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SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS
GENERATED BY AN ALMOST GENERALIZED ARITHMETIC
SEQUENCE, FROBENIUS NUMBER

MARCEL MORALES

ABSTRACT. Let a,d, k, h, c be positive integers. Recall that a numerical almost gener-
alized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semi-
group minimally generated by relatively prime integers a, ha+d, ha+2d, ..., ha+kd, c,
that is its embedding dimension is k + 2. In [8] was described a Grébner basis of the
ideal defining S under one technical assumption, the complete case will be published
in a forthcoming paper. In this paper we give a complete description of S when is sym-
metric or almost symmetric and a quadratic formula for its Frobenius number. Note
that our results generalizes and extends previous result of [11], [3] and [13]. Given
a,d, k, h,c a simple algorithm allows us to determine if S is almost symmetric.
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1. INTRODUCTION

Let ay, . .., a, be natural numbers and S = (ay, . . ., a,) = {koao+. .. knan|k; € N} the
semigroup generated by {aq, ..., a,}. Recall that if ao, . .., a, are relatively prime num-
bers then the Frobenius number of S, denoted by F'(S), is the biggest integer that does
not belong to S. Let A = K|[S] = K[tF|k € S] = K[t™,...,t"] C K]|t] the semigroup
ring of S and R = K|xy,...,x,] the polynomial ring in n + 1 variables over K graded
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Key words and phrases: Frobenius number, numerical semigroups Pseudo-Frobenius number, Apéry
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by the weights deg x; = a;, for all i = 0,...,n. The defining ideal I of K[S] is defined to
be the kernel of the K-algebra homomorphism ¥ : R — K[S] given by ¥(xz;) = t% for
all2 =0,...,n, we will use often the fact that I is a prime ideal generated by binomials
and does not contains monomials. We use the weighted degree reverse lexicographical
order <., on the monomials of the ring R with g < ... < z,,, and the map ¢ : [[R]] - N
defined by ©(M) = kyay + ... + kpay, for every monomial M = xk0 .. zF» € [[R]]. Let
recall the pseudo-Frobenius set PF(S) of all integer number a which satisfies a ¢ S and
a+s €S, forall 0 # s € S and the number of elements of PF(S) is called the type of
S, denoted by t(S). Finally, the Apéry set with respect to ag plays an important role
in our paper which is defined by Ap(S,ap) = {s € S|s —ap ¢ S}. By defining in [8] a
monomial Apéry set Ap(S,ag) of ag, that is an algebraic analogous to the Apéry set
Ap(S,ag) and using the order <,, as well as the map ¢, we can change from studying
the Apéry set to studying the set of monomials of [[R']] which are not in in(I), where
R = Klxg, ..., x,)].
Let a,d, k, h,c be positive integers. Recall that a numerical almost generalized arith-
metic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup mini-
mally generated by relatively prime integers a, ha + d, ha + 2d, ..., ha + kd, ¢, that is
its embedding dimension is k£ + 2. Our goal is to describe all properties of an AAG-
semigroup in terms of a continuous fraction, as an extension of my previous works in
[5], [6]. In [8] was described a Grobner basis of the ideal defining S under one condition,
the complete case will be published in a forthcoming paper. In this paper we continue
the work of [8] and we can describe the Pseudo Frobenius set (see Theorem 5.2), and
so the Frobenius number and its type is at most 2k. As a consequence we can give
a complete description of AAG-semigroups that are symmetric or almost symmetric
see Theorems 6.1, 7.2, 7.3 ), in particular we prove that if S is almost symmetric its
type is at most the embedding dimension minus 1. Another interesting point is that if
S is almost symmetric then the Frobenius number is given by a quadratic formula in
terms of a,d, k, h,c and £(S). Moreover a simple algorithm using the solutions of some
quadratic equations allow us to decide is an AAG-semigroup is almost symmetric. This
result extends and generalizes all the results of [13].

The algorithms presented here are the extensions of the previous work by the
first author in [5], [6] and can be downloaded in http://www-fourier.univ-grenoble-
alpes.fr/ morales/.

2. FROBENIUS NUMBER AND APERY SET

Denote by Z and N the set of integers and nonnegative integers respectively. Let S
be a semigroup in N. Given n > 1 and aq, ..., a, € N such that ged(ag,...,a,) =1,

S = {ag,...,a,) = {koao + ... kpa,|k; € N}.

The set N\ S is finite. If S is minimally generated by {ao, ..., a,} S is called numerical
semigroup and n + 1 is called the embedding dimension of S.
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Definition 2.1. Let S be a numerical semigroup generated by ag, ..., a,.
(i) The number F(S) = max{a € Z | a ¢ S} is called the Frobenius number of S.
(ii) We also define

PF(S)={acZ\S|a+seSif se€Sands#0}

and an element of PF(S) is called a pseudo-Frobenius number of S. Obviously, the
Frobenius number is a pseudo-Frobenius number and the number of elements of PF(S)
is called the type of S, denoted by t(.5).

(iii) The Apéry set of ap in S is the set

Ap(S,ap) ={se€ S|s—ag ¢ S}
3. FROBENIUS NUMBER AND GROBNER BASIS

The definitions and results in this section follow from [8]. Let R = Klxo,...,x,]
be the polynomial ring graded by the weights degxg = ag,...,degz, = a,, J C R a
graded ideal and B = R/J. We say that R and B are quasi-homogeneous rings. Set
R = K][x1,...,x,| and denote by [[R']] the set of all monomials of R’. Let ¢ : [[R']] = N
be the map defined by ¢(M) = kyay +. ..+ knay, for every monomial M = 2% . 2k~ ¢
7).

We consider the weighted degree reverse lexicographical order <,, with zg <y -+ <
x, and degz; = a; for all 0 < i < n.

With the notations in the introduction, let in(/) be the initial ideal of the reduced
Grobner basis G(S) of I for the order <,,. Set R’ = K[xy,...,z,] and denote by [[R']]
the set of all monomials of R’. Now we consider two sets

—_—

Ap(S,ag) ={M € [[R] | M ¢ in(])}

and

—_ /Y~

PF(S) ={M € Ap(S,ap) | Vi # 0,3N; € [[R']], ; > 0 such that Mz; — x5’ N; € T}.
Corollary 3.1. Assume that ged(ao, ..., a,) = 1. Then we have

P —_—

(i) The restriction of ¢ to Ap(S,ap) is bijective and ¢(Ap(S,ap)) = Ap(S,ap). In
particular card(Ap(S, ag)) = ag and F(S) = max{p(M)|M ¢ in(I)} — ay.
(i) The restriction of ¢ to PF(S) is bijective and o(PF(S)) = PF(S) + ao, i.e.

—_——

each element w € PF(S) corresponds to exactly one monomial M, € PF(H) such that
o(M,,) —ap = w.

(11i) Let s € Ap(S,ap), M € Ap/(g,jzo) and N € [[R']] such that s = (M) = ¢(N).
Then M <, N.

We denote by Frob(S) the unique monomial in PF(S) such that ¢(Frob(S)) =
F(S) + agp.

The following Lemma is very simple but very useful in order to prove that a set is a
Grobner basis of an ideal in many cases (see [8], [2]).
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Lemma 3.2. Let R = K|xo,...,x,], R = K[z, ..., x,] be the rings with respect to the
order <, and [[R']] the set of all monomials of R'. Let I C R be an ideal such that the
generators of in(I) belongs to R' and rad(in(I) N R')) = (zs,...,x,)R'. Let G C I be a
finite set and J the monomial ideal generated by the leading monomials of the elements

in G. If card([[R']] \ J) = card([[R]] \ (in({) N R')) then G is a Grébner basis of I.

4. ALMOST GENERALIZED ARITHMETIC PROGRESSIONS, (GROBNER BASIS

Let a,d, k, h, c be positive integers. Recall that a numerical almost generalized arith-
metic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup mini-
mally generated by relatively prime integers a, ha+d, ha+2d, ..., ha+ kd, c, that is its
embedding dimension is k£ 4+ 2 An interesting particular case is a semigroup minimally
generated by relatively prime integers a,a + d,a + 2d,...,a + kd, c, called numerical
almost arithmetic-semigroup (numerical AA-semigroup for short). AA-semigroups are
the case h = 1 of AAG-semigroups and where considered by D. P. Patil [9], [10] from
the algebraic point of view and by J. L. Ramirez Alfonsin and O. J. Rodseth in [11],
[12] from combinatorial point of view.

Let R = Klxo, ..., Tk, Trr1] be the polynomial ring in k + 2 variables over K graded
by the weights degx; = ha +id for i = 0,...,k, degxpi1 = ¢ and I the kernel of the
homomorphism ® : R — K[S] of K-algebras defined by ®(z) = t* , ®(z;) = " for
alli=1,....k and ®(zp41) = t° Let R = K[xy,...,2x]. The following result extends
[10][Lemma 1.6.1].

Lemma 4.1. For 1 <i,5 <k, set

Then every binomial of A belongs to I and card(A) = @

Proof. Let 1 <,7 < k. The results are implied by the fact that ¢(x;z;) = ha + id +
ha + jd = ha + (ha + (i + j)d) if i + 5 < k or ¢(z,x;) = (ha + id) + (ha + jd) =
(ha+ (i +j—k)d)+ (ha+kd)ifi+j > k. O

Corollary 4.2. Let consider any Gréobner basis with respect to an order <., such that

o <w T1 =g -+ <w Tk <u Tgy1. The initial ideal in(I) and Ap(S,ap) can be repre-
sented in the plane.

Proof. By hypothesis and Lemma 4.1 we have only to consider only the monomials in
in(7) which can be written as Lixgxfﬂ where 0 <i <k, Lo =1 and L; = x; for 1 > 0.
We associate to Lixgx’,fﬂ the point (i + ak, 3) € N2. O
Lemma 4.3. Let s € N, p,r € Z such that

ra = sd — pc.

