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SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS
GENERATED BY AN ALMOST GENERALIZED ARITHMETIC

SEQUENCE, FROBENIUS NUMBER

MARCEL MORALES

Abstract. Let a, d, k, h, c be positive integers. Recall that a numerical almost gener-
alized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semi-
group minimally generated by relatively prime integers a, ha+d, ha+2d, . . . , ha+kd, c,
that is its embedding dimension is k + 2. In [8] was described a Gröbner basis of the
ideal defining S under one technical assumption, the complete case will be published
in a forthcoming paper. In this paper we give a complete description of S when is sym-
metric or almost symmetric and a quadratic formula for its Frobenius number. Note
that our results generalizes and extends previous result of [11], [3] and [13]. Given
a, d, k, h, c a simple algorithm allows us to determine if S is almost symmetric.
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1. Introduction

Let a0, . . . , an be natural numbers and S = 〈a0, . . . , an〉 = {k0a0+. . . knan|ki ∈ N} the
semigroup generated by {a0, . . . , an}. Recall that if a0, . . . , an are relatively prime num-
bers then the Frobenius number of S, denoted by F (S), is the biggest integer that does
not belong to S. Let A = K[S] = K[tk|k ∈ S] = K[ta0 , . . . , tan ] ⊂ K[t] the semigroup
ring of S and R = K[x0, . . . , xn] the polynomial ring in n + 1 variables over K graded
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by the weights deg xi = ai, for all i = 0, . . . , n. The defining ideal I of K[S] is defined to
be the kernel of the K-algebra homomorphism Ψ : R → K[S] given by Ψ(xi) = tai for
all i = 0, . . . , n, we will use often the fact that I is a prime ideal generated by binomials
and does not contains monomials. We use the weighted degree reverse lexicographical
order ≺w on the monomials of the ring R with x0 ≺ . . . ≺ xn, and the map ϕ : [[R]]→ N
defined by ϕ(M) = k1a1 + . . . + knan for every monomial M = xk00 . . . xknn ∈ [[R]]. Let
recall the pseudo-Frobenius set PF (S) of all integer number a which satisfies a /∈ S and
a+ s ∈ S, for all 0 6= s ∈ S and the number of elements of PF (S) is called the type of
S, denoted by t(S). Finally, the Apéry set with respect to a0 plays an important role
in our paper which is defined by Ap(S, a0) = {s ∈ S|s − a0 /∈ S}. By defining in [8] a

monomial Apéry set ˜Ap(S, a0) of a0, that is an algebraic analogous to the Apéry set
Ap(S, a0) and using the order ≺w as well as the map ϕ, we can change from studying
the Apéry set to studying the set of monomials of [[R′]] which are not in in(I), where
R′ = K[x0, . . . , xn].
Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arith-
metic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup mini-
mally generated by relatively prime integers a, ha + d, ha + 2d, . . . , ha + kd, c, that is
its embedding dimension is k + 2. Our goal is to describe all properties of an AAG-
semigroup in terms of a continuous fraction, as an extension of my previous works in
[5], [6]. In [8] was described a Gröbner basis of the ideal defining S under one condition,
the complete case will be published in a forthcoming paper. In this paper we continue
the work of [8] and we can describe the Pseudo Frobenius set (see Theorem 5.2), and
so the Frobenius number and its type is at most 2k. As a consequence we can give
a complete description of AAG-semigroups that are symmetric or almost symmetric
see Theorems 6.1, 7.2, 7.3 ), in particular we prove that if S is almost symmetric its
type is at most the embedding dimension minus 1. Another interesting point is that if
S is almost symmetric then the Frobenius number is given by a quadratic formula in
terms of a, d, k, h, c and t(S). Moreover a simple algorithm using the solutions of some
quadratic equations allow us to decide is an AAG-semigroup is almost symmetric. This
result extends and generalizes all the results of [13].

The algorithms presented here are the extensions of the previous work by the
first author in [5], [6] and can be downloaded in http://www-fourier.univ-grenoble-
alpes.fr/ morales/.

2. Frobenius number and Apéry set

Denote by Z and N the set of integers and nonnegative integers respectively. Let S
be a semigroup in N. Given n > 1 and a0, . . . , an ∈ N such that gcd(a0, . . . , an) = 1,

S = 〈a0, . . . , an〉 = {k0a0 + . . . knan|ki ∈ N}.

The set N\S is finite. If S is minimally generated by {a0, . . . , an} S is called numerical
semigroup and n+ 1 is called the embedding dimension of S.
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Definition 2.1. Let S be a numerical semigroup generated by a0, . . . , an.
(i) The number F (S) = max{a ∈ Z | a /∈ S} is called the Frobenius number of S.
(ii) We also define

PF (S) = {a ∈ Z \ S | a+ s ∈ S if s ∈ S and s 6= 0}
and an element of PF (S) is called a pseudo-Frobenius number of S. Obviously, the
Frobenius number is a pseudo-Frobenius number and the number of elements of PF (S)
is called the type of S, denoted by t(S).

(iii) The Apéry set of a0 in S is the set

Ap(S, a0) = {s ∈ S|s− a0 /∈ S}.

