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We propose a method for robust mode conversion between the two outer waveguides in a three-waveguide
coupler based on analogies with quantum population transfer. Depending on the presence or absence of detuning
between the propagation constants of the intermediate waveguide, the mode conversion can be analogous to the
adiabatic-elimination or stimulated Raman adiabatic passage techniques. Both configurations give broadband
and robust mode converters.
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I. INTRODUCTION

Integrated optical devices are important elements to en-
hance the capacities of all-optical networks. In this context,
spatial mode converters are required for mode-division-
multiplexing technology, where different signals are coded
on different guided modes via a single wavelength and are
compatible with wavelength-division multiplexing [1]. Mode
converters have received a lot of attention, and devices have
been demonstrated using numerous methods. Some are based
on phase matching, using adiabatic tapered couplers [2,3]
or various types of grating couplers [4–8]. Some use beam
shaping based, for instance, on Mach-Zehnder interferometers
[9], Y junctions [10,11], asymmetric conversion [12–15], or
supersymmetric conversion [16,17]. Some explicitly exploit
constructive interferences such as multimode interference
couplers [18–22], microring resonators [23,24], photonic
crystals [25,26], and dielectric metasurfaces [27–30]. En-
gineered subwavelength structures are therefore frequently
required, which may be difficult to fabricate and/or highly in-
tolerant of imperfection. In the context of wavelength-division
multiplexing, broadband mode converters are required and
have been demonstrated with a wavelength bandwidth of tens
of nanometers [7,14,18,19,27,29–31] or even of more than
100 nm in some devices [5,10,12,15,16,28,32,33].

One very promising and rich approach to get robust and
broadband integrated components is to exploit similarities
between quantum mechanics and wave optics [34], such as
analogies with quantum adiabatic transfers. One example of
particular interest is based on stimulated Raman adiabatic pas-
sage (STIRAP). In quantum physics, this technique implies
a robust transfer of population between two energy levels
coupled by one or more intermediate levels using multiple
delayed laser pulses [35]. The remarkable feature of such
systems is their high tolerance to system-parameter variations.
In integrated optics, such systems can be mimicked by a
coupled waveguide structure with spatially varying coupling
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coefficients leading to adiabatic power exchange between two
external waveguides through one or more intermediate waveg-
uides [36–38]. This has been experimentally demonstrated
with success [39–41].

Mode converters or filters have been proposed based on
analogies with STIRAP [4,31,42] and also with adiabatic pas-
sage via level crossing [5], with super structures [16,17,43],
and with the shortcut to adiabaticity [44]. Most earlier mode
converters, based on analogies with quantum adiabatic trans-
fer, use a single waveguide where the input mode evolves
to the desired mode along the guided propagation. The con-
version is achieved thanks to coupling between the different
modes of the multimode waveguide designed using computer-
generated planar holograms, which correspond to complex
multiplexed gratings. In the present paper, our goal is to ex-
ploit further analogies with robust adiabatic transfers, with no
complex longitudinal modulation of waveguides, such as grat-
ings; with no modulation at all of the propagation constants;
and with no subwavelength designs, which are always difficult
to implement.

One particularly interesting and very recent alternative is
to consider a system designed with three or more evanes-
cently coupled waveguides [32,43,45] to conceive broadband
devices. In the present work, one mode enters the input waveg-
uide (WGI) and is converted to another mode in the output
waveguide (WGO) through an intermediate one (WG2). For
an efficient coupling, the propagation constant of WGO of the
desired output mode is phase matched with the propagation
constant of the injected mode in WGI. In a STIRAP-like
configuration, WG2 is also phase matched. However, in this
paper, we show that this condition is not mandatory to
achieve mode conversion. When a strong mismatch occurs,
the transfer becomes analogous to adiabatic elimination (AE)
in quantum physics [46–50]. This second technique also has
the advantage of relaxing the constraint of the counterintuitive
(CI) order of the coupling constants required for STIRAP.
Section II describes the theory underlying mode conversion in
a three-coupled-waveguide system under the STIRAP or AE
configuration in the framework of the coupled-mode theory.
Section III numerically verifies the expectations by means of

2469-9926/2023/107(1)/013527(9) 013527-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2657-1771
https://orcid.org/0000-0002-5196-9925
https://orcid.org/0000-0002-8472-510X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.013527&domain=pdf&date_stamp=2023-01-30
https://doi.org/10.1103/PhysRevA.107.013527


