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The rules describing emergence of abc-triples formed by the set of roots for Pell's equations x 2 -Dy 2 = N with N = ±1 and N = ±2 are revealed.

Introduction

The abc-conjecture, concerning some deep connections between additive and multiplicative properties of integers, is a challenging issue in Diophantine analysis. It's proof [1], extremely long and hard to comprehend, is not accepted by professionals in this particular field of mathematics, therefore it's confirmation remains controversial [2]. We offer a completely different approach to this problem, the first step of which is successfully accomplished.

Background information 2.1 Radicals and abc-conjecture

The radical of a positive integer n is the product of all distinct prime factors of n. It is the largest square-free divisor of n and therefore is sometimes defined as the square-free kernel of n. Here we use the notification R(n) for radical function, but frequently rad(n) can be found. Thus R(n) ≤ n. For n = 2 2 • 5 3 • 17 = 8500 we have R(8500) = 2 • 5 • 17 = 170.

Radical R(n) is a multiplicative function -for two relatively prime integers a ⊥ b we have R(ab) = R(a) • R(b). Comparison of n and R(n) shows how far n is from being squarefree, therefore R(n) is mostly used for analysis of multiplicative and additive properties of integers, as in abc-conjecture.

Assume that a, b and c are pairwise relatively prime positive integers, a < b < c and a + b = c (they are additively related). Then generally R(abc) > c, but rarely we have R(abc) < c; there are exactly 418 such cases for c < 100000, see [START_REF] Smit | Small triples[END_REF]. These special cases are called abc-triples (sometimes abc-hits) and abc-conjecture postulates that R(abc) is usually not much smaller than c. More precise formulation of abc-conjecture is the following. Definition 2.1. For every ϵ > 0 there exist only finitely many triples (a, b, c) of coprime positive integers satisfying a + b = c, for which R(abc) 1+ϵ < c.

(

) 1 
Some other formulations of abc-conjecture see [4,[START_REF] Martin | abc triples[END_REF], but here we restrict ourselves by finding new sequences of abc-triples and relations revealed by them.

There are infinitely many abc-triples, because it is possible to construct infinite sequences of them.

Example 2.2. 

R(abc) = R(1) • R(63N ) • R(2 6k ) = 1 • R(63N ) • 2 ≤ 2 • R(63) • R(N ).
As maximal R(N ) value is R(N ) = N, we have R(abc) ≤ 42N ; c = b + 1 = 63N + 1 and R(abc) < c for all k = 1, 2, 3, ... Therefore (1, 2 6k -1, 2 6k ) for k = 1, 2, 3, ... represents an infinite sequence of abc-triples.

Excellent tables of known abc-triples can be found at Bart de Smit's site [START_REF] Smit | Small triples[END_REF][START_REF] Smit | Big triples[END_REF]. Their analysis led to the following Proof. We arrange them traditionally a < b < c.

1. Assume that b is square-free, it can be composite (product of first powers of primes). Then R(b) = b. We need R(a) • b • R(c) < c, so R(a) and R(c) must be small. Minimal R(a) = 1 and minimal R(c) = 2, so minimal R(abc) = 2b > c, because a < b and c = a + b.

2. Assume that c is square-free, it can be composite. Then R(c) = c. Again minimal R(a) = 1 and minimal R(b) = 2, so minimal R(abc) = 2c > c.

3. Assume that components b and c are square-free, they can be composite. Then

R(b) = b and R(c) = c. Minimal R(a) = 1 gives minimal R(abc) = b • c, but minimal R(b) = 2, so minimal R(abc) = 2c > c. Equally, minimal R(c) = 2 gives R(abc) = 2b > c, because a < b and c = a + b.
In all three cases we obtain contradictions, which proves the theorem.

Theorem 2.3 allows classification of abc-equations according to their components composition. Cases with b or c as perfect squares are clearly generalized Pell's equations x 2 -Dy 2 = N with positive or negative N ; if none of b or c are perfect squares we have equation ax 2 -by 2 = N , whose solution also is Pell's type (see [START_REF] Mollin | The Diophantine Equation AX 2 -BY 2 = C Solved via Continued Fractions[END_REF]). This induced further investigation of Pell's equations as simple generators for abc-triples.

Continuants, continued fractions and Pell's equations

In our exposition we will intensively use the concept of continuants, invented by L. Euler and rarely used today. Therefore Chapter 13 of [START_REF] Muir Th | A Treatise on the Theory of Determinants[END_REF] is highly recommended. Basic theory about continued fractions and Pell's equations can be found in many number theory textbooks, as [START_REF] Nagell | Introduction to Number Theory[END_REF][START_REF] Sierpinski | Elementary Theory of Numbers[END_REF]. Here we only accent without proofs some well-known facts about these items. 1. For the sequence of natural numbers a 0 , a 1 , ..., a n the continuant (in Muir's notation -simple continuant) K(a 0 , a 1 , ..., a n ) is defined recursively:

• K(a 0 ) = a 0 , but for empty set K() = 1;

• for all n ≥ 1 we have K(a 0 , a 1 , ..., a n ) = a n • K(a 0 , a 1 , ..., a n-1 ) + K(a 0 , a 1 , ..., a n-2 ).

We allow a 0 = 0 for concordance with continued fractions. 2. Continuant inversion: K(a 0 , a 1 , ..., a n ) = K(a n , ..., a 1 , a 0 ). 3. Two forms of continuant splitting.

• Between two elements a l and a l+1 :

K(a 0 , a 1 , ..., a n ) = K(a 0 , a 1 , ..., a l ) • K(a l+1 , ..., a n ) + K(a 0 , a 1 , ..., a l-1 ) • K(a l+2 , ..., a n ).
• If a l = a l1 + a l2 , then we can split at position a l :

K(a 0 , a 1 , ..., a n ) = K(a 0 , a 1 , ..., a l1 ) • K(a l+1 , ..., a n ) + K(a 0 , a 1 , ..., a l-1 ) • K(a l2 , ..., a n ).
4. From Laplace's theorem (or from properties of continued fractions) the following can be derived.

K(a 0 , a 1 , ..., a n ) • K(a 1 , a 2 , ..., a n-1 ) -K(a 0 , a 1 , ..., a n-1 ) • K(a 1 , a 2 , ..., a n ) = (-1) n-1 . (2)
5. If [a 0 ; a 1 , ..., a n ] is a finite simple continued fraction (a 0 , a 1 , ..., a n are positive integers, a 0 = 0 is allowed), then

[a 0 ; a 1 , ..., a n ] = K(a 0 , a 1 , ..., a n ) K(a 1 , a 2 , ..., a n )
and K(a 0 , a 1 , ..., a n ) ⊥ K(a 1 , a 2 , ..., a n ). 6. For a non-square natural number D the representation of irrational √ D in the form of a simple continued fraction is periodic:

√ D = [a 0 ; a 1 , a 2 , ..., a s ].
Here a 0 is an integer part of √ D, a s = 2a 0 , but the sequence a 1 , a 2 , ..., a s-1 is palindromic. The bar above a 1 , a 2 , ..., a s indicate the period. In the following we denote this palindromic component by π, so

√ D = [a 0 ; π, 2a 0 ]. 7.
We have a non-square natural number D. If the length of the palindromic sequence π for √ D expression is odd (and the length of the period π2a 0 is even), then:

• there are not solutions for the negative Pell's equation x 2 -Dy 2 = -1 for this particular D value;

• all solutions for the corresponding positive Pell's equation x 2 -Dy 2 = 1 are given by

x 0 y 0 = K(a 0 , π) K(π) ; x 1 y 1 = K(a 0 , π, 2a 0 , π) K(π, 2a 0 , π) ; etc.
8. We have a non-square natural number D. If the length of the palindromic sequence π for √ D expression is even (so the length of the period π2a 0 is odd), then:

• all solutions for the negative Pell's equation x 2 -Dy 2 = -1 are given by x 0 y 0 = K(a 0 , π) K(π) ; x 1 y 1 = K(a 0 , π, 2a 0 , π, 2a 0 , π) K(π, 2a 0 , π, 2a 0 , π) ; etc.;

• all solutions for the corresponding positive Pell's equation x 2 -Dy 2 = 1 are given by

x 0 y 0 = K(a 0 , π, 2a 0 , π) K(π, 2a 0 , π) ; x 1 y 1 =
K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π) ; etc.

