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Global weak solutions to a chemotaxis model with local sensing and consumption are shown to converge to spatially homogeneous steady states in the large time limit, when the motility is assumed to be positive and C 1 -smooth on [0, ∞). The result is valid in arbitrary space dimension n ≥ 1 and extends a previous result which only deals with space dimensions n ∈ {1, 2, 3}.

Introduction

Let Ω be a smooth bounded domain of R n , n ≥ 1, and consider the initial boundary value problem

∂ t u = ∆(uγ(v)) in (0, ∞) × Ω , (1.1a) 
∂ t v = ∆v -uv in (0, ∞) × Ω , (1.1b) 
∇(uγ(v)) • n = ∇v • n = 0 on (0, ∞) × ∂Ω , (1.1c)

(u, v)(0) = (u in , v in ) in Ω , (1.1d) 
which describes the dynamics of a population of bacteria with non-negative density u and of a signal with non-negative concentration v. On the one hand, according to (1.1a), the diffusive motion of the bacteria is not only monitored by the signal through the motility function γ but also biased by a chemotactic effect generated by the signal. On the other hand, the signal is consumed by the bacteria, as reflected by the reaction term on the right hand side of (1.1b). The latter mechanism is in sharp contrast with classical Keller-Segel chemotaxis models [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF], in which the sink term -uv in (1.1b) is replaced by u -v, so that bacteria produce the signal that alters their motion, see the survey articles [START_REF] Bellomo | Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues[END_REF][START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF][START_REF] Horstmann | From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber[END_REF][START_REF] Painter | Mathematical models for chemotaxis and their applications in self-organisation phenomena[END_REF] and the references therein for a more precise account. Therefore, the dynamics of (1.1) is expected to differ significantly. A first hint in that direction is the following property: if (u s , v s ) is a stationary solution to (1.1) with u s ≡ 0, then necessarily v s ≡ 0 by (1.1b). In that case, it readily follows from (1.1a) that γ(0)u s = const., which reduces to u s = const. when γ(0) > 0. It is thus expected that the positivity of both γ(0) and u in 1 implies that any global non-negative

solution (u, v) to (1.1) satisfies lim t→∞ (u(t), v(t)) = u in 1 |Ω| , 0 (1.2)
in an appropriate topology. That this convergence holds true in

L ∞ (Ω, R 2 ) is shown in [5, Theo- rem 1.2] when γ ∈ C 3 ([0, ∞)) is positive on [0, ∞) with γ ′ < 0 on (0, ∞)
and v in ∞ is sufficiently small and in [START_REF] Li | Refined regularity analysis for a Keller-Segel-consumption system involving signaldependent motilities[END_REF] when γ ∈ C 3 ([0, ∞)) is positive on [0, ∞) and the space dimension n ranges in {1, 2, 3}. The required regularity of γ is subsequently relaxed in [START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF]Theorem 1.2], where the validity of (1.2) is established under the sole assumption 

γ ∈ C 1 ([0, ∞)) , γ > 0 on [0, ∞) , (1.3 
z ∈ H 1 (Ω) ′ , we set z := z, 1 (H 1 ) ′ ,H 1 /|Ω| and note that z = 1 |Ω| Ω z(x) dx for z ∈ H 1 (Ω) ′ ∩ L 1 (Ω). Next, for z ∈ H 1 (Ω) ′ with z = 0, let K[z] ∈ H 1 (Ω) be the unique (variational) solution to -∆K[z] = z in Ω , ∇K[z] • n = 0 on ∂Ω , (1.4a) satisfying K[z] = 0 .
(1.4b) Also, for p ∈ [1, ∞], we denote the positive cone of L p (Ω) by L p + (Ω). Theorem 1.1. Assume that γ satisfies (1.3) and consider

u in ∈ L 1 + (Ω) ∩ H 1 (Ω) ′ and v in ∈ L ∞ + (Ω) ∩ H 1 (Ω) with M := u in > 0. If (u, v) is a global weak solution to (1.1) in the sense of Definition 2.1 below, then lim t→∞ ∇P (t) 2 = lim t→∞ v(t) H 1 = 0 , (1.5) lim t→∞ t+1 t u(s) -M 2 2 ds = lim t→∞ t+1 t v(s) 2 H 2 ds = 0 , (1.6) 
where

