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THE HORIZONTAL CHORD SET
TO CIRM AND BACK

DIANA DAVIS AND SERGE TROUBETZKOY

Abstract. We study the set of lengths of the horizontal chords
of a continuous function. We show that no matter which function
we choose, at least half of the possible lengths occur, and we prove
several results about functions for which all the possible lengths
occur.

1. Story

On a beautiful summer day, two mathematicians walk from the
CIRM research institute down to the sea at the Calanque de Sugi-
ton, and then walk back via the same path, the whole trip taking one
hour. They wonder: is there a spot on the route that they passed by
two times, exactly 23 minutes apart? How about ` hours apart, for any
` ∈ [0, 1]?

In this paper, we show that the answer to the above question is “yes.”
Such a spot exists for every ` even if the mathematicians wander back
and forth on the trail along the way (left and middle pictures in Figure
1). On the other hand, if the mathematicians pass by CIRM on their
return and walk in the other direction, and then go back to part of the
way to the Calanque before returning to CIRM (right picture in Figure
1), there is no such guarantee; however, at least half of the possible
times must be achieved.

Figure 1. A simple hike, a meandering hike, and a wan-
dering hike. Time is on the horizontal axis, and distance
from CIRM towards the Calanque is on the vertical axis.
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A different application of the issues discussed in this article, to av-
erage pace over time, was given in [BDD17].

2. Definitions

By shifting and scaling, we may assume that length (in time) of the
hike is 1, and that the common value of f(0) and f(1) is 0. Let

C := {f : [0, 1]→ R, f is continuous such that f(0) = f(1) = 0}.
The horizontal chord set is the set of lengths horizontally connecting
two points on the graph, i.e.,

S(f) := {` ∈ R : there exists s ∈ [0, 1] with f(s) = f(s+ `)}.
Hopf has characterized which sets S ⊂ R can be a horizontal chord set
for some f ∈ C ([H36], see [BDD17] for an English version of Hopf’s
proof). We are interested in the following question: for which functions
f ∈ C does S(f) = [0, 1]? We call this the full chord property.

Definition 1. Suppose f is a continuous function, s1 < s2, a > 0,
f(s1) = f(s2) = 0 and f((s1, s2)) = (0, a]. Then we call f |[s1,s2] a
mountain with endpoints s1 and s2. Fix t ∈ [s1, s2] so that f(t) =
a. (Note that while there may be several choices for t, none of our
results depend on the choice.) Then we call f |[s1,t] the ascent, f |[t,s2]

the descent, a the height, and |s2 − s1| the width.
A valley is exactly analogous to the above, with a < 0 and “ascent”

and “descent” exchanged.
A mountain range is a union of contiguous mountains, and possibly

also intervals with f(x) = 0 (including intervals degenerate to a point),
i.e., essentially the same definition as above but with f([s1, s2]) = [0, a].
The height of a mountain range is the height of its tallest mountain,
which exists because a continuous function has a maximum on a com-
pact set. The ascent, descent, and width are as above. We define a
valley range analogously.

Note that mountain ranges and valley ranges can include horizontal
intervals satisfying f(x) = 0. Such a horizontal piece between a moun-
tain range and a valley range can be considered as part of either one;
the choice does not affect our results.

When we refer to a mountain or a valley range we will always implic-
itly assume it is a maximal mountain or valley range, modulo the choice
of assignment of horizontal pieces at f(x) = 0 as described above.

3. There and back again

Theorem 2. If f is continuous and f |[s1,s2] is a mountain range, then
[0, s2 − s1] ⊂ S(f).

Corollary 3. If f(x) ≥ 0 for all x ∈ [0, 1] then f has the full chord
property.
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In particular the walk to Sugiton has the full chord property. Both
of these results also hold for valley ranges.
Proof. Fix a mountain range f |[s1,s2], and consider the shifted moun-
tain range f(x− `) (see Figure 2). For any shift ` ∈ [0, s2− s1], exactly
one endpoint of the mountain range is inside the other copy. Thus it
follows from the Intermediate Value Theorem that the two mountain
ranges intersect, so f(x) = f(x− `) and there is a horizontal chord of
length `. �

Figure 2. A mountain range and its shift always intersect.

4. Structure of the chord set

First, we show that the chord set may not be the entire interval [0, 1]:

Theorem 4. If f has a mountain at one endpoint and a valley at the
other endpoint, then f does not have the full chord property.

Proof. Let w1, w2 be the width of the mountain and the valley, re-
spectively. Then any chord with horizontal displacement in the range
[1−min{w1, w2}, 1) must have one endpoint in the mountain and one
endpoint in the valley. Thus the function values at these two endpoints
have different signs, so the chord between them is not horizontal. �
Most of this paper consists of exploring closed intervals of chord lengths.
However, the following figure shows that S(f) does not necessarily con-
sist of unions of closed intervals; there is a possibility that it can include
isolated points:

Figure 3. A chord that can be slid neither up nor down.