RIM ALRIFAI et al. PHYSICAL REVIEW A 107, 013527 (2023)

FIG. 1. Example of a structure of three coupled adiabatic waveg-
uides used for mode conversion. The color code visualizes the
refractive-index contrast �n normalized to the smallest refractive-
index contrast �n0: α = �n/�n0 (in the illustrated design �n0 ≡
�nWG1). The curvatures of WG1 and WG3 are identical, and so are
the minimum separation distances s0 between the lateral waveguides
and WG2. The z position of s0 is different: WG2 and WG3 are
initially closer than WG1 and WG2 [CP(0) � CS (0) and CP(L) �
CS (L), with L being the length of the device]. Injection in WG1
(at z = 0) corresponds to a counterintuitive order of the coupling
constants and injection in WG3 to in an intuitive order. This shape
of waveguides is kept unchanged throughout this work. The only
variable parameters are the three relative refractive-index contrasts
α1, α2, and α3 used to choose the mode conversion and the regime
(STIRAP or AE). In the following BPM simulations, L = 30 mm,
�n0 = 0.004, s0 = 9.6 µm, and the width of the waveguides is
w = 8 µm.

the beam-propagation method (BPM). The example calcula-
tions show that both STIRAP and AE systems lead to a robust
mode conversion from a high-order mode to the fundamental
one or from a fundamental to high-order mode over a broad
spectral range.

II. THEORETICAL BACKGROUND

We consider a system of three evanescently coupled di-
electric waveguides, such as the one shown in Fig. 1, where
each waveguide i = 1, 2, or 3 can have a different refractive-
index contrast �ni. �ni is represented by the normalized
refractive-index contrast αi = �ni/�n0,where �n0 is the
smallest refractive-index contrast, corresponding to that of
WG1 in Fig. 1. The main goal of this work is to achieve a
mode converter in which one mode is injected into an input
waveguide, WGI (WG1 or WG3), and is converted to another
mode at the exit of the device in the opposite lateral waveg-
uide, WGO (WG3 or WG1). Therefore, adjusting αi selects
the propagation constants β of the excited mode in each
waveguide. Even though we treat explicitly a variation of β

by a variation of the whole contrast in planar-type waveguides,
the theory exposed in this section is general. The propagation
constants can be adjusted by tuning any of the waveguide
parameters, for instance, the lateral core dimensions instead
of the index contrast.

The wave propagation can be analyzed in the frame-
work of coupled-wave theory [51]. We consider multimode
waveguides with no perturbation. The excited mode in
each waveguide depends on the design parameters of the
waveguides and on the injected light. We can assume that,

with a proper injection, only one mode propagates in each
waveguide. For an efficient mode converter the propagation
constants βI j of mode j injected in WGI and βOk of mode k in
WGO must be matched: βI j = βOk = β̄. In the following, we
do not limit our analysis to configurations where the central
WG2 is also phase matched, so β2m = β̄ + �β, where m
refers to mode m excited in WG2 through coupling of the
adjacent waveguides. Like the other waveguides, WG2 can
be multimode; therefore, the mode excited in WG2 corre-
sponds to the one associated with the smallest �β [52,53].
The assumption of the propagation of a single mode in each
waveguide is justified for the designs considered in the next
section, where only a few modes are supported by the waveg-
uides with well-separated propagation constants. Under such
conditions, the propagation of the electric-field amplitudes
a1(z), a2(z), and a3(z) of the waves traveling in the three
waveguides is described by the following system of three
coupled differential equations written in matrix form:

i
d

dz

⎡
⎣a1

a2

a3

⎤
⎦ =

⎡
⎣ 0 C12e−i�βz 0

C21ei�βz 0 C23ei�βz

0 C32e−i�βz 0

⎤
⎦

⎡
⎣a1

a2

a3

⎤
⎦, (1)

where Clr (z) are the z-dependent coupling coefficients from
waveguide r to waveguide l and, in general, Clr �= Crl since
Clr (Crl ) is associated with mode-distribution overlap in
waveguide l (r) [53,54]. The longitudinal z variation of the
coupling constants is associated with the changing distance
between the waveguides seen in Fig. 1. The direct coupling
between WG1 and WG3 is neglected because the structure is
assumed to be planar and their separation distance is supposed
to be sufficiently large.