Let s = ok + p, where 0 < p < k. For convenience we can write s = ok + lp, where
Il=0ip=0andl=11if p>0. It follows that ra = okd + lpd — pc so that

(r+ h(oc+1))a = o(ha+ kd) + l(ha + pd) — pc. (*)
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We set r' =1+ h(oc +1). We have
o Lix§ —afah. €1 ifp,r' >0,
o Lizfat —af €1 ifp<0,r' >0,
° - ay" Lixg € I if p> 0,1 < 0.

—_——

Our aim is to construct a Grébner basis and describe the set Ap(S,ap). By applying
our algorithm for the case n = 3 in Section 4.1 with numbers a, d, ¢, we get numbers
Si, Pi, i, T; for 0 <7 < m 4+ 1 such that

ar; = s;d — p;c.

Let so be the smallest natural number such that (sg,0,7) is solution of the equation
sd —pc = ra. Set py = 0 and let p; be the smallest natural number such that (s, p1,7r1)
is solution of the equation sd — pc = ra, where 0 < s; < s9. Note that

B a ged(a, d)
~ ged(a, d) ged(a, d, c)’
Now we want to define numbers s;, p;, i, ¢; for ©« > 2. We will use the extended Euclid’s

algorithm for the computation of ged(a,b). Namely, let consider the Euclid’s algorithm
with negative rest:

So and p; =

S0 = (251 — S2

51 = (352 — S3
Sm—-1 = 4m+1Sm
$m+]_ = O

where ¢; > 2, s; >0foralli=2,... m+1. Fort=1,...,m, let define p;11,7;11 by

Pit1 = Pidi+1 — Pi—1 5 Tit1 = TiGit1 — Ti—1-
It is proved in [6] that for i = 0,...,m,
a

ged(a, d, c)’

and the sequences s;, r; are decreasing, while the sequence p; is increasing. see [5] and
6].

Let s; = ok + p;, where 0 < p; < k. Weset [; =01if p, =0, [; = 1if p;, > 0 and
7’; =7, + h/(O'Z + lz> Since S; > Si+1 We have g; Z Oi+1, if 0; = 041 then ll Z li+17 if
0; > 0,41 then | [; — ;11 |< 1. In both cases we have g; +l; > 0,41 + l;11, which implies
i > 174, Let p be the unique integer such that r/, >0 >/, ,. In our next results we
suppose that either 7“; > h or p, = 0. Note that by the definition of p 7’; > h is true
when h = 1. We give some results from [8] without proofs.

SiPi+1 — Si+1Pi = SoP1 =

Definition 4.4. With the above notations. If rj, > h or p, =0 we set:
(1) If p, = 0 we set

/
_ [, T, Pu
B={z —xfx"}.
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If p,, # 0 we set
w
B={ Ou o TuPu O Tumh b [1<j<k-—p,.}
={z,, 0" — 20, Tp, 57 — " w1 <5 < Put-

Note that since the embedding dimension of the semigroup S is k + 2 we have
s, > k.

(2) Suppose s,11 # 0. Let s, — s,41 = ok + p, with 0 < p < k. Set I=0ifp=0,
=1 ifp>0andr =r, — 1,4 +h(c~7—|—7). If p > 0 then set

. . o DPu+1—Du o T o o Pu+1—Pu . r—1 ) . =
C = {apizy Los Lj+plh L1 zg x| 1<j<k—p}

and if p =0 then set C = {7 " — af}. Suppose s,11 = 0. We set C = 0.

(3) D= {x}"}' — ng““J;i;LtLll:UZ"Jrl}. By our assumptions the embedding dimension
of the semigroup S is k + 2 s0 p,y1 > 1, that is p >0, and if v, ., = 0 we have
Sﬂ+1 > k.

—_——

Now in order to find the set Ap(S,a) we need to define two 2 rectangles
A={(y,2) eN*|0<y <8, —5,11,0< 2 <pusi}
B = {(y72) € N2‘Su — Sp+l <y< SM,O <z< Pu+1 _pu}-

Note that if s,41 = 0 then B =0. For 0 <i <k ,set L; =1if i =0and L, = x;

if i > 0. To any point (y,z) € N? we associate the monomial M(y, z) := L;zfzi,,,
where @ = [¥] and i = y — ka. Conversely, any monomial Lizfzf,, € [[]] can be

represented by the point (y,z) € N2, where y = ak + .

The next theorem allows to compute effectively a system of generators of the ideal
semigroup I, it precises and extends the main theorem of [10] where the case h = 1 is
considered.

Theorem 4.5. With the above notations, suppose that either TL > h orp,=0.
(i) We have

—~—

Ap(S.a) = {Lifai,, | (9.2) € AUB,a = [3].i =y —ka].

(11) If su01 # 0 then G := AUBUCUD is a Gribner basis of I.
(1) If $,41 = 0 then G :== AU BUD is a Grébner basis of I.

The following result extends the main result of J. L. Ramirez Alfonsin and O. J.
Rodseth in [11], [12], which is the case when h = 1.

Corollary 4.6. With the above notations, suppose that either r,, > h or p, = 0. We
have

Ap(S,a) = {m(%} +dy+ez|(y,2) € AUBY.
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5. ALMOST GENERALIZED ARITHMETIC PROGRESSIONS, PSEUDO FROBENIUS SET

The case S symmetric was studied in [11] and the case S is pseudo symmetric was
studied in [3] with the hypothesis that A = 1. Both publications are corollaries of this
section. In our work we will describe the Pseudo Frobenius set and characterize when
S is almost symmetric in general for A > 1. In this paper we restrict to the hypothesis
7’,@ > hor p, = 0. Note that r; > h is satisfied if h = 1.

Lemma 5.1. With the above notations, suppose that either rL > h orp, = 0. Let

PF(S,a), be the set of monomials in PF(S,a) such that the power of T4y is pyt1 — 1

and let PF(S,a), be the set of monomials in PF(S,a) such that the power of x4 is
DPut1 — pu — 1. We have

—~—— —~——

PF(S,a) = PF(S,a); UPF(S,a),.
In particular 1 < t(S) < 2k.
Proof. We have

—~—

Ap(S,a) = {Liagai, | i+ ak < sy, 2 < pus1 and (i + ok < s, — Sp41 00 2 < P — pu) b

Let M be a monomial in Ap(S,a), recall that M belongs to PF(S,a) if and only if
for all 7 = 1,...,k + 1 we have that x;M — zjN; € I for some monomial N; and some

a € N*. We order the monomials in Ap(S,a) by saying that M < N if N = x;M

for some i = 1,....k + 1. So PF(S,a) is included in the set of maximal elements of

—~— —~—

Ap(S,a) for this order. Note that for a maximal monomial of Ap(S,a) we have that

—_—

the power of x4 is either p,i1 —p, — 1 or p,y1 — 1. Let PF(S,a), be the set of

monomials in PF(S,a) such that the power of xj4; is p,11 — 1 and let PF(S,a), be

the set of monomials in PF'(S, a) such that the power of x4 is p,4+1 —p, — 1. We have

Card(P?(TS’,/a)l),card(PE(Tg,/a)Q) < kso t(S) < 2k. O

—_——

Note that if M belongs to PF(S,a) then for all i = 1,...,k+ 1 ;M € in(I), so if

x;M € Ap(S,a) for some ¢ = 1,...,k + 1 then certainly M ¢ PF(S,a). Note also that
Sy — Spu+1 = (04 — 0py1)k + py — pus1, so if pu1 < p,, then we have 0 =0, — 011,90 =
Pu— Pus1 and if p, 1 > p, then we have 0 =0, — o1 — L p =k + py — put1-

Theorem 5.2. With the above notations, suppose that either r; > h orp,=0. We
have

(1) If rjyy =0
(a) If pys1 = 0 then PF(S,a), = 0.
(b) If ppy1 > 0,p =0 then

e~

PF(S,a), = {:cixg’lzci’flrl,i =1,..,k—pu1}.
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(c) If put1 > 0,p=1,0 =0 then PF(S,a), = 0.
(d) If pys1 > 0,p=1,0 > 0 then
F(S,a), = {220 ! AT i =1k = pua b

(e) If pyy1 > 0,p > 1 then

PF(S,a), = {ximg:ﬁiﬂl_l,i =1,..,min{p— 1,k —pu1}}.

(2) Ifr, 1 <0
(a) If p =0 then

PF(S, a), = {maf tar Vi=1,..,k—1).
(b) If p=1,0 =0 then

—_——

PF(S,a); = {&}s5 '}
(c) If p=1,0 >0 then

PF(S,a), = {zix]~ Lt Li= 1., k}.
(d) If p > 1 then

PF(S a), = {magzh” YVi=1,..,p—1}

(3) If 5,41 = O then PF(S, a), = 0.

(4) pp =0
(1) If su41 > k — 1 then

PF(S,a), = {xz{"" lxi‘fll Pl =1, k— 1}
(11) If s,41 < k —1 then

—_——

PF(S,a), = {wa] a7 i = 5k — 1),
(5) pu=1,1,>h
(i) If sy+1 > k then
PF(S,a), = {zia" ™" AT =1, k)
(11) If 1 < s,41 < k then
PF(S, a) {@a7t™ 1x§f11 Pl =5 k)
(111) If s,41 =1 then
PF(S.a), = {afaly ™).

(6) pu=1,1,=h
(1) If s, — Su+1 =1 then

PF(S,a), = {wxy a7 G =1, k)
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(11) If 1 < s, — su41 < s, — k then

PF(S,a), = {a:lxg“flxi‘ff—p“_l}.

(iii) If s, — k < s, — s,+1 then PF(S,a), = 0.
(7) pu>1
(1) If su41 > pu — 1 then

P

PF(S,a), = {xixZ“xZ‘jjlrprl,i =1,...,p, —1}.

