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ABSTRACT Following its use in several applications, including video coding in wireless surveillance,
moving object detection (MOD) has become a popular video analysis topic. Despite the considerable
progress in the accuracy of MOD for video coding, its implementation in constrained sensors is a real
challenge owing to their high complexity and energy consumption. Therefore, there is a great need to
address the trade-off between the accuracy and the energy efficiency of MOD approaches for video coding
in constrained systems. In this work, an energy-efficient region-of-interest (ROI) detection algorithm as a
pre-encoder for wireless visual surveillance (WVS) is proposed. The algorithm ensures a trade-off between
detection accuracy and computational complexity. To this end, we propose constructing an activity map
by measuring each block activity between successive frames. The map scores are processed using a
combination of a fast Gaussian smoother and a rank-order filter to improve accuracy. Only the blocks in
motion are coded and counted for transmission. The accuracy of our approach has been evaluated on a large
dataset using key performance metrics. It has been found that our algorithm outperforms other state-of-the-
art techniques in terms of true positive rate (TPR), with 80.84% on sensitivity metric, while exhibiting a
well-balanced accuracy for all categories. A careful examination of the computational complexity confirms
the low overhead. The energy and bitrate savings could achieve nearly 90% and 98%, respectively.

INDEX TERMS region-of-interest, object detection, image compression, WVS, video surveillance,
energy-efficiency

I. INTRODUCTION

V IDEO Content Analysis (VCA) techniques involve au-
tomatically analyzing video to detect and determine

spatial and temporal events. VCA is used in a wide range
of domains, including video browsing and retrieval [1], im-
age and video coding [2] [3], video surveillance, etc. The
analyze-then-compress (ATC) paradigm employs VCA to
first analyze the content before compressing it. As a result,
feature extraction is carried out before the compression and
the transmission of the visual data captured from a visual
sensor node (VS). This paradigm has been put forth as a
substitute for the conventional compress-then-analyze (CTA)
paradigm, which compresses the entire captured video before
transmitting it to be processed further when it is received.
The CTA paradigm typically employs highly complex video

coding standards [4], such as MJPEG [5], H264 [6], and
HEVC [7]. As a result, the ATC can streamline this process
and enable video coding within limited resources devices [2].

Because only a few parts of the frame, called region-
of-interest (ROI), are compressed and transmitted, the ATC
paradigm [8] is suitable for many applications [9]–[11]. In
such applications, the end-user is only interested in the ROI,
and therefore it would be relevant to extract those regions
before encoding. This enables the development and employ-
ment of very low-bitrate encoders. Additionally, the energy
the sensor node uses during transmission is frequently larger
than the energy used for processing, namely, compression
[12]. Hence, transmitting only the ROI by sacrificing some
image quality reduces the bitstream, which allows for a high
amount of bandwidth and energy savings. The framework of
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FIGURE 1: Image analysis by ROI detection for video cod-
ing in WVS

this paradigm is shown in Figure (1).
Despite the increased advancement in new video coding

standards involving high video quality with very low bitrates,
they are still not adopted for WVS [13] [14]. The unsuitabil-
ity is due to the high complexity of the used coding modules,
either in the intra or inter-coding modes. New approaches
and paradigms have emerged to overcome this problem. They
aim to code the frames based on the ROI and the difference
between successive frames [15] [16]. Correspondingly, the
moving object is the salient zone in the frame that must be
coded, whereas non-ROI could be omitted to save bandwidth
and energy in an ROI-based energy optimization approach.
ROI is an important element in this context; therefore, accu-
rate ROI detection is a crucial step that must be well-studied.

Making the tradeoff between accurate object detection
and very low complexity is an important subject to be ad-
dressed and studied to advance the ROI-based video coding
paradigm. To minimize contextual loss, this tradeoff must
address the detection of the entire ROI (high sensitivity), but
with a moderate energy budget [17] [18] [19]. Indeed, the
benefit of using those approaches in video surveillance is that
the cameras deployed are relatively stable. As a result, there
are a few insignificant background changes. Accordingly, this
topic has received a lot of attention in recent years. There
have been numerous pre-encoder approaches for video and
image compression in WVS [20] [21] [22] [23].

In this work, we address the proposition of an energy-
efficient pre-encoder for WVS. The contributors address the
combination and evaluation of simple but efficient techniques
that have not been addressed previously within the scope
of object-based video coding for WVS. We contribute by
proposing an energy-efficient method and validating its de-
tection efficiency on a large dataset containing nearly all
surveillance conditions classified into 11 categories [24].
Additionally, we validate the energy efficiency through de-
tailed modeling of computational complexity and energy cost
to prove the neglected extra cost compared to the saved
energy. By avoiding unnecessarily processed and compressed
blocks, the proposed pre-encoding scheme significantly re-
duces computational complexity.

A Block-based movIng Region Detection (BIRD) tech-
nique is proposed. BIRD detects the difference created be-
tween frames using a kind of Sum of absolute Frames
Difference (SFD) [11] to address video coding in resource-
constrained systems. The SFD operation is followed by

heavy yet efficient morphological filtering to enhance the
accuracy of the moving-region detection. A threshold is used
to extract the binary mask of the moving region. The frame-
work is considered an efficient first step in an ATC paradigm.
Contrary to compressing and transmitting the whole frame
(i.e CTA), the proposed approach enables compression and
transmission of only the activity blocks. This method will
drastically decrease the processing and transmission energy
budget in a WVS while maintaining an acceptable quality of
service (QoS) and a high frame rate. The main contributions
of the proposal are as follows:

• A low complexity ROI detection method dedicated to
video coding in constrained wireless surveillance sys-
tems.