Pell's equations and abc-triples

A lot of items in Bart de Smit's table of 418 smallest abc-triples [START_REF] Smit | Small triples[END_REF] are formed by solutions for some Pell's equations -fundamental or any higher roots. The very first abc-triple (1, 2 3 , 3 2 ) represents fundamental solution x 0 = 3 and y 0 = 2 for positive Pell's equation x 2 -Dy 2 = 1 with discriminant D = 2. The 3rd abc-triple (1, 2 4 • 3, 7 2 ) gives roots x 1 = 7 and y 1 = 4 for positive Pell's equation with D = 3. Few items in [START_REF] Smit | Small triples[END_REF] correspond to roots of negative Pell's equation, for example, abc-triple #32 or (1, 2 10 , 5 2 • 41) represents fundamental roots x 0 = 32 and y 0 = 5 for equation x 2 -41y 2 = -1. Such examples also appear among items in files of big abc-triples [START_REF] Smit | Big triples[END_REF]. As palindrome-containing continuants constitute different roots for positive (and, if they exist, also for negative) Pell's equation with given non-square D, divisibility interrelations of these continuants were investigated.

3 Divisibility interrelations of positive/negative Pell's equation roots

Theorem 3.1. Continuant K(π, 2a 0 , π k-times
) is a divisor of all continuants K(π, 2a 0 , π l-times

). Here l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ....

Proof. 1. k = 0, n = 0 and K(π)|K(π) -trivially. k = 0, n = 1 and we must compare K(π) with K(π, 2a 0 , π). K(π, 2a 0 , π) = K(π, a 0 + a 0 , π) = K(π, a 0 ) • K(π) + K(π) • K(a 0 , π) = 2K(π) • K(a 0 , π), therefore K(π)|K(π, 2a 0 , π).
k = 0, n = 2, we must compare K(π) and K(π, 2a 0 , π, 2a 0 , π). K(π, 2a 0 , π, 2a 0 , π) = K(π, 2a 0 , π, a 0 ) • K(π) + K(π, 2a 0 , π) • K(a 0 , π). In view of result for k = 0, n = 1 we obtain K(π)|K(π, 2a 0 , π, 2a 0 , π). For n = 3, 4, ... we can act analogously.

2. k = 1, n = 0 and K(π, 2a 0 , π)|K(π, 2a 0 , π) -trivially. k = 1, n = 1 and we must compare K(π, 2a 0 , π) with K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π). K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π) = K(π, 2a 0 , π, a 0 ) • K(π, 2a 0 , π) + K(π, 2a 0 , π) • K(a 0 , π, 2a 0 , π) = 2K(a 0 , π, 2a 0 , π) • K(π, 2a 0 , π), therefore K(π, 2a 0 , π)|K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π). k = 1, n = 2 and the dividend K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) = K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π, a 0 ) • K(π, 2a 0 , π) + K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π) • K(a 0 , π, 2a 0 , π). As we just obtained K(π, 2a 0 , π)|K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π), the necessary K(π, 2a 0 , π)|K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) follows.

In each case we cut off from the dividend the corresponding divisor fragment, this inductively proves the theorem. Theorem 3.1 suggests that each so defined continuant with the number of palindromes specified in the left section of the Table 1 is a divisor of all continuants of the same type, specified in the right section of the Table 1 ) is a divisor of all continuants K(a 0 , π, 2a 0 , π l-times

).

Here

l = k + 2n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, .... Proof. 1. k = 0, n = 0 and K(a 0 , π)|K(a 0 , π) -trivially. k = 0, n = 1 and we must compare K(a 0 , π) with K(a 0 , π, 2a 0 , π, 2a 0 , π). K(a 0 , π, 2a 0 , π, 2a 0 , π) = K(a 0 , π, 2a 0 , π, a 0 ) • K(π) + K(a 0 , π, 2a 0 , π) • K(a 0 , π) = [K(a 0 , π, a 0 ) • K(π, a 0 ) + K(a 0 , π) • K(a 0 , π, a 0 )] • K(π) + K(a 0 , π, 2a 0 , π) • K(a 0 , π) = K(a 0 , π)•[2K(π)•K(a 0 , π, a 0 )+K(a 0 , π, 2a 0 , π)], therefore K(a 0 , π)|K(a 0 , π, 2a 0 , π, 2a 0 , π). k = 0, n = 2 and the dividend K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) = K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, a 0 ) • K(π) + K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) • K(a 0 , π) = K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) • K(a 0 , π) + K(π) • [K(a 0 , π, 2a 0 , π, 2a 0 , π) • K(a 0 , π, a 0 ) +K((a 0 , π, 2a 0 , π, 2a 0 , π, a 0 ) • K(a 0 , π)].
For k = 0, n = 1 we just obtained K(a 0 , π)|K(a 0 , π, 2a 0 , π, 2a 0 , π), therefore the first summand in square brackets divides by K(a 0 , π) and we obtain necessary K(a 0 , π)|K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π).

2. k = 1, n = 0 and K(a 0 , π, 2a 0 , π)|K(a 0 , π, 2a 0 , π) -trivially.

k = 1, n = 1 and the dividend K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) = K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, a 0 ) • K(π, 2a 0 , π) +K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) • K(a 0 , π, 2a 0 , π). The first summand gives K(π, 2a 0 , π) • [K(a 0 , π, 2a 0 , π) • K(a 0 , π, 2a 0 , π, a 0 ) + K(a 0 , π, 2a 0 , π, a 0 ) • K(a 0 , π, 2a 0 , π)], so it is divisible by K(a 0 , π, 2a 0 , π). Therefore we get K(a 0 , π, 2a 0 , π)|K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π).
Remark. It seems useful in continuant expressions to label longer repeating π, 2a 0 , ..., π sequences accordingly to their number of π units. Thus sequence a 0 , π, 2a 0 , π can be labelled as a 0 , 2π, sequence with four palindromes π, 2a 0 , π, 2a 0 , π, 2a 0 , π can be labelled as 4π. For instance, K(a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π) can be shortened to K(a 0 , 6π).

k = 1, n = 2 and the dividend K(a 0 , 10π) = K(a 0 , 8π, a 0 )•K(π, 2a 0 , π)+K(a 0 , 8π)•K(a 0 , π, 2a 0 , π). The first summand gives K(π, 2a 0 , π) • [K(a 0 , π, 2a 0 , π) • K(a 0 , 6π, a 0 ) + K(a 0 , π, 2a 0 , π, a 0 ) • K(a 0 , 6π 
)] and we already know that K(a 0 , π, 2a 0 , π)|K(a 0 , 6π). So both summands are divisble by K(a 0 , π, 2a 0 , π) and we get the necessary K(a 0 , π, 2a 0 , π)|K(a 0 , 10π).

Uniform splitting inductively proves the theorem.

Theorem 3.2 establishes the following divisibility rule for the specified continuants. ) is a divisor of all continuants K(π, 2a 0 , π l-times

).

Here

l = 2k + 1 + 2n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ....
Proof. 1. k = 0, n = 0 and we must compare K(a 0 , π) with K(π, 2a 0 , π).