Similar to the approach given in [55], Eq. (1) can be set
in a more symmetric form using a′

1 = √
C21/C12 a1, a′

2 =
exp(−i�βz) a2, and a′

3 = √
C23/C32 a3:

i
d

dz

⎡
⎣a′

1
a′

2
a′

3

⎤
⎦ =

⎡
⎣ 0 CP 0

CP �β CS

0 CS 0

⎤
⎦

⎡
⎣a′

1
a′

2
a′

3

⎤
⎦, (2)

where the pump (CP ) and the Stokes (CS ) coupling constants
are geometrical averages of the above coefficients Clr , i.e.,
CP ≡ √

C12C21 and CS ≡ √
C23C32, named similarly to the pa-

rameters for quantum STIRAP [56,57]. To ensure an adiabatic
transfer, the z dependence of CP(z) and CS (z) must remain
moderate, meaning a smooth enough z dependence of the
waveguide parameters, a long enough waveguide length, and
a large enough coupling [41].

When there is no propagation constant mismatch (�β =
0), with counterintuitive sequences of the coupling constants,
the light propagation in the coupled waveguides is analogous
to the three-state STIRAP. A counterintuitive configuration
means that CS is stronger than CP in the first half of the propa-
gation for injection in WG1, as in Fig. 1. This should lead to a
robust transfer from WG1 to WG3, with only a little transient
light in WG2 [35,36,39]. To conceive a mode converter and
not only an adiabatic coupler, the only additional constraint
is to match the propagation constants of WG1 and WG3 for
different modes. The mode conversion could concern any two
modes, for instance, converting a high-order mode to the fun-
damental one or vice versa. Note that, contrary to earlier work
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on STIRAP in coupled waveguides, the condition �β = 0 can
correspond to various designs of WG2. WG2 can be identical
to WGI or WGO or can even be different from the other two
as long as at least one mode is matched to the propagation
constant β̄.

In a standard directional coupler composed of two coupled
waveguides, the case �β �= 0 is associated with incomplete
power transfer. However, in an adiabatic three-waveguide cou-
pler an efficient and complete conversion may occur even in
the presence of mismatch. Moreover, it was shown in quan-
tum physics that even strong detuning can lead to efficient
and robust population transfer. This effect is called adiabatic
elimination since it virtually eliminates the intermediate state
[46,50]. It was exploited and demonstrated experimentally in
coupled waveguides for broadband couplers [55,58]. Indeed,
when

|�β|√
C2

P + C2
S

� 1, (3)

the derivative of a′
2(z) varies rapidly, and the average values

of a′
2(z) and a2(z) over many cycles will be zero; thus, the

average of the derivative vanishes as well: da′
2(z)/dz = 0. If

no light is initially input in the middle waveguide, this extreme
limit leads to a strong suppression of the wave amplitude in
WG2 throughout the propagation, like for STIRAP. Equa-
tion (2) can then be reduced to an effective two-state system,
lacking the middle waveguide [55],

i
d

dz

[
ã1

ã3

]
=

[−�eff Ceff

Ceff �eff

][
ã1

ã3

]
, (4)

where a′
i(z) is replaced by ã′

i(z) after the addition of an unim-
portant phase shift (ãi(z) ≡ exp [−i(C2

P + C2
S )z/(2�β )]a′

i(z)).
The quantity

�eff ≡ C2
P − C2

S

2�β
(5)

in Eq. (4) is an effective detuning, and

Ceff ≡ −CPCS

�β
(6)

is an effective coupling coefficient. Therefore, in the adiabatic
regime, the light intensity contained in WG1 and WG3 varies,
and adiabatic evolution can produce energy transfer between
the outer waveguides with no light in WG2. For the case of
the structure shown in Fig. 1 and the examples that will be
discussed in Secs. III and IV, when light enters WG1 and
goes out WG3, the effective phase mismatch �eff sweeps
from some negative to some positive value. This is exactly
the mechanism that is at work also in the rapid-adiabatic-
passage-like two-waveguide system with explicit detuning of
the propagation constants [59]. In multimode waveguides, the
value of Eq. (3) is limited since the switching occurs only with
the modes associated with minimal �β. Moreover, adiabatic
propagation requires a strong coupling Ceff . In this kind of
system, there is always a sort of compromise to find suitable
conditions. More details on the theory of AE for waveguides
can be found in Ref. [55]. Note that the switch in the sign of
�eff along z can be in one direction or the other, which has the
consequence that both the intuitive and CI orders of coupling