3. Frobenius number and Gröbner basis

The definitions and results in this section follow from [8]. Let R = K[x0, . . . , xn]
be the polynomial ring graded by the weights deg x0 = a0, . . . , deg xn = an, J ⊂ R a
graded ideal and B = R/J . We say that R and B are quasi-homogeneous rings. Set
R′ = K[x1, . . . , xn] and denote by [[R′]] the set of all monomials of R′. Let ϕ : [[R′]]→ N
be the map defined by ϕ(M) = k1a1 + . . .+knan, for every monomial M = xk11 . . . xknn ∈
[[R′]].

We consider the weighted degree reverse lexicographical order ≺w with x0 ≺w · · · ≺w
xn and deg xi = ai for all 0 6 i 6 n.

With the notations in the introduction, let in(I) be the initial ideal of the reduced
Gröbner basis G(S) of I for the order ≺w. Set R′ = K[x1, . . . , xn] and denote by [[R′]]
the set of all monomials of R′. Now we consider two sets

˜Ap(S, a0) = {M ∈ [[R′]] |M /∈ in(I)}
and

P̃F (S) = {M ∈ ˜Ap(S, a0) | ∀i 6= 0,∃Ni ∈ [[R′]], αi > 0 such that Mxi − xαi0 Ni ∈ I}.
Corollary 3.1. Assume that gcd(a0, . . . , an) = 1. Then we have

(i) The restriction of ϕ to ˜Ap(S, a0) is bijective and ϕ( ˜Ap(S, a0)) = Ap(S, a0). In

particular card ˜(Ap(S, a0)) = a0 and F (S) = max{ϕ(M)|M /∈ in(I)} − a0.

(ii) The restriction of ϕ to P̃F (S) is bijective and ϕ(P̃F (S)) = PF (S) + a0, i.e.

each element ω ∈ PF (S) corresponds to exactly one monomial Mω ∈ P̃F (H) such that
ϕ(Mω)− a0 = ω.

(iii) Let s ∈ Ap(S, a0), M ∈ ˜Ap(S, a0) and N ∈ [[R′]] such that s = ϕ(M) = ϕ(N).
Then M ≺w N .

We denote by ˜Frob(S) the unique monomial in P̃F (S) such that ϕ( ˜Frob(S)) =
F (S) + a0.

The following Lemma is very simple but very useful in order to prove that a set is a
Gröbner basis of an ideal in many cases (see [8], [2]).
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Lemma 3.2. Let R = K[x0, . . . , xn], R′ = K[xs, . . . , xn] be the rings with respect to the
order ≺w and [[R′]] the set of all monomials of R′. Let I ⊂ R be an ideal such that the
generators of in(I) belongs to R′ and rad(in(I)∩R′)) = (xs, . . . , xn)R′. Let G ⊂ I be a
finite set and J the monomial ideal generated by the leading monomials of the elements
in G. If card([[R′]] \ J) = card([[R′]] \ (in(I) ∩R′)) then G is a Gröbner basis of I.

4. almost generalized arithmetic progressions, Grobner basis

Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arith-
metic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup mini-
mally generated by relatively prime integers a, ha+d, ha+ 2d, . . . , ha+kd, c, that is its
embedding dimension is k + 2 An interesting particular case is a semigroup minimally
generated by relatively prime integers a, a + d, a + 2d, . . . , a + kd, c, called numerical
almost arithmetic-semigroup (numerical AA-semigroup for short). AA-semigroups are
the case h = 1 of AAG-semigroups and where considered by D. P. Patil [9], [10] from
the algebraic point of view and by J. L. Ramı́rez Alfonśın and O. J. Rodseth in [11],
[12] from combinatorial point of view.

Let R = K[x0, . . . , xk, xk+1] be the polynomial ring in k + 2 variables over K graded
by the weights deg xi = ha + id for i = 0, . . . , k, deg xk+1 = c and I the kernel of the
homomorphism Φ : R→ K[S] of K-algebras defined by Φ(x0) = ta , Φ(xi) = tha+id for
all i = 1, . . . , k and Φ(xk+1) = tc. Let R′ = K[x1, . . . , xk]. The following result extends
[10][Lemma 1.6.1].

Lemma 4.1. For 1 ≤ i, j < k, set

A = {xixj − xh0xi+j | if i+ j ≤ k, } ∪ {xixj − xi+j−kxk | if i+ j > k}.

Then every binomial of A belongs to I and card(A) = (k−1)k
2

.

Proof. Let 1 ≤ i, j < k. The results are implied by the fact that ϕ(xixj) = ha + id +
ha + jd = ha + (ha + (i + j)d) if i + j ≤ k or ϕ(xixj) = (ha + id) + (ha + jd) =
(ha+ (i+ j − k)d) + (ha+ kd) if i+ j > k. �

Corollary 4.2. Let consider any Gröbner basis with respect to an order ≺w such that

x0 ≺w x1 ≺w . . . ≺w xk ≺w xk+1. The initial ideal in(I) and ˜Ap(S, a0) can be repre-
sented in the plane.