K(π, 2a 0 , π) = K(π, a 0 ) • K(π) + K(π) • K(a 0 , π) = 2K(π)
• K(a 0 , π), therefore K(a 0 , π)|K(π, 2a 0 , π) -this was in Theorem 3.1. k = 0, n = 1 and we must compare K(a 0 , π) with K(4π). K(4π) = K(3π) • K(a 0 , π) + K(a 0 , 3π) • K(π). As K(a 0 , π)|K(a 0 , 3π), which was shown for k = 0, n = 1 in Theorem 3.2, this confirms divisibility K(a 0 , π)|K(4π). k = 0, n = 2 and the dividend K(6π) = K(5π) • K(a 0 , π) + K(a 0 , 5π) • K(π). As K(a 0 , π)|K(a 0 , 5π), which was shown for k = 0, n = 2 in Theorem 3.2, this confirms divisibility K(a 0 , π)|K(6π).

2. k = 1, n = 0 and we must compare K(a 0 , π, 2a 0 , π) with K(4π).

As K(4π) = 2K(π, 2a 0 , π) • K(a 0 , π, 2a 0 , π), this confirms K(a 0 , π, 2a 0 , π)|K(4π). k = 1, n = 1. Now the dividend K(8π) = K(a 0 , 6π)•K(π, 2a 0 , π)+K(6π)•K(a 0 , π, 2a 0 , π). The divisibility K(a 0 , π, 2a 0 , π)|K(a 0 , 6π) was shown at k = 1, n = 1 in Theorem 3.2, therefore K(a 0 , π, 2a 0 , π)|K(8π).
The long expressions for k = 1, n = 2 are left for reader. In total, this inductively confirms the theorem.

Theorem 3.3 establishes the following divisibility rule for the specified continuants. From π|π divisibility tables (Tables 1, 4 and 7) also more complex situations can be analyzed, where any roots of positive Pell's equation become divisors of any higher roots of the corresponding negative Pell's equation (with the same D value) and vice versa, but they are not the subject of given article.

4 More about continuants and Pell's equations 1. For Equation (2) with a n = a 0 and palindromic a 1 , a 2 , ..., a n-1 = π we have

K(a 0 , π, a 0 ) • K(π) -K 2 (a 0 , π) = (-1) n-1 . (3) 
Here n -1 is the length of π, so for odd length palindrome we obtain positive Pell's equation

K 2 (a 0 , π) - K(a 0 , π, a 0 ) K(π) • K 2 (π) = 1. (4) 
Even length palindrome π gives negative Pell's equation

K 2 (a 0 , π) - K(a 0 , π, a 0 ) K(π) • K 2 (π) = -1. (5) 
Thus this main watershed is established by determinant properties (and continuants are special form of determinants, see [START_REF] Muir Th | A Treatise on the Theory of Determinants[END_REF]).

If we substitute odd length π by longer chains (π, 2a 0 , π), (π, 2a 0 , π, 2a 0 , π), etc., these items also have odd length and they produce higher roots of positive Pell's equation. For even length π we obtain alternation between roots of negative Pell's equation y 1 = K(π, 2a 0 , π, 2a 0 , π), y 2 = K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π, 2a 0 , π), etc. (all these items have even length), and roots of positive Pell's equation y 1 = K(π, 2a 0 , π), y 2 = K(π, 2a 0 , π, 2a 0 , π, 2a 0 , π), etc. (and these items have odd length).

Relation

D = K(a 0 , π, a 0 ) K(π) = K(a 0 , π, 2a 0 , π, a 0 ) K(π, 2a 0 , π) = K(a 0 , π, 2a 0 , π, 2a 0 , π, a 0 ) K(π, 2a 0 , π, 2a 0 , π) = ... = const (6)
for given particular π. If this π has odd length, we can write it from Equation (4) in the following form.

D = K 2 (a 0 , π) -1 K 2 (π) = K 2 (a 0 , 2π) -1 K 2 (2π) = K 2 (a 0 , 3π) -1 K 2 (3π) = K 2 (a 0 , 4π) -1 K 2 (4π) = ... = const.
(7) For even length π we must alternatively use Equations ( 4) and ( 5), so obtaining expression with alternating signs.

D = K 2 (a 0 , π) + 1 K 2 (π) = K 2 (a 0 , 2π) -1 K 2 (2π) = K 2 (a 0 , 3π) + 1 K 2 (3π) = K 2 (a 0 , 4π) -1 K 2 (4π) = ... = const.
(8) 2. Now we consider relation

D = K 2 (a 0 , nπ) -1 K 2 (nπ) = [K(a 0 , nπ) -1] • [K(a 0 , nπ) + 1] K 2 (nπ) .
It's denominator is square, but the numerator is formed from the first and the third of three consecutive natural numbers, therefore these numbers:

• either are coprime (and K(a 0 , nπ) is even), but then their product is not natural square;

• or their single common divisor is 2. But, as they differ by 2, their product K 2 (a 0 , nπ) -1 cannot have prime divisor 2 in even power.

Thus this relation cannot be rational square (or -integral square). 3. For an odd length palindrome π the following binomial expression takes place.

K(a 0 , nπ) + √ D • K(nπ) = [K(a 0 , π) + √ D • K(π)] n = n i=0 n i K n-i (a 0 , π) • [ √ D • K(π)] i .
Here

D = K 2 (a 0 , nπ) -1 K 2 (nπ) = const, n = 1, 2, 3...

We express separately

K(a 0 , nπ) = K n (a 0 , π) + i=1 n 2i K n-2i (a 0 , π) • D i • K 2i (π); K(nπ) = i=1 n 2i -1 K n-2i+1 (a 0 , π) • D i-1 • K 2i-1 (π).
For n = 3, 5 and 7 we have the following values.

K(a 0 , 3π) = K(a 0 , π) • [K 2 (a 0 , π) + 3D • K 2 (π)]; K(3π) = K(π) • [3K 2 (a 0 , π) + D • K 2 (π)]. K(a 0 , 5π) = K(a 0 , π) • [K 4 (a 0 , π) + 10K 2 (a 0 , π) • D • K 2 (π) + 5D 2 • K 4 (π)]; K(5π) = Kπ) • [5K 4 (a 0 , π) + 10K 2 (a 0 , π) • D • K 2 (π) + D 2 • K 4 (π)]. K(a 0 , 7π) = K(a 0 , π)•[K 6 (a 0 , π)+21K 4 (a 0 , π)•D•K 2 (π)+35K 2 (a 0 , π)•D 2 •K 4 (π)+7D 3 •K 6 (π)]; K7π) = K(π) • [7K 6 (a 0 , π) + 35K 4 (a 0 , π) • D • K 2 (π) + 21K 2 (a 0 , π) • D 2 • K 4 (π) + D 3 • K 6 (π)].
A lot of corollaries can be made here, we show only few:

• if n is an odd prime p, p|D, but p ∤ K(π), then p|K(pπ);

• if n is an odd prime p, p∥D and p∥K(π), then p 2 ∥K(pπ).

Two basic theorems

Experimental calculations revealed that abc-triples (1, Dy 2 i , x 2 i ) and (1, x 2 j , Dy 2 j ) arise according to some rules between root pairs of positive/negative Pell's equations. 

1 + [K 2 (a 0 , π) -1] = K 2 (a 0 , π).
If fundamental roots of this equation give an abc-triple, then

R[(K 2 (a 0 , π) -1) • K 2 (a 0 , π)] < K 2 (a 0 , π).
Numbers in square brackets are coprime, therefore

R[K 2 (a 0 , π) -1] • R[K 2 (a 0 , π)] < K 2 (a 0 , π) (9) 
-this is our point of departure.

Remark. While from radical properties R[K 2 (a 0 , π)] ≤ K(a 0 , π), these initial conditions do not mean R[K 2 (a 0 , π) -1] < K(a 0 , π), significant is the product of two radicals in the left side of (9). Thus, for the positive Pell's equation with D = 5 we have x 0 = 9 and y 0 = 4, which gives

R[K 2 (a 0 , π) -1] = 10 > K(a 0 , π) = 9.
Here R(abc) = 30 < 81 = x 2 0 , so (1, 80, 81) is an abc-triple.