• The detection accuracy is improved through a combina-
tion of a fast Gaussian smoother and a rank-order filter.

• The algorithm is assessed using several metrics to eval-
uate the detection performance and confirm its supe-
riority compared to the state-of-the-art techniques in
constrained wireless surveillance systems.

• Bitrate and energy savings are achieved using the algo-
rithm as a pre-encoder of a baseline JPEG compression
chain.

• Based on an energy/memory consumption modeling,
using ARM Cortex M3 characteristics, the viability of
the algorithm is demonstrated for implementation in
WVS.

The remainder of this paper is organized as follows. A back-
ground and related work review is presented in Section II.
The proposed algorithm is presented in detail in Section III.
Section IV shows the results and evaluation of the proposed
method in terms of detection accuracy, complexity, energy,
speed, and memory performance. Finally, a conclusion is
drawn in Section V.

II. BACKGROUND AND RELATED WORK
The literature has extensively discussed and analyzed the
design of energy-efficient Wireless Sensor Networks (WSNs)
[25] [26] [27] [28]. The approaches vary depending on
whether the contributions are in the processing, the trans-
mission, or the network part. The recommended solutions
often focus on identifying resource allocation techniques
that use the least amount of energy. The resource under
consideration can comprise memory usage, data compression
algorithms, data routing, and transmission power at the radio
part. A kind of WSN that integrates a camera sensor is
known as a Wireless Multimedia Sensor Network (WMSN),
which incorporates extensive use of the resources. WMSN’s
resources are exhausted extensively due to the amount of
multimedia data (i.e.: images and video). There is a real
need to reduce the amount of captured data intelligently
with a minimum loss to enhance the efficiency of WMSN.
It is essential to make a tradeoff between the added energy
cost of the data reduction technique, the final gain in energy
from its implementation, and the QoS degradation. Many
approaches have been proposed in this context to achieve the
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TABLE 1: Summary of the related work on ROI-based video coding

Algorithm Methodology Highlights Limitations
Kouadria et al.
(2019) [22]

• 8× 8 SAD
• thresholding to extract ROI mask.
• DTT transform for compression

• low complexity
• fast image compression algorithm
• dedicated to WMSN context

• less accurate
• few datasets
• few evaluation metrics

Rehman et al.
(2016) [29]

• divide the frame into 4 blocks
• select ROI from sub-blocks
• background modeling
• compression using DWT

• moderate accurate detection
• simple and efficient algorithm
• dedicated to WMSN context

• limited datasets
• high bitrate
• high complexity for WMSN node

Aliouat et al.
(2022) [30]

• edge detection using Canny filter
• 8× 8 SAD of the edge map
• automatic multi-threshold selection
• multi-Otsu thresholding
• compression priority to the ROI

• automatic thresholding
• accurate detection
• content-aware coding
• allocate more resources to the ROI
• dedicated to WMSN context

• high complexity
• limited dataset
• high bitrate (50% reduction)
• no energy consumption model
• few evaluation metrics

Aliouat et al.
(2022) [16]

• edge detection using Sobel filter
• 4× 4 SAD of the edge map
• 2-D Rank order map filtering
• fixed threshold
• background update each GOP

• good accuracy on the used dataset
• efficient in different weather cond.
• high bitrate and processing reduc-

tion
• dedicated to WMSN context

• high complexity for WMSN con-
text

• limited dataset
• no energy consumption model
• few evaluation metrics

Ko. et al.
(2018) [23]

• edge detection using Sobel filter
• 8× 8 SAD
• bitrate control using PID-controller
• optimal enhancement algorithm
• prototyping on 130nm sensor node.
• FPGA implementation

• accurate detection
• optimal circuit design
• high processing and bitrate reduc-

tion
• dedicated to WMSN context

• limited dataset (2 sequences)
• no comparison to the state of the art
• few evaluation metrics

Ko. et al.
(2015) [31]

• edge detection using Sobel filter
• perform Frame difference
• 8× 8 SAD
• rate control (channel cond. -BER-)
• thresholding using PID controller

• optimal circuit design
• high processing and bitrate reduc-

tion
• content and energy-aware
• dedicated to WMSN context

• limited dataset (4 sequences)
• no comparison to the state-of-the-

art
• few evaluation metrics
• detection accuracy not reported

Aliouat et al.
(2023) [32]

• novel (S-SAD) introduced
• multi-classes coding 2 based on

ROI.
• assessed for Human and Machine

based monitoring

• accurate detection
• energy model provided
• high bitrate and processing saving
• content-awareness
• resources/quality tradeoff achieved
• dedicated to WMSN context

• no detection accuracy comparison
• medium dataset
• fixed threshold

Sengar et al.
(2020) [33]

• MOD detection suing Optical flow
• Ostu for thresholding
• particle swarm optimization (PSO)

for redundancy exploring

• deal with moving cameras
• good efficiency comparison with

state-of-the-art
• good rate-distortion performance

• limited dataset (4 sequences)
• no energy consumption model
• not dedicated to WMSN context
• few evaluation metrics

BIRD (Proposed)
• 8× 8 SFD
• 1-D ROF on the activity map
• FGS filter on the activity map
• a pre-encoder for video coding.

• low complexity
• high detection accuracy
• energy modeling (ARM Cortex

M3)
• large dataset (51 sequences)
• dedicated to WMSN context

• tested only for fixed camera
• fixed threshold
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intended target by using low-cost and classical techniques or
advanced techniques based on machine learning (ML) and
deep learning (DL) [34].