Proof. By hypothesis and Lemma 4.1 we have only to consider only the monomials in
in(I) which can be written as Lix

α
kx

β
k+1 where 0 ≤ i < k, L0 = 1 and Li = xi for i > 0.

We associate to Lix
α
kx

β
k+1 the point (i+ αk, β) ∈ N2. �

Lemma 4.3. Let s ∈ N, p, r ∈ Z such that

ra = sd− pc.
Let s = σk + ρ, where 0 ≤ ρ < k. For convenience we can write s = σk + lρ, where
l = 0 if ρ = 0 and l = 1 if ρ > 0. It follows that ra = σkd+ lρd− pc so that

(r + h(σ + l))a = σ(ha+ kd) + l(ha+ ρd)− pc. (∗)
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We set r′ = r + h(σ + l). We have

• Llxσk − xr
′

0 x
p
k+1 ∈ I if p, r′ ≥ 0,

• Llxσkx
−p
k+1 − xr

′
0 ∈ I if p < 0, r′ > 0,

• xpk+1 − x
−r′
0 Llx

σ
k ∈ I if p ≥ 0, r′ < 0.

Our aim is to construct a Gröbner basis and describe the set ˜Ap(S, a0). By applying
our algorithm for the case n = 3 in Section 4.1 with numbers a, d, c, we get numbers
si, pi, qi, ri for 0 ≤ i ≤ m+ 1 such that

ari = sid− pic.

Let s0 be the smallest natural number such that (s0, 0, r0) is solution of the equation
sd−pc = ra. Set p0 = 0 and let p1 be the smallest natural number such that (s1, p1, r1)
is solution of the equation sd− pc = ra, where 0 ≤ s1 < s0. Note that

s0 =
a

gcd(a, d)
and p1 =

gcd(a, d)

gcd(a, d, c)
.

Now we want to define numbers si, pi, ri, qi for i ≥ 2. We will use the extended Euclid’s
algorithm for the computation of gcd(a, b). Namely, let consider the Euclid’s algorithm
with negative rest: 

s0 = q2s1 − s2

s1 = q3s2 − s3

. . . = . . .
sm−1 = qm+1sm
sm+1 = 0

where qi ≥ 2, si ≥ 0 for all i = 2, . . . ,m+ 1. For i = 1, . . . ,m, let define pi+1, ri+1 by

pi+1 = piqi+1 − pi−1 , ri+1 = riqi+1 − ri−1.

It is proved in [6] that for i = 0, . . . ,m,

sipi+1 − si+1pi = s0p1 =
a

gcd(a, d, c)
,

and the sequences si, ri are decreasing, while the sequence pi is increasing. see [5] and
[6].

Let si = σik + ρi, where 0 ≤ ρi < k. We set li = 0 if ρi = 0, li = 1 if ρi > 0 and
r′i = ri + h(σi + li). Since si > si+1 we have σi ≥ σi+1, if σi = σi+1 then li ≥ li+1, if
σi > σi+1 then | li− li+1 |≤ 1. In both cases we have σi + li ≥ σi+1 + li+1, which implies
r′i > r′i+1. Let µ be the unique integer such that r′µ > 0 ≥ r′µ+1. In our next results we
suppose that either r′µ ≥ h or ρµ = 0. Note that by the definition of µ r′µ ≥ h is true
when h = 1. We give some results from [8] without proofs.

Definition 4.4. With the above notations. If r′µ ≥ h or ρµ = 0 we set:

(1) If ρµ = 0 we set

B = {xσµk − x
r′µ
0 x

pµ
k+1}.
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If ρµ 6= 0 we set

B = {xρµx
σµ
k − x

r′µ
0 x

pµ
k+1, xρµ+jx

σµ
k − x

r′µ−h
0 xjx

pµ
k+1 | 1 ≤ j ≤ k − ρµ}.

Note that since the embedding dimension of the semigroup S is k + 2 we have
sµ > k.

(2) Suppose sµ+1 6= 0. Let sµ − sµ+1 = σ̃k + ρ̃, with 0 ≤ ρ̃ < k. Set l̃ = 0 if ρ̃ = 0,

l̃ = 1 if ρ̃ > 0 and r̃ = rµ − rµ+1 + h(σ̃ + l̃). If ρ̃ > 0 then set

C = {xρ̃xσ̃kx
pµ+1−pµ
k+1 − xr̃0, xj+ρ̃xσ̃kx

pµ+1−pµ
k+1 − xr̃−1

0 xj | 1 ≤ j ≤ k − ρ̃}

and if ρ̃ = 0 then set C = {xσ̃kx
pµ+1−pµ
k+1 − xr̃0}. Suppose sµ+1 = 0. We set C = ∅.

(3) D := {xpµ+1

k+1 − x
−r′µ+1

0 x
lµ+1
ρµ+1x

σµ+1

k }. By our assumptions the embedding dimension
of the semigroup S is k + 2 so pµ+1 > 1, that is µ > 0, and if r′µ+1 = 0 we have
sµ+1 > k.

Now in order to find the set ˜Ap(S, a) we need to define two 2 rectangles

A = {(y, z) ∈ N2|0 ≤ y < sµ − sµ+1, 0 ≤ z < pµ+1}
B = {(y, z) ∈ N2|sµ − sµ+1 ≤ y < sµ, 0 ≤ z < pµ+1 − pµ}.