(11) If 41 < pp— 1 then p = p, — Su41 and

PF(S,a), = {way a7 i = 5o pu— 1)
Before going to the proof let remark:

Remark 5.3. a) Let i,j = 1,...,k and M a monomial, if i + j < k then we have
Tl — xf)’xiﬂ €l soxjx; M — :cg:chM el.

b) A monomial x;M for some i = 1,...;k belongs to PF(S,a) if and only if for any
Jj=1,..,k+1 there is a binomial x;x;M — N for some monomial N and oo € N*.

—_—

So in order to check if x;M belongs to PF(S,a) we need only to consider j such that
147 > k.

c) Let note that the elements in PF (S, a), are ordered by increasing order of evaluation
by .

Proof. We have to consider all possible cases:

(1) Study of PF(S,a), when ], =0,
a) Suppose p,4+1 = 0. Let M; = xixz‘xiff—l € PF(S,a), for some 1 <
i < k, such that ¢ + ko < s, — suq1. Since it — " € I we have
Tpa1 M; — xixga:?‘“ €I, but i+ ka+ ko < Sy — Spuq1 + Sup1 = Sy SO
riwtr ™ € Ap(S, a) showing that M; € PF(S,a) a contradiction, that is
PF(S,a), = 0.
b) Suppose p,41 > 0,p = 0. We have

PF(S,a), C {wad tal ™ i=1,. k—1}

and s, = (0 4+ oup1)k + pus1. Let ¢ = 1,k — 1,7 = 1,...,k and

5_ -1 o
M = a7 lmifll such that ¢« +j > k. We have x;x; — 242y € 1
~ —1 . ~ _ ~
so zju; M — :z:iﬂ,kq:gxiff € I, since x‘,;xz*ff Pro— a8 € I we have
T Pu—1 ~
rjviM — xgriy gy € I where 7 > 0.

Pu+1 Tp+1

o—1 Opu+1
From z,[7 — %, 1) € I, we get xp1viM — wixp, 2] 1y el If

i+ pus1 <k then zx,, | — xhwiy,, \, so 2;M € PF(S,a). If i 4 pyq >k

o+0out1

then 12 M — gy, k), elbuti+p—k+(0+o,11)k=
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sy +1 — k < s, which implies that mi+p#+1_kxg+a““ € Ap(S,a) so
;M ¢ PF(S,a). Hence
PF(S,a), = {xixg_lxi‘j:_l,i =1,..,k—pu1}
Suppose p,1 > 0,p =1,0 = 0. We have
—_ N — 71
PF(S,a), C{z}y' "}

The binomial ka(mZ‘ff_l) — X2yt € Ibut z,, " € Ap(S,a) so

PF(S,a), = 0.
Suppose p,41 > 0,p=1,0 > 0. We have

P

PF(S,a), C {a:ixg_laifll_l,i =1,..,k}.

Leti=1,....k,j=1 ..k M= xg_lxi‘jrﬁl_l. By the same arguments as in
the above item b) we have z;2; M —x§ N; € I for some monomial N; and o €

N*. The binomial xi‘jff —x,, 2" e 1so xkﬂxiM—xixpuHxZ’le““ cl.
—_ N —

Ifitpu1 <k wehave zz,, ., —a:ngpMH, sox; M € PF(S,a). Ifi+p,41 >

k we have I’k+ll'iM—$i+pu+l_ka+Uu+l €l. Buts, = (0+0,:1)k+pu1+1
soi+pu1—k+(@+o,)k=s,+i—1—k<s, and prMH,kxf"““ c

Am) so x;M ¢ PE(TS”,/CL). Hence

PF(S,a), = {xiaﬁg’lxi’ﬂlfl,i =1,..,k—pu1}

Suppose p,41 > 0,p > 1. We have

PF(S,a), C {xixgxi‘ff—l,i =1,..,p—1}.

Leti=1,....,p—1,j=1,....k, M = xixi‘jjl*l. By the same arguments as
in the above item b) we have z;2;M — 2§ N; € I for some monomial N; and
o € N*. Since 234" —x,, . 2" € I, we have zyq2;M — mixpuﬂxgxg““ €
I./Iii—i— Put1 < k we have zpp12;,M — :c’g:ciﬂwlxgx?‘“ €~I, so ;M €
otout1+1

PF(S,a). If i+ pyy1 > k we have xppo,M — 250, 17, e I,
sy=(0+0ut1)k+p+pu+1 80 i+ pur1 —k+ (6 4+ 0,41)k + k < s,, which

implies that JEHP#H_MTU‘L“H € Ap(S,a) so x;M ¢ PF(S,a). Hence

PF(S,a), = {:cixg:cz*_ﬂrl,i =1,....min{p—1,k —pu1}}.

—_——

(2) Study of PF(S,a), when 1|, <0,

Suppose p =0 and 7, < 0. We have

PF(S,a), C {:cixg’lzciff*l,i =1,..,k—1}
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Leti=1,...,k—1,j=1,..,k M=z} '2}"}'"". By the same arguments

as in the above item 1)b) we have z;z;M — x§N; € I for some monomial
. -,

N; and o € N*. Since a")' — 2y ""'a,,, 2" € I, we have xpy2;M —

zy "Maait e I'so ;M € PF(S,a). Hence

PF(S,a), = {xinglxzflrl,i =1,..,k—1}.

b) Suppose p = 1,0 = 0. We have

P

PF(S,a), C {a%% 7'}
¢) Suppose p = 1,0 > 0. We have

—_——

PF(S,a), C {waf tal ™ i =1, k).

d) Suppose p > 1. We have

—_——

PF(S,a), C {xi:vgxi‘fll_l,i =1,.,p—1}

By the same arguments as in the above item 2a) we have the equality in the
items 2b), 2c¢), 2d).
(3) Study of PF(S,a), when p, = 0. We have 2" — xg”xz“ﬂ,

—_—

PF(S,a), C {:v,-xg“flxiﬂl_p“_l,i =1,.,k—1}

Let i =1, k-1, =1 ...k M = xZ"_lxiff_p“_l. If i +7 > k we have

TiTj — Tiyj—kTy then x;o; M — xg“xi+j_kx,iﬁrl el
We have xp10;M = xixZ“_lmZ‘fll_p“ so by using the set C we get xy 2, M —
zyN € I for some o € N* if and only if ¢ + (0, — 1) > s, — 5,41 that is
1 Z k— Sp+1-

(i) If s441 > k—1 we have i > k — 5,41 for alli =1, ...,k — 1. Hence

P

PF(S,a), = {way el Pt =1,k — 1),
(i) If s,41 <k —1 We have s, — 5,41 = (0, — 1)k + (k —s441) s0 p =k — 5,11

Hence

P

PF(S,a), = {xi:vzrlzni‘jrﬁl_p“_l,i =p, ... k—1}.

(4) If 5,11 = 0 the set Ap(S, a) is represented by a rectangle, there is no element in
PF(S,a) with power of xx41 equal to p,+1 — p, — 1 so PF(S,a), = 0.
(5) Study of PF(S,a), when p, = 1,7/, > h. We have 127" — ag" 2}’ zz)" —

r—h Pu
Ty wmxl [ 1=2,.k,

e~

PF(S,a), C {awaytalet ™ i =1, . k).
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Leti=1,.,k,j=1,....k M= xZ“_le‘fll_p“_l. If i +j > k then we have

T —Tiyjpxy. 1 i+j = k+1 then xj:viM—xg“.rZ“ﬁl_l € I. Ifi+j > k+1 then
xa, M — :cg“_h:ciJrj,k,leflrl € 1. So xjz;M — x5 N € I for some «; ; € N*.
We have xp 10, M = wixZ”_lxi’flrp“ so by using the set C we get xp 1x; M —
z§N € I for some a € N* if and only if i + (0, — 1)k > s, — s,41, that is
i+s,—1—k>s,—5s,410r%>k+1—s,.1. We have to consider several cases.
(i) su+1 > k, the condition ¢ > k41 — 5,11 is satisfied for ¢ = 1,..., k. Hence
PF(S,a), = {xixzrlmi‘jﬂl_p“_l,i =1,..,k}.
(i) 1 < sy41 < k. Wehave s,—s,+1 = (0,—1)k+(k+1—5,41) s0 k+1—5,41 =
p. Hence

PF(S,a), = {way a7 G = 5 k)
(ili) sy41 = 1. We have i + (o0, — 1)k > s, — 5,11 = 0,k if and only if ¢ = k.
Hence

PF(S,a), = {ay a7}
Study of PF(S,a), when p, = 1,7, = h. We have 127" — xfa}",, zix)" —
zixyy, for i =2, ...k and

PF(S,a), C {xixZ“_lxz’ﬂl_p“_l,i =1,..,k}.

Leti=1,.,kj=1,...k M= xZ“_le‘fll_p“_l. If i +j > k then we have
Tilj — Ti4j—kLk- If ¢ —|—] =k +1 then xjxl-M — l’gl’if—ll_l el Ifq —|—j >k +1
then (L’j(L’iM — Ii_,_j_k_ll‘i‘j:ll_l el

(i) If s, — s,11 = 1 so by using the set C we get x;z;M — ;" N € I for some

Q5 € N*.
: _ op—1_ Dut+1—ppu :
On the other side we have zj 12, M = x;7, T , S0 by using the set
-1 _
C we get z;ay oy P — ag N € I for some o € N*. Hence
—_—

PF(S,a), = {wy a7 G =1, k)
(ii) If s, — suq1 > 1. If i = 1,5 = k we have xpa M — afay’, € I If i > 1 let
j=k+2—1ithen z;z;M — xlxiﬂrl € I but since 1 < s, — 5,41 we have

that xlxiﬂl_l € Ap(S,a). so

PF(S,a), C {xle“_lxi‘ﬂl_p“_l}.

