a fixed
lower bound on the smallest eigenvalue of the Hessian of `n. By Lemma 6, this holds with high probability provided the
episode length h is high enough, which translates to h = d 2εh

ρXL2 + 8
ρ2X

log 2
δ e. Using the typical bound ρX = O(d−1), we

see that h scales like O(d2) in the action dimension. By comparison, the only similar OGD scheme for generalized linear
bandit scales like O(d3) (Ding et al., 2021, Lemma 2 and Remark 2), thus suffering to a greater extent from the curse of
dimensionality. Note the practical tradeoff on h faced by the agent running Algorithm 2: the higher h, the more likely it is
that the OGD estimator θ̄OGD well approximates the true empirical risk minimizer θ̄ (because of stronger convexity of the
episodic losses); however, it also means longer episodes and thus less frequent updates of θ̄OGD, i.e., less learning.

Note that the value of h is derived from a concentration bound that is uniform in h (Lemma 6). However, since h is kept
constant throughout the run of the algorithm, a similar, non-uniform result would actually be sufficient (we chose to use
Lemma 6 mainly for the sake of convenience, since we already assumed to be on the corresponding good event in order to
mirror the regret analysis of Theorem 4). It is actually possible to tighten the lower bound on h using a finer, non-uniform
concentration result, which we state below.

Lemma 7 (Tighter bound on the episode length h) Under Assumptions 4 and 5, let εh > 0, δ ∈ (0, 1) and define

h =


1

4ρ2
X


√

2(1 + γδ) log

(
2

δ

√
1 +

1

γδ

)
+

√√√√√
2(1 + γδ) log

(
2

δ

√
1 +

1

γδ

)
+
ρX εh
L2


2 ,

where γδ = −1

1+W−1(− δ24e )
and W−1 is the first lower branch of the Lambert W function, i.e., the smallest real solution for

z = [− 1
e , 0) of the equation W−1(z)eW−1(z) = z. It holds that

P
(
λmin

(
V 0
h+1

)
6 εh

)
6 δ .

Proof The idea is similar to that of the proof of Lemma 6, i.e., relate the deviation of the smallest eigenvalue to that of
a matrix martingale. The difference lies in the choice of the concentration bound for this martingale. Fix η > 0, Howard
et al. (2021, Corollary S1(a)) with a normal mixture bound shows that a martingale (Mt)t∈N taking values in a Hilbert
space (H, 〈·, ·〉) with uniformly bounded increments ‖Mt+1 −Mt‖ 6 c for some c > 0 and all t ∈ N satisfies

P

∃t ∈ N, ‖Mt‖ > c

√
2(t+ η) log

(
2

δ

√
1 +

t

η

) 6 δ .
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Figure 2: Recommended episode length h = d 2εh
ρXL2 + 8

ρ2X
log 2

δ e for LinUCB-OGD-CR (Algorithm 2) according to

Theorem 3 and Lemma 7 as a function of d = ρ−1
X , for typical values L = 1, εh = 0.1 and δ = 5%.

Now, we fix h ∈ N. Although this bound is uniform in t ∈ N, we can make use of the free parameter η to optimize it for t =
h. This procedure is standard (see e.g., Howard et al. (2021, Proposition 3)) and yields η = γδh with γδ = −1

1+W−1(− δ24e )
.

In particular, we have

P

‖Mh‖ > c

√
2h(1 + γδ) log

(
2

δ

√
1 +

1

γδ

) 6 δ .
Following the steps of Lemma 6, we have that

P
(
λmin

(
V 0
h+1

)
6 εh

)
6 P

(
‖Mh‖ > ρXL2h− εh

)
6 δ ,

with Mh = V 0
h+1 − E

[
V 0
h+1

]
, which is a martingale with increments bounded by c = 2L2. Equating both bounds on

‖Mh‖ yields

ρXL
2h− 2L2

√
2h(1 + γδ) log

(
2

δ

√
1 +

1

γδ

)
− εh = 0 .

This expression is a quadratic equation in H =
√
h. Let a = ρXL

2 and b = L2

√
2h(1 + γδ) log

(
2
δ

√
1 + 1

γδ

)
. Notice

that both a and b are positive and that the discriminant of aH2 + 2bH − εh = 0 is 4b2 + 4aεh, which is also positive. The

only positive solution is thus given by
√
h = H =

b+2
√
b2+aεh
2a , which concludes the proof.

�

The value of h recommended by Lemma 7 scales with ρ−2
X at the first order, and thus h = O(d2), just like in Theorem 4.

However, it is typically smaller, and thus more practical (allows for more frequent OGD updates with the same theoretical
guarantees). We report in Figure 2 the numerical values for both expressions of h for typical choices of the parameters
L, εh and δ as a function the dimension d. In practice, even smaller values of h may ensure enough convexity of the
episodic losses to observe sublinear regret, which we empirically witnessed in the experiments (see Appendix I). For the
practitioner, h may be viewed as a hyperparameter to be tuned manually, potentially on an instance-dependent basis, with
Theorem 4 and Lemma 7 giving only worst-case guarantees.