will lead to complete light transfer from WGI to WGO, that
is, in both situations (WGI ≡ WG1 or WGI ≡ WG3) in the
configuration in Fig. 1. This is not the case for STIRAP, where
WGI must be WG1. As already mentioned, these adiabatic
transfers can be adapted quite easily to realize simultaneously
a mode conversion as long as the propagation constant of the
injected mode j in WGI βI j is identical to the propagation
constant of the output mode k in WGO βOk = βI j = β̄, with
j �= k. This will be verified in Sec. III by means of BPM sim-
ulations for the two configurations of STIRAP (�β = 0) and
AE [�β verifies Eq. (3)]. We will also discuss what happens
in intermediate situations where neither �β = 0 nor Eq. (3)
is fulfilled. Note that this theory is rather general and can be
applied to any type of dielectric waveguide, independently of
the geometry or technology involved.

III. EXAMPLES OF MODE CONVERTERS BASED ON
STIRAP AND AE

In this section, we choose, as an example, to verify the
above expectations by performing numerical simulations of
the wave propagation in the planar structures in Fig. 1. A BPM
algorithm using a split-step Fourier method is used for the
simulations [60,61]. To take a realistic example, the waveg-
uides are assumed to be written in fused silica, for which the
cladding refractive index is 1.4440 at 1550 nm [62]. For the
sake of simplicity we consider that all waveguides are planar
waveguides with an identical width w = 8 µm and WG1 and
WG3 have the same parabolic curvature, represented in Fig. 1,
to ensure proper evolution of CP(z) and CS (z). The minimum
separation distance s0 = 9.6 µm (the distance between the
centers of two adjacent waveguides). The total propagation
length is L = 30 mm to get a slow adiabatic evolution.

We first design a mode converter based on STIRAP transfer
(�β = 0). The starting situation corresponds to normalized
refractive-index profiles in each waveguide: α1 = α2 = α3 =
1 in Fig 1, equivalent to a refractive-index contrast �n =
0.004 in all waveguides. In that case, all waveguides are
matched, and the fundamental mode (mode 0) is launched
in WGI ≡ WG1 at z = 0 (ensuring a CI configuration). We
use the nomenclature ST_000 to reference this first case since
it is based on STIRAP (ST_) and the mode 0 is excited in
all three waveguides (000). Such a systematic naming is used
throughout this work for greater clarity and easier comparison
of the different cases. The corresponding designations and
parameters are given in Table I.

As expected and as shown in Fig. 2(a), for ST_000 the
BPM propagation shows a direct light transfer from WG1 to
WG3 with no transient light in WG2 and no oscillation from
one waveguide to the other. This provides evidence that the
design is suitable for adiabatic transfer. Therefore, the system
can be very easily tuned to build a mode converter based on
STIRAP by adjusting the output propagation constant until
βOk = βI0 , with k �= 0, is reached. Standard mode resolution
in a rectangular-slab waveguide gives βI0 = β̄ = 5.86 µm−1

at the wavelength λ = 1550 mn for αI = 1 [53]. With αO ≡
α3 = 2.4 we obtain βO1 = β̄ for the first-order mode (mode 1)
and βO2 = β̄ with αO = 5.3 for the second-order mode (mode
2). These two situations are simulated respectively in Fig. 2(b)
(ST_001) and Fig. 2(c) (ST_002), where α2 is kept fixed to 1.
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TABLE I. Nomenclature of the various simulated cases, used
for easier reference, with the corresponding relative refractive-index
contrasts αI , α2, and αO and matched propagation constants at the
wavelength λ = 1.55 µm. In the nomenclature “Name_I2O,” “Name”
designates a propagation analog to STIRAP (ST) or AE, and the
three numbers “I2O” denote the propagating modes in WGI, WG2,
and WGO.

Name_I2O αI α2 αO Matching conditions at 1.55 µm

ST_000 1 1 1 βI0 = β20 = βO0

ST_001 1 1 2.4 βI0 = β20 = βO1

ST_002 1 1 5.3 βI0 = β20 = βO2

ST_011 1 2.4 2.4 βI0 = β21 = βO1

AE_021 1 5.6 2.4 βI0 = βO1 < β22

AE_021b 1 7 2.4 βI0 = βO1 � β22

AE_022 1 5.6 5.3 βI0 = βO2 < β22

AE_120 2.4 5.6 1 βI1 = βO0 < β22

It can clearly be seen that perfect mode conversions occur
along with adiabatic light transfer: mode 0 injected in WG1
is converted to mode 1 or 2 at the output of WG3. Of course,
the design can also be used to convert a higher-order mode to
the fundamental one by injecting the high-order mode in WG3