On the other hand we have zp 2. M = xle“_lxi‘ﬂl_p“. By using the set
C we get we have vy 121 M = zfN € I for some o« € N* if and only if

Sy — Sut1 < S, — k. Hence, if 1 < s, — 5,41 < s, — k then PF(S,a), =

{xlx‘;“_lxiﬂl_p*‘_l} and if s, — k < s, — $,41 then PF(S,a), =0
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(7) St/udy of PF(S,a), when p, > 1. We have z, 2" — xg;‘xz‘jrl, Ty, 11Ty —
xg“fhxl:vZ‘fH fori=1,..,k —p, and

—~——

PF(S,a), C {xixZ“Jrg‘ﬂl_p“_l,i =1,...,p, — 1}.

. . —pu—1 . .

Let i = 1,..,p, — 1,5 = 1,..k, M = xZ“xi‘j: Pe=" If i +j > k then
1 —pu—1

we have x;x; — Tipj_pTr, v;0M — xHj,k:cZ“Jr xi’fll Pr=" ¢ T thus rjM —

/

T, -1 . . . . .
Titj—kTg" xk_puxi‘fll clbuti+j—k+k—p,=1+75—p, < Jso
Titj kThk—p, — :cga:iﬂ,pu € I, hence z;x; M — ng € I for some monomial N.

On the other hand we have xy 12, M = xixZ“xZ‘jjll_p * so by using the set C we
get xixZ“:vi‘j:_p” —agN € I for some o € N* if and only if ¢ + 0,k > 5, — 5,41

that is i > p, — s,41.
(i) If py — sut1 <1 we have i > p, — 5,41 for any ¢ > 1. Hence

PF(S,a), = {mil’zuxiflﬁp“il?i =1..,p.—1}

(i) If p, — su41 > 1 we have p = p, — 5,41 and

PF(S,a), = {way a7 i = 5, p— 1)

6. SYMMETRIC ALMOST GENERALIZED ARITHMETIC PROGRESSIONS

Theorem 6.1. With the above notations, suppose that k > 3 and either r; > h or
pup = 0. We have S is symmetric if and only if either
(1) a = (ck+2)p,d=pr—p',c=(ck+2) foranyoc >1,1<p<p,h>1
with ged(p',r") = 1,7 + ho > 0,1 < —1. Moreover I is minimally generated by
the Grobner basis consisting of the set A and:

ToT] — xSJFh(UH)xZH, x;x) — af M oah i =3, .k, xi;l — 5"
The Frobenius number is (ha + d) + o(ha + kd) + ¢(p' — 1) — a.

(2) sys1 # 0, a = (ck + 2)p' — d'kp,d = p'r + pho’,c = o'kr + (ck + 2)o’h where
o,0',p',p,r, h are integers such that o > o' >2,p' > p>0,r+h(oc+1) > 0 and
(a,d) = 1. Moreover I is minimally generated by the Grébner basis consisting

of the set A and:

o—o' p'—p r+h(o+1) o—o' p'—p r+ho -
Toxy T Tprq — X s Xy Ty —x i, 1=3,...,k
o r+h(o+1) p o r+ho p - v’ o
ToTy — Ty Tp1, TR — Ty Wi oTy g, =3, .k, xp — @]

The Frobenius number is (ha + d) + o(ha + kd) + ¢(pu41 — pu — 1) — a.
(3) k>2,5,41#0a=(ck+2)p —(ck+1)p,d=p'r+ph(c+1),c=(ck+1)r+
(ck + 2)(o + 1)h where o,0’,p',p,r, h are integers such that o > 1,p/ > p >
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0,7+ h(oc+1) > 0 and (a,d) = 1. Moreover I is minimally generated by the
Grobner basis consisting of the set A and:

p'—p r+h(c+2) p'—p r+h(oc+1) .
L1xpy1 — Lo ) TiTpyr — Lo Ti1, 1=2,..k,
o r+h(c+1) p o r4+ho D - o -
Toy — I, Thi1,  Txy —xy Txiowy ., 1 =3,k xp  — 110

The Frobenius number is (ha + d) + o(ha + kd) + c¢(pu41 — pp — 1) — a.
(4) Syt1 # 0, a = (ck+1)p' — (k— )p,d = p'r —pr',c = (k= 1)r — (ck + 1)1
d > 0 if and only if v < —(p'/p)ho with p < p',r + h(c + 1) = h, that is
r =—och,r < —oh.
Moreover I is minimally generated by the Gréobner basis consisting of the set A and:

o-1,p-p _ _—1 o1 p—p _—r'—h_
Taly Tpyr —To o Til Ty —Fo  Ti-2

o h. p o P . p’ r'+h
TITE — ToTy g,  TiTp — LTy, 1= 2,00k, T — T Tpo

The Frobenius number is (ha + d) + (0 — 1)(ha + kd) + c¢(pyt1 — 1) — a.

—_—

Proof. (1) If 5,41 = 0 then 7, # 0 and we have that PF(S,a) = PF(S,a), with

0 = 0u,p = pu. S0 cardPF(S,a) = 1 if and only if we are in case 2d) with
pu = 2. We have s, = ok + 2 for some o > 1.

That is

S p T ‘ r’

ck+2 p r

0 p/ 7,/
with the condition p < p', 7}, =r+h(c+1) > 0,7 < 0,7’ <r. By Lemma 2.2.4
of [6] we get

a=(ck+2)p,d=pr—p’',c=(ck+2)r

The Frobenius number is gp(:)slfgzri’jl_l) —a.

—_— —_—

(2) If 5,41 # 0 and card PF(S,a), = 0,cardPF'(S,a), = 1. We have to consider the

cases la) and one of the cases 4ii),5iii),6ii) 7i),7ii); or lc) and case 7i). More

precisely
(a) la) and 4ii) We have p, = 0,p,11 = 0,p =0, so cardPF(S,a), = 1 if and
only if k = 2.

(b) 1a) and 5iii) we have p, = 1,5,41 = 1 = p,4+1 a contradiction with la).
(c) 1la) and 7i) we have p, = 2,p,41 = 0. So we have s, = o,k + 2,5,41 =
oup1k. Weset 0 = 0,,0' = 0411,p = pu, P = pu+1,7 = 1, and since

741 =0="7,41 + ho we have r,;, = —ho and the table
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s p T B
ock+2 p r

o'k p —ho'
By Lemma 2.2.4 of [6] we get

a=(ck+2)p —dkp, d=ypr+phs, c=dc'kr+ (ck+2)c'h

for some o > op’ > 2,p' > p > 0,r > —ho',r+h(c+1) > 0. The Frobenius

number is @(zy 2zt T — a,
(d) 1a) and T7ii) Since s,41 < p, — 1 we have 5,41 = p,01 = 0 by la), a
contradiction.

(e) 1c) and 6i) We have card PF(S,a), = p, —1 =1 if and only if p, = 2. By
hypothesis s, — 5,41 = 1. So we have s, = 0,k +2, 5,41 = 0,k +1 for some
o>1. Weset p=p,,p' = puy1,7 =1y, and since r,,,; =0 =71, 1+h(c+1)
we have 7,41 = —h(o + 1) and the table:

S p T ‘ r’

ck+2 p r
ock+1 p' —h(oc+1)
By Lemma 2.2.4 of [6] we get

a=(ok+2)p — (ck+1)p, d=p'r+ph(c+1), c=(ck+1)r+ (ck+2)(c+1)h

for some ¢ > 1,p’ > p > 1,7 > —h(0 + 1). The Frobenius number is

gp(xlxgxiiﬁlip‘Lil) P —_~—

(3) Suppose s,41 # 0 and cardPF(S,a), = 1,cardPF(S,a), = 0. We are in case
6iii), we have p, = 1,7, = h,0 < 8,41 < kso 7, < 0and s, — 5,1 =
(0, — Dk +(k—s,41+1). If 5,11 =1 we have p = 0, we are in case 2a) and

—_——

cardPF(S,a), = 1 implies k =2. If 5,41 > 1wehave 0 < p=k—s,01 +1 <k

—

and card PF'(S,a), = 1 implies p = 2, that is s, = k — 1. On the other hand
r,=h=r,+ h(o, +1) sor, = —ho,. Weset 0 =0,,p=pu,p = pu1,7 =
S p T ‘ r’

— a.

741 We have with o > 1,p < p/,7" < —(p'/p)ho. By

ock+1 p —ho
k-1 p
Lemma 2.2.4 of [6] we get

a=(ck+1)p —(k—1Dp,d=pr—p',c=(k—-1)r—(ck+ 1)

: : o1, Put1—1
The Frobenius number is p(zi2f "z, ) — a.
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7. ALMOST SYMMETRIC ALMOST GENERALIZED ARITHMETIC PROGRESSIONS

Lemma 7.1. With the above notations, suppose that either TL > h or p, = 0. Suppose

that S is almost symmetric of type > 2 then s,41 > 0 and if Frob(S) belongs to ?g—ﬁ/’z
then card(PSF;) = 1 except if h = 1,5, = k+1,8,41 = k7, > 1,7, = —1. Moreover

—_——

(1) ]fFS\P/’l = {Frob(S)} then Frob(S) = Lva:g_exi‘fll_l where v, e € {0,1}.

(2) If]ggFg = {Fm)} then F%) = waz*‘_axiflﬁp“*l where 7, ¢ € {0,1}.
(3) If h = 1,8, = k+ 1,81 = kv, > 17, =1thena =k+2,d=2r,+
2,¢c = k(r, +2) 4+ 2 with k odd, k > 3,7, > 0, ged(a,d) = 1. We have

PSF = {my, .., ax} U{mpr }, t(S) =k + 1, Frob(S) = zy, F(S) = kd.