One of the research axes is to use feature extraction as a
data reduction technique in WMSN [35]. The authors in [36]
use the FAST and the BRIEF algorithms for image feature
extraction and matching. Likewise, the work in [8] proposes
a method for visual-features compression for WMSN based
on the ATC paradigm. Alongside the intensive complexity of
extracting visual features, the content of the video could not
be reconstructed in the pixel domain, which is still a major
drawback of feature extraction-based video coding.

For visual data compression, other methods rely on move-
ment detection. The moving object extraction in this scenario
is a crucial step. For instance, by building the background
model using background subtraction (BS), the moving object
could be detected. The background models are obtained
by applying well-known methods such as GMM [37], His-
togram of Gradian (HoG) [38], codebook [39], and ViBe [40]
or using deep learning-based techniques [41] [42]. However,
DL-based techniques are not suitable for some special sce-
narios and systems, especially for non-powerful computing
abilities. Despite their good performances in MOD tasks,
the aforementioned techniques are energy expensive, making
them unsuitable for embedded nodes.

The alternative to these techniques is to use simple yet
efficient MOD techniques, such as frame difference (FD) and
BS [43] [44]. FD has been used for MOD and has presented
advantages because of its low complexity, low memory, and
processing speed. However, it has low accuracy when dealing
with noisy backgrounds [31]. Edge Detection (ED) has also
provided solutions to enhance the efficiency of the MOD
algorithms, but it could suffer from high computational costs
due to the edge detection operator’s calculations. As a result,
An inexpensive ED operator is required [30] [31].

In [22], the authors proposed an ROI-based image coding
technique. The idea is to detect, compress and send only the
moving blocks in the frame while a low-cost compression
technique is used by applying the integer discrete Tchebichef
transform. In [29], another method has been proposed by
Rehman et al., which involves dividing the frame into four
main blocks and detecting the moving object on each block
using a probabilistic approach. The transmission is subse-
quently limited to the moving segments after compression
using the wavelet transform-based compression approach. In
[33], the authors proposed a surveillance video compression
based on motion detection and segmentation, employing a
JPEG-like chain to compress the data.

In [16], the authors proposed an ED-based ROI detection
technique using the Sobel edge detector to extract the edges
of the moving regions and create an activity map based on
those detected edges. While in [30], the Canny ED is used as
a low-cost edge detection method to extract the ROI prior to
compression. ROI detection has also been a solution to con-
trol the memory usage [45], the bitrate [46], and the quality of
the video encoder. This is accomplished by managing the bit

allocation mechanisms, as shown in [47]. The authors in [32]
have provided a more accurate and energy-efficient strategy,
in which a good trade-off between energy efficiency, image
quality, content awareness, bitrate, and effective machine-
based monitoring tasks at the destination have been reached.
The strategy seeks to create a new pre-processing method,
named Successive Sum of Absolute Differences (S-SAD), to
identify the ROI and divide it into many classes based on their
importance. Table 1 summarizes the related work on ROI-
based video coding for WVS.

While the works mentioned above provide effective
energy-saving solutions for WVS systems, the majority of
them did not fully consider the efficiency of the used moving
object detection method because they only considered a few
evaluation metrics and small datasets. The presented works
did not address evidence of the effectiveness of the ROI
detection techniques used. Furthermore, some methods are
weakened by the high amount of data that must be transmit-
ted, making them less efficient under the WMSN constraints
[12]. The accuracy of the detection of the object is crucial. If
a high level of detection accuracy is not guaranteed, complex
distortions during frame reconstruction will appear.

The above-mentioned brief review reveals the fact that
numerous researchers are devoted to investigating ROI-based
video coding in WMSN. The techniques used produce vary-
ing degrees of accuracy and complexity. However, to the best
of our knowledge, there is no literature validating a good
accuracy-complexity tradeoff of the moving object detection
techniques for ROI-based video compression in WVS. In
this article, a tradeoff between accuracy and complexity
is achieved by the proposed BIRD. The assumptions are
validated through an application on a large dataset and an
energy and memory consumption model.

III. PROPOSED METHOD
The main purpose of the BIRD method is the exploitation of
the successive changes between two frames Fn and Fm, with
m < n, where n and m are respectively the current and a
previous frame in the captured video. The frame difference
method is of very low complexity and simple to implement,
which makes it an appropriate choice to suit the constrained
resources in a WSN. Meanwhile, it suffers from low region
detection accuracy [31]. To overcome the low accuracy of
pixel-based detection of the frame difference method, the
blocks of the resulting difference are summed up to create an
activity map that represents the level of the activity in each
region.

A. DIFFERENCE DETECTION
Let ϕn and ϕm be the intensity map of the frames Fn and
Fm of the size M ×N . Based on the SFD technique [11], the
summation of the non-overlapping blocks of size 8 × 8 for
Fn is provided by Equation~(1)

ϕn(x, y) =
1

w2

w−1∑
u=0

w−1∑
v=0

Fn(wx+ u,wy + v) (1)
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FIGURE 2: Block diagram of the proposed algorithm (BIRD)

While for the frame Fm, ϕm is calculated using Equation~(2)

ϕm(x, y) =
1

w2

w−1∑
u=0

w−1∑
v=0

Fm(wx+ u,wy + v) (2)

Where x ∈ 0 · · ·M/w − 1 and y ∈ 0 · · ·N/w − 1 are
block indices. The resulting intensity maps ϕn and ϕm are w2

times less than the input frame size Fn. To create the activity
map ∆, the SFD operation is completed by computing the
absolute difference between the two intensity maps, as in
Equation~(3)

∆(w, y) = |ϕn(x, y)− ϕm(x, y)| (3)

In view of this, the scores in ∆ indicate the level of activity
created between the two frames. The blocks that contain high
movement are represented by high score values in ∆, which
indicates the moving regions. However, lower scores values
indicate the non-moving regions. The complete scheme of the
proposed method is shown in Figure (2).