2. Now we pick n = 1 and must justify an inequality

R[K 2 (a 0 , π, 2a 0 , π) -1] • R[K 2 (a 0 , π, 2a 0 , π)] < K 2 (a 0 , π, 2a 0 , π). (10) 
From radical properties

R[K 2 (a 0 , π, 2a 0 , π)] ≤ K(a 0 , π, 2a 0 , π). (11) 
In view of Equation ( 3) for π odd length K(a 0 , π, 2a 0 , π) = 2K 2 (a 0 , π) -1, so

K 2 (a 0 , π, 2a 0 , π) -1 = 4K 4 (a 0 , π) -4K 2 (a 0 , π) + 1 -1 = 4K 2 (a 0 , π) • [K 2 (a 0 , π) -1].
As numbers K 2 (a 0 , π) and K 2 (a 0 , π) -1 are consecutive, we can ignore 4 as factor in radical calculations and

R[K 2 (a 0 , π, 2a 0 , π) -1] = R[K 2 (a 0 , π)] • R[K 2 (a 0 , π) -1] < K 2 (a 0 , π) ≤ 2K 2 (a 0 , π) -1 = K(a 0 , π, 2a 0 , π).
By multiplying this inequality with (11) we get the necessary justification of Inequality [START_REF] Sierpinski | Elementary Theory of Numbers[END_REF]. The proof is analogous for all continuants with even number of palindromic units, because it depends on properties of halved continuants K(a 0 , nπ, 2a 0 , nπ) = 2K 2 (a 0 , nπ) -1.

3. So we must justify Theorem 5.1 for continuants with an odd number of palindromic units and the simplest case is k = 0 and n = 2 -three palindromic units or 3π. From Eq. ( 4) and ( 6):

K 2 (a 0 , 3π) -1 K 2 (a 0 , π) -1 = K 2 (3π) K 2 (π) = A 2 and K 2 (a 0 , 3π) K 2 (a 0 , π) = B 2 .
A and B are natural numbers (see Theorems 3.1 and 3.2).

R(B

2 ) ≤ B or R[ K 2 (a 0 , 3π) K 2 (a 0 , π) ] ≤ K(a 0 , 3π) K(a 0 , π) ; (12) R(A 2 ) ≤ A or R[ K 2 (a 0 , 3π) -1 K 2 (a 0 , π) -1 ] ≤ K(3π) K(π) ; (13) 
and our point of departure is Equation [START_REF] Nagell | Introduction to Number Theory[END_REF] or

R[K 2 (a 0 , π) -1] • R[K 2 (a 0 , π)] < K(a 0 , π) • K(a 0 , π). (14) 
In the left side of (14) there is a product of two coprime radicals, so the right side of ( 14) is also splitted in two factors. As R[K 2 (a 0 , π)] ≤ K(a 0 , π), the maximal value for one of these factors in the right side of ( 14) is K(a 0 , π). But, for inequality (14) to be satisfied, the maximal value of the other factor, derived from R[K 2 (a 0 , π) -1], cannot exceed K(a 0 , π) -1, because this is the greatest natural number coprime to K(a 0 , π) and not exceeding it. Therefore:

R[K 2 (a 0 , π) -1] • R[K 2 (a 0 , π)] ≤ K(a 0 , π) • [K(a 0 , π) -1]. ( 15 
)
We multiply ( 12), ( 13) and (15):

R[K 2 (a 0 , 3π) -1] • R[K 2 (a 0 , 3π)] ≤ K(a 0 , 3π) • [K(a 0 , π) -1] • K(3π) K(π) . ( 16 
) Now we compare [K(a 0 , π) -1] • K(3π) K(π)
and K(a 0 , 3π). Both are natural numbers, so square them. We have:

[K(a 0 , π) -1] 2 • K 2 (a 0 , 3π) -1 K 2 (a 0 , π) -1 and K 2 (a 0 , 3π); K(a 0 , π) -1 K(a 0 , π) + 1 <1 • [K 2 (a 0 , 3π) -1]
<K 2 (a 0 ,3π)

and K 2 (a 0 , 3π).

So sign < can be used and from ( 16) we get the necessary:

R[K 2 (a 0 , 3π) -1] • R[K 2 (a 0 , 3π)] < K(a 0 , 3π) • K(a 0 , 3π) = K 2 (a 0 , 3π). ( 17 
)
All cases with an odd number of palindromic units can be treated analogously. So the theorem is confirmed for k = 0 and all n values -with even and odd numbers of palindromic units.

For higher k values we denote unit π, 2a 0 , π as π ′ . Since π ′ is an odd length palindrome, the proof reduces to discussed cases. This completes the proof of Theorem 5.1.

Theorem 5.2. Now π is an even length palindromic unit. If roots of positive or negative Pell's equation (x i , y i ), obtained from simple continued fraction [a 0 ; π, 2a 0 , π

k-times

] produce an abc-triple, then abc-triples are produced by all roots (x j , y j ), obtained from simple continued fractions [a 0 ; π, 2a 0 , π l-times ]. Here l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ... Proof. 1. This time π is an even length palindromic unit, which gives the following set of abcequations (observe alternation).

1 + K 2 (a 0 , π) = [K 2 (a 0 , π) + 1]. 1 + [K 2 (a 0 , 2π) -1] = K 2 (a 0 , 2π). 1 + K 2 (a 0 , 3π) = [K 2 (a 0 , 3π) + 1]. 1 + [K 2 (a 0 , 4π) -1] = K 2 (a 0 , 4π).
In Theorem 5.2 we deliberately do not indicate composition of abc-triples, because it depends on the number of involved palindromes. If solution with one π unit is an abc-triple, then

R[K 2 (a 0 , π)] • R[K 2 (a 0 , π) + 1] < K 2 (a 0 , π) + 1.
2. We elongate sequence to 2π, so objects for comparison are

R[K 2 (a 0 , 2π)] • R[K 2 (a 0 , 2π) -1] and K 2 (a 0 , 2π). ( 18 
)
From radical properties: R[K 2 (a 0 , 2π)] ≤ K(a 0 , 2π). ( 19)

K(a 0 , 2π) = K(a 0 , π, a 0 ) • K(π) =K 2 (a 0 ,π)+1
+K 2 (a 0 , π) = 2K 2 (a 0 , π) + 1.

Then K 2 (a 0 , 2π) -1 = 4K 2 (a 0 , π) • [K 2 (a 0 , π) + 1] and factor 4 can be ignored in radical calculations. We have:

R[K 2 (a 0 , 2π)-1] = R[K 2 (a 0 , π)]•R[K 2 (a 0 , π)+1] < K 2 (a 0 , π)+1 < 2K 2 (a 0 , π)+1 = K(a 0 , 2π).
By multiplying this with (19) we obtain necessary:

R[K 2 (a 0 , 2π)] • R[K 2 (a 0 , 2π) -1] < K 2 (a 0 , 2π). ( 20 
)
Again -there will be analogous proof for all continuants with an even number of palindromic units due to splitting (for π even length)

K(a 0 , nπ, 2a 0 , nπ) = 2K 2 (a 0 , nπ) + 1.
3. We elongate sequence to 3π, so objects for comparison are:

R[K 2 (a 0 , 3π)] • R[K 2 (a 0 , 3π) + 1] and K 2 (a 0 , 3π) + 1. K 2 (a 0 , 3π) + 1 K 2 (a 0 , π) + 1 = K 2 (3π) K 2 (π) = A 2 and K 2 (a 0 , 3π) K 2 (a 0 , π) = B 2 .
A and B are natural numbers (see Theorems 3.1 and 3.2).