P (t) := K[u(t) -M] for t ≥ 0.
As already mentioned, Theorem 1.1 supplements previous results in the literature showing the long term convergence of (u -M, v) to zero, either in low space dimension n ∈ {1, 2, 3}, see [7, Theorem 1.2], or when v in ∞ is sufficiently small, see [START_REF] Li | Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility[END_REF]Theorem 1.2]. As in [START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF], the proof of Theorem 1.1 relies on the so-called duality estimate derived from (1.1a) (Lemma 2.3) and the dissipativity properties of (1.1b) (Lemma 2.4). The building block of the proof is to show that ∇P 2 2 + a v 2 2 is a Liapunov functional for (1.1) for a suitable choice of a > 0. This step is the main difference with the approach developed in [START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF] where a functional of the form ∇P 2 2 + b ∇v 2 2 with b > 0 is used. Remark 1.2. When γ(0) = 0, Theorem 1.1 is no longer true and convergence of u(t) as t → ∞ to a non-constant limit may take place, see [START_REF]A quantitative strong parabolic maximum principle and application to a taxis-type migration-consumption model involving signal-dependent degenerate diffusion[END_REF]Theorem 1.5].

We do not address here the issue of the existence of global solutions to (1.1) and refer to [START_REF] Li | Global boundedness and large time behavior of solutions to a chemotaxis-consumption system with signal-dependent motility[END_REF][START_REF] Li | Refined regularity analysis for a Keller-Segel-consumption system involving signaldependent motilities[END_REF][START_REF]A quantitative strong parabolic maximum principle and application to a taxis-type migration-consumption model involving signal-dependent degenerate diffusion[END_REF] for the existence of global bounded classical solutions and to [5-7, 9, 11] for that of global weak solutions under various assumptions on γ (with either γ(0) = 0 or γ(0) > 0) and the space dimension n. In particular, given a global weak solution (u, v) to (1.1) constructed in [START_REF] Li | Refined regularity analysis for a Keller-Segel-consumption system involving signaldependent motilities[END_REF][START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF] and t 0 > 0, (t, x) → (u, v)(t + t 0 , x) is a weak solution to (1.1) in the sense of Definition 2.1, so that the convergence stated in Theorem 1.1 applies to these solutions.

We next combine (1.6) and the time monotonicity of the L ∞ -norm of v to supplement the convergence (1.5) of v in H 1 (Ω) with convergence to zero of v in L ∞ (Ω) when the space dimension n ranges in {1, 2, 3}, thereby recovering the outcome of [7, Theorem 1.2].

Corollary 1.3. Assume that n ∈ {1, 2, 3}. Under the assumptions of Theorem 1.1, one has also

lim t→∞ v(t) ∞ = 0 .

Proofs

We begin with the definition of a global weak solution to (1.1) and introduce the Hilbert space 

in ∈ L 1 + (Ω) ∩ H 1 (Ω) ′ and v in ∈ L ∞ + (Ω) ∩ H 1 (Ω). A global weak solution to (1.1) is a couple of non-negative functions (u, v) ∈ C w ([0, ∞), H 1 (Ω) ′ ) × C([0, ∞), L 2 (Ω))
satisfying, for any t > 0,

u ∈ L 2 ((0, t) × Ω) , v ∈ L ∞ ((0, t) × Ω) ∩ W 1,2 ((0, t), L 2 (Ω)) ∩ L 2 ((0, t), H 2 N (Ω)) , along with Ω u(t)ϑ(t) dx - Ω u in ϑ(0) dx = t 0 Ω uγ(v)∆ϑ + u∂ t ϑ dxds (2.1a) for all ϑ ∈ W 1,2 ((0, t), L 2 (Ω)) ∩ L 2 ((0, t), H 2 N (Ω)) and ∂ t v -∆v + uv = 0 a.e. in (0, t) × Ω , ∇v • n = 0 a.e. on (0, t) × ∂Ω .
(2.1b)

We recall that, given a Banach space X and T ∈ (0, ∞], C w ([0, T ), X) denotes the space of weakly continuous functions from [0, T ) to X.