B. DIFFERENCE ENHANCEMENT
To avoid the false negative problem and improve the ac-
curacy, an enhancement of the scores of ∆ is needed. We
propose the combination of a smoothing and rank maximiza-
tion of ∆. Therefore, we propose to take the advantage of
both the efficiency and rapidity of the Gaussian smoother
the fast global smoother (FGS) [48]. As depicted in Figure
(2), FGS is applied on the ∆ map to smooth the details and
noisy part resulting from the SFD operation. Contrary to the
convolution filters, FGS is characterized by a low complexity
and rapidity estimated to be over 30 times faster than other
filters. FGS uses a parameter σ to control the variance around
the mean value and another parameter λ to define the amount
of regularization during filtering.

Algorithm 1: The Proposed BIRD algorithm
Input:
m selected previous frame
N SFD blocks size
K ROF window size
p rank order of the ROF
T threshold value
λ regularization of FGS
σ variance around the mean of FGS
Output:
Mask binary mask of ROI
blockind vector of ROI blocks indexes
for Each New frame Fn do

Apply Equations (1)(2) and (3);
∆← SFD(Fn, Fm);
Apply Fast Global Smoother ;
χ← FGS(∆, λ, σ);
Apply 1-D Rank order filter ;
Ω← ROF (χ,K, p) ;
Set T;
for all scores in Ω do

if Score(x, y) ≥ T then
Set mask(block)← 1;
Set blockind ∈ Sa ;

else
Set mask(block)← 0 ;

end
end
Report ROI mask to encoder ;
Report blockind vector to receiver;

end
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Subsequently, the resulting smoothed map (χ) is filtered by
the maximum rank order filter (ROF). The ROF belongs to a
class of filters easy to implement [49]. The maximum rank
order filter calculates the envelope of the smoothed map. It is
a fast and cost-effective solution due to its simple arithmetic
operations [23]. Let Q = l1, l2, · · · lk be the set of input sam-
ples to the filtering process within the predefined observa-
tion window. The result of ordering the samples l1, l2, · · · lk
is obtained by the logical ordering l(1), l(2), · · · l(N) where
l(i) ∈ Q , for i ∈ 1 · · ·N represents the ith order statistic.
The ROF filter uses l(N) the maximum order statistic. The
obtained filtered map is noted Ω. Figure (3) illustrates the
impact of the used filters to enhance the ROI classification
performances while Figure (4) summarizes the impact of
each filter as used in this order.

The binary mask is then created by comparing the Ω
scores to a threshold. Where scores higher than the threshold
value indicate activity in the associated block, whereas scores
lower than the threshold value indicate inactivity.

Following the threshold operation, a set of block indices
(Sa) composed of the indexes of the activity blocks is con-
structed. Based on the proposed strategy, only the ROI blocks
will be compressed and sent to the destination. The algorithm
1 further summarizes the above steps.

IV. RESULTS AND DISCUSSION
To validate the proposed method, we present the Change
Detection 2014 Dataset (CDnet) [50] results. CDnet 2014 is
a very challenging dataset composed of 51 video sequences
from 11 categories ( more than 150000 frames + their ground
truths). Since each category is associated with a specific
change detection problem, e.g., dynamic background, shad-
ows, CDnet enables an objective identification and ranking of

methods that are most suitable for a specific problem as well
as competent overall. The experimental values for each used
parameter are summarized in Table 2.

TABLE 2: Used parameters for the conducted simulations

Step SFD FGS ROF
Parameter N σ λ p K

Value 8 0.05 30 100 4

We consider first a qualitative assessment based on visual
observation of the obtained binary mask for the moving
regions compared with ground truth masks.

A. PARAMETERS AND EVALUATION METRICS
Seven metrics are used for assessment. These are calculated
using the confusion matrix that contains the classification
characteristics in terms of quality and quantity.

1) Evaluation Metrics
TP: True positives, the number of pixels correctly labeled as
foreground.

FP: False positives, the number of pixels incorrectly la-
beled as foreground.

TN: True negatives, the number of pixels correctly labeled
as background.

FN: False negatives, the number of pixels incorrectly set
as background.

Seven measures are substituted for the preceding four in
order to more accurately assess the classification results. The
metrics are given by Equations (4)-(11).

Recall:

Re =
TP

TP + FN
(4)

Specificity:

Sp =
TN

TN + FP
(5)

Precision:

Pr =
TP

TP + FP
(6)

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3248067

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



A. Aliouat et al.: Region-of-Interest Detection for Wireless Visual Surveillance

F-measure:
Fm = 2

Pr

Re+ Pr
(7)

False-positive rate (FPR):

FPR =
FP

FP + TN
(8)

False-negative rate (FNR):

FNR =
FN

TP + FN
(9)

Percentage of wrong classifications (PWC):

PWC = 100
(FN + FP )

(TP + FN + FP + TN)
(10)

Balanced-Accuracy (BAC):

BAC =
Re+ Sp

2
(11)

For PWC, FNR, and FPR metrics, lower values indicate
higher accuracy, but for Recall, Specificity, Precision, BAC
and F-Measure, higher values indicate better performance
[35]. Recall gives the percentage of necessary positives via
the compared total number of true positive pixels in the
ground truth. Precision gives the percentage of unnecessary
positives through the compared total number of positive
pixels in the detected binary objects mask.