R(B

2 ) ≤ B or R[ K 2 (a 0 , 3π) K 2 (a 0 , π) ] ≤ K(a 0 , 3π) K(a 0 , π) . (21) R(A 2 ) ≤ A or R[ K 2 (a 0 , 3π) + 1 K 2 (a 0 , π) + 1 ] ≤ K(3π) K(π) . (22) R[K 2 (a 0 , π) + 1] • R[K 2 (a 0 , π)] < K 2 (a 0 , π) + 1, ( 23 
) or R[K 2 (a 0 , π) + 1] • R[K 2 (a 0 , π)] ≤ K 2 (a 0 , π). (24) 
The product of two coprime radicals in the left side of (24) cannot be a square, therefore sign ≤ is changed again:

R[K 2 (a 0 , π) + 1] • R[K 2 (a 0 , π)] < K 2 (a 0 , π) = K(a 0 , π) • K(a 0 , π). (25) 
Reasoning, analogous to Theorem 5.1, gives:

R[K 2 (a 0 , π) + 1] • R[K 2 (a 0 , π)] ≤ K(a 0 , π) • [K(a 0 , π) -1]. (26) 
We multiply (21), ( 22) and (26):

R[K 2 (a 0 , 3π) + 1] • R[K 2 (a 0 , 3π)] ≤ K(a 0 , 3π) • [K(a 0 , π) -1] • K(3π) K(π) . (27) 
Now we compare

[K(a 0 , π) -1] • K(3π) K(π)
and K(a 0 , 3π).

Both are natural numbers, so square them. We have:

[K 2 (a 0 , π) + 1 -2K(a 0 , π)] • K 2 (a 0 , 3π) + 1 K 2 (a 0 , π) + 1 and K 2 (a 0 , 3π); [1 - 2K(a 0 , π) K 2 (a 0 , π) + 1 ] <1 •[K 2 (a 0 , 3π) + 1] and K 2 (a 0 , 3π).
Clearly ≤ sign must be used:

[K(a 0 , π) -1] • K(3π) K(π) ≤ K(a 0 , 3π).
Now we obtain from (27) the necessary:

R[K 2 (a 0 , 3π) + 1] • R[K 2 (a 0 , 3π)] ≤ K 2 (a 0 , 3π) < [K 2 (a 0 , 3π) + 1]. (28) 
Similar reasoning confirms the same rule in all other cases with odd number of π units. In terms of Theorem 5.2 this covers situation k = 0 and all n values, but with even length palindrome π. For greater k values substitution of longer π, 2a 0 , ..., π chains by π ′ gives odd or even length palindromes π ′ , whose behaviour is previously analysed. This completes the proof of theorem.

Of course, both Theorems 5.1 and 5.2 can be combined in one, omitting the accent on the π length parity, but then the proof will be less clear.

Theorems 5.1 and 5.2 suggest that each primary abc-triple with the number of palindromes specified in the left column of the Table 9 induces an infinite sequence of secondary abc-triples, specified in the right columns of the Table 9. Here all fundamental roots are of K(a 0 , π), K(π) type. Of course, all roots of positive Pell's equation for these D values produce abc-triples.

The following experimental Table 10 illustrates emerging of abc-triples from higher roots of positive/negative Pell's equations with specified number of palindromes (T means "True" -we get an abc-triple; F means "False"). Table 10.

Number of π units D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F T F T F T T T F T F T F T T T F T F T 3 F T T T F T F T T T F T F T T T F T F T 5 F T F T T T F T F T F T F T T T F T F T 6 F T T T T T F T T T F T F T T T F T F T 10 F F F T T T F T T T F T F F T T F T T T 11 F F F T T T F T T T T T F F T T F T F T 13 F T T T T T F T T T F T T T T T F T F T 15 F T T T T T F T T T F T F T T T F T F T 17 F F F T F T F T F F F T F F T T T T F T 19 F F F F T T F T T T F T T T T T T T T T 2F F T T F T T T T F T T F T T T F T F T 23 F T T T T T F T T T F T F T T T F T F T

Characteristic and easily understandable are columns of "False" at 13π, 17π and 19π (here only primary abc-triples can emerge), as well as columns of "True" at 15π, 16π, 18π, 20π. For D = 17 here is a longer experimental sequence (Table 11), limited by my laptop's performance. 11 for D = 17 we see the first appearance of abc-triple at 4π. This primary abc-triple gives further secondary abc-triples at 8π, 12π, 16π, 20π, 24π, 28π, 32π, 36π, 40π and 44π. The next primary at 6π gives secondary triples at 12π, 18π, 24π, 30π, 36π, 42π; secondary triples from different primary sources can overlap. The next primary is at 15π, it gives secondary triples at 30π and 45π. Then primary at 17π gives secondary at 34π; primary at 22π gives secondary at 44π, remains one primary at 39π. Useful online tools for finding fundamental solutions of Equation ( 29) are [11]. If we can find fundamental values m 0 = K(ρ, ω) and n 0 = K(ω), which satisfy an equation

(m + n • √ D) • (x + y • √ D) = m • x + n • y • D other m value + (m • y + n • x) other n value • √ D. (30 
m 2 0 -Dn 2 0 = N or K 2 (ρ, ω) - K 2 (a 0 , π) -1 K 2 (π) • K 2 (ω) = N (31) 
with integral N ̸ = ±1, then we can find infinitely many positive solutions of Equation ( 29), each times elongating continuant sequences from the left side in the following way for π odd length:

m 0 n 0 = K(ρ, ω) K(ω) ; m 1 n 1 = K(a 0 , π, a 0 + ρ, ω) K(π, a 0 + ρ, ω) ; m 2 n 2 = K(a 0 , π, 2a 0 , π, a 0 + ρ, ω) K(π, 2a 0 , π, a 0 + ρ, ω) ; etc.
For π even length an increment contains two π units:

m 0 n 0 = K(ρ, ω) K(ω) ; m 1 n 1 = K(a 0 , π, 2a 0 , π, a 0 + ρ, ω) K(π, 2a 0 , π, a 0 + ρ, ω) ; etc.
Here ρ is zero or positive integer, but ω is an empty set or a sequence of one or more positive integers.

We split m 1 and n 1 for π odd length:

m 1 = K(a 0 , π, a 0 + ρ, ω) = K(a 0 , π) • K(ρ, ω) + K(a 0 , π, a 0 ) • K(ω) = K(a 0 , π) • K(ρ, ω) + K(π) • K(ω) • D; (32) 
n 1 = K(π, a 0 + ρ, ω) = K(π) • K(ρ, ω) + K(a 0 , π) • K(ω). (33) 
The result agrees with an Equation (30).

Example 6.2. D = 21, N = 4.K(ρ, ω) = K(4, 1) = 5, K(ω) = K(1) = 1. m 1 n 1 = K(4, 1, 1, 2, 1, 1 , 4 + 4, 1) K( 1, 1, 2, 1, 1 , 4 + 4, 1) ; m 2 n 2 = K(4, 1, 1, 2, 1, 1 , 8, 1, 1, 2, 1, 1 , 4 + 4, 1) K( 1, 1, 2, 1, 1 , 8, 1, 1, 2, 1, 1 , 4 + 4, 1
) .

An odd length π unit 1, 1, 2, 1, 1 is highlighted in the box. As K() = 1 = K(1), the value of ω in such cases is ambiguous and in calculations m 1 = K(1, 1, 2, 1, 1, 8, 1) = K(1, 1, 2, 1, 1, 9)similarly to simple continued fractions. All higher roots also will end by 2, 1, 1, 9.

Example 6.3.

D = 13, N = 4.K(ρ, ω) = K(3, 1, 2) = 11, K(ω) = K(1, 2) = 3. m 1 n 1 = K(3, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2) K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2) ; m 2 n 2 = K(3, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2) K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 2
) .

An even length π unit 1, 1, 1, 1 is highlighted in the box.

Example 6.4.

D = 5, N = ω) = K(2, 1) = 3, K(ω) = K(1) = 1. m 1 n 1 = K(2, □, 4, □, 2 + 2, 1) K(□, 4, □, 2 + 2, 1) ; m 2 n 2 = K(2, □, 4, □, 4, □, 4, □, 2 + 2, 1) K(□, 4, □, 4, □, 4, □, 2 + 2, 1) . 
Empty set □ is an even length palindrome π. Again ω value ambiguity is present.

