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A B S T R A C T   

Infrared (IR) thermography system is a key diagnostic in fusion devices to monitor the Plasma Facing Compo-
nents. Nevertheless, both qualitative and quantitative analysis (i.e. hot spot detection and surface temperature 
measurement) are challenging due to the presence of disturbance phenomena like variable emissivity and 
multiple reflections in fully metallic environment. Through the comparison with the experimental IR measure-
ments, simulation is an essential tool for anticipating, quantifying and analysing the effects of the various errors 
involved in the interpretation of IR images. This paper goes a step further for achieving IR quantitative ther-
mography in developing inverse methods to retrieve the real surface temperature, by taking into account variable 
emissivity and filtering reflections. Two approaches are studied: (1) using gradients methods through a reduced 
photonic model (2) using machine learning techniques based on simulated dataset. Applied on WEST-like 
tokamak numerical prototype, the temperatures are estimated, with these two approaches, with an accuracy 
better than 6%, which is a clear improvement compared to usual methods (i.e. assuming blackbody object).   

1. Introduction 

In magnetic fusion devices, the surface temperature measurement of 
plasma facing components is a major issue for both machine protection 
and plasma-wall interaction studies. Infrared (IR) imaging systems are 
then widely used in current fusion devices: this non-contact and non- 
destructive method allows monitoring almost all in-vessel components 
(e.g. 80% of ITER chamber) thanks to a network of cameras and this, on 
a wide temperature range (e.g. 200–3600 ◦C for ITER IR diagnostics). 
Nevertheless, temperature measurement is not direct from IR camera 
and the interpretation of IR images is especially complicated in 
tokamak, made up of fully radiative and reflective surfaces. In addition 
to the presence of multiple reflections adding parasitic signals, we must 
handle variable emissivity of targets as the operation progresses. This 
topic is still evolving since there is no yet a robust and reliable technique 
able to deal with both the variable emissivity and the presence of 
reflections. 

Synthetic diagnostic is quite developed in the fusion community in 
order to predict the optical measurement in such a complex environment 

[1–3]. A first evaluation of the performances of measurements from IR 
diagnostic for future ITER devices was carried out in [4] using a Monte 
Carlo ray tracing code. It proved that unknown emissivity can cause to 
underestimation of high temperature up to 40%, with a risk of not 
detecting hot spot and reflections leads an overestimation of coldest 
temperature impacting the measurement of plasma parameters (as 
plasma decay length). In [5], IR synthetic diagnostic was used for 
qualitative analysis of experimental IR images of WEST and ASDEX- 
Upgrade tokamak and to help discriminating reflections features from 
real thermal events. 

This paper presents new developments for achieving IR quantitative 
thermography in tokamaks, based on inverse processing using IR syn-
thetic diagnostic, to retrieve the true surface temperature measurement 
by correcting variable emissivity and filtering out reflections. The sec-
tion 2 deals with the choice of forward model to be used for inversion, 
which should be a compromise between fast and performant model. The 
section 3 and 4 describe two approaches for solving the inverse problem 
based on gradient minimisation and on machine learning techniques. 
The first results of these two approaches, applied on WEST divertor 
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view, are presented as well as the next improvements planned. 

2. The inverse processing 

Inverse problem aims at recovering unknown parameters (tempera-
ture and/or emissivity) of a thermal scene from the measured IR images 
(in radiance unit). To solve the inverse problem of IR thermography, two 
ways are studied and proposed. Both are based on forward model able to 
simulate the measurement from the observed thermal scene. 