We next derive several estimates on u and v which are already well-known, see [START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF]. From now on, (c i ) i≥1 denote positive constants depending only on Ω, γ in (1.3), u in , and v in . Lemma 2.2. For t ≥ 0,

u(t) = M = u in and v(t) ∞ ≤ V := v in ∞ . (2.2)
Proof. Lemma 2.2 readily follows from (2.1a) (with ϑ ≡ 1), along with (2.1b), the non-negativity of uv, and the comparison principle.

We next exploit the specific form of (1.1a) to derive a so-called duality estimate on u.

Lemma 2.3.

Set P = K[u -M].
Then, for t > 0,

P ∈ W 1,2 ((0, t), L 2 (Ω)) ∩ L 2 ((0, t), H 2 N (Ω)) and d dt ∇P 2 2 = -2 Ω γ(v)(u -M) 2 dx -2M Ω γ(v)(u -M) dx . (2.3) 
Proof. As

∂ t P = uγ(v) -uγ(v) in (0, ∞) × Ω (2.4)
by (1.4a) and (2.1a) (with a suitable choice of test functions), the claimed regularity of P follows from (1.3), (1.4), the square integrability of u, and the boundedness of v. It then follows from (2.4) that 1 2

d dt ∇P 2 2 = - Ω ∂ t P ∆P dx = Ω (u -M) uγ(v) -uγ(v) dx = - Ω γ(v)u(u -M) dx = - Ω γ(v)(u -M) 2 dx -M Ω γ(v)(u -M) dx ,
which completes the proof.

We next take advantage of the non-positivity of the right hand side of (1.1b) to obtain a classical energy estimate on v.

Lemma 2.4. For t ≥ 0, d dt v 2 2 + 2 ∇v 2 2 + 2 v √ u 2 2 = 0 .
At this point, we deviate from the proof of [7, Theorem 1.2] and construct a Liapunov functional associated with (1.1), building upon the outcome of Lemma 2.3 and Lemma 2.4. This is clearly the main building block of the proof. As a preliminary step, we observe that the continuity and positivity (1.3) of γ and the boundedness (2.2) of v imply that

γ * := min s∈[0,V ] {γ(s)} > 0 .
(2.5)

We also recall the Poincaré-Wirtinger inequality: there is

c 1 > 0 such that z -z 2 ≤ c 1 ∇z 2 , z ∈ H 1 (Ω) . (2.6) Proposition 2.5. There is c 2 > 0 such that, for t ≥ 0, d dt ∇P 2 2 + c 2 v 2 2 + γ * u -M 2 2 + c 2 ∇v 2 2 ≤ 0 .
Proof. It follows from (1.3), (2.2), (2.6), and Hölder's inequality that

2M Ω γ(v)(u -M) dx = 2M Ω γ(v) -γ( v ) (u -M) dx ≤ 2M γ ′ L ∞ (0,V ) Ω |v -v ||u -M| dx ≤ 2M γ ′ L ∞ (0,V ) v -v 2 u -M 2 ≤ 2Mc 1 γ ′ L ∞ (0,V ) ∇v 2 u -M 2 . (2.7) 
Setting