In calculations these empty sets do not show up and m 1 = K(2, 4, 4, 1) = K(2, 4, 5) = 47;

n 1 = K(4, 4, 1) = K(4, 5) = 21; 47 2 -5 • 21 2 = 4. Example 6.5. D = 2, N = -343.K(ρ, ω) = K(0, 1, 4, 3) = 13, K(ω) = K(1, 4, 3) = 16. m 1 n 1 = K(1, □, 2, □, 1 + 0, 1, 4, 3) K(□, 2, □, 1 + 0, 1, 4, 3) ; m 2 n 2 = K(1, □, 2, □, 2, □, 2, □, 1 + 0, 1, 4, 3) K(□, 2, □, 2, □, 2, □, 1 + 0, 1, 4 , 3) 
.

Empty set □ is an even length palindrome π. If ρ = 0, K(ρ, ω) < K(ω). All higher roots for this example in continuant form will have a long sequence of two's, ending by 1, 1, 4, 3.

Higher solutions of the negative branch or conjugate class C ′ are products of ±(m 0 -n 0 • √ D) with higher roots of Pell's resolvent [K(a 0 , π)+ √ D•K(π)] n (to avoid long and clumsy continuant expressions we restrict our exposition with odd length π units):

m ′ 1 = ±m 0 • K(a 0 , π) ∓ n 0 • D • K(π); (34) 
n ′ 1 = ±m 0 • K(π) ∓ n 0 • K(a 0 , π); (35) 
m ′ 2 = ±m 0 • K(a 0 , π, 2a 0 , π) ∓ n 0 • D • K(π, 2a 0 , π); (36) 
n ′ 2 = ±m 0 • K(π, 2a 0 , π) ∓ n 0 • K(a 0 , π, 2a 0 , π). (37) 
From Equation (36):

m ′ 2 = ±m 0 • [K(a 0 , π) • K(a 0 , π) + K(a 0 , π, a 0 ) • K(π) =D•K 2 (π) ] ∓ n 0 • D • 2K(π) • K(a 0 , π) = K(a 0 , π) • [±m 0 • K(a 0 , π) ∓ n 0 • D • K(π)] + D • K(π) • [±m 0 • K(π) ∓ n 0 • K(a 0 , π)] = K(a 0 , π) • m ′ 1 + D • K(π) • n ′ 1 .
(38) From Equation (37): 

n ′ 2 = ±m 0 • 2K(π) • K(a 0 , π) ∓ n 0 • [K 2 (a 0 , π) + D • K 2 (π)] = K(π) • [±m 0 • K(a 0 , π) ∓ n 0 • D • K(π)] ± m 0 • K(a 0 , π) • K(π) ∓ n 0 • K 2 (a 0 , π) = K(π) • m ′ 1 + K(a 0 , π) • n ′ 1 . (39) 

Higher roots, divisibility and abc-properties

Consequently, if K(ρ, ω), K(ω) correspond to requirements of Theorem 7.1, then they are genuine ambiguous fundamental roots m 0 , n 0 , but all higher roots are obtained by standard method:

m 0 n 0 = K(ρ, ω) K(ω) ; m 1 n 1 =
K(a 0 , π, a 0 + ρ, ω) K(π, a 0 + ρ, ω) ; m 2 n 2 = K(a 0 , π, 2a 0 , π, a 0 + ρ, ω) K(π, 2a 0 , π, a 0 + ρ, ω) ; etc.

(D ≡ 3 (mod 4) from Theorem 7.1 means π is odd length.)

We illustrate divisibility properties of these higher roots by their origin. (61) Here k = 0, 1, 2, ... In Table 19 for D = 3, N = -2 we see the first appearance of abc-triple at 4π. This primary abc-triple gives further secondary abc-triples at 13π, 22π, 31π, 40π and 49π. The next primary at 7π gives secondary triples at 22π and 37π; secondary triples from different primary sources can overlap. Remains two primary at 27π and 47π.

As genuine ambiguous fundamental roots (m 0 , n 0 ) of the generalized Pell's equation (29) with N = 2 produce an abc-triples for D = 343 and D = 511, all higher roots for these D values will produce abc-triples.

As genuine ambiguous fundamental roots (m 0 , n 0 ) of the generalized Pell's equation ( 29) with N = -2 produce an abc-triples for D = 243, 251, 307, 867, 1107, 1331, all higher roots for these D values will produce abc-triples.

2 6 -

 6 1 = (2 3 -1)(2 3 + 1) = 7 • 9 = 63, 2 12 -1 = (2 6 -1)(2 6 + 1) = 63 • (2 6 + 1), etc.,and(2 6 -1)|(2 6k -1), k = 1, 2, 3... So a = 1, b = 2 6k -1 and c = 2 6k . Now b = 63N, where N is natural and

Theorem 2. 3 .

 3 If a, b and c are different pairwise relatively prime positive integers forming an abc-triple a + b = c with R(abc) < c, then components b and c are not square-free.

Theorem 5 . 1 .

 51 Now π is an odd length palindromic unit. If roots of positive Pell's equation(x i , y i ), obtained from simple continued fraction [a 0 ; π, 2a 0 , π k-times ] constitute an abc-triple (1, Dy 2 i , x 2 i ),then abc-triples (1, Dy 2 j , x 2 j ) are formed by all roots (x j , y j ), obtained from simple continued fractions [a 0 ; π, 2a 0 , π l-times ]. Here l = k + n(k + 1), k = 0, 1, 2, ... and n = 0, 1, 2, ... Proof. 1. k = 0, n = 0. Now [a 0 ; π] = K(a 0 , π) K(π) and abc-equation a + b = c is positive Pell's equation
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6

  Generalized Pell's equation Classical theory of the Diophantine equation m 2 -Dn 2 = N (29) with N ̸ = ±1 tells us the following. • Every solution m + n • √ D of the Equation (29) can generate associated solutions of it, which are of the form

)

  Here x + y • √ D is any solution of the corresponding positive Pell's equation x 2 -Dy 2 = 1 or Pell's resolvent. There exists a solution associativity criterion and the set of all such associated solutions is called a class. As there are infinitely many solutions of Pell's resolvent, every such class contains an infinity of solutions to Equation (29), among them the fundamental one m 0 + n 0 • √ D is defined. For one particular pair of D and N values there can be zero, one or more solution classes, characterized by their fundamental solutions. • If one given class C consists of the solutions m i + n i • √ D, i = 1, 2, 3, ... to Equation (29), the solutions m i -n i • √ D, i = 1, 2, 3, ... also satisfy Equation (29) and constitute a class C ′ , which is conjugate of C. • Generally speaking, conjugate classes are distinct. If classes C and C ′ coincide, they are called ambiguous and they have a common ambiguous fundamental solution.

Example 6 . 1 .

 61 For D = 7 and N = 2, ..., 30 we have the following fundamental solutions to Equation (29).

Theorem 7 . 2 .

 72 If K(ρ, ω), K(ω) are genuine ambiguous fundamental roots m 0 , n 0 of the generalized Pell's equation K 2 (ρ, ω) -D • K 2 (ω) = ±2 and K(a 0 , π), K(π) are fundamental roots of the corresponding Pell's resolvent, then their higher roots meet the following two relations:K(π, 2a 0 2k-times , π, 2a 0 , π, 2a 0 , π) = K(a 0 , π, 2a 0 , π k-times , a 0 + ρ, ω) • K(π, 2a 0 , π k-times , a 0 + ρ, ω);(60)K(π, 2a 0 2k-times , π, 2a 0 , π, 2a 0 , π, a 0 ) = 1 2 • [K 2 (a 0 , π, 2a 0 , π k-times , a 0 + ρ, ω) + D • K 2 (π, 2a 0 , π k-times, a 0 + ρ, ω).

Table 2 .