2.1. The challenge of forward model 

The forward model is a digital twin which aims to be a virtual replica 
of physical device and instrument, modelling all physical phenomenon 
involved in the infrared measurement chain: from the plasma source to 
camera. As illustrated in Fig. 1, the forward model is based on a photon 
transport model able to propagate the rays in a 3D geometrical model 
and compute the radiance collected by each pixel to reproduce the 
camera image. The radiative transfer model uses as input the results of 
three others physical models:  

(1) a thermal scene model able to provide the 3D temperature field T 
(x,y,z) resulting from the heat flux loads onto plasma facing 
components (PFCs). The heat loads come mainly from conducted 
particles along magnetic field lines which can cause power flux 
deposits up to 10 MW.m− 2 in steady-state and 20 MW.m− 2 during 
slow transient event (up to 10 s) (corresponding to materials 
design limit) [6]. The 3D deposited heat flux on PFCs is computed 
from a field line ray tracing code based on optical approximations 
(parallel transport only) for a given theoretical or experimental 
magnetic equilibrium [7,8,9]. A second source comes from the 
plasma radiation. For taking into account the multi-reflection 
inside metallic devices that changes the distribution of radiative 
power deposition, a ray tracing code is used to get 3D absorbed 
flux [10].  

(2) a materials thermo-radiative model able to describe the photons- 
wall interactions. Several studies have been carried out and are 
ongoing in order to find emission and reflections models for PFCs 
based on experimental measurements. In [11], in-situ emissivity 
measurement were performed on the WEST tokamak: complex 
emissivity distribution is observed on the divertor with a sharp 
spatial evolution of the emissivity from 0.05 to 0.85 at the 
monoblock scale (~12 × 24mm). This emissivity pattern is quite 

coherent with the device configuration (in correlation with 
strike-point location and ripple modulation) and this can be 
implemented in the simulations as initial conditions and adjusted 
as the plasma operation progresses. Dedicated laboratory exper-
iments were also performed to describe the angular dependency 
of material properties. It has been found that cosines n-power 
model is quite relevant to describe the angular dependency of 
materials emissivity [5]. Measurements on tungsten samples 
from goniometer have shown that reflections model fits the 
glossy surface model characterized by a narrow Gaussian lobe 
around the specular direction surface [12].  

(3) an optical model able to reproduce the camera view (field-of- 
view, pixel resolution) and taking into account the optical effects 
as distortions, diffractions and aberrations phenomenon. 

The last point is the choice of photon transport model which requires 
a trade-off between the required accuracy, the computation time, and 
the 3D geometry. The choice of photon transport model is the key issue 
of inverse problem. Monte Carlo method is a very powerful tool to 
simulate photon transport and is quite widespread in the inverse 
rendering community. This allows dealing with complex 3D geometry 
and extensive models of photon-matter interactions [5]. Nevertheless, 
this is a statistical method which requires high computing time to ach-
ieve the needed accuracy. Then, in [13,14], an alternative numerical 
model of photons transport, based on radiosity transfer equation, has 
been developed. This is a fast model able to simulate IR images in a few 
seconds when view factors have been calculated beforehand (once) but 
introducing approximations on geometry and surface properties. 
Indeed, a strong assumption of this approach remains the diffuse 
behaviour of surface. Yet, by considering these two approaches, the one 
based on Monte Carlo method, performant but requiring high computing 
time, and the other based on radiosity method, fast but with approxi-
mations, the inversion problem will be dealt differently and two ap-
proaches have been developed. The first approach is based on classical 
optimization methods using the forward model in an iterative minimi-
zation loop (section 3). The second approach is based on machine 
learning techniques trained on a database of simulated images (section 
4). 

2.2. The particular case of thermal scene within tokamak 

If thermal scenes in tokamaks are complex to solve because of the 
number of parameters to be estimated (which can be as high as 1 million 

Fig. 1. Flow chart illustrating the link between the forward model and the inverse processing: the forward model provides simulated infrared images (in radiance 
units) for different thermal scenes, the inverse processing uses these simulated images to recover the surface temperature from IR experimental images. 
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if we consider all elements of 3D geometry and without any assumption 
of uniformity or known values), we can rely on the variety of scenario to 
decouple the estimation of temperature and emissivity. To estimate 
emissivity separately from temperature, we then propose to use the 
thermal scene during the conditioning phase or between pulse for which 
the temperature is globally uniform on the main components and quite 
well known (thanks in particular to embedded diagnostics as thermo-
couple). This reduces the number of parameters to be estimated but also 
the risk of existence of multiple solutions when estimating temperature 
and emissivity simultaneously (ill-posed problem). This implies such 
calibration phases must be done routinely in order to follow the mate-
rials’ surface state and so emissivity change. 