By making lots of bumps, we can make the set of such additional
chord lengths into a set with accumulation points.
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Figure 4. A function with S(f) = [0, 1/2] ∪ {3/4, 1}
and one where S(f) has many accumulation points.

5. At least half the lengths

In this section, we will use Hopf’s classical theorem: for the horizon-
tal chord set S(f), the set Sc := R+ \ S(f) is open and additive; i.e.,
if a, b ∈ Sc then a+ b ∈ Sc. The other main ingredient in this section
is the central symmetry 1→ 1− ` of the interval [0, 1] . The image of
S(f) by this symmetry is the set T (f) := {` : 1 − ` ∈ S(f)}. Denote
the Lebesgue measure on [0, 1] by λ. We have the following result:

Theorem 5. Let f : [0, 1] → R be a continuous function with f(0) =
f(1) = 0. Then the length of S(f) satisfies

λ(S(f)) ≥ 1

2
.

This bound is sharp.

Proof. Since the map ` → 1 − ` preserves the Lebsegue measure we
have

λ(T (f)) = λ(S(f)).

By Hopf’s theorem if a+ b 6∈ S∗ then we must have either a or b not
in Sc, i.e., at least one of a or b belongs to S(f). We apply this to a = `
and b = 1 − `, since we know 1 ∈ S(f) we conclude that either ` or
1− ` is contained in S(f), or equivalently either ` ∈ S(f) or ` ∈ T (f);
i.e.,

S(f) ∪ T (f) = [0, 1].

If λ(S(f)) < 1/2 the two display equations yield an immediate contra-
diction, thus the first statement of the theorem holds.

To show that the bound is sharp, we construct an example of a
function whose chord set has length 1/2, with any desired number n of
mountains and valleys.
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It is clear that Sn
∗ is an additive set, because all of the intervals are

integer multiples of the first one. Thus since Sn
∗ is an open additive

set, by Hopf’s theorem it is the complement of the chord set of some
function on [0, 1]. That chord set is Sn.

The total length of each Sn is 1/2:
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Given any open, additive set S∗, Hopf gives a construction for a
function hS(x) whose horizontal chord set is exactly S∗. Examples
of functions hSn(x) with n mountains and valleys, and chord set with
length 1/2, given by Hopf’s construction are shown in Figure 5. Thus,
for each n, this construction gives the desired function with n bumps
and horizontal chord set of length 1/2. �

Figure 5. Functions having a horizontal chord set of
length exactly 1/2, with 1, 2, 5 and 22 mountains, re-
spectively.

Our proof leads to the following natural question, does there exist a
example of an f with countably many mountain ranges and countably
many valley ranges such that λ(S(f)) = 1/2?
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6. Two mountain ranges separated by a valley range

It would be nice to give a classification of which functions’ chord
sets have the full chord property, but the general case seems compli-
cated. Thus here we will only analyze the simplest non-trivial case, the
piecewise affine case with two mountains and one valley in between.

Let w`, wv, wr > 0 be the widths of the left mountain, valley, and
right mountain, which are normalized to add up to one, and let h`, hr >
0 and hv < 0 be their heights. Since the chord set does not depend on
vertical scaling we normalize max(h`, hr) = 1. We also use the widths
of the ascent and descent of each mountain, which we call a`, d`, ar and
dr, respectively (see Figure 6).

Figure 6. A narrow tall mountain always intersects a
wide short mountain if their bases intersect. The image
also shows the variables defined above.

We will use the notation fw,a,d,h. Certain variables are redundant
since a width is the sum of its ascent and descent, and one of the ascents
or descents or widths is also redundant because of our normalization,
thus we have a seven dimensional parameter space along with one dis-
crete parameter. However the constraints in the next theorem live in a
5-dimensional subspace of our 7-dimensional space because of the three
parameters needed to describe a valley only its width plays a role.

Theorem 6. The piecewise linear map fw,d,a,h does not have the full
chord property if and only if the parameters satisfy one of the following
two conditions

(1) (i) w` < wr, (ii) h` < 1, (iii) h` · ar + 1 − wr − a` < wv + wr

and (iv) 1− h` · dr − a` > max(wr;w` + wv), or
(2) (i) wr < w`, (ii) hr < 1, (iii) hr · a` + 1 − w` − ar < wv + w`

and (iv) 1− hr · d` − ar > max(w`;wr + wv).

Proof. There are two different ways to get a chord value. The first
possibility is that either the chord connects the two sides of the same
mountain or the two side of the same valley, for such chord lengths The-
orem 2 implies Sinit := [0, wmax] ⊂ S(f) where wmax := max(w`, wv, wr).