 2 . Divisor Dividends (trivial cases, as y 0 |y 0 , are omitted) y

	Table 1.				
	Divisor Dividends (trivial cases, as 1π|1π, are omitted)
	1π	2π	3π	4π	5π ...
	2π	4π	6π	8π 10π ...
	3π	6π	9π 12π 15π ...
	4π	8π 12π 16π 20π ...
	5π	10π 15π 20π 25π ...
	...	...	...	...	

... ... Roots of the negative Pell's equation x 2 -Dy 2 = -1 have 1, 3, 5, ... palindromic units, so their divisibility table is the following. 0 y 1 y 2 y 3 y 4 ... y 1 y 4 y 7 y 10 y 13 ... y 2 y 7 y 12 y 17 y 22 ... y 3 y 10 y 17 y 24 y 31 ... ... ... ... ... ... ... Roots of the positive Pell's equation x 2 -Dy 2 = 1 have 1, 2, 3, 4, ... palindromic units, which are π or π, 2a 0 , π type. This gives the following divisibility.

Table 3 .

 3 Divisor Dividends (trivial cases, as y 0 |y 0 , are omitted) y 0 y 1 y 2 y 3 y 4 ... y 1 y 3 y 5 y 7 y 9 ... y 2 y 5 y 8 y 11 y 14 ... y 3 y 7 y 11 y 15 y 19 ...

... ... ... ... ... ... Theorem 3.2. Continuant K(a 0 , π, 2a 0 , π k-times

Table 4

 4 For roots of the negative Pell's equation x 2 -Dy 2 = -1 this gives the following divisibility.

	.				
	Divisor Dividends (trivial cases, as 1π|1π, are omitted)
	1π	3π	5π	7π	9π ...
	2π	6π 10π 14π 18π ...
	3π	9π 15π 21π 27π ...
	4π	12π 20π 28π 36π ...
	5π	15π 25π 35π 45π ...
	...	...	...	...	... ...

Table 5 .

 5 Divisor Dividends (trivial cases, as x 0 |x 0 , are omitted) x 0 x 1 x 2 x 3 x 4 ... x 1 x 4 x 7 x 10 x 13 ... x 2 x 7 x 12 x 17 x 22 ... x 3 x 10 x 17 x 24 x 31 ... ... ... ... ... ... ... For roots of the positive Pell's equation x 2 -Dy 2 = 1 divisibility table is the following.

Table 6 .

 6 Divisor Dividends (trivial cases, as x 0 |x 0 , are omitted) x 0 x 2 x 4 x 6 x 8 ... x 1 x 5 x 9 x 13 x 17 ... x 2 x 8 x 14 x 20 x 26 ... x 3 x 11 x 19 x 27 x 35 ... ...

... ... ... ... ... Theorem 3.3. Continuant K(a 0 , π, 2a 0 , π k-times

Table 7

 7 Roots of the negative Pell's equation x 2 -Dy 2 = -1 have 1, 3, 5, ... palindromic units, so divisibility of the type x i |y j do not exist for them.For roots of the positive Pell's equation x 2 -Dy 2 = 1 the following divisibility table exists.

	.				
	Divisor		Dividends	
	1π	2π	4π	6π	8π ...
	2π	4π	8π 12π 16π ...
	3π	6π 12π 18π 24π ...
	4π	8π 16π 24π 32π ...
	5π	10π 20π 30π 40π ...
	...	...	...	...	... ...

Table 8 .

 8 Divisor Dividends x 0 y 1 y 3 y 5 y 7 ... x 1 y 3 y 7 y 11 y 15 ... x 2 y 5 y 11 y 17 y 23 ... x 3 y 7 y 15 y 23 y 31 ...

... ... ... ... ... ...

Table 9 .

 9 If fundamental roots of positive or negative Pell's equation for given specified D value produce an abc-triple, then all higher roots for this D also produce abc-triples. The sequence of such D values for positive Pell's equation is the following:From them, the following are of type K(a 0 , π), K(π): D = 7, 8, 12, 14, 18, 20, 21, 27, 28, 31, 32, 39, 45, 46, 47, 48, ..., but the following are of type K(a 0 , π, 2a 0 , π), K(π, 2a 0 , π): D = 2, 5, 13, 29, 41, 50, 53, 73, 74, 85, 89, 109, 113, 122, ....

	Primary		Secondary	
	1π	2π	3π	4π	5π ...
	2π	4π	6π	8π 10π ...
	3π	6π	9π 12π 15π ...
	4π	8π 12π 16π 20π ...
	5π	10π 15π 20π 25π ...
	...	...	...	...	... ...

D = 2, 5, 7, 8, 12, 13, 14, 18, 20, 21, 27, 28, 29, 31, 32, 39, ....

Table 12 .

 12 Equation m 2 -7n 2 = N .Remark. As our final objective is abc-equation with pairwise coprime components, we deliberately discard non-corresponding solutions of Equation (29). Remaining ones from Table12are shown in Table13.

	N Fundamental solutions m 0 /n 0 N Fundamental solutions m 0 /n 0
	2	3/1 ambiguous	18 9/3 ambiguous; 5/1;	-5/1
	4	2/0 ambiguous	21	7/2;	-7/2
	8	6/2 ambiguous	25 5/0 ambiguous		
	9 3/0 ambiguous; 4/1;	-4/1 29	6/1;	-6/1
	16 4/0 ambiguous	...		

Table 13 .

 13 Equation m 2 -7n 2 = N .

	N Fundamental solutions m 0 /n 0
	2 3/1 ambiguous	
	9	4/1; -4/1
	18	5/1; -5/1
	29	6/1; -6/1

Table 14 .

 14 Equation K 2 (ρ, ω) -D • K 2 (ω) = 2. D K(a 0 , π)/K(π) K(a 0 , π) -1 K(a 0 , π) + 1 K(ρ, ω) K(ω)The sequence of D ≡ 3 (mod 4) values for equationK 2 (ρ, ω) -D • K 2 (ω) = -2with genuine ambiguous solutions is the following. D = 3, 11, 19, 27, 43, 51, 59, 67, 83, 107, 123, 131, 139, 163, 171, 179, 187, 211, 227, 243, 251, 267, ... Table 15 shows links with the corresponding Pell's resolvent.

	7	8/3	7	9	3	1
	23	24/5	23	25	5	1
	31	1520/273	1519 = 31 • 49	1521 = 39 2	39	7
	47	48/7	47	49	7	1
	71	3480/413	3479 = 71 • 49	3481 = 59 2	59	7
	79	80/9	79	81	9	1
	103	227528/22419 227527 = 103 • 2209 227529 = 477 2	477	47

Table 15 .

 15 Equation K 2 (ρ, ω) -D • K 2 (ω) = -2. D K(a 0 , π)/K(π) K(a 0 , π) + 1 K(a 0 , π) -1 K(ρ, ω) K(ω)

	3	2/1	3	1	1	1
	11	10/3	11	9	3	1
	19	170/39	171 = 19 • 9	169 = 13 2	13	3
	27	26/5	27	25	5	1
	43	3482/531 3483 = 43 • 81	3481 = 59 2	59	9
	51	50/7	51	49	7	1
	59	530/69	531 = 59 • 9	529 = 23 2	23	3

 

Comparing Equations ( 38) and (39) with previously obtained m 1 and n 1 (Equations ( 32) and (33)), we see that m ′ 1 and n ′ 1 are analogues to K(ρ, ω) and K(ω) values. Therefore functional mechanism in both conjugated classes C and C ′ is the same. We illustrate this by conjugates to Examples 6.2 -6.5. Example 6.6. D = 21, N = 4. We use m ′ 1 and n ′ 1 as analogues to K(ρ, ω) and K(ω).

K( 1, 1, 2, 1, 1 , 4 + 4, 1, 1, 1, 1) .

Again an odd length π unit 1, 1, 2, 1, 1 is highlighted in the box. All higher roots for this example in continuant form will end by 8, 1, 1, 2.