Note that if sµ+1 = 0 then B = ∅. For 0 ≤ i < k , set Li = 1 if i = 0 and Li = xi
if i > 0. To any point (y, z) ∈ N2 we associate the monomial M(y, z) := Lix

α
kx

z
k+1,

where α = b y
k
c and i = y − kα. Conversely, any monomial Lix

α
kx

z
k+1 ∈ [[R′]] can be

represented by the point (y, z) ∈ N2, where y = αk + i.
The next theorem allows to compute effectively a system of generators of the ideal

semigroup I, it precises and extends the main theorem of [10] where the case h = 1 is
considered.

Theorem 4.5. With the above notations, suppose that either r′µ ≥ h or ρµ = 0.
(i) We have

˜Ap(S, a) =
{
Lix

α
kx

z
k+1 | (y, z) ∈ A ∪B,α = by

k
c, i = y − kα

}
.

(ii) If sµ+1 6= 0 then G := A ∪ B ∪ C ∪ D is a Gröbner basis of I.
(iii) If sµ+1 = 0 then G := A ∪ B ∪ D is a Gröbner basis of I.

The following result extends the main result of J. L. Ramı́rez Alfonśın and O. J.
Rodseth in [11], [12], which is the case when h = 1.

Corollary 4.6. With the above notations, suppose that either r′µ ≥ h or ρµ = 0. We
have

Ap(S, a) = {hady
k
e+ dy + cz | (y, z) ∈ A ∪B}.
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5. almost generalized arithmetic progressions, Pseudo Frobenius set

The case S symmetric was studied in [11] and the case S is pseudo symmetric was
studied in [3] with the hypothesis that h = 1. Both publications are corollaries of this
section. In our work we will describe the Pseudo Frobenius set and characterize when
S is almost symmetric in general for h ≥ 1. In this paper we restrict to the hypothesis
r′µ ≥ h or ρµ = 0. Note that r′µ ≥ h is satisfied if h = 1.

Lemma 5.1. With the above notations, suppose that either r′µ ≥ h or ρµ = 0. Let

˜PF (S, a)1 be the set of monomials in ˜PF (S, a) such that the power of xk+1 is pµ+1 − 1

and let ˜PF (S, a)2 be the set of monomials in ˜PF (S, a) such that the power of xk+1 is
pµ+1 − pµ − 1. We have

˜PF (S, a) = ˜PF (S, a)1 ∪ ˜PF (S, a)2.

In particular 1 ≤ t(S) ≤ 2k.

Proof. We have

˜Ap(S, a) =
{
Lix

α
kx

z
k+1 | i+ αk < sµ, z < pµ+1 and (i+ αk < sµ − sµ+1 or z < pµ+1 − pµ)

}
,

Let M be a monomial in ˜Ap(S, a), recall that M belongs to ˜PF (S, a) if and only if
for all i = 1, ..., k + 1 we have that xiM − xα0Ni ∈ I for some monomial Ni and some

α ∈ N∗. We order the monomials in ˜Ap(S, a) by saying that M � N if N = xiM

for some i = 1, ..., k + 1. So ˜PF (S, a) is included in the set of maximal elements of
˜Ap(S, a) for this order. Note that for a maximal monomial of ˜Ap(S, a) we have that

the power of xk+1 is either pµ+1 − pµ − 1 or pµ+1 − 1. Let ˜PF (S, a)1 be the set of

monomials in ˜PF (S, a) such that the power of xk+1 is pµ+1 − 1 and let ˜PF (S, a)2 be

the set of monomials in ˜PF (S, a) such that the power of xk+1 is pµ+1−pµ−1. We have

card( ˜PF (S, a)1), card( ˜PF (S, a)2) ≤ k so t(S) ≤ 2k. �

Note that if M belongs to ˜PF (S, a) then for all i = 1, ..., k + 1 xiM ∈ in(I), so if

xiM ∈ ˜Ap(S, a) for some i = 1, ..., k + 1 then certainly M 6∈ ˜PF (S, a). Note also that
sµ − sµ+1 = (σµ − σµ+1)k + ρµ − ρµ+1, so if ρµ+1 ≤ ρµ then we have σ̃ = σµ − σµ+1, ρ̃ =
ρµ − ρµ+1 and if ρµ+1 > ρµ then we have σ̃ = σµ − σµ+1 − 1, ρ̃ = k + ρµ − ρµ+1.

Theorem 5.2. With the above notations, suppose that either r′µ ≥ h or ρµ = 0. We
have

(1) If r′µ+1 = 0

(a) If ρµ+1 = 0 then ˜PF (S, a)1 = ∅.
(b) If ρµ+1 > 0, ρ̃ = 0 then

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − ρµ+1}.
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(c) If ρµ+1 > 0, ρ̃ = 1, σ̃ = 0 then ˜PF (S, a)1 = ∅.
(d) If ρµ+1 > 0, ρ̃ = 1, σ̃ > 0 then

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − ρµ+1}.