3. Gradient-based inversion of a thermal scene with diffuse 
reflective surfaces 

3.1. Methodology 

This first approach seeks to find the 3D temperature and/or emis-
sivity fields in the thermal scene that are responsible for the measured 
2D infrared image of this scene. The resolution of this inverse problem 
consists in minimizing a cost function that computes the difference be-
tween the experimental and simulated data (infrared images). The so-
lution is then calculated by iterative updating of model parameters 
(temperature and/or emissivity fields) using a gradient optimization 
method [13,14]. The two key points in this approach are (1) the choice 
of photon transport model that is called in each loop and (2) the opti-
mization algorithm for a fast convergence to the solution. For the first 
point, we turned to a fast photon transport model based on radiosity 
equations, able to generate an image in a few seconds, under assumption 
of diffuse surfaces in emission and reflection. For handling complex 
geometry, reduced radiative model based on hierarchical method has 
been developed, which consists in building multiresolution mesh as 
illustrated in Fig. 2(a). The geometry resolution is refined if the radiative 
exchange of the region of interest (3D-RoI) with the rest of the scene are 
significant whereas a rough mesh is kept on the elements whose radia-
tive exchange with the 3D-RoI are low [15]. The 3D-RoI includes 3D 

surfaces in a toroidal sector of 20◦ and a radial length of about 380 mm 
(see the 3D-RoI projected in white in the 2D-image of Fig. 2(a)). 
Regarding the second point, the minimization method will not be the 
same for the estimation of temperature and emissivity and their esti-
mation will be done separately. Indeed, the estimation emissivity is a 
non-linear problem requiring iterative resolution. However, we proved 
in [12,13] that the temperature estimation can be reduced to a linear 
inverse problem and can be solved in an explicit way, without iteration, 
with the following matrix inversion: 

Lo =
(
ST S

)− 1ST YinW/m2sr (1)  

where Lo is the estimated black emitted radiance vector (size p = 1,400, 
the number of parameters) from which the target surface temperature is 
deduced, Y the vector of experimental measurement (radiance collected 
by each pixel, size m = 49,500 pixels), S the sensitivity (Jacobian) matrix 
of the model output for the estimated parameters (black emitted radi-
ance Lo) of [m × p] size. The S matrix depends on emissivity but not on 
temperature and is built with p calls to the forward model [13]. The 
main advantage of such a method is that the inverse operator 

(
STS

)− 1ST 

needs to be computed only once if emissivity is known. The main limi-
tation is the large size [p × m] of this inverse operator which leads to 
restricting the numbers of parameters to be found (thanks to a priori 
expectations on given values or spatial profiles) and/or the number of 
measurements (pixels) by solving only a part of image. 

3.2. Results on WEST numerical prototype 

Such a method has been tested on numerical prototype based on 
WEST simple geometry. In this first demonstration, we focus on IR 
camera view looking at WEST divertor, which is less sensitive to 
reflection contribution but more demanding on temperature measure-
ment accuracy for physics study. Furthermore, the IR spatial resolution 
of such a view (2–3 mm/pixel) is good enough and, in this case, the 
resulting error is much less significant compared to others contributors 
as emissivity uncertainties and reflections contributions. Uniform 
emissivity is assumed for all in-vessel components (fixed at 0.1 for upper 