1 2 3 4 5 6
O
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0.5

1

CI

Int

(d)
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0

0.5

I (arb.
units)

(c)
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x/w

(b)

-5 0 5
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(a)
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ST_001
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FIG. 2. (a)–(c) show the propagation of light obtained by BPM
simulations at the wavelength λ = 1.55 µm, where the shape of
the waveguides corresponds to Fig. 1 with αI ≡ α1 = 1 (CI case,
with injection of mode 0) and α2 = 1. αO ≡ α3 is changed to match
three different modes: (a) αO = 1, case ST_000 in Table I, (b) αO =
2.40, case ST_001, and (c) αO = 5.33, case ST_002. The color
code visualizes the normalized light intensity going from 0 (blue)
to 1 (yellow). This illustrates three different cases of STIRAP-like
transfer with mode conversion for (b) and (c). (d) Evolution of
the transfer efficiencies [Eq. (7)] with the parameter αO (αI = α2 =
1). The blue solid curve shows the counterintuitive case (ηCI), and
the red dashed curve gives the intuitive case (ηInt). The three maxima
where ηCI = 1 correspond to propagations (a), (b), and (c). The small
inset illustrates the beam propagation for αO = 4, where all modes of
the output waveguide are mismatched.

at z = L (or by injection in WG1 at z = 0 with a permutation
of α1 and α3).

Even without calculating the propagation modes, this first
two cases of mode conversion, ST_001 and ST_002, can be
found again in Fig. 2(d), where we consider a variation of
the output waveguide index contrast (variation of αO). Specif-
ically, Fig. 2(d), shows the αO dependence of the transfer
efficiency

η = PO(z = L)

PI (z = 0)
, (7)

where PO(z = L) is the output power in WGO and PI (z = 0)
is the initial power launched in WGI. The two curves rep-
resent ηCI for the counterintuitive case (WGI ≡ WG1 and
WGO ≡ WG3) and ηInt for the intuitive case (WGI ≡ WG3
and WGO ≡WG1).

Several remarks can be made. First, ηCI = 1 is obtained
at the expected values of αO, but the range where ηCI > 0.5
is quite large, which gives the first indication of a robust
behavior. Note also that when η < 1, light is distributed in sev-
eral output ports, but a pure output mode is always observed.
This means there is no mode mixing since the choice of the
excited mode in WG2 and WGO is forced due to evanescent
coupling. Another remark is that, with the intuitive configura-
tion, ηInt never reaches 1 and strongly oscillates around mode
matching. This two points will be analyzed in more detail
in the following. Finally, except around the mode-matching
condition, there is never any light in WGO. Indeed, since
αI = α2, there is a strong coupling from WGI to WG2, and
the light oscillates between these two waveguides (similar to
Rabi oscillations in quantum dynamics). This is like in any
resonant coupler, and no transfer occurs to unmatched WGO.
The inset in Fig. 2(d) illustrates this behavior for the CI case
with αO = 4.

As detailed in Sec. II, adiabatic mode conversion should
also occur when �β �= 0, especially when the AE condition
is fulfilled [Eq. (3)]. To get the whole picture, we plot in
Fig. 3 the evolution of ηCI and ηInt as a function of αO and
α2 while keeping α1 = 1. The white dashed lines correspond
to the profiles in Fig. 2(d). We focus on the beginning of
the dynamics for αO < 6.5 and α2 < 20, but the dynamics
repeats for higher values. This gives further evidence that αO

must correspond to βOk ≈ βI0 to get high efficiency, as already
shown in Fig. 2(d). Indeed, the three vertical regions with
η ≈ 1 correspond to the first three mode-matching conditions,
between WGI and WG3, obtained for αO = 1 (βI0 = βO0 ),
αO = 2.4 (βI0 = βO1 ), and αO = 5.3 (βI0 = βO2 ), which were
already discussed. Around these conditions, η is close to 1 for
almost all values of α2 for the CI propagation and also for
the intuitive case. Indeed, an essential condition for quantum
STIRAP is the two-photon resonance [63], which is analogous
here to βI0 = βOk , as already mentioned in Sec. II. On the
contrary, when α2 varies [i.e., �β in Eq. (2) varies], the anal-
ogy to single-photon resonance in quantum STIRAP is lost.
This additional resonance condition is less critical since the
intermediate state is never populated. This explains the large
range of α2 values associated with η ≈ 1. Moreover, both
counterintuitive [Fig. 3(a)] and intuitive [Fig. 3(b)] cases are
extremely similar except precisely around the conditions cor-
responding to a perfect STIRAP (βI0 = β2m = βOk ), where ηInt
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FIG. 3. (a) Color plot of ηCI as a function of αO and α2 for the
counterintuitive case at λ = 1.55 µm. (b) Corresponding ηInt for the
intuitive case. All the others waveguide parameters are as in Fig. 1
(αI = 1). At the positions of the white dashed lines (α2 = 1), the
efficiencies correspond to the profiles in Fig. 2(d). The three vertical
regions with η ≈ 1 correspond to βI0 ≈ βOk for the first three modes.