(e) If ρµ+1 > 0, ρ̃ > 1 then

˜PF (S, a)1 = {xixσ̃kx
pµ+1−1
k+1 , i = 1, ...,min {ρ̃− 1, k − ρµ+1}}.

(2) If r′µ+1 < 0
(a) If ρ̃ = 0 then

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − 1}.

(b) If ρ̃ = 1, σ̃ = 0 then

˜PF (S, a)1 = {xpµ+1−1
k+1 }.

(c) If ρ̃ = 1, σ̃ > 0 then

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k}.

(d) If ρ̃ > 1 then

˜PF (S, a)1 = {xixσ̃kx
pµ+1−1
k+1 , i = 1, ..., ρ̃− 1}.

(3) If sµ+1 = 0 then ˜PF (S, a)2 = ∅.
(4) ρµ = 0

(i) If sµ+1 ≥ k − 1 then

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k − 1}.

(ii) If sµ+1 < k − 1 then

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = ρ̃, ..., k − 1}.

(5) ρµ = 1, r′µ > h
(i) If sµ+1 ≥ k then

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.

(ii) If 1 < sµ+1 < k then

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = ρ̃, ..., k}.

(iii) If sµ+1 = 1 then

˜PF (S, a)2 = {xσµk x
pµ+1−pµ−1
k+1 }.

(6) ρµ = 1, r′µ = h
(i) If sµ − sµ+1 = 1 then

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.
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(ii) If 1 < sµ − sµ+1 ≤ sµ − k then

˜PF (S, a)2 = {x1x
σµ−1
k x

pµ+1−pµ−1
k+1 }.

(iii) If sµ − k < sµ − sµ+1 then ˜PF (S, a)2 = ∅.
(7) ρµ > 1

(i) If sµ+1 ≥ ρµ − 1 then

˜PF (S, a)2 = {xixσµk x
pµ+1−pµ−1
k+1 , i = 1, ..., ρµ − 1}.

(ii) If sµ+1 < ρµ − 1 then ρ̃ = ρµ − sµ+1 and

˜PF (S, a)2 = {xixσµk x
pµ+1−pµ−1
k+1 , i = ρ̃, ..., ρµ − 1}.

Before going to the proof let remark:

Remark 5.3. a) Let i, j = 1, ..., k and M a monomial, if i + j ≤ k then we have
xixj − xh0xi+j ∈ I so xjxiM − xh0xi+jM ∈ I.

b) A monomial xiM for some i = 1, ..., k belongs to ˜PF (S, a) if and only if for any
j = 1, ..., k + 1 there is a binomial xjxiM − xα0N for some monomial N and α ∈ N∗.
So in order to check if xiM belongs to ˜PF (S, a) we need only to consider j such that
i+ j > k.

c) Let note that the elements in ˜PF (S, a)i are ordered by increasing order of evaluation
by ϕ.

Proof. We have to consider all possible cases:

(1) Study of ˜PF (S, a)1 when r′µ+1 = 0,

a) Suppose ρµ+1 = 0. Let Mi = xix
α
kx

pµ+1−1
k+1 ∈ ˜PF (S, a)1 for some 1 ≤

i ≤ k, such that i + kα < sµ − sµ+1. Since x
pµ+1

k+1 − x
σµ+1

k ∈ I we have

xk+1Mi − xixαkx
σµ+1

k ∈ I, but i + kα + kσµ+1 < sµ − sµ+1 + sµ+1 = sµ so

xix
α
kx

σµ+1

k ∈ ˜Ap(S, a) showing that Mi 6∈ ˜PF (S, a) a contradiction, that is

˜PF (S, a)1 = ∅.
b) Suppose ρµ+1 > 0, ρ̃ = 0. We have

˜PF (S, a)1 ⊂ {xix
σ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − 1}

and sµ = (σ̃ + σµ+1)k + ρµ+1. Let i = 1, ..., k − 1, j = 1, ..., k and

M = xσ̃−1
k x

pµ+1−1
k+1 such that i + j > k. We have xixj − xi+j−kxk ∈ I

so xjxiM − xi+j−kx
σ̃
kx

pµ+1−1
k+1 ∈ I, since xσ̃kx

pµ+1−pµ
k+1 − xr̃0 ∈ I we have

xjxiM − xr̃0xi+j−kx
pµ−1
k+1 ∈ I where r̃ > 0.

From x
pµ+1

k+1 − xρµ+1x
σµ+1

k ∈ I, we get xk+1xiM − xixρµ+1x
σ̃−1
k x

σµ+1

k ∈ I. If

i+ ρµ+1 ≤ k then xixρµ+1 − xh0x1+ρµ+1 , so xiM ∈ ˜PF (S, a). If i+ ρµ+1 > k

then xk+1xiM − xi+ρµ+1−kx
σ̃+σµ+1

k ∈ I but i + ρµ+1 − k + (σ̃ + σµ+1)k =
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sµ + i − k < sµ which implies that xi+ρµ+1−kx
σ̃+σµ+1

k ∈ ˜Ap(S, a) so

xiM 6∈ ˜PF (S, a). Hence

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − ρµ+1}.

c) Suppose ρµ+1 > 0, ρ̃ = 1, σ̃ = 0. We have

˜PF (S, a)1 ⊂ {x
pµ+1−1
k+1 }.