Fig. 2. (a) Projected true temperatures of WEST standard camera providing a top view of lower divertor. Image is the result of 3D-2D mapping of solution computed 
from gradient-based inversion. Image multiresolution is the result of reduced radiative transfer model using adaptive meshing. The white region shows the pixels 
corresponding to the 3D-RoI (b) Simulated temperature profiles on lower divertor extracted from IR simulated images. The estimated temperature from gradient- 
based inversion (red curve) is compared to the true temperature profile used as input of simulation (black curve) and the temperature deduced from IR images 
using usual methods (blue and green curves). The x-axis is actually the pixel number along the green line in (a) translated in radius (mm) in the 3D world thanks to a 
preliminary 3D → 2D pixel size calibration. 
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and lower divertor and baffle and 0.3 for first wall). Uniform tempera-
ture (fixed at 90 ◦C) is assumed for the main plasma facing components 
(baffle, upper divertor, first wall) except for the lower divertor, 
receiving the highest heat loads. We are interested in recovering the 
temperature profile on WEST divertor from experimental-like IR image 
generated using Monte Carlo Ray Tracing code (image noise inherent to 
the stochastic methods). To estimate the temperature, the emissivity 
profile is known and previously computed using iterative resolution 
from uniform thermal scene, e.g. during the conditioning phase [13]. It 
is worth noting that no a priori temperature profile is assumed for inner 
and outer W surfaces of lower divertor inside the 3D-RoI, but this pattern 
is assumed periodically repeated in the toroidal direction for the whole 
divertor. Temperature of surrounding components (baffle, first wall, 
upper divertor) is assumed to be known (at 90 ◦C), which reduces the 
number of parameters to be estimated to 1,390 (measurement vector Y 
in equation (1) is then modified to include the known parameters [13]). 
It is worth reminding that in this approach, the temperature is directly 
estimated on the elements of 3D geometry (and not on pixels of IR im-
ages) which also allows to take into account errors coming from the 
camera resolution. Fig. 2(a) shows the mapping of 3D solution to 2D 
image, only for display purposes and for comparison with other calcu-
lated temperatures resulting from classical 2D image processings shown 
on Fig. 2(b) : (1) the apparent temperature equivalent to a blackbody of 
emissivity 1, without correction of additional reflected flux (2) the 
apparent temperature so-called pure emitter assuming the target emis-
sivity known but without correction of reflected flux (3) the apparent 
temperature so-called “black environment” assuming known emissivity 
and with a simple correction of reflected flux considering the radiative 
environment acting as blackbody of known temperature. The measure-
ment error is the discrepancy between the true surface temperature used 
as input of simulation and the resulting temperatures from IR simulated 
images. In the case of diffuse surface, the gradient-based inversion can 
estimate the temperature with an accuracy better than 30% on the 
coldest target and better than 6% on peak temperature. 

4. Neural network inversion of a thermal scene with specular 
reflective surfaces 

The second approach is based on deep learning techniques. This 
technique works on images and aims to provide the 2D images of real 
temperature and emissivity that correspond to the measured 2D infrared 
image of the 3D thermal scene. The technique relies on training a con-
volutional neural network (CNN) on a synthetic dataset. The first chal-
lenge is to construct a representative and large dataset [16]. For this first 
demonstration, a deterministic ray tracing, applicable only to purely 
specular materials (mirror type) was developed to generate quickly IR 
images and build a database of 15,000 images [17]. The method has 
been tested on WEST geometry. An uniform temperature is assumed 
between 300 ◦C and 500 ◦C for the WEST components close to plasma (e. 
g. bumper, antenna outboard) and between 90◦ and 110 ◦C for the rest of 
components (baffle, first wall, upper divertor, non facing plasma com-
ponents). Only a non-uniform temperature is applied on the lower 
divertor. It is worth noting that for this first demonstration applied only 
on simulated data, we did not use field line ray tracing, as mentioned in 
section 1, to establish the temperature distribution on divertor: we used 
analytical formulae inspired to Eich formulae [18] to roughly reproduce 
quickly the heat loads in a tokamak with two strike points and a toroidal 
modulation of a 20◦ period to reproduce the ripple effect. Lambertian 
emission (i.e. with no angular dependency) and uniform emissivity, with 
a variable value between 0.05 and 0.5, is also assumed for all compo-
nents. The dataset is built by changing 77 parameters of forward model 
(emissivity and temperature values of the 36 in-vessel components, 
emissivity and 4 parameters of “Eich formulae” describing the divertor 
temperature distribution). 