Proof. Suppose that Frob(S) € Pﬁ;s,card(Pﬁ:rs) > 2 for some ¢ € {0,1}. By
checking all cases in Theorem 5.2 there exists 2 < [ < k, M a monomial such that

—_—

Frob(S) = x;M and z;_1M € PSFy,.. Since S is almost symmetric there exists M; €
PSF such that Mix;_ 1M — zox;M € I, which implies x;_1 My — xqz; € I. We multiply
by x; and using the Grobner basis we get xglel — xox;x1 € I that implies h = 1,
My —xq € I, if M # x; then the embedding dimension of S is less than k+2 contrary to
our hypothesis, therefore M; = x; € PSF. We have to examine all the possibles cases
in Theorem 5.2 such that z; € PSF. Since o, > 1,puy1 > 2 the possible cases are 4), 5)

or 6). In particular we have 5,41 > 0. Case 4) implies s, = k so z;, — mg"xz’il € I, that
means that the embedding dimension of S' is less than &+ 2 contrary to our hypothesis.
Cases 5) and 6) implies ?S\F/’g = {zy,.., 2} with s, =k +1,5,41 = k,F;&)@) = Xk
and I/Dgfl C {x’gﬂ} for some 5 € N*| but this is only possible in case 1a) or 2b). Now

we consider the case 1a) so 7/, = 0, by the Grébner basis we have that z;\}" — 2 € 1
which implies that the embedding dimension of S is less than k + 2 contrary to our

hypothesis. In case 2b) we have PSF; = xz’j:*l}, the property almost-symmetry show

that xi(ff“_l) —xo7k € I so that a:(;r““xkxiff_2 —xoxy € I hence pyiy = 2,77, = —1
S pr ‘ r’
and p, = 1,80 41 = TL_H — 1 = —2 we have the table k;—l— 11 |y
wo | T

k 2 =21
We note that rj, = h = 1 if and only if r, = —1 which implies d = 0, so case 6) is not
possible. The case 5) is possible and we have a =k +2,d =2r, +2,¢ = k(r, +2) + 2
with k odd, k > 3,r, > 0, ged(a,d) = 1. We have PSF = {1, ...z} U {z41},
#(S) =k + 1, F(S) = kd. 0

—_——

Theorem 7.2. Suppose 1755 = {Frob(S)}. Then S is almost symmetric with k >
3,t(S) > 2 if and only if either
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(1) PSFl {xlxilj:ll ' ’ L= 17 ) k— l}fﬁ_gﬁ/é = {.Tlxzxil—t:lliQ} and
§ 4 r r’
ok +2 1 Ty
(U - 1>k +1 Pu+r1 Tu+1 0
Since 0 =1, | = rup1+0 we haveryyy = —o witho > 2,1 > 1. #(S) = k—1+1,

t(S) =2 if and only if | = py1 =k — 1.
@ = (o + Dpuss — (0 — Dk +1)
d=pury+o
c=(c—1Dk+Dr,+ (ck+2)o.

where h =1,k > 3, 1<l<kz—1 and t(S) =k —1+1, or
(2) PSF, = {af" 7}, PSF, = {za a4 Y and

s P r r’

ok+2 1 Ty

O'k’—"l Pu+1 Tpu4+1 -1

but =1 =17,y =711 +h(oc+1) sor,q=—h(c+1)—1,tS) = 2.
a=(ck+2)pu41 — (ck+1)
d=pyr,+hic+1)+1
c=(ck+1r,+ (ck+2)(h(c +1)+1).

where h > 1,0 > 1,p,41 > 2,7, > —h(o +1) — 1,¢(5) = 2.

Proof. We have PSF2 = {L,z"" ’ ap e } where 7,0 € {0,1}. We set N,,_s :=
P axi‘ff el By Theorem 5.2 we have PSF1 = {orMz_.,...,xaMz_.} for some
I' <A, e€{0,1} where Mz_. := af i . ' Since S is almost symmetric we have
that

LrLAMZ . — xgL N, s € I. (1)
Pu+i—INo _ 2pu41—2 _ put1, Put1—2 . Pu+1—1
We have (%7 )? = o, = 1, xkﬂ since pu1 — 2 > 0, so (i )? —
+1 Uu+1 Pu+1—2 S| O’H+1+25726 Put+1—2
Ly a7 e ITso M2, — Ly, )" € I. Note that

pu+1 2—(pps1—pu—1)=p,—1> 0 SO that (1) becomes

L L 77':L+171L 0'11_5_1—&-25—28 pu—1 L U#—KS ]— 2
rLa® pru+1 Ly Tppr — Ly €L (2)

—~——

(1) If I' + A = 0 we are in case 2b) so s, — s,41 = 1. Since card(PSF,) = 1 we are
in case 7i) hence y=1,6 =0,s, = 0,k + 2, 5,41 = 0,k + 1. We have

—r =1 1
pt1 Op , Pu— o
x, R AR AR < | (3)
. : e _ _
this is possible only if Tu+1 = —1,p, = 1. We set 0 = 0, so we have

PSF, = {xi‘_fll 1} PSF2 = {@a7" xiﬁjf } and
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)

S p r r
ok+2 1 Ty
O'k"'l Pu+1 Tp+1 -1
but =1 =7, =71 +h(c+1)sor,1=~h(c+1)-1¢S5) =2
a=(ck+2)pu41 — (ck+1)
d=puprry +hlo+1)+1
c=(ck+1r,+ (ck+2)(h(c +1)+1).
(2) If 0 < I'+ A <k we have

h—r! -1 o— — _
41 opt1+20—2¢ pu—1 ou—~0
Tr4AT L,, . v, vy — Lyt el (4)

which implies h = 1,7/, = 0 and after Theorem 5.2 p,, 41 > 0.
(a) T + A+ p,11 <k we have

Torrs Attty = Lyat € (5)
which is impossible since L,z7*~° € Ap(S). So
(b) I'+ A+ puy1 > k we have

UN+1+25+1_28 p‘ufl qu(S
TP+ A+pui1—kL T — Ly el (6)

By Theorem 5.2 in all cases with 7., = 0,p41 > 0and I'+ A+ p,py >k
we have I' + A+ p, 41 =k + 1 s0
-5

25+1-2¢ _p—
xle““Jr ot Exiill —Layr el (7)
lfopm+o—o,+0+5+1—-2c>0
maf T e — L e 1 ®)

which leads to a contradiction. So we can assume 0,1 +0 — 0, +0 + 0 +
1 —2¢ < 0. We have

pu—1 —(opt1+o—ou+o+6+1—-2¢)
11y — Ly, el (9)

1 # L x—(au+1+5—au+5+5+1—26) —(oput1+0—0ou+o+06+1—2¢)
Y7k

el , since L.z, €

If zyat™
Ap(S) we have :clx?jr_ll € in(f) which implies s, — s,41 = 1 and

by 1c¢) of Theorem 5.2 PF, = () a contradiction. So azyaf' =

k+1
—(ops1+o—ou+o+6+1—2¢) . . . ~
Lyx, ™" . which implies v = 1,p, = 1,0,41 +0 — 0, +

c+0+1—-2e=0

We have to discuss several cases:

e = 1: So we are either in case 1b) or 1d) and we have ¢ > 0. On the
other hand we have either:
l)o=o0,—0u41—1,0p>0,p401+p=Fk+p, > k. In case 1b) we
have p = 0 so this case is not possible. Case 1d) implies p = 1 ,s0
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that p,11 =k —1,p, =0, so we are in case 4), since card(]gS\]%) =1
we have k£ = 2 a contradiction.

2)0,=0u11+0, pys1+p = pu, wehavec+0—-1=0s00 =1,6 = 0.
0 = 0 implies that we have to consider cases 5iii), 7i) and T7ii). Case
5iii) implies s,41 = 1, case 7ii) implies p, > 5,41 s0 0,41 = 0 in both

cases and xifll —Tp,,, € I, a contradiction. So we have two possible

cases Ti)-1b or 7i)-1d. Since C&I‘d(?S\E) = 1 we have p, = 2 and
PSFQ = {lezuxziﬁl_p“_l}.

) Ti) 1b): we have p= 0,0 = 1,p,11 = 2,p, = 1,7,,, = 0. We set
o = 0y, we have

PSF, = {xixi‘ff—l |i=1,...k—2}, PSF, = {mlx‘gmi‘j:_Q} and

Y

s p r r

ok +2 1 Th

(0 —1Dk+2 Putrtr Tus1 |0

but 0 =17, =741 +0s07,4 =—0,t(5)=k—1and
@ = (ok+2puss — (0 — 1k +2)
d=putiry+o

c=((c—1)k+2)r,+ (ck+2)o.
By using my software we have the following example k& = 4,a =
214,d = 15,¢ = 236,0 = 7,py41 = 8,7, = 9.
¢Q) Ti) 1d): we have p = 1,6 = 1,pp1 = 1,p, = 1,7,; = 0. We
set o = 0, we have
PSE, = {xad" ™ i =1,..,k — 1}, PSF, = {272t %}, and

Y

s p r r
ok +2 1 Ty
(c—Dk+1 pu1 rusa |0
but 0 =1/, =7,41+0 507,41 =—0,tS) =k and
a=(ck+2)p,1— ((6 —1k+1)
d = p“+17’# + o
c=((c—-1k+1)r,+ (ck+2)o.
By using my software we have the following example £k = 5,a =

487,d ="T7,¢=259,0 = 7,py1 = 14,1, = 8.

e =0: We are in case le). We have 0,41 +0 —0,+0+d6+1=0. If
0 = 0, — 0,41 we have 0 + 6 + 1 = 0 which is impossible, hence
op =01 +o+1,p>0,p+pup1 =k+p,and o =9 =0, so
s, — Suy1 < k < s, — p, which implies s,11 > p,. Hence we have
to consider only case 7i)-le). We have p, = 2,p+ pyp1 = k + 2
which implies p — 1 = k — p,41 + 1, and we have seen before that
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o=0,p, =17, =0 Weseto=o,l=p.,1 > 2 sowe have

PSF, = {xixi‘ff—l li=1,.. k- l},ﬁb\’é = {xlxgxi‘ffﬂ} and

)

s p r r
ok + 2 1 Ty

(c—Dk+1 Put1t Tut1 |0

Since 0 = 7).y = ruyp1 + 0 we have r,; = —o with o > 2,1 > 3.

t(S) =k — 1+ 1. Note that ¢(5) =2 if and only if | = p, 41 =k — 1.
@ = (o + Dpuss — (0 — Dk +1)
d=pur,+o
¢ = (0 — Dk + Dy + (o + 2)o,
with 0 > 1,1 > 3,pu41 > 2,7, > —o. By using my software we have
the following example a = 213,d = 49,¢ = 209,k = 6,p = 5, pyt1 =
3. 1(S) = 4.
(3) f T'+ A > k we are in case 2¢), we have I' = 1L, A = ke = 1,7, < 0,p =
1,0 > 0, and (2) becomes

_TPH’l O’H+1+28'{71 pM—l O'M—(S
175 " Ly, T, vl —xolyat T €L (10)

If py+1 > 0 we have

—r41th-1 +25—1 p.—1 -5
pt1 ITp+1 Pu Tp
x Tp, o417 vy — Lyt el (11)

Since h — 7, > 1 we will have Lvmzfémz*ff_p »“1 ¢ Ap(S) a contradiction.