The binomial xk+1(x
pµ+1−1
k+1 ) − xρµ+1x

σµ+1

k ∈ I but xρµ+1x
σµ+1

k ∈ ˜Ap(S, a) so

˜PF (S, a)1 = ∅.
d) Suppose ρµ+1 > 0, ρ̃ = 1, σ̃ > 0. We have

˜PF (S, a)1 ⊂ {xix
σ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k}.

Let i = 1, ..., k, j = 1, ..., k, M = xσ̃−1
k x

pµ+1−1
k+1 . By the same arguments as in

the above item b) we have xjxiM−xα0Ni ∈ I for some monomial Ni and α ∈
N∗. The binomial x

pµ+1

k+1 −xρµ+1x
σµ+1

k ∈ I so xk+1xiM−xixρµ+1x
σ̃−1
k x

σµ+1

k ∈ I.

If i+ρµ+1 ≤ k we have xixρµ+1−xh0x1+ρµ+1 , so xiM ∈ ˜PF (S, a). If i+ρµ+1 >

k we have xk+1xiM−xi+ρµ+1−kx
σ̃+σµ+1

k ∈ I. But sµ = (σ̃+σµ+1)k+ρµ+1 +1

so i+ ρµ+1− k+ (σ̃+ σµ+1)k = sµ + i− 1− k < sµ and xi+ρµ+1−kx
σ̃+σµ+1

k ∈
˜Ap(S, a) so xiM 6∈ ˜PF (S, a). Hence

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − ρµ+1}.

e) Suppose ρµ+1 > 0, ρ̃ > 1. We have

˜PF (S, a)1 ⊂ {xix
σ̃
kx

pµ+1−1
k+1 , i = 1, ..., ρ̃− 1}.

Let i = 1, ..., ρ̃− 1, j = 1, ..., k, M = xσ̃kx
pµ+1−1
k+1 . By the same arguments as

in the above item b) we have xjxiM −xα0Ni ∈ I for some monomial Ni and
α ∈ N∗. Since x

pµ+1

k+1 − xρµ+1x
σµ+1

k ∈ I, we have xk+1xiM − xixρµ+1x
σ̃
kx

σµ+1

k ∈
I. If i + ρµ+1 ≤ k we have xk+1xiM − xh0xi+ρµ+1x

σ̃
kx

σµ+1

k ∈ I, so xiM ∈
˜PF (S, a). If i + ρµ+1 > k we have xk+1xiM − xi+ρµ+1−kx

σ̃+σµ+1+1
k ∈ I,

sµ = (σ̃ + σµ+1)k + ρ̃+ ρµ+1 so i+ ρµ+1 − k + (σ̃ + σµ+1)k + k < sµ, which

implies that xi+ρµ+1−kx
σ̃+σµ+1+1
k ∈ ˜Ap(S, a) so xiM 6∈ ˜PF (S, a). Hence

˜PF (S, a)1 = {xixσ̃kx
pµ+1−1
k+1 , i = 1, ...,min {ρ̃− 1, k − ρµ+1}}.

(2) Study of ˜PF (S, a)1 when r′µ+1 < 0,
a) Suppose ρ̃ = 0 and r′µ+1 < 0. We have

˜PF (S, a)1 ⊂ {xix
σ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − 1}.



SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS 11

Let i = 1, ..., k − 1, j = 1, ..., k, M = xσ̃−1
k x

pµ+1−1
k+1 . By the same arguments

as in the above item 1)b) we have xjxiM − xα0Ni ∈ I for some monomial

Ni and α ∈ N∗. Since x
pµ+1

k+1 − x
−r′µ+1

0 xρµ+1x
σµ+1

k ∈ I, we have xk+1xiM −
x
−r′µ+1

0 xix
σ̃−1
k ∈ I so xiM ∈ ˜PF (S, a). Hence

˜PF (S, a)1 = {xixσ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k − 1}.

b) Suppose ρ̃ = 1, σ̃ = 0. We have

˜PF (S, a)1 ⊂ {x
pµ+1−1
k+1 }.

c) Suppose ρ̃ = 1, σ̃ > 0. We have

˜PF (S, a)1 ⊂ {xix
σ̃−1
k x

pµ+1−1
k+1 , i = 1, ..., k}.

d) Suppose ρ̃ > 1. We have

˜PF (S, a)1 ⊂ {xix
σ̃
kx

pµ+1−1
k+1 , i = 1, ..., ρ̃− 1}.

By the same arguments as in the above item 2a) we have the equality in the
items 2b), 2c), 2d).

(3) Study of ˜PF (S, a)2 when ρµ = 0. We have x
σµ
k − x

r′µ
0 x

pµ
k+1,

˜PF (S, a)2 ⊂ {xix
σµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k − 1}.

Let i = 1, ..., k − 1, j = 1, ..., k, M = x
σµ−1
k x

pµ+1−pµ−1
k+1 . If i + j > k we have

xixj − xi+j−kxk then xjxiM − x
r′µ
0 xi+j−kx

pµ+1−1
k+1 ∈ I.