Latin hypercube sampling algorithms were then used to optimally 
cover the range of parameters and generate representative training 

dataset of different plasma scenarios. For training the model using this 
dataset, a deep fully convolutional neural network, inspired from the 
original U-Net architecture, has been implemented. Unlike classical 
CNN used to encode and decode image as a class label, the U-net is 
particularly suitable for classifying each pixel of images and thus dealing 
with images both as input and output. The network is trained with a 
triplet of images including the camera image (in radiance unit) and the 
associated real temperature and emissivity maps. Fig. 3 shows the WEST 
temperature radial profile on the lower divertor extracted from simu-
lated IR images after applying usual methods and neural network (NN) 
inversion. Here again, the first results obtained are encouraging: con-
trary to classical methods (considering blackbody object, pure emitter or 
with simple correction of reflected flux), high specular patterns are quite 
removed with NN inversion. On a base of 5000 test images (generated 
without additional noise), temperature errors are found to be lower than 
6 %. The absolute emissivity errors are lower than 0.005 on the divertor 
region. It should be noted that with this approach, the scene tempera-
tures and emissivities are found simultaneously. The very good results 
are most likely made possible by the purely specular behavior of the 
materials which will generate very different images when the thermal 
scene parameters change. 

5. Conlusion 

Inverse methods are being investigated to solve reflections and var-
iable emissivity issues in infrared images within fusion devices. Two 
different approaches are being developed. The first one is a gradient 
inversion using a reduced photonic model based on radiosity equations. 
Such an approach is valid only in the case where all surfaces are diffuse. 
No prior distribution of temperature on the divertor is assumed, except 
the repeated toroidal pattern with a period of 20◦. The second approach 
is based on machine learning techniques and consists in training a neural 
network from a simulated dataset. In order to quickly get a wide training 
dataset, two choices have been made : (1) a fast deterministic ray tracing 
has been developed in the case where all surfaces have specular reflec-
tance (acting as mirror) and lambertain emission and (2) a prior non- 
uniform temperature distribution based on “Eich formulae” has been 
assumed for the divertor as well as uniform temperature and emissivity 
for the rest of components. Only 77 parameters are then used to describe 
the full thermal scene in the tokamak and to reproduce realistic situa-
tions. This parameters number could be increased to extent the scenario 
learnt by neural network. For these two “extreme” cases (diffuse and 
specular surfaces in reflection), the first results obtained with the two 
approaches are promising with a significant improvement of surface 
temperature measurement accuracy compared to usual techniques of 
image processing (considering blackbody object, pure emitter or with 
simple correction of contribution of radiative environment). This en-
courages us to pursue the two approaches to solve real surface with 
complex bidirectional reflectance distribution function combining 
diffuse and glossy (Gaussian specular) components. This involves 
developing more complex model based on radiosity or accelerating the 
computing time of ray tracing code for getting large training dataset. 
Another step is to integrate more complex thermal conditions like 
transient events. A next step is to demonstrate the limits of validity of the 
two approaches on controlled experiences in laboratory (by adding 
complexity progressively), before testing on tokamaks in operation. 

This work has been carried out within the framework of the EURO-
fusion Consortium, funded by the European Union via the Euratom 
Research and Training Programme (Grant Agreement No 101052200 — 
EUROfusion). Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the European 
Union or the European Commission. Neither the European Union nor the 
European Commission can be held responsible for them. 
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