falls. This shows that even a moderate verification of the AE
condition of Eq. (3) is sufficient for efficient mode conversion
in the intuitive order of the coupling constants. However, the
presence of WG2 is essential, as seen for α2 → 0, where η →
0. This also proves that there is no direct coupling from WG1
to WG3. Figure 3(a) also shows that in each yellow region,
corresponding to ηInt (αO) ≈ 1 and shaped like a “spinning
top,” the maximum horizontal extensions of strong efficien-
cies are obtained around the condition βI0 = β2m , giving the
first indication of how a STIRAP configuration is more robust
than an AE one.

For a better understanding of these results, we show in
Fig. 4 the beam propagation for several interesting cases
for the CI (left column) and intuitive (right column) cases
for a mode conversion from mode 0 to mode 1 where only
α2 is modified. All CI cases show efficient adiabatic mode
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FIG. 4. Examples of beam conversions from mode 0 (αI = 1)
to mode 1 (αO = 2.4) illustrated by the evolution of light intensi-
ties at λ = 1.55 µm in the waveguide design in Fig. 1, except for
α2, which varies: (a) α2 = 1, ST_001 [the CI case corresponds to
Fig. 2(b)], (b) α2 = 2.4, ST_011, (c) α2 = 5.6, AE_021, and (d) α2 =
7, AE_021b. The left column shows the CI cases, and the right one
shows the intuitive ones. (a) and (b) show two converters based on
STIRAP, while (c) and (d) illustrate AE configurations where both CI
and intuitive propagations lead to robust mode conversion. In (d) the
AE condition of Eq. (3) is better verified, and therefore, almost no
light transits to WG2, even in the intuitive case. The color code shows
the normalized light intensity.

conversions. ST_001 and ST_011, in Figs. 4(a) and 4(b),
correspond to the first STIRAP transfers for the CI cases with
βI0 = β20 = βO1 in Fig. 4(a) and βI0 = β21 = βO1 in Fig. 4(b).
For the intuitive order of the coupling constants (right panels),
it is clearly seen that, in these resonant cases, the “population”
of the intermediate state (WG2) strongly oscillates. There-
fore, depending on the values of the coupling constants, a
significant part of the light can exit through WG2 or WG3
with no robust transfer, as expected by theory. For AE_021
and AE_021b [Figs. 4(c) and 4(d)], the matched-propagation-
constant condition βI0 = βO1 is still verified; therefore, the
CI propagations are the same as the STIRAP ones. On the
contrary, for the intuitive propagations, each case leads to an
efficient transfer to mode 1 in WGO, as already suggested
in Fig. 3(b). The difference between Figs. 4(c) and 4(d) is
the transient light in WG2, which is much more important
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FIG. 5. Examples of other possible conversions illustrated by
the evolution of light intensities at λ = 1.55 µm in the waveguide
designs in Fig. 1, except for αI and αO (α2 = 5.6 as in Fig. 1).
(a) αI = 2.4 and αO = 1 (AE_120), realizing conversion from mode
1 to 0, and (b) αI = 1 and αO = 5.33 (AE_022), realizing conversion
from mode 0 to 2. The left column shows the CI case, and the right
one shows the intuitive case. The color code shows the normalized
light intensity. The top profiles (bottom profiles) show the output
(input) transverse intensity profiles.

in Fig. 4(c) than in Fig. 4(d). Indeed, the AE criterion of
Eq. (3) is >5 for AE_021b [Fig. 4(d)] instead of ≈1 for
AE_021 [Fig. 4(c)], justifying the better elimination of WG2
for the case in Fig. 4(d). Nevertheless, even for the intuitive
propagation of AE_021, the dynamic is quite different from
the intuitive resonant cases since there is no light oscillation:
the light coupled to WG2 conserves a rather constant intensity
before escaping to WGO. One could also note that for the
designs AE_021 and AE_021b, the excited mode in WG2 is
mode 2 since it corresponds to the mode with the smallest
mismatch �β.