We have xk+1xiM = xix
σµ−1
k x

pµ+1−pµ
k+1 so by using the set C we get xk+1xiM −

xα0N ∈ I for some α ∈ N∗ if and only if i + (σµ − 1) ≥ sµ − sµ+1 that is
i ≥ k − sµ+1.
(i) If sµ+1 ≥ k − 1 we have i ≥ k − sµ+1 for all i = 1, ..., k − 1. Hence

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k − 1}.

(ii) If sµ+1 < k− 1 We have sµ− sµ+1 = (σµ− 1)k+ (k− sµ+1) so ρ̃ = k− sµ+1

Hence

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = ρ̃, ..., k − 1}.

(4) If sµ+1 = 0 the set Ãp(S, a) is represented by a rectangle, there is no element in

˜PF (S, a) with power of xk+1 equal to pµ+1 − pµ − 1 so ˜PF (S, a)2 = ∅.
(5) Study of ˜PF (S, a)2 when ρµ = 1, r′µ > h. We have x1x

σµ
k − x

r′µ
0 x

pµ
k+1, xlx

σµ
k −

x
r′µ−h
0 xl−1x

pµ
k+1 | l = 2, ..., k,

˜PF (S, a)2 ⊂ {xix
σµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.
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Let i = 1, ..., k, j = 1, ..., k, M = x
σµ−1
k x

pµ+1−pµ−1
k+1 . If i + j > k then we have

xixj−xi+j−kxk. If i+j = k+1 then xjxiM−x
r′µ
0 x

pµ+1−1
k+1 ∈ I. If i+j > k+1 then

xjxiM − x
r′µ−h
0 xi+j−k−1x

pµ+1−1
k+1 ∈ I. So xjxiM − x

αi,j
0 N ∈ I for some αi,j ∈ N∗.

We have xk+1xiM = xix
σµ−1
k x

pµ+1−pµ
k+1 so by using the set C we get xk+1xiM −

xα0N ∈ I for some α ∈ N∗ if and only if i + (σµ − 1)k ≥ sµ − sµ+1, that is
i+ sµ−1−k ≥ sµ− sµ+1 or i ≥ k+ 1− sµ+1. We have to consider several cases.
(i) sµ+1 ≥ k, the condition i ≥ k + 1− sµ+1 is satisfied for i = 1, ..., k. Hence

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.

(ii) 1 < sµ+1 < k. We have sµ−sµ+1 = (σµ−1)k+(k+1−sµ+1) so k+1−sµ+1 =
ρ̃. Hence

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = ρ̃, ..., k}.

(iii) sµ+1 = 1. We have i + (σµ − 1)k ≥ sµ − sµ+1 = σµk if and only if i = k.
Hence

˜PF (S, a)2 = {xσµk x
pµ+1−pµ−1
k+1 }.

(6) Study of ˜PF (S, a)2 when ρµ = 1, r′µ = h. We have x1x
σµ
k − xh0x

pµ
k+1, xix

σµ
k −

xi−1x
pµ
k+1 for i = 2, ..., k and

˜PF (S, a)2 ⊂ {xix
σµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.

Let i = 1, ..., k, j = 1, ..., k, M = x
σµ−1
k x

pµ+1−pµ−1
k+1 . If i + j > k then we have

xixj − xi+j−kxk. If i + j = k + 1 then xjxiM − xh0x
pµ+1−1
k+1 ∈ I. If i + j > k + 1

then xjxiM − xi+j−k−1x
pµ+1−1
k+1 ∈ I.

(i) If sµ − sµ+1 = 1 so by using the set C we get xjxiM − x
αi,j
0 N ∈ I for some

αi,j ∈ N∗.
On the other side we have xk+1xiM = xix

σµ−1
k x

pµ+1−pµ
k+1 , so by using the set

C we get xix
σµ−1
k x

pµ+1−pµ
k+1 − xα0N ∈ I for some α ∈ N∗. Hence

˜PF (S, a)2 = {xixσµ−1
k x

pµ+1−pµ−1
k+1 , i = 1, ..., k}.

(ii) If sµ − sµ+1 > 1 . If i = 1, j = k we have xkx1M − xh0x
pµ
k+1 ∈ I. If i > 1 let

j = k + 2− i then xjxiM − x1x
pµ+1−1
k+1 ∈ I but since 1 < sµ − sµ+1 we have

that x1x
pµ+1−1
k+1 ∈ Ãp(S, a). so

˜PF (S, a)2 ⊂ {x1x
σµ−1
k x

pµ+1−pµ−1
k+1 }.

On the other hand we have xk+1x1M = x1x
σµ−1
k x

pµ+1−pµ
k+1 . By using the set

C we get we have xk+1x1M = xα0N ∈ I for some α ∈ N∗ if and only if

sµ − sµ+1 ≤ sµ − k. Hence, if 1 < sµ − sµ+1 ≤ sµ − k then ˜PF (S, a)2 =

{x1x
σµ−1
k x

pµ+1−pµ−1
k+1 } and if sµ − k < sµ − sµ+1 then ˜PF (S, a)2 = ∅.
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(7) Study of ˜PF (S, a)2 when ρµ > 1. We have xρµx
σµ
k − x

r′µ
0 x

pµ
k+1, xρµ+lx

σµ
k −

x
r′µ−h
0 xlx

pµ
k+1 for l = 1, ..., k − ρµ and

˜PF (S, a)2 ⊂ {xix
σµ
k x

pµ+1−pµ−1
k+1 , i = 1, ..., ρµ − 1}.