If pyy1 = 0 then p, = 1,0, = 0441 +0, 0y41 +20 =1 =0, + 0 — 1 but
ziy — xg'xy, € I so from (10) we have

Tu T 51, 2pu—1

ou—>o

el (12)

Since 7, —7),,, > 2 we will have L,Y:EZVJ € in(!) a contradiction.
g

Theorem 7.3. Suppose Pfgﬁi = {F%)} Then S is almost symmetric with k >
3,t(S) > 2 if and only if either

(1) f/’gﬁ = {z 272} 1}, ?gfg = {T22f, ..., 7,177 }, we have the table

)

s P r r
ock+1+2 p —0o |1
[ p+1 7,01 <0

a=(ck+1+2)(p+1)—1Ip

d=—(p+1)o —prun

c=—lo— (ck+ 14 2)r,41,
where h =1,k >3,0 > 1,1 <1<k —3,1401 < —0 and t(S) =1+1, or
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(2) PSFy, = {aa] "ol }, PSFy = {moa] ', .. xpq2] '}

s P r r’

ok P l—0o|1

k=2 p+1 rypq | <0
a=(ck)(p+1)—(k—2)p
d=(1-ho)(p+1)—pruw
c=(k—=2)(1—0)—ckr,.

where h=1,k>3,p,0 > 2,r,11 < —1 and t(S) =k —1, or
(3) PSFy = {wa] 'al, }, PSFy = {moa] ', ..., 2}, t(S) = k.

s D r r’

ock+1 p 1—ho | h+1

k—1 p+1 Tu+1 <0

a=(ck+1)(p+1)—(k—1)p
d=(p+1)1—ho)—prua
c=(k—-1)1—ho)—(ck+1)r,1.
h>1,k>3,p,o>1r,11 <min{—h,1—ho} and t(S) =k, or
(4) PSPy = {a?,,}, PSFy = {a1, ..., 14}
s D r r’
E+1 p -1 |1
k p+1 ruyq | <0
a=k+1D)p+1)—kp=k+p+1
d= —(p+ 1) —Prus
c=—k—(k+1)r,.
with h =1,k >3,p>1,1,41 < —1. We have t(S) =k+1, or
(5) PSF, = {z12] 22}, PSF, = {z127'} and

)

s P r r
ck+1 p —o |1
2k—1 p+1 1,1 |<0

a=(ck+1)(p+1)—(2k—1)p

d= —(p+ 1)0 — Pru+1

c=—0(2k—1) = (ck+ 1)r,41.
withh=1,k>3,0>2,p>1,r,41 <—0. We have t(5) = 2.

Proof. We have ]§S\ﬁ = {wag’exiflrl} where v,e € {0,1}. We set Mz_. =
xg_exi‘jfll_l. By Theorem 5.2 we have PSF, = {xrNy,_s,...,5aN,,_s} for some
I <A, €{0,1}, where N, _5 := xg”_éxiflrp“*l.
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Since S is almost symmetric we have that
LyLaN7 5 — w0l Mz . €1, (13)

Note that v = 0 is possible only in case 2b),where we have ¢ = 0,p = 1, = 0. In all
other cases we have v = 1.

(1) If I' + A = 0 then we are in case 5iii), which implies p, = 1,5,41 = 1 so p = 0,
but in all cases of Theorem 5.2 with card(PSF;) = 1 satisfying these conditions

we have k = 2.
(2) If 0 < '+ A < k we have

xr+Aa:g*1xza”_%xi$f“7p“71) — Ll e T (14)
If v =0o0r h > 1 then xifll_l € in(I), which is not possible. So we have
vy=1,h=1 and

wrsamy P — e T e 1 (15)
We consider two cases:

(a) lf o, = 0, 41+0 (S0 py, = pus1+p) then 20,—20—(6—¢) = 0,4+0,11—20+¢.
Note that 0,41 —20 +¢ < 0 if and only if § = 1 and either o, = 0,e =0,
either 0,11 =0,e =1 or 0,41 = 1,6 =0. If 0,41 = 0 we have 0, = 7, but
we can check that no case in Theorem 5.2 with § = 1 satisfy the condition
o, = 0. If ¢ = 0 then the possible cases are le) or 2d), both cases imply
that p > 1 hence p, > 1. We can check that there is no case in Theorem
52 with o =1,p, > 1.

So we have 0,41 — 20 +¢ > 0. We have

IF+A$‘;M$Z#+1—25+€ngl_);lz+1—l7u—1) . x1172iJr11_1 el (16)
Since o, > 1, if 2(pp41 — pp — 1) > pus1 — 1 then p(x1) > ¢(zy) a contra-
diction, so we have

out+1—20+€ 2pp+1—
Troaxy ettt —may el (17)

If p, =0o0rI'+ A = p, then Lpuiz\“/— xg”xi‘jrl € [ which leads to a
contradiction since ;23 k1) e Ap(S). Hence we have either I' + A >

pp>0o0r I'+A < p, p,>0.
*IfI'+ A > p, > 0 then

ri,—1 Opui1—20+¢€ 2, +1—
Iz pt1 Pu Pu Pu+1
Ty TryA—p, Ty, )l — mr el (18)

Since 2p, + 1 — pui1 < p, we get

r,—1 ou+1—20+e put+1—pu—1
T Trpa—p, T rh T el (19)

This is possible if and only if r}, = ,T + A —p, = 1,0,41 — 25+ =0 and
Pu+1 = pu + 1. We have several cases.
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e § = 1, by Theorem 5.2 we are in case 6) which implies p, = 1 so
'+ A =2and I' = A = 1, the only possible case is 6ii), so s, —
Su+1 > 1. Since 1 = p, = p,q1 + p we have either p = 0,p,41 =1
or p =1,p441 = 0. If p=0,p,41 = 1 by Theorem 5.2 the only
possible cases with card(PF;(S)) = 1, are 1b) and 2a) with £ = 2 a
contradiction. If p =1, p,41 = 0 the only possible case is 2b) with
S, — Su+1 = 1, a contradiction, so the case ¢ = 1 is not possible.

e 0 = 0 implies 0,41 = ¢ = 0. We have to consider in Theorem 5.2
the cases le) or 2d) because ¢ = 0 and 7i), 7ii) because § = 0.
On the other hand I' + A = p, + 1 implies that we are in case Tii)
withp = 2. We set 0 = 0,,p = pu,l = Su41 = pus1 so we have
PSF, = {mxfx],}, PSF, = {xx],...,x,,127 }, we have the table

)

S p r r
ok+1+2 p —o |1
[ p+1 7,41 |<0

witho > 1,1 <l <k-2. Alsol =71, =r,+o+1lsor, = —0,r,1 <
—o0 < —1, and T:L+1 =741+ 1< —0+4+1<0. So in fact we are in
case 2d) 7ii). We have ¢(S) = [ 4+ 1. Note that t(S) = 2 if and only
if1=1,p,=3.

a=(ok+1+2)(p+1)—Ip
d=—(p+1)o —prun
c=—lo— (ck+1+2)r,41.

*If p, > 0,'+A < p,. From (17) we have necessarily :BF+AxZ“xZ““_25+5 c

/

. . ou+1 r
in(I) so 0,11 — 26 + & > 0. Since wrpaz)"” — " Thiria—p,Lhpy € I we
have

/

A Pu  Ouy1—1—26+¢_p, 2put1=pu+1
Lo Lkt P+A=pu L1 % L1 =~ V184 €l (20)
this is i ible si 2pu+1—pu+1 c A S)
is is impossible since z1z; p(S).

op=0u1+0+1(s0p>0,p, =pus1+p—k >0)then 20, —-26—(c—¢) =
Oyt Ot +1— 28+ ¢

Note that 0,41 +1—20+¢ <0if and only if § = 1,0,41 = 0,6 = 0. The
possible cases in Theorem 5.2 are 7i), 7ii). In 7ii) we have p,41 < p, so
0, = 0,41+0 acontradiction. In 7i) we have 20,—-25—(6—¢) = 0,—1 > 0,
'+ A=p,>2so (15) becomes

ou=1_2(put1—pu—1) Put+1—1
Touli  Tpy1 —nayy €l (21)

if 2(pps1 —pp — 1) > pug1 — 1 we get

:Cp“xZM_1xl(€2_gu+1*pu*1))*(?u+l*1) —1 € [’ (22)
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which leads to a contradiction; so 2(p,+1 —py — 1) < pu+1 — 1, we get

xpuxz;ﬁl . $1$;(5fl+1_1)_(2(”“_1)“_1)) cl, (23)
but xlx,(ﬁ‘fl71)7(2(’)"“71"‘71)) € Ap(S,a) so xpMmZ“_l € in(/) which is not
possible.