Additional examples of adiabatic mode conversions are
given in Fig. 5, where we add the injected light intensity
profiles (bottom panels) and the output ones (top panels). For
AE_120 [Fig. 5(a)] mode 1 is injected in the waveguide with
the higher refractive index. This shows that our concept can be
used not only for mode conversion from the fundamental to a
higher-order mode but also for conversion to the fundamental
one. The light profiles give further visual evidence of the
strong efficiencies. The last example, AE_022, in Fig. 5(b),

illustrates mode conversion from mode 0 to mode 2, with the
same WG2 (α2 = 5.6) as for AE_021 [Fig. 4(c)]. Another
case of conversion to mode 2 based on STIRAP has already
been shown with ST_002 [Fig. 2(c)]. Other cases for mode
conversion from mode 0 to 2 are not shown, but the dynamics
are the same as for conversion from mode 0 to 1. More-
over, our concept can be extended to any mode conversion.
These examples clearly demonstrate the strong potential of
this mode-conversion technique, where no mode mixing can
occur as long as the parameters of the waveguides are kept
constant along the propagation distance. Robust transfers are
also obtained since the efficiency does not need precise phase-
matching conditions. This robust behavior should also lead to
a broadband operation, which is studied in the next section.

IV. SPECTRAL ANALYSIS

The variation of mode-conversion efficiency η with wave-
length λ is plotted in Fig. 6 for the various cases discussed
in the previous section. The refractive-index contrasts �n
are supposed to be fixed (independent of λ), but the disper-
sion of fused silica is taken into account for the cladding
refractive index. Figures 6(a) and 6(b) correspond to designs
ST_001 and ST_011, which show broadband efficiencies only
for the CI cases (blue solid curves), as expected for STI-
RAP transfers. Due to the different spectral evolution of the
propagation constants in waveguides with different �n, the
overall phase matching βOk = βI0 is lost by tuning λ. This
phase mismatch between waveguides WGI and WGO with
λ is the main parameter limiting the bandwidth of the mode
converters. Moreover, for ST_001 [Fig. 6(a)], βI0 (λ) = β20 (λ)
is verified at all wavelengths, whereas for ST_011 [Fig. 6(b)],
it is the condition βO1 (λ) = β21 (λ) which is fulfilled. Match-
ing WG2 with the highest lateral mode results in an increased
bandwidth. Matching the central waveguide with the high-
est refractive-index contrast is always preferential since the
maximum coupling constant increases with the mode order,
which leads to better fulfillment of adiabatic evolution. There-
fore, for the chosen parameters, a bandwidth >250 nm can
be reached for our 01 mode converter. In the intuitive cases
in Figs. 6(a) and 6(b), strong variations of ηInt (red dashed
curves) occur around phase matching at λ̄ = 1.55 µm, as
expected from STIRAP theory, and no efficient robust transfer
occurs.

In the AE situations in Figs. 6(c)–6(e), the λ-dependent
phase mismatch between WGI and WGO is again the main
driving parameter limiting the bandwidth. However, since
WG2 is phase matched with neither WGI nor WGO, the
bandwidth is therefore smaller than for CI propagation using
STIRAP. Case AE_021 in Fig. 6(c) is an intermediate AE
situation where the initial detuning with WG2 at λ̄ = 1.55 µm
is moderate and reaches almost zero around λ = 1.63 µm,
explaining the big dip in ηInt at this wavelength. For longer
λ, the detuning increases rapidly, like in the other situations,
and the efficiency drops in a way similar to what occurs in the
other cases. Therefore, the interest of AE mode conversion
in comparison with STIRAP is not the bandwidth, but the
very similar broadband behavior for the CI and intuitive cases.
This is of practical importance since the same device could be
used for signals propagating forward or backward: mode 0
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FIG. 6. Evolution of ηCI (solid blue curve) and ηInt (dashed red
curve) as a function of wavelength λ. (a)–(d) are for conversion
from mode 0 (αI = 1) to mode 1 (αO = 2.4). (e) is for conver-
sion from mode 0 to mode 2 (αO = 5.33). The panels differ by
the refractive-index contrasts in WG2: (a) α2 = 1 [ST_001, with
the corresponding beam propagation at λ̄ = 1.55 µm in Fig. 4(a)],
(b) α2 = 2.4 [ST_011, corresponding to Fig. 4(b)], (c) α2 = 5.6
[AE_021, corresponding to Fig. 4(c)), (d) α2 = 7 [AE_021b, cor-
responding to Fig. 4(d)], and (e) α2 = 5.6 with αO = 5.33 [AE_022,
corresponding to Fig. 5(b)]. (f) shows conversions based on standard
directional couplers for comparison. The solid curve is for conversion
from mode 0 to mode 1 (αO = 2.4, DC_01), and the dashed curve is
for conversion to mode 2 (αO = 5.33, DC_02). The design of the
two straight waveguides is shown in the inset with L = 6.5 mm and
s0 = 2w for all z; the others parameters are the same as before.