Among these metrics, we are specifically interested in
the recall and balanced-Accuracy metrics (BAC). ROI-based
video coding needs a high TP with a minimum FN.

Advanced analysis is performed by exposing the TPR-FPR
curve (ROC curve) for sample sequences with an analysis of
the optimum threshold.

B. PERFORMANCES OF BIRD OVER THE CDNET 2014
Table 3 shows the performance of BIRD indicating the algo-
rithm’s visual accuracy in detecting all the ROI candidates for
compression and transmission. The presented sample frames
from all categories of the benchmark dataset in Table 3 show
that the algorithm successfully detects the blocks in which
a high movement occurs. Objects are entirely detected in
most videos, which could be a good enabler for a variety of
applications, especially as a pre-encoder for ROI-based video
coding [23].

It should be noted that, for some video scenarios (like the
Office video sample), the algorithm is unable to detect the
target object for some time due to the object’s stability. Even
though the object information has already been delivered to
the destination, the reported numerical results are reduced.

Table 4 shows the quantitative results on CDnet 2014
dataset. The results indicate the good performance of the
proposed algorithm in the detection of the whole object with
high TP values for different categories. The algorithm shows
high detection results for some categories and moderate de-
tection performances for others. For example, the recall met-
ric is high for almost all the categories but shows exceptional
performance for night video and dynamic background, PTZ,

and camera jitter categories despite their difficult scenarios.
The algorithm presents some weaknesses in detecting the
complete object in some categories like intermittent object
motion category.

C. COMPARISON WITH OTHER TECHNIQUES
Table 5 shows the overall results of our method on CDnet
2014 dataset compared with the state-of-the-art techniques
namely, KNN in [51], GMM in [52], KDE in [53], Ma-
halanobis Distance and Euclidean Distance techniques pre-
sented in [54] and another GMM-based technique in [55].
The proposed method exhibits good results in the recall and
FNR metrics with the best results against other techniques
and shows competitive results for the specificity metric.

The weaknesses of the algorithm in the precision and F-
measure values (0.1893 and 0.2678) can be explained by the
adopted block-based techniques which allow the detection of
additional pixels with the moving object, (i.e.: high FPR).

According to Table 4, the results of BIRD are considered
very high in the context of the studies that aim to integrate
object detection as a pre-processing step for WVS in very
low-complexity platforms.

D. METRICS OF INTEREST: RECALL, SPECIFICITY AND
BAC
A balance between the TP and FN is important to measure
the performance of BIRD in detecting the complete object
while avoiding the drawback of the non-detection of regions
inside the moving objects and with the minimum FP possible.
We compare BIRD to two methods, one method uses Neural
Networks for object detection [24]. The second method uses
block-based object detection [56] same as our proposed
method.

As presented in Table 6, the BAC and recall metrics
of BIRD show higher values than in [56] for most of the
sequences. While [24] shows superior BAC and specificity
values compared with BIRD and [56]. Results of BIRD are
still very competitive to that of [24]. With an overall BAC of
82%, BIRD can ensure high detection accuracy of the moving
object regions for different categories and conditions.

E. THE IMPACT OF THRESHOLDING ON DETECTION
We select three sequences from the used dataset to empiri-
cally validate the BIRD accuracy and low-overhead assump-
tions. Highway with a size of (320 × 240) contains high
activity with a number of moving vehicles. The pedestrians
sequence of size (360×240) is of low activity with relatively
high stability in the background. The Snowfall sequence of
size (720 × 480) is a long sequence that contains moving
objects with very high activity in the background ( Snow and
winter).

Figure (5) plots the TPR against the FPR when varying the
threshold value (0 . . . 10). The obtained ROC curves show
that low thresholds imply a high true positive rate. However,
this adversely affects the specificity of the detection, since a
high number of blocks is wrongly labeled as activity blocks,
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TABLE 3: Samples of ROI extraction mask results

Sequence Original ground-truth mask ROI

Highway #1475

SnowFall #2784

Pedestrians #476

Blizzard #1406

WinterDriveway
#1860

tunnelExit #2329

Sofa #1185

PTZ #1240

Park #250

NightVideo #1300

Busstation #400

Turbulance0 #2045
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Category Recall Specificity FPR FNR PBC Precision F-Measure

PTZ 0.9662 0.6443 0.3556 0.0337 35.3016 0.0401 0.0753

badWeat. 0.9208 0.8948 0.1051 0.0791 10.1795 0.2747 0.3904

baseline 0.7619 0.9437 0.0562 0.2380 6.6360 0.3268 0.4047

cameraJ. 0.8504 0.6446 0.3553 0.1495 34.5590 0.1383 0.2238

dynamic. 0.7593 0.9512 0.0487 0.2406 4.9399 0.1962 0.2801

intermi. 0.4186 0.8603 0.1396 0.5813 16.4228 0.1566 0.2242

lowFram. 0.8161 0.7905 0.2094 0.1838 20.2242 0.1315 0.1919

nightVi. 0.9455 0.8374 0.1625 0.0544 15.9206 0.1193 0.2108

shadow 0.8775 0.8500 0.1499 0.1224 14.8039 0.2416 0.3740

thermal 0.7548 0.8894 0.1105 0.2451 13.4618 0.3575 0.4095

turbule. 0.8216 0.8870 0.1129 0.1783 11.3767 0.1000 0.1607

Overall 0.8084 0.8357 0.1642 0.1915 16.7115 0.1893 0.2678

TABLE 4: Detection results of the proposed algorithm over CDnet 2014 dataset

Technique Recall Specificity FPR FNR PWC F-Measure Precision

KNN [51] 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788

GMM1 [52] 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025

KDE [53] 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811

MahaD [54] 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403

GMM2 [55] 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973

EucD [54] 0.6803 0.9449 0.0551 0.3197 6.5423 0.5161 0.5480

BIRD 0.8084 0.8357 0.1642 0.1915 16.7115 0.1893 0.2678

TABLE 5: Comparison of BIRD with classical techniques over CDnet 2014 dataset
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FIGURE 5: ROC curve and the optimum threshold for pedes-
trians, Highway and Snowfall sequences