Hence 0,41 +1—25 +¢ >0, and (15) becomes
T G e L . Con = (24)

if 2(pu+1 —pu — 1) > puy1 — 1 we get a contradiction since o, > 1, p(x)) >
©(x1). So

outo +1—26+¢ 2pu+1—p,,
N e — e L (25)
S' 2pu+l—pput1 A S h 0H+Uﬂ+1+1_26+€ . _[
ince 17, € Ap(S,a), we have xriaz, € in(I).

Hence we have either p, = 0, either ' + A = p,, > 0, either '+ A > p, >0
or 0<I'+A<p,,0441+1—-204+¢>0.

e Ifp,=0o0rT'+A=p, >0 we have L, a}" — xgl“wiil so from (25)

we have
T our1+1—20+€ 2p,+1—
w Ot Pu Pu Pu+1
Ty T, AT ST e el (26)
Since 1/, > 0 and 2.7 P € A/(tS'/ t tradicti
4 173, p(S,a) we get a contradiction.

e If k>T+A > p, >0 then we have xriaz}" — xg/“
so from (25) we have

Pu
LT+A—puLpy1s

xg“_hxr—&—A—puxzwﬁl_%%xiil - xlxiﬁf—l_pwl SR (27)
which implies 7, = h = 1. We have p, — (2p, + 1 — put1) = Pur1 —
py—12>0so0

wreapal T e (28)
which is possible only it I' + A — p,, = L,pyp1 = py + 1,041 +1 —
20 + ¢ = 0, which implies 6 = 1,0,41 +¢ = 1. But we also have
r, = h = 1,p, > 0 so the only possible case is 6ii) which implies
pp=1,841>ksoo,y1 =1,e=0. Wealso have p,s1 +p=k+1
so p > 1 which implies either case le) or case 2d) with p = 2 since
card(PSFy) = 1. Hence s, = 0,k + 1,0, > 2,5,41 = 2k — 1, since
r,=1=r,+0,+1wehave r, = —0, and r,1; < —o, implies
Tha1 = Tur1 +2 < —0, +2 <0, so in fact we are in case 6ii)) and
2d). We set 0 = 0, p = p, so we have

PSE = {wag 2.}, PSF, = {z,29 '} and
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)

s p r r
o,k+1 p -, |1
2k—-1 p+1 ru1 | <0

a=(ok+1)(p+1)—(2k—1)p
d= _(p + 1)Uu — Pru+1
c=—0,2k=1) = (o,k + 1)r,41.

with h=1,k>3,0,>2,p>1,7,41 < —0, and ¢(S) = 2.
e Suppose that 0 < I' + A < p, then 0,41 +1 —25 +¢ > 0. Since

+1 T
Troar — a:o“xk+p+A_pM:Bz‘jr1 € I we have from (25)

r Opt1—20+€ 2, +1—
Iz pt1 Pu Pu Pu+1
Lo Tk+T+A—pu Ty, Tpp1 — D1 el (29)

—_~—

This is not possible since 7, > 0 and xlxi}fﬁ‘fl*p““ € Ap(S, a).
(3) '+ A > k, from (13) we have
ey TR — g Lal i T e T (30)
(a) If 0, = 0,441 + 0 then we have p, = pyt1+p, 20, +1—20 — (0 —¢) =
0, + 0,41 +1—20+¢e. We have several cases.

(i) opp1+1—20+e < 0ifand only § = 1,0441 =0,e =0. If y =0
then we are in case 2b) so ¢ = 0,41 = 0 which implies o, = 0, this
is not possible, so v = 1. By looking all cases in Theorem 5.2 with
d =1 we have p, <1, on the other side e =0,y =1 implies p > 1 a
contradiction since p < p,,.

(i) oys1+1—20 +e =0if and only 0 =1 and either 0,41 =0,e =1 or
o1 = 1,6 = 0. We have

ou  2(Pp+1—pu—1) Pu+1—1
TrpA—kTy" Tpyy SRR YO N | (31)

ii-*) Suppose v = 0. We are in case 2b), s, — s,41 = 1, if 0,41 =0
then s, = p,4+1+1 which is not possible, so 0,11 =1, p =150 p, > 1.
Since ¢ = 1 implies p, = 1, hence p,41 = 0 and since s, — 5,41 =1
we have s, = k+1,s,41 = k. The possible cases are 5i) and 6i), in
both cases we have I' + A — k =1 = p,,. By using the Grobner basis

we have
wy T T e (32)
that is -
O W=l | (33)
possible only if 7/, = 1,p,41 = p, + 1. Since r, > h > 1 we have
equality, so we are in case 6i) and 1 = r, +2 so r, = —1. We set

P = p, we have
PSFl = {.CCZ+1}, PSFQ = {1'1, ,l’k}



26

MARCEL MORALES

)

s p r r
k+1 p -1 |1
k p+1 1,1 |<0

a=k+1D)p+1)—kp=k+p+1
d= —(p—i-l) —Pru+
c=—k—(k+1)r,.

with h=1,k>3,p> 11,11 <—1,tS)=k+1.

ii-**)Suppose v = 1. Recall that 6 = 1 and either 0,1 =0,e =1 or
ou1 = 1,6 =0. If y =1, = 0 we are in cases le) or 2d) so p > 1.
6 = 1 implies p, < 1, but p, = p,41 + p so we get a contradiction.
Therefore § = 1,0,41 = 0,6 = 1, again from p, = p,41 + p we get
Su+1 = 1,p, = 1,p = 0. The possible cases with p = 0 are 1b) and
2a) with k£ = 2 a contradiction since we assume k > 3.

+1 r! —h
(iil) ops1 +1 =26 +¢ > 0. If p, > 0 we have 27" — z"  p_p, 2} SO
from (30) we have
r,—h Opt1—20+e 2 —pp—2 -1
Iz pt1 Pu+1—Pu Pu+1
Lo Tk—puTT+A-kTy Lry1 —@olyayiy €1 (34)
hence
ri,—h 01 —204€ —pu—1
H pu+1 Pu+1—Pu
T T p, TrrA—kTy, Tl —xoL, €1, (35)

recall that v = 0,1, since & —p, > 1,I' + A — k > 1 we have
©(Tp—p, Trya—k) > p(xoL,) this is not possible.

If p, = 0 we have z}" — ngxi‘jrl so from (30) we have

/
Out+1+1—-204¢ puy1—pu—1
T Trya—k Ty v —wgly, €1, (36)

this is not possible since r;, > 0, oy z1) > @(xoL,).

(b) If o, =01 +0+1, k+p, = pu+1+ p we have p, < py41,p and o, + 1 —

20—(0—¢)=0u41+2—-20+e>0.
Suppose p, = 0, which implies o, > 2, since 2" — xg“xiil € I from (30)
we have

xgi‘mp+A_ka:Z““+2_26+6xZ‘jrﬁl_p“_l —xol, €1 (37)
This is possible if and only if y =1, T+ A -k =17, = 1,pyp1 = p, + 1
and 0,11 +2 — 20+ ¢ = 0. We note that 0,41 +2 —20 +¢ = 0. if and
only if 0,41 = 0,6 = 1, = 0, also note that o,,; = 0 implies TLH < 0.
The possible case with 7}, ; < 0,e = 0 is 2d) with p = 2 and p, = 0
implies the case 4ii). Note that r}, = 1 implies h = 1. Moreover we have

— o — — _ R O
l=r,=r,+o,s0r,=1-0, Weseto:=o,p:=p,so we have

PSFl = {l’lxgill'i_i_l}, PSF2 = {.fL'QLZ'Zﬁl, ...,xk,lx‘;*l}.
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S p T r’
ok P 1—0|1

k=2 p+1 7,41 | <O
— (ok)(p+1) — (k— 2)p

(
(1 - 0)(p + 1) — Pru+1
(k=2)(1—0)—okr,1.

a
d
c

h=1,0>2p>1r,1 <—-1t95)=k—1
Suppose p, > 0. If v = 0 then we are in case 2b), so p = 1,p, = 0, a
contradiction. So v = 1. We have two cases.
(i) If opy41 +2 — 20 + ¢ = 0 then we have § = 1,0,41 = 0,e = 0.
6 = 1 implies p, = 1, ¢ = 0 implies p = 2 and 0,41 = 0 implies
71 < 0,8, — 811 = (0, — 1)k + 2 so the possible case is 2d) and
5ii) and we have I' + A — k = 2. So from (30) we have

ou, 2 1—pp—1 1—1
:L‘gmk“xk(ff* Pl _ zoxiay T €l (38)

!
m ru—h Dy
but zoz," —xy" rix, €1 s0

xg“fhxlxifll_p“_l —xox1 €1 (39)
this is possible only if 7, —h = 1,p,11 = p, + 1. We have h + 1 =

r,=ru+ho+1)sor,=1—-hor, < —ho,sor,  =r,1+h<

—h(o —1),s0 7,,; <0if and only if 0 > 2. We set 0 1= 0,,,p == p,
so we have N

PSFy = {xa] 2l |}, PSFy = {wa] ', ....2}, t(S) = k.

S P T r’

ock+1 p 1—ho|h+1
k—1 p+1 Tu+1 <0

a=(ck+1)(p+1)—(k—1)p
d=(p+1)(1 —ho) = pru
c=(k—=1)1—ho)— (ck+1)r,1,
with h > 1,p>1,0 > 2,1,41 < —ho.
(ii) Suppose 0,11 +2—26+¢c > 0. We have xZ“H - xgi‘_hxk_puxiil el
From (30) we get

r,—h Opr1+1-25+¢ —pu—1
" pt1 Pu+1—Pp
Ty XAk Th—p, T, L —zox1 € 1, (40)

since '+ A -k > 1,k —p, > 1 we have ¢(xrya—Tr—p,) > ¢(ToT1)
which is impossible.

g
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8. FORMULA FOR FROBENIUS NUMBER OF ALMOST SYMMETRIC ALMOST
GENERALIZED ARITHMETIC PROGRESSIONS

This section extends and generalizes all the results of [13].