I EXPERIMENTS

We report three simple experiments, two in the expectile setting and one in the entropic risk setting.
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Computing Expectiles We detail two cases of distributions for which expectiles are known. For p ∈ (0, 1), we denote
by ep(ν) the p-expectile of distribution ν.

• If ν = N (0, 1), then, letting φ and Φ be the pdf and cdf of ν respectively, we obtain after simple calculus and the
identity φ′(y) = −yφ(y) the following fixed point equation:

ep(ν) =
2pφ(ep(ν))− 1

(1− 2p)Φ(ep(ν)) + p
,

from which one can estimate the value of ep(ν) using a fast iterative scheme. The general Gaussian case ν =
N
(
µ, σ2

)
is then easily deduced from the relation ep(ν) = µ+ σep(N (0, 1)). Expectile calculations for a few other

classical distributions are covered in Philipps (2022).

• If ν is the so-called expectile based distribution (Torossian et al., 2020; Arbel et al., 2021) with asymmetric density
(with respect to the Lebesgue measure) given by

fµ,σ,p(y) =

√
2p(1− p)

σ
√
π(
√
p+
√

1− p)
exp

(
−|p− Iy<µ|(y − µ)2

2σ2

)
,

then ep(ν) = µ. In other words, these distributions offer a family parametrized directly by their expectile, generalizing
the family of Gaussian distributions parametrized by their mean (for a given variance).

We recall that the p-expectile can be elicited by the convex potential ψ(z) = |p − Iz<0|z2. The second derivative of
this potential is given by ψ′′(z) = 2(1 − p)Iz<0 + 2pIz>0, which is bounded between 2p and 2(1 − p). In particular,
Assumption 1 holds with conditioning κ = M

m = 1−p
p if p 6 1

2 and κ = M
m = p

1−p otherwise. Note that the two
classes of distributions considered above are Gaussian or log-concave, which fits the scope of the supermartingale control
of Lemma 1.

Computing Entropic Risk For a distribution ν, the entropic risk at level γ > 0 takes the form ργ(ν) = 1
γ logEY∼ν

[
eγY

]
and corresponds to the loss L : (y, ξ) 7→ ξ+ 1

γ (eγ(y−ξ)− 1). Derivatives of this loss satisfy the following identities, where
∂ represents the differentiation operator with respect to the second coordinate ξ:

∂L(y, ξ) = 1− eγ(y−ξ),

∂2L(y, ξ) = γeγ(y−ξ),

and is thus in particular strictly convex.

For a Bernoulli-like distribution ν = pδa + (1 − p)δb, with p ∈ (0, 1), a, b ∈ R, the entropic risk takes the simple form
ργ(ν) = 1

γ log
(
peγa + (1− p)eγb

)
. If ν has a bounded support with diameter D, then it is clear that the Hessian of the

loss is controlled by m = γe−γD 6 ∂2L 6 γeγD = M , and therefore the conditioning number of the loss κ can be
bounded by e2γD. Finally, ν being bounded also fits the scope of the supermartingale control of Lemma 1.

General Case If a density p and a loss function L are known, one may resort to numerical integration to approximate the
following quantity up to arbitrary precision:

EY∼ν [L(Y, ξ)] =

∫
L(y, ξ)p(y)dy ≈

∑
i

wiL(yi, ξ)p(yi),

where the weights (wi) and knots (yi) depend on the approximation routine. Then, one may simply run a minimization
algorithm on the function ξ 7→

∑
i wiL(yi, ξ)p(yi) to estimate ρL(ν).

Experiment 1: Multi-armed Gaussian Bandit with Expectile Noise We considered K = 2 Gaussian arms with ex-
pectiles at level p = 10% equal to 1 and 0 respectively. This bandit can be represented by constant orthonormal actions
Xt = {[1 0]>, [0 1]>}, parameter θ∗ = [1 0]> and noise distributions N

(
µk, σ

2
k

)
, with µk and σk chosen such that the

expectile of the corresponding noise is zero for k ∈ {1, 2}. This can be achieved with e.g., µ1 ≈ 0.44, σ1 = 0.5 and
µ2 ≈ 2.62, σ2 = 3, which was the setup for this experiment. Note that for a given expectile level p ∈ (0, 1) and standard
deviation σ, finding the unique mean µ such that N

(
µ, σ2

)
has zero p-expectile can be easily done via a numerical root

search, using the formula for Gaussian expectiles described above.