can enter WG1 in both directions (at zI = 0 or at zI = L) and
is converted to mode 1 in WG3 at the exit (at zO = L or at
zO = 0), while mode 1 can enter WG3 in both directions and

is converted to mode 0 in WG1 at the exit. Therefore, unlike
for the STIRAP-like designs, four input and output ports can
be used.

The curves for AE_022 in Fig. 6(e) show the bandwidth
of the 02 mode converter where the propagation at λ̄ = 1.55
is in Fig. 5(b). This example shows that going to a higher-
order mode does not affect the bandwidth much, especially
for AE configurations. Nevertheless, the bandwidth tends to
decrease by going to higher-order modes. Indeed, the higher
the mode is, the faster the propagation constant changes with
λ. This AE_022 example is of particular interest since it uses
the same WG2 (α2 = 5.6) as AE_021, demonstrating that the
same intermediate waveguide can be used for different mode
conversions. For the 02 conversion in Fig. 6(e), the dip seen in
Fig. 6(c) is no longer present. The reason is that the matching
with WG2 is no longer in the wavelength range of strong
efficiencies. AE conversions lead to smaller bandwidths than
the CI STIRAP cases; nevertheless, all adiabatic mode con-
verters are always much more broadband than a standard
directional mode coupler, where the spectrum efficiencies
for the 01 and 02 mode converters are plotted in Fig. 6(f).
These directional coupler examples also illustrate the ex-
pected smaller bandwidth when going to higher-order modes.
Note that the results in Fig. 6 are obviously the same when
considering the conversion from a higher-order mode to the
fundamental one.

V. CONCLUSIONS AND DISCUSSION

We proposed a rather simple method to realize broadband
mode converters based on a system of three evanescently
coupled waveguides, where all the parameters of the waveg-
uides, such as the width and the refractive-index contrasts,
remain constant for the entire propagation distance. The only
changing parameter is the separation distance between the
waveguides, giving an adiabatic evolution of the coupling
constants in analogy with Hamiltonian interactions in quan-
tum systems, such as STIRAP and adiabatic elimination. We
demonstrated that these two approaches can be a fruitful inspi-
ration to build broadband mode converters. Implementations
in optics of STIRAP and AE for mode conversions are very
similar, and we showed that changing only the refractive-
index contrast of the intermediate waveguide is sufficient to
select one process or the other.

Practical implementation of a different refractive-index
contrast would require, for instance, a different doping
concentration of the impurities or changing the doping el-
ement from one waveguide to another one. Alternatively,
mode matching in different spatial modes can also be ob-
tained for a common index contrast for all waveguides,
but with different waveguide widths. This could be espe-
cially useful in the case of ridge waveguides. With this
second design, which is not shown here in the simulations
but is formally identical, the refractive-index contrasts are
usually stronger; therefore, strong coupling requires smaller
separation distances, which could reduce the footprint of
the devices.

Finally, we have shown that AE has the advantage of
permitting strong tolerance in the parameter of the central
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waveguide and gives components with four useful input and
output ports. However, the STIRAP-like waveguide struc-
ture exhibits a larger bandwidth that can reach 250 nm
at telecommunication wavelengths in the given examples,
again without requiring any complex longitudinal varia-
tion of the waveguides. The same devices can be used for
mode conversion from a low-order mode to a higher-order
mode or vice versa. This concept can be extended to others
functionalities, such as mode multiplexing or demultiplex-
ing. The broadband behavior would permit us to combine

such adiabatic mode converters with wavelength multiplexing
easily.
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