Theorem 8.1. Let S be an AAG almost symmetric with k > 3,t(S) > 2. Then there
is a quadratic formula for the Frobenius number in terms of a,d, ¢,k and the type t(5).

e~

Proof. We have to consider two cases depending on the number ¢ such that Frob(S €
(PSE).
I) Suppose Frob(S € (PSF;). Then S is almost symmetric with & > 3,¢(S) > 2 if and
only if either
(1) PSFy = {7 i =1,k — 1}, PSF, = {maga 2} #(S) =k — 1 + 1.
We have
a=(ck+2)pu41 — ((6 — 1k +1)
d = pu+17’u + 0o
c=(c-1Dk+Dr,+ (ck+ 2)0o.
where h=1,k>3,1<I<k—-1,02>2.

2(]?#_5_1—1) P —_~——

Since @121y | —xoFrob(S) € I we have xk_lﬂxz(ff“_l) —Frob(S) eI
and F(S) = 2(pu41 — 1)c + ag_i+1 — a so determine a formula for F'(S) consist

to determine p,; in terms of a,d, c, k, (.

we set X = p,1 we have z7, | — 12y " s0

Xc=a,+ oa, — ay, (41)
and
ok(X —1)=a—-2X —k+1 (42)
We multiply (41) by k(X — 1) and by using (42)we get
B(X — 1)Xe= k(X — Da; + apla —2X — k +1) — k(X — 1)ay (43)
So we get a second order equation in the variable X
keX? — (k(c+a; — ag) — 2a,)X —ap(a +1) +ka; =0 (44)
0 X — k(c+a; —ax) — 2a, + /(k(c + a ;kak) —2ay)? — dke(—ag(a + 1) + kay)
c

(2) PSF, = {247}, PSE, = {wa a7 2}, t(S) = 2. We have
a=(ck+2)pu41 — (ck+1)
d=pur,+hic+1)+1
c=(ck+1r,+ (ck+2)(h(c +1)+1).
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where h > 1,0 > 1,p,41 > 2,r, > —h(c+1)—1. Since xi(ﬁ‘“_l)—onrob(S) €
I we have and F(S) = 2(pu+1 — 1)c—2a so determine a formula for F'(.S) consist
to determine p,; in terms of a,d, c, k.

We set X = p,11 we have x5, — Zoz12] S0

Xc=a+a +oa (45)
and
ok(X —1)=a+1-2X (46)
We multiply (45) by k(X — 1) and by using (46)we get
E(X -1)Xc=k(X -1)(a+a)+ap(a+1—-2X) (47)
So we get a second order equation in the variable X
keX? — (k(c+a+a)) —2ax)X —ap(a+1) +k(a+a;) =0 (48)
0 X — k(c+a+ay) —2ap++/(k(c+a+ a12)k— 2a;,)? — dkc(—ag(a+1) + k(a+ a1))
c

—_——

IT) Suppose Frob(S € (f/’gfl) Then S is almost symmetric with k£ > 3,#(S5) > 2 if
and only if either

(1) I/Dﬁ = {z2fa] 1}, EgF/é = {@oa], ..., x,, 127}, t(S) = [+ 1. We have
a=(ck+1+2)(p+1)—Ip
d=—(p+1)o —pru
c=—lo— (ck+142)r,41,
where h =1,k >3,0 > 1,1 <1<k —3,r,41 < —o0.
Since Tox) 173 — ZL‘QF@(/S) € I we have x4 372 — F?o?)-(g’) €l and F(S) =
ai+3 + 20a; — a but x40x7 — :l:o:vi‘ff_l € I. Weset X = p,41 50
Qo +0ar = a+c(X — 1) (49)
and F(S) = a;;3+2(a+ ¢(X — 1) — a;32) — a. Determine a formula for F(.S)

consist to determine X in terms of a,d, ¢, k, L.
By developing the formula for a we have

okX =a—2X —1 (50)
We multiply (49) by kX and by using (50)we get
kapoX + koapr X = kaX + keX (X — 1) (51)

So we get a second order equation in the variable X

keX? — (k(c—a+ aipo) — 2a3)X —ap(a—1) =0 (52)

k(c—a+ appe) — 2ax + /(k(c — a + a12) — 2a4)? + dkcag(a — 1)
2kc

so X =
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PSF, = {z12] 2}, PSF, = {29zl . e 2] '}, t(S) = k — 1. We have
a=(ok)(p+1)—(k—2)p
d=(1—=ho)(p+1)—prun
c=(k—=2)(1—0)—ckr,.
where h =1,k > 3,p,0 > 2,111 < —1.
Since our semigroup is almost symmetric we have zox), 1277 > — 2o Frob(S) €
I that is z,23° ! — xOF@-(TS’) € I so F(S) = ay + 20a; — ar, — 2a. But
g — xoxiff—l € I, we set X = p,11 we have
oar =a+c(X —1) (53)
and F(S) = a; +2(a + ¢(X — 1)) — ap — 2a. Determine a formula for F(.S)

consist to determine X in terms of a,d, ¢, k.
By developing the formula for a we have

—_—

kX =a+kX —2X —k —2 (54)
We multiply (53) by kX and by using (54)we get
ag(a+ kX —2X —k —2) = kaX + keX(X — 1) (55)
So we get a second order equation in the variable X
keX? — (k(c—a+ap) — 2a1)X —ap(a —k+2) =0 (56)
and X — k(c—a+ ay) — 2ax, + +/(k(c — ;L]:— ag) — 2ax)? + 4dkcap(a — k + 2)'
c

PSF, = {z12] 2}, PSF, = {moz™ 1, .. 27}, t(S) = k. We have
a=(ck+1)(p+1)—(k—1)p
4= (p+ 1)(1 = ho) = pria;
c=(k—1)(1—ho)— (ck+ 1)r 4.
h>1,k>3,p o> 1,7“&1\5 min{—h,1 — ho}.

Since wox;7 " — 2oFrob(S) € I we have F(S) = ay + 20a; — ap — 2a but
T12] — :L“g“xi‘ff_l € I, we set X = p,41, so we have
a1 +oap=(h+1)a+c(X —1) (57)
and F(S) =as+2(a+c(X — 1) —ay) — ap — 2a. Determine a formula for F(.S)
consist to determine X in terms of a,d, ¢, k.
By developing the formula for a we have

kX =a+ X(k—2)—k+1 (58)
We multiply (57) by kX and by using (58)we get
kar X + ag(a+ X(k—2) —k+1) = k(h + 1)aX + keX(X — 1) (59)
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So we get a second order equation in the variable X

keX? — (k(ay +c— (h+Da+ap) — 2a;)X —ap(a—k+1) =0 (60)

k(ay +c— (h+1)a+ay) — 2a, + v/ (k(ay + ¢ — (h+ 1)a + ay) — 2ay,)? + 4kcag(a — k + 1)
2kc '

(4) PSF, = {a,,}, PSFy = {z1, ...z}, ((S) = k + 1. We have

X =

a=k+p+1
d=—(p+1)—prun
¢c=—k—(k+1)r.

with h=1,k>3,p>1,7,41 < —1. We have F(S)=pc—aanda=k+p+1
so F(S)=cla—k—-1)—a.
(5) PSFy = {aya] 22}, }, PSFy, = {x12] '}, t(S) = 2. We have
a=(ck+1)(p+1)—(2k—1)p
d=—(p+1)o—prua
c=—02k—-1)— (ck+ 1)r 4.
with h=1,k>3,0>2,p> 1,141 < —0.

Since 2272 ~% — 29Frob(S) € I we have 20137 2 — Frob(S) € I so F(S) =
ag + 20ay, — 2a;, — a but x127 — roxy,, € I, which gives

a; +oar =a+c(X —1), (61)

where we have set X = p+1. Hence F(S) = as+2(a+c¢(X —1) —ay) —2a, —a.
Determine a formula for F'(S) consist to determine X in terms of a,d, ¢, k.
By developing the formula for a we have

ckX =a+ X(2k—-2)—-2k+1 (62)
We multiply (61) by £X and by using (62)we get
kay X + ap(a+ X(2k —2) =2k + 1) = kaX + ke X (X — 1) (63)
So we get a second order equation in the variable X

keX? — (k(c+d+ 2ay) — 2a)X — ap(a —2k+1) =0 (64)

k(c+d+ 2a;) — 2a, + /(k(c + d + 2a;) — 2a;)? + 4kcax(a — 2k + 1)

X —
2kc

g

Corollary 8.2. Given a AAG-semigroup S with data a,d,c,h,k by at most 4k tests
solving quadratics equations we can determine if S is almost symmetric.
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Proof. The first step is to check if one of the square roots is a natural number, since
we dont know (S) we have to perform k times in the case were the number 1 <1 < k
appears in this square root. The second step is to check if the solution X as above
is a natural number, at this step we know the probably value for ¢(S) so also the
probably case to consider. The third step is to solve a linear system to find the values
of o, pyt1, 741 from a,d, c, h, k and check if they are natural numbers and satisfy the
conditions of the considered case. U

Example 8.3. We have implemented the above algorithm and we have for 150 < a <
160,1 < d < 10,170 < ¢ < 180,19 < k < 20,2 < h < 3 the following values for which
the AAG-semigroup is almost symmetric:

a=153,d=11,c =177,k = 19,h = 3, case II.1, py11 = 7,0 = 1,741 = —3.
a=156,d =11,¢c =174,k = 20,h = 3, case II.1, py11 = 7,0 = 1,741 = —3.
a=155,d=1,c =177,k =20,h =4, case 1.2, py11 = 8,0 = 1,1, = —1.
a=152,d=3,c =170,k =21,h = 2, case I.1, py11 = 4,0 = 2,7, = 0.
a=150,d=4,c¢= 178,k =21, h =3, case I.1, pj41 = 6,0 = 1, 1,41 = —2.
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