which means that more data is to be considered for delivery.
The optimum threshold that allows the best tradeoff between
TPR and FPR could be achieved as shown by the orange
dots in each ROC curve. It is defined by calculating the
minimum Gaussian distance between the results of TPR and
FPR: min(

√
(1− sensitivity)2 + (specificity − 1)2).

Figure (6) shows the impact of varying the threshold value
on the mean value of the detected blocks. In the case where
high stability characterizes the background (for example
pedestrians sequence), a high threshold is generally preferred
since there is a low risk of wrongly including background
blocks in the ROI. Meanwhile, a high number of background
blocks is classified as ROI in the case of noisy and dynamic
background (the Snowing scene in the Snowfall sequence
for example). A higher number of the ROI detected blocks
may enhance the quality of the reconstructed frames at the
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TABLE 6: Category-wise comparison of BIRD with the state-of-the-art on CDnet 2014 dataset

Category Recall Specificity Balanced
Acc.

BIRD Savas [56] Cwizar [24] BIRD Savas [56] Cwizar [24] BIRD Savas [56] Cwizar [24]

Dynamic. 0.7593 0.6436 0.8144 0.9512 0.9962 0.9985 0.8553 0.8199 0.9064

PTZ 0.9662 0.7685 0.3833 0.6443 0.9977 0.9968 0.8053 0.8831 0.6901

BadWeat. 0.9208 0.5647 0.6697 0.8948 0.9985 0.9993 0.9078 0.7816 0.8345

Baseline 0.7619 0.6214 0.8972 0.9437 0.8213 0.9980 0.8528 0.7213 0.9476

CameraJ. 0.8504 0.4567 0.7436 0.6446 0.9788 0.9931 0.7475 0.7177 0.8683

Intermi. 0.4186 0.5547 0.8324 0.8603 0.9979 0.9911 0.6394 0.7763 0.9118

LowFram. 0.8161 0.5490 0.6659 0.7905 0.7464 0.9949 0.8033 0.6477 0.8304

nightVi. 0.9455 0.4593 0.4511 0.8374 0.9583 0.9874 0.8915 0.7088 0.7193

Shadow 0.8775 0.8365 0.8786 0.8500 0.9828 0.9910 0.8638 0.9097 0.9348

Thermal 0.7548 0.4650 0.7268 0.8894 0.9647 0.9949 0.8221 0.7148 0.8609

Turbule. 0.8216 0.7421 0.7122 0.8870 0.9883 0.9997 0.8543 0.8652 0.8559

Overall 0.8084 0.6056 0.6608 0.8357 0.9483 0.9948 0.8220 0.7770 0.8509

*bold values are the best category-wise, red values are the best overall, blue values are the second best
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FIGURE 6: Number of blocks belonging to the ROI accord-
ing to the threshold value

destination. But, at the cost of higher energy and bitrate.
Table 7 shows the impact of the threshold value on the

energy gain expressed by the number of skipped blocks.
From the table, it can be seen that the mean number of ROI
blocks is inversely proportional to the threshold value. As
a result, the energy gain is low when the chosen threshold
value is low. A borderline case is when the threshold value
is 0 (i.e.the activity score is absolutely greater than 0), which
gives the lowest energy gain. The row that begins with MAX,
indicates that all the frame’s blocks will be compressed and

transmitted (i.e.including the blocks in which the activity
score is equal to 0). In this case, all the frame’s blocks
are taken into account for compression and transmission,
rendering the method ineffective. According to the accuracy
results shown in Figure 5, for the pedestrians sequence,
the optimum threshold for good detection accuracy is 9.
Consequently, this threshold value enables a saving of about
96% of the processing and transmission energy compared
to the CTA approach (Table 7). Choosing a low threshold
value is without benefit to the surveillance system, while
an optimum threshold could significantly save the energy
consumption in the sensor node and the bitrate needed for
transmission. Furthermore, an optimum threshold enables the
optimum ratio of the activity blocks and could be used as a
rate controller, which is an interesting subject for future work.

F. METHOD COMPLEXITY

To evaluate the consumed energy on embedded sensor con-
ditions, we have considered what follows, a sensor node
equipped with an ARM Cortex M3 micro-controller [57].
Table 8 shows the processor characteristics. Using MATLAB
2020a and C++ running on a PC intel Core i7-2670QM
2.2Ghz, with 8GB RAM on Windows 7 OS, 2.6 ms to process
one frame of 320×240 is recorded allowing processing of 384
frames per second (fps).
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TABLE 7: Statistics of the energy gain under threshold variation

Threshold Highway Pedestrians Snowfall

∆ energy ∆ energy ∆ energy
- mean

(ROI)(ceiled)
ratio (ROI) (theoretically) mean (ROI) ratio (ROI) (theoretically) mean (ROI) ratio (ROI) (theoretically)

10 149 12.41% +87.59% 49 03.63% +96.37% 68 01.26% +98.74%

9 160 13.33% +86.67% 52 03.85% +96.15% 74 01.37% +98.63%

7 192 16.00% +84.00% 60 04.44% +95.56% 87 01.61% +98.39%

5 249 20.75% +79.25% 76 05.63% +94.37% 110 02.04% +97.96%

3 291 24.25% +75.75% 120 08.89% +91.11% 190 03.52% +96.48%

1 621 51.75% +48.25% 273 20.22% +79.78% 1857 34.39% +65.61%

0 1003 83.58% +16.42% 598 44.30% +55.70% 4360 80.74% +19.26%

Max 1200 100% - 1350 100% - 5400 100% -

Sensor Processor Cortex M3
Clock rate 72 MHz

Processor power 23 mW
Cycles count Add.[1], Sub.[1], Mult.[1 or 2], Div.[1 to 12].