The optimal arm with respect to the expectile criterion is the first one by definition. However, the expectations of these
arms are in reversed order, making the second one optimal with respect to the mean criterion.
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Experiment 2: Linear Bandit with Expectile Asymmetric Noise We considered a second example with non-Gaussian
noise and non-orthogonal features. We defined the action set at time t by Xt = {X1

t , X
2
t } ⊂ R3 where:

• X1
t =

Z1
t

‖Z1
t ‖

with Z1
t ∼ N ([1 0 0]>, σxI3),

• X2
t =

Z2
t

‖Z2
t ‖

with Z1
t ∼ N ([0 1 0]>, σxI3),

• We set the action noise to an arbitrary value σx = 0.1.

• (Z1
t , Z

2
t )t∈N are all independent random variables.

This construction results in bounded, anisotropic actions. We chose θ∗ = [0.9 0 1]>, so that 〈θ∗, X1
t 〉 is likely higher than

〈θ∗, X2
t 〉, thus favoring Xt = X1

t in the expectile model Yt = 〈θ∗, Xt〉+ ηt. To model the zero p-expectile noise ηt with
p = 10%, we used the expectile based distribution presented above with µ1 = µ2 = 0 and σ1 = 0.5 if action X1

t is
played, and σ2 = 1.5 otherwise, resulting in different mean noise E[ηt|Ft] ≈ 1.8 and E[ηt|Ft] ≈ 3.3 respectively. As in
the previous example, this setting was designed to deceive the mean criterion by inverting the order of optimal actions.

Experiment 3: Multi-armed Bernoulli Bandit with Entropic Risk Noise The last experiment consisted of K = 2
Bernoulli-like arms ν1 = 1

2δ1 + 1
2δ−1 and ν2 = 1

4δ2 + 3
4δ−2, which corresponds to means µ1 = 0, µ2 = −1 and entropic

risk ργ(ν1) ≈ 0.43 and ργ(ν2) ≈ 0.67 at level γ = 1. Again, this setting was designed so that the best optimal arm is
different under the mean and entropic risk criteria.

Results On each of the three settings, we ran an instance of Algorithm 1, i.e., LinUCB (convex risk), and Algorithm 2,
i.e., LincUCB-OGD (convex risk). We also ran a standard LinUCB algorithm for the mean criterion (Abbasi-Yadkori et al.,
2011). Hyperparameters m,M and κ were tuned according to the analysis above. Regularization was fixed at λ = 0.1.
As is customary in bandit experiments, the parameter σ, which in the formal analysis is derived from the supermartingale
control of the noise, was considered a degree of freedom to control the amount of exploration; we arbitrarily fixed it at
σ = 0.1 in experiments 1 and 2 and at σ = 1 in experiment 3. For the LinUCB-OGD variant, the step size for the OGD
scheme was set to εn = 0.1/n, following the linear decay suggested by Proposition 2, and the frequency of OGD update
to h = 5. In addition, all algorithms went through an initial warmup phase where each arm was played 5 times, in order to
ensure better stability of the initial estimations of θ.

In all three examples, the mean criterion algorithm was deceived and accumulated linear expectile and entropic risk regret,
while both risk-aware algorithms exhibited sublinear trends. Interestingly, the LinUCB-OGD variant showed higher regrets
due to the approximate minimization of the loss criterion by OGD, but remained below the mean criterion LinUCB bench-
mark. Figure 3 reproduces the results of each experiments across 500 independent replications. Finally, average runtimes
for each algorithm are reported in Table 4. Calculations were performed on a distributed infrastructure comprised of 80
CPUs. While the values themselves are not indicative, as they would vary on a different system, their relative magnitudes
illustrate the computational gain of the OGD scheme over solving the empirical risk minimization problem at each step as
required in LinUCB (convex risk). Note also that the standard LinUCB with mean criterion is faster due to the sequential
nature of the ridge regression estimator. Indeed, this procedure involves inverting at each step a d×dmatrix subject to rank
one updates, which can be calculated efficiently via the Sherman-Morrison formula. By contrast, other convex losses than
the one derived from the quadratic potential loose this sequential form and require solving the corresponding regression
problem from scratch at each time step.

Table 4: Runtimes for the Classical LinUCB and Algorithms 1 (LinUCB for Convex Risk) and 2 (LinUCB-OGD for
Convex Risk) in Each Experiments. Runtimes are Reported in Seconds as Mean ± Standard Deviation, Estimated Across
500 Independent Replications with Time Horizon T = 1500.

Algorithm Experiment 1 Experiment 2 Experiment 3

LinUCB (mean) 0.4± 0.0 37.2± 4.9 0.6± 0.0

LinUCB-CR (convex risk) 231.0± 21.7 814.8± 88.3 519.1± 33.3

LinUCB-OGD-CR (convex risk) 20.4± 3.9 60.2± 12.0 25.7± 4.9
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Figure 3: Left: two-armed Gaussian expectile bandit. Center: two-armed linear expectile bandit with R3 contexts and
expectile-based asymmetric noises. Right: two-armed Bernoulli entropic risk bandit. Thick lines denote median cumulative
regret over 500 independent replications. Dotted lines denote the 25 and 75 regret percentiles. Shaded areas denote the 5
and 95 percentiles.