c 2 := Mc 1 γ ′ L ∞ (0,V )
2 /γ * , we infer from Lemma 2.3, Lemma

that d dt ∇P 2 2 + c 2 v 2 2 ≤ -2γ * u -M 2 2 -2c 2 ∇v 2 2 + 2Mc 1 γ ′ L ∞ (0,V ) ∇v 2 u -M 2 ≤ -2γ * u -M 2 2 -2c 2 ∇v 2 2 + γ * u -M 2 2 + M 2 c 2 1 γ ′ 2 L ∞ (0,V ) γ * ∇v 2 2 = -γ * u -M 2 2 -c 2 ∇v 2 2 , as claimed. 2.4, (2.5), (2.7), and Young's inequality 
We next argue as in [START_REF]Relaxation in a Keller-Segel-consumption system involving signal-dependent motilities[END_REF]Lemma 3.2] to obtain additional information on v.

Lemma 2.6. For t ≥ 0, d dt ∇v 2 2 + 2M ∇v 2 2 + ∆v 2 2 ≤ V 2 u -M 2 2 .
Proof. We infer from (2.1b), (2.2), and Hölder's and Young's inequalities that 1 2

d dt ∇v 2 2 + ∆v 2 2 = Ω uv∆v dx = Ω (u -M)v∆v dx + M Ω v∆v dx ≤ V u -M 2 ∆v 2 -M ∇v 2 2 ≤ ∆v 2 2 2 + V 2 u -M 2 2 2 -M ∇v 2 2
, from which Lemma 2.6 follows.

Summarizing the outcome of Proposition 2.5 and Lemma 2.6, we have so far obtained the following estimates on u and v.

Proposition 2.7. There is c 3 > 0 such that 

P (t) H 1 + v(t) H 1 ≤ c 3 , t ≥ 0 , (2.8) 
∞ 0 u(s) -M 2 2 + ∇v(s)
= - Ω uv dx = - Ω (u -M)v dx -M v 1 = - Ω (u -M)(v -v ) dx -M v 1 .
Hence, by (2.6) and Hölder's inequality,

d dt v 1 + M v 1 ≤ u -M 2 v -v 2 ≤ c 1 u -M 2 ∇v 2 .
We then integrate with respect to time to find

v(t) 1 ≤ v in 1 e -M t + c 1 t 0 e M (s-t) u(s) -M 2 ∇v(s) 2 ds . ( 2 

.13)

Since s → u(s)-M 2 ∇v(s) 2 belongs to L 1 (0, ∞) by (2.9), we deduce from (2.12) (with α = M and F = u -M 2 ∇v 2 ) that the right hand side of (2.13) converges to zero as t → ∞. Consequently,

lim t→∞ v(t) 1 = 0 .
Similarly, we infer from (2.3), (2.5), and (2.7) that, for t ≥ 0,

d dt ∇P 2 2 ≤ -2γ * u -M 2 2 + 2Mc 1 γ ′ L ∞ (0,V ) ∇v 2 u -M 2 .
Moreover, by (1.4), (2.6), and Hölder's inequality,

∇P 2 2 = - Ω P ∆P dx = Ω (u -M)P dx ≤ u -M 2 P 2 ≤ c 1 u -M 2 ∇P 2 , so that ∇P 2 ≤ c 1 u -M 2 .
Gathering the above inequalities and setting c 4 := 2γ * /c 2 1 and c

5 := 2Mc 1 γ ′ L ∞ (0,V ) , we end up with d dt ∇P 2 2 + c 4 ∇P 2 2 ≤ c 5 ∇v 2 u -M 2 .
Hence, after integration with respect to time, 

∇P (t) 2 2 ≤ ∇P (0)

H 2 N

 2 (Ω) := {z ∈ H 2 (Ω) : ∇z • n = 0 on ∂Ω} , which is actually the domain of the Laplace operator in L 2 (Ω) supplemented with homogeneous Neumann boundary conditions. Definition 2.1. Consider u

  The final step of the proof of Theorem 1.1 deals with the convergence of v(t) 1 and ∇P (t) 2 as t → ∞.
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