TABLE 8: ARM Cortex M3 characteristics

1) Energy Budget for change detection
The total energy budget of the proposed BIRD algorithm
is directly proportional to its computational complexity and
could be expressed as follows:

EDetection = ESFD +EFGS +EROF +EThreshold (12)

The total computational budget of the method is presented
in Table 9. The number of operations for FGS is reported in
[48], while the ROF budget is R = K(K − 1)/2, where K
is set to 4 for the proposed method and represents the size
of the sliding vector. The filter uses the sliding vector over
the columns. After each calculation step, the vector is shifted
by one position down, and the operation is executed till the
end of the line vector. This process is performed along all the
columns. For K = 4, the ROF performs 6 comparisons for
each score value in the map.

Since the number of operations performed is proportional
to the frame size and the block size (8 × 8, 16 × 16 · · · ),
a generalized model of the number of arithmetic operations
should be presented. We present in Table 9 the number of
operations for each step in terms of frame size (N,M ) and
block size(w). Table 9 also shows the energy budget of each
step and the total energy budget of the BIRD. Table 10
shows a comparison of the energy budget of the proposed
object detection method against state-of-the-art techniques
for 240 × 320, namely MoG [52], CS-MoC [58], CoSCS-
MoG [59], EBSCAM [60] and the basic FD technique. The

proposed technique shows the lowest energy consumption
records in both its minimal and maximal cases. While energy
consumption recorded an increase of about 38% compared to
FD when extreme cases are considered.

2) Energy dissipation for complete compression chain
Considering a complete compression chain, the total in-node
processing budget could be expressed as follow:

Etotal = EDetection + Ecompress (13)

Where EDetection is the energy cost of the object detec-
tion part as presented by Equation (12), Ecompress is the
energy cost of the compression part. For the calculation of
Ecompress, the model has been studied and provided in [61]
under the same conditions.

The compression cost for each frame includes the DCT
compression, the quantization cost and the Huffman coding
cost. Three implementations of the JPEG-based compression
are shown in [61] namely float IJG, slow IJG and fast IJG.
In this work, the slow IJG implementation is adopted with an
energy cost of 192.28µJ for each 8x8 block.

Since Nblocks represents the number of activity blocks
detected that will be coded for each frame, the compression
cost is proportionally related to Nblocks. For example, the
Highway sequence records an overhead of the object detec-
tion step EDetection equal to 0.6891mJ/frame.

Figure (7) illustrates the per-frame energy consumption of
the proposed method compared to ROI-based compression
methods, namely, [30] referred to as EMP’22, [16] referred to
as SSD’22 and the forward baseline compression (MJPEG).
Since the algorithm is applied to each frame, constant energy
is spent for each frame, while the total energy curves oscillate
based on the number of blocks to compress. BIRD shows the
best results as the lowest energy budget for all the scenarios.
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TABLE 9: Computational budget of each step of BIRD algorithm

Step Operations # of Operations Energy consumption (mJ/Frame)
min (Cyclesdiv = 1) max(Cyclesdiv = 12)

SFD
Addition NM −NM/w2

0.2693 0.4
Subtraction NM/w2

Absolute NM/w2

Division NM/w2

ROF Comparison 6(N/w2 − 3)M/w2
7.4250e−5 7.4250e−5

FGS Multiplication 6NM/w2

0.0832 0.2851

Division NM/w2

Thresholding Comparison NM/w2 0.004 0.004

Edetection - - 0.3723 0.6891

TABLE 10: Per-frame Edetection cost of the method compared to state-of-the-art for size (240× 320)

Method Energy Budget (mJ/Frame)

min (Cyclesdiv = 1) max (Cyclesdiv = 12)

MoG [52] 649.95

CS-MoG [58] 116.44

CoSCS-MoG [59] 125.96

EBSCAM [60] 3.4

FD 0.5069

BIRD (proposed) 0.3723 0.6891

The energy dissipation of the BIRD method is proportional
to the frame size. About 79.29% of blocks are skipped for the
Highway sequence compared to the standard coding (MJPEG
for example), while more than 98% of the blocks are skipped
for SnowFall sequence and 86.89% for pedestrians sequence.
The level of energy consumption at the processing step is
correlated with the number of skipped blocks.

Despite the good ROI detection of the other techniques,
they are weakened by the high energy cost in the detec-
tion step. This is due to the adopted edge detection and
automatic thresholding techniques in [30] [16] respectively.
Those techniques are computationally extensive due to the
use of arithmetic convolution and histogram calculation.
Meanwhile, the optimized design of edge detectors and otsu’s
threshold should help reduce their energy budget.

From Figure (7) we can deduce that the algorithm is

efficient in saving a substantial amount of processing and
transmission power. The saving achieves more than 90% of
the energy most of the time. The proposed method provides a
good balance between energy saving and detection accuracy.