Because of the special form of our graph there is only one other
type of chord length possible, namely the lengths of chords that arise
between the two mountains, or equivalently when the left mountain
shifted by such a length intersects the right mountain.
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Clearly if the narrower mountain is at least as high as the wider
mountain, then the mountains always intersect when their bases overlap
(Figure 6), so such a function has the full chord property. Thus in order
not to have the full chord property, one mountain must be narrower
and shorter. We can restrict to two cases:
Case (1) (Figure 7) Suppose first that the narrower and shorter moun-
tain is on the left ((i) w` < wr and (ii) h` < hr = 1).

Figure 7. The case when a narrower and shorter moun-
tain is on the left, along with the definitions of s∗ and s∗.

No matter which parameters we choose, chord lengths between the
two mountains arise if the bases of the shifted left mountain and the
right mountain intersect, but neither base is contained in the other
base. This set consists of two intervals described below.

When a parameter value belongs to the interval Smid := [wv, w` + wv],
the shift of the left mountain intersects the ascent of the right moun-
tain, and so Smid ⊂ S(f) (Figure 8).

When a parameter value belongs to the interval Sfin := [wr + wv, 1],
the shift of the left mountain intersects the descent of the right moun-
tain, so Sfin ⊂ S(f).

Figure 8. (Left) a shift by the parameter wv (middle)
a shift by the parameter wl + wv (right) the horizontal
chord lengths in Smid

Summarizing, we have shown that Sinit∪Smid∪Sfin ⊂ S(f) no matter
which parameter values we choose, as long as the narrower shorter
mountain is on the left.



8 DIANA DAVIS AND SERGE TROUBETZKOY

We will now analyze the complementary set T := (Sinit∪Smid∪Sfin)
c.

The intervals Sinit and Smid abut or overlap since wv ≤ wmax. The larger
of the two right endpoints of these two intervals is

max(wmax, w` + wv) = max(w`, wv, wr, w` + wv) = max(wr, w` + wv).

Thus we have

(1) T = (max(wr;w` + wv), wv + wr).

Note that the set T is contained in the set of parameters for which
the base of the shifted left mountain is inside the base of the right
mountain, and is a strict subset if Smid ⊂ Sinit \ [0, wv), or equivalently
if wr > w` + wv.

If the ascent of the smaller mountain is steeper than the ascent of the
larger mountain, or if the descent of the smaller mountain is steeper
than the descent of the larger mountain, then we get an additional
interval of chord values in S(f) that are in T , one for each such case.

There are three solutions to the equation f(s) = h`, a` < s∗ < s∗

(pictured in Figure 7). The zero, one or two additional intervals of
chord values in T are then T1 := [max(wr;w` + wv); s∗ − a`] and T2 :=
[s∗− a`;wv +w`], where here an interval [a, b] with b < a is interpreted
as the empty interval.

To calculate s∗ and s∗ consider the equations of the ascent and de-
scent of the right mountain, recalling that hr = 1:

y =
1

ar
(s− (1− wr)) and y =

−1
dr

(s− 1).

Replacing y by h` in these two equations yields

s∗ = h` · ar + 1− wr and s∗ = 1− h` · dr.
Thus the two additional intervals are

T1 := [max(wr;w` + wv);h` · ar + 1− wr − a`] and(2)
T2 := [1− h` · dr − a`;wv + w`].(3)

The intervals T1 and T2 never overlap since s∗ < s∗, but either one
of them can cover T . Thus, the full chord property in the case under
consideration is equivalent to having either T ⊂ T1 or T ⊂ T2.

Comparing equations (1) and (2)–(3), we see that T1 covers T if and
only if

h` · ar + 1− wr − a` ≥ wv + wr

and the right end point of T2 is larger than the right endpoint of T ,
thus T2 covers T if and only if

1− h` · dr − a` ≤ max(wr;w` + wv).

If neither of these last two equations, which correspond to the negations
of (iii) and (iv), hold, then we do not have the full chord property.
Case (2) (Figure 9) Now suppose that the narrower and shorter moun-
tain is on the right ((i) wr < w` and (ii) hr < h` = 1).
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Figure 9. The case when the right mountain is nar-
rower and shorter

We take the walk backwards, in other words, we consider the func-
tion g(s) := f ◦ i(s) where i is the isometry i : s 7→ 1− s. The function
g has the same chord set as f , and furthermore if f is in case (2) then
g is in case (1). Applying the characterization proven in case (1) to g
and reinterpreting this characterization in terms of the parameters of
f yields: (i) wr < w`, (ii) hr < 1, (iii) hr · a` + 1− w` − ar < wv + w`,
and (iv) 1− hr · d` − ar > max(w`;wr + wv). �

A Monte Carlo simulation suggests that the percentage of such func-
tions with the full chord property is approximately 70.4%. In principle
an exact calculation is possible, but as the constraints are not linear,
it is not elementary.
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