Example 6.7. D = 13, N = 4. We use m ′ 1 and n ′ 1 as analogues to K(ρ, ω) and K(ω).

K( 1, 1, 1, 1 , 6, 1, 1, 1, 1 , 3 + 3, 1, 1, 1, 1, 6) .

For even length π unit two of these units are necessary.

Example 6.8. D = 5, N = 4. We use m ′ 1 and n ′ 1 as analogues to K(ρ, ω) and K(ω). m ′

Empty set □ is an even length palindrome π.

Example 6.9. D = 2, N = -343. We use m ′ 1 and n ′ 1 as analogues to K(ρ, ω) and K(ω). m ′

Empty set □ is an even length palindrome π. All higher roots for this example in continuant form will have a long sequence of two's, ending by 7, 3.

Both roots in the generalized Pell's equation (29) are squared, therefore their signs do not impact their divisibility and abc-properties of the resulting equation.

We can take absolute values of m ′ 1 and n ′ 1 :

Genuine ambiguity

In the previous section we accented that coprimality requirements of components in abc-equation result in discarding a lot of fundamental solutions for Equation (29), which was illustrated by Tables 12 and13. This is applied to ambiguous solutions, too. Therefore in this section we will discuss the remaining ones of ambiguous fundamental solutions for Equation (29), calling them genuine ambiguous (maybe anyone can offer a better term).

Necessary and sufficient conditions

Ambiguity implies coincidence of solution classes C and C ′ .

We equalize conjugated one to class C:

We add Equations ( 40) and (41):

We elongate sequence by π, 2a 0 , π instead of π.

K(a 0 , π, 2a 0 , π) • K(ρ, ω) + K(a 0 , π, 2a 0 , π, a 0 ) • K(ω) = K(a 0 , π, 2a 0 , π, a 0 + ρ, ω) = m 2 ;

We add them, etc. and get m 2 = 2x 1 • m 0 -m 1 , then inductively:

Analogously from

and

we get n 1 = 2x 0 • n 0 + n 0 , etc., and finally inductively:

Previously we proposed two versions for conjugate class (Equations (34) and (35)), so from

we get for ambiguity

and, in an identical way,

Both versions for ambiguity can be combined:

Now we write once more the first version of ambiguity:

As K(ρ, ω) ⊥ K(ω), then

• from Equation (51) we have K(ρ, ω)|K(a 0 , π, a 0 ) -condition (A);

• from Equation (52) we have K(ω)|K(π) -condition (B).

The restriction for genuine ambiguity is component coprimality in generalized Pell's equation

As K(ρ, ω) ⊥ K(ω), this restriction also gives

Together with condition (A) this gives K(ρ, ω)|K(π), then we take into account condition (B) and obtain K(ρ, ω) • K(ω)|K(π).

From Equations ( 51) and (52) we get the following.

From this

Then

We have K(a 0 , π) ⊥ K(π) and K(ρ, ω) • K(ω)|K(π). In square brackets of Equation ( 53) is a sum of two coprime summands, one of them divides by K(ω), the other by K(ρ, ω), therefore their sum is coprime to K(ρ, ω) • K(ω). Now we have two possibilities.

1. This works for positive/negative Pell's equations, because N = ±1 gives an ambiguous class.

2. This is a situation with genuine ambiguous solutions to generalized Pell's equation (29).

From the second version of ambiguity

we can obtain the same results (Eq. systems (54) and ( 55)).

We equalize m 1 values from Equations ( 40) and (42):

Expression (58) can be obtained also from Equations ( 43) and (45). As we recently obtained K(π) = K(ρ, ω) • K(ω) for genuine ambiguity (Eq. system (55)), from Equation (58) we get:

Analogously from the second version of ambiguity (Equations ( 48) and (49)) we obtain

and N = -2.

Remark. By employing

we will obtain N = ±1 -standard values for positive/negative Pell's equations.

Formula K(π) = K(ρ, ω) • K(ω) also means that genuine ambiguous fundamental solution is single. If K(ρ, ω), K(ω) and K(ρ ′ , ω ′ ), K(ω ′ ) will be two different partitions of K(π) in coprime parts, then K(ρ, ω)

We rewrite our generalized Pell's equation K 2 (ρ, ω) -D • K 2 (ω) = N , for which we assume existence of genuine ambiguous fundamental solutions. From recently obtained N = ±2 we conclude that K 2 (ρ, ω) and D • K 2 (ω) are odd numbers. As squares K 2 (ρ, ω) ≡ 1 (mod 4) and K 2 (ω) ≡ 1 (mod 4), but N ≡ ±2 (mod 4), that means D ≡ 3 (mod 4). Then K(π) is an odd number, but K(a 0 , π) is an even number.

From equations

.

As K(a 0 , π) is even, K(a 0 , π) -1 or K(a 0 , π) + 1 must be perfect square -we obtained this previously in calculations of N = ±2 values. Then, substituing K 2 (ρ, ω) by K(a 0 , π) ± 1 in our equation

All conclusions from current subsection can be united in the Theorem 7.1. 1. If natural non-square D = K(a 0 , π, a 0 ) K(π) ≡ 3 (mod 4) is the discriminant of the positive Pell's equation K 2 (a 0 , π) -D • K 2 (π) = 1, if D|K(a 0 , π) -1, and if K(a 0 , π) + 1 is perfect square, then one and only one pair K(ρ, ω), K(ω) of coprime divisors of K(π), which

genuine ambiguous fundamental roots of generalized Pell's equation

There are not solutions for the corresponding equation

, and if K(a 0 , π) -1 is perfect square, then one and only one pair K(ρ, ω), K(ω) of coprime divisors of K(π), which satisfy

There are not solutions for the corresponding equation

The sequence of D ≡ 3 (mod 4) values for equation K 2 (ρ, ω) -D • K 2 (ω) = 2 with genuine ambiguous solutions is the following. 7, 23, 31, 47, 71, 79, 103, 119, 127, 151, 167, 191, 199, 223, 239, 263, 271, ... Table 14 shows links with the corresponding Pell's resolvent.

Expressions ( 60) and ( 61) are analogues to Equations (55).

Proof. 1. k = 0 and we must justify K(a 0 , π, a 0 + ρ, ω)

We obtain the same, this confirms Equation (60) for k = 0. 2. From binomial form (Section 4.3) we obtain:

That means

3. For k > 0 we at first split off unnecessary fragment to obtain even number of π units, then use relations (62).

Now we calculate the right side of Equation (60).

This confirms Equation (60). The proof of Equation ( 61), closely analogous to recent one, is left to the reader.

In view of Equations ( 55) and (60), we can employ the corresponding rows and columns of Table 1 for describing m i • n i |y j divisibility in K(π)|K(π) terms. 

as starting point. Radical expressions (in square brackets) are two coprime odd numbers.

According to obtained divisibility data,

where A and B are natural numbers. So we can work analogously to the corresponding parts of Theorems 5.1 and 5.2. Detailed outline is left to concerned reader.

Theorem 7.3 suggests that for genuine ambiguous generalized Pell's equations each primary abc-triple with the number of palindromes specified in the left column of the Table 17 induces an infinite sequence of secondary abc-triples, specified in the right columns of the Table 17. 18 illustrates emerging of abc-triples from higher roots of genuine ambiguous Pell's equations with specified number of palindromes (T means "True" -we get an abc-triple; F means "False").

Table 18.

Number of π units D N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 -2 F F F F T F F T F F F F F T F F F F 7 2 F F F T T F F T F F T F F T F F F T 11 -2 F F F F T T F F F F T F F T F F T F 19 -2 F F F F T F T F F T F F F T F F T F 23 2 F F F F F F F T F F T T T F F F F F 27 -2 F T T F T F F T F F T F T T F F T T For D = 3, N = -2 here is a longer experimental sequence (Table 19), limited by my laptop's performance.