3) Memory requirements
We analyze here the memory requirement of the proposed
region detection method. The method requires storing the
previous grayscale frame of 8-bit depth and updating every
frame, corresponding to a memory of N × M bytes. Two
score maps are to be stored which requires a memory of
2 × N × M/w2 bytes. The ROF and the FGS filters are
performed locally on the stored activity map. Thus, the
needed memory for these operations is ignored (window of
4 Bytes for ROF and short vectors for FGS). For w = 8, the
total memory consumption is about 1.031 bytes per pixel.
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(b) Energy consumption for Pedestrians sequence
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FIGURE 7: Per-frame energy dissipation of BIRD for High-
way, pedestrians and Snowfall

V. CONCLUSION
In this study, we proposed an energy-efficient moving region
detection approach as a pre-encoder for WVS. The suggested
approach is built upon a low-complexity SFD operation
followed by morphological filtering and thresholding. The
proposed method’s overall efficiency was evaluated using a
standard dataset as a benchmark. The performance assess-
ment shows a satisfactory balance between the proposed
method’s detection accuracy, energy efficiency, and memory.
In these respects, our approach effectively relieves the burden
of processing and compressing video sequences for resource-
constrained surveillance devices. The proposed method has
two main drawbacks: (1) It has only been tested on fixed
cameras, and (2) It has, in some cases, poor results using
some performance metrics (like F-measure) because of its
commitment to meet constrained WVS. Future studies in-
clude improving the performance of the algorithm and its
implementation in an embedded WVS system while taking
into account channel and network characteristics.
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FPGA-based image feature detector and matcher based on the FAST and
BRIEF algorithms,” International Journal of Advanced Robotic Systems,
vol. 12, no. 10, p. 141, 2015.

[37] P. Kumar, A. Singhal, S. Mehta, and A. Mittal, “Real-time moving object
detection algorithm on high-resolution videos using GPUs,” Journal of
Real-Time Image Processing, vol. 11, no. 1, pp. 93–109, 2016.

[38] K. Goyal and J. Singhai, “Review of background subtraction methods
using gaussian mixture model for video surveillance systems,” Artificial
Intelligence Review, vol. 50, no. 2, pp. 241–259, 2018.

[39] K. Kim, T. H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time
foreground–background segmentation using codebook model,” Real-time
imaging, vol. 11, no. 3, pp. 172–185, 2005.

[40] O. Barnich and M. Van Droogenbroeck, “ViBe: A universal background
subtraction algorithm for video sequences,” IEEE Transactions on Image
processing, vol. 20, no. 6, pp. 1709–1724, 2010.

[41] R. Antonio, S. Faria, L. M. Tavora, A. Navarro, and P. Assuncao,
“Learning-based compression of visual objects for smart surveillance,”
in 2022 Eleventh International Conference on Image Processing Theory,
Tools and Applications (IPTA). IEEE, 2022, pp. 1–6.

[42] H. Zhu, X. Yan, H. Tang, Y. Chang, B. Li, and X. Yuan, “Moving object
detection with deep CNNs,” Ieee Access, vol. 8, pp. 29 729–29 741, 2020.

[43] S. S. Sengar and S. Mukhopadhyay, “Moving object detection based on
frame difference and W4,” Signal, Image and Video Processing, vol. 11,
no. 7, pp. 1357–1364, 2017.

[44] S. H. Shaikh, K. Saeed, and N. Chaki, “Moving object detection using
background subtraction,” in Moving object detection using background
subtraction. Springer, 2014, pp. 15–23.

[45] A. Haidous, W. Oswald, H. Das, and N. Gong, “Content-adaptable roi-
aware video storage for power-quality scalable mobile streaming,” IEEE
Access, vol. 10, pp. 26 830–26 848, 2022.

[46] B. Li, L. Ye, J. Liang, Y. Wang, and J. Han, “Region-of-interest and
channel attention-based joint optimization of image compression and
computer vision,” Neurocomputing, 2022.

[47] G. Wu, M. Qin, T. M. Bae, S. Li, Y. Fang, and Y.-K. Chen, “Region of
interest quality controllable video coding techniques,” Mar. 15 2022, uS
Patent 11,277,626.

[48] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, “Fast global image
smoothing based on weighted least squares,” IEEE Transactions on Image
Processing, vol. 23, no. 12, pp. 5638–5653, 2014.

[49] N. R. Harvey and S. Marshall, “Rank-order morphological filters: A
new class of filters,” in IEEE Workshop on nonlinear signal and image
processing. Citeseer, 1995, pp. 975–978.

[50] Y. Wang, P.-M. Jodoin, F. Porikli, J. Konrad, Y. Benezeth, and P. Ish-
war, “Cdnet 2014: An expanded change detection benchmark dataset,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2014, pp. 387–394.

[51] Z. Zivkovic and F. Van Der Heijden, “Efficient adaptive density estimation
per image pixel for the task of background subtraction,” Pattern recogni-
tion letters, vol. 27, no. 7, pp. 773–780, 2006.

[52] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” in Proceedings. 1999 IEEE computer society con-
ference on computer vision and pattern recognition (Cat. No PR00149),
vol. 2. IEEE, 1999, pp. 246–252.

[53] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for
background subtraction,” in European conference on computer vision.
Springer, 2000, pp. 751–767.

[54] Y. Benezeth, P.-M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger,
“Comparative study of background subtraction algorithms,” Journal of
Electronic Imaging, vol. 19, no. 3, p. 033003, 2010.

[55] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., vol. 2. IEEE, 2004, pp. 28–31.
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