Let i = 1, ..., ρµ − 1, j = 1, ..., k, M = x
σµ
k x

pµ+1−pµ−1
k+1 . If i + j > k then

we have xixj − xi+j−kxk, xjxiM − xi+j−kx
σµ+1
k x

pµ+1−pµ−1
k+1 ∈ I thus xjxiM −

xi+j−kx
r′µ−h
0 xk−ρµx

pµ+1−1
k+1 ∈ I but i + j − k + k − ρµ = i + j − ρµ < j so

xi+j−kxk−ρµ − xh0xi+j−ρµ ∈ I, hence xjxiM − xh0N ∈ I for some monomial N .

On the other hand we have xk+1xiM = xix
σµ
k x

pµ+1−pµ
k+1 so by using the set C we

get xix
σµ
k x

pµ+1−pµ
k+1 − xα0N ∈ I for some α ∈ N∗ if and only if i+ σµk ≥ sµ − sµ+1

that is i ≥ ρµ − sµ+1.
(i) If ρµ − sµ+1 ≤ 1 we have i ≥ ρµ − sµ+1 for any i ≥ 1. Hence

˜PF (S, a)2 = {xixσµk x
pµ+1−pµ−1
k+1 , i = 1, ..., ρµ − 1}.

(ii) If ρµ − sµ+1 > 1 we have ρ̃ = ρµ − sµ+1 and

˜PF (S, a)2 = {xixσµk x
pµ+1−pµ−1
k+1 , i = ρ̃, ..., ρµ − 1}.

�

6. Symmetric almost generalized arithmetic progressions

Theorem 6.1. With the above notations, suppose that k ≥ 3 and either r′µ ≥ h or
ρµ = 0. We have S is symmetric if and only if either

(1) a = (σk + 2)p′, d = p′r − pr′, c = (σk + 2)r′ for any σ ≥ 1, 1 ≤ p < p′, h ≥ 1
with gcd(p′, r′) = 1, r + hσ > 0, r′ < −1. Moreover I is minimally generated by
the Gröbner basis consisting of the set A and:

x2x
σ
k − x

r+h(σ+1)
0 xpk+1, xix

σ
k − xr+hσ0 xi−2x

p
k+1, i = 3, ..., k, xp

′

k+1 − x
−r′
0

The Frobenius number is (ha+ d) + σ(ha+ kd) + c(p′ − 1)− a.
(2) sµ+1 6= 0, a = (σk + 2)p′ − σ′kp, d = p′r + phσ′, c = σ′kr + (σk + 2)σ′h where

σ, σ′, p′, p, r, h are integers such that σ > σ′ ≥ 2, p′ > p > 0, r+h(σ+ 1) > 0 and
(a, d) = 1. Moreover I is minimally generated by the Gröbner basis consisting
of the set A and:

x2x
σ−σ′

k xp
′−p
k+1 − x

r+h(σ+1)
0 , xix

σ−σ′

k xp
′−p
k+1 − x

r+hσ
0 xi−2, i = 3, ..., k

x2x
σ
k − x

r+h(σ+1)
0 xpk+1, xix

σ
k − xr+hσ0 xi−2x

p
k+1, i = 3, ..., k, xp

′

k+1 − x
σ′

k

The Frobenius number is (ha+ d) + σ(ha+ kd) + c(pµ+1 − pµ − 1)− a.
(3) k > 2, sµ+1 6= 0 a = (σk+ 2)p′ − (σk+ 1)p, d = p′r+ ph(σ + 1), c = (σk+ 1)r+

(σk + 2)(σ + 1)h where σ, σ′, p′, p, r, h are integers such that σ ≥ 1, p′ > p >
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0, r + h(σ + 1) > 0 and (a, d) = 1. Moreover I is minimally generated by the
Gröbner basis consisting of the set A and:

x1x
p′−p
k+1 − x

r+h(σ+2)
0 , xix

p′−p
k+1 − x

r+h(σ+1)
0 xi−1, i = 2, ..., k,

x2x
σ
k − x

r+h(σ+1)
0 xpk+1, xix

σ
k − xr+hσ0 xi−2x

p
k+1, i = 3, ..., k, xp

′

k+1 − x1x
σ
k

The Frobenius number is (ha+ d) + σ(ha+ kd) + c(pµ+1 − pµ − 1)− a.
(4) sµ+1 6= 0, a = (σk + 1)p′ − (k − 1)p, d = p′r − pr′, c = (k − 1)r − (σk + 1)r′.

d > 0 if and only if r′ < −(p′/p)hσ with p < p′, r + h(σ + 1) = h, that is
r = −σh, r′ < −σh.

Moreover I is minimally generated by the Gröbner basis consisting of the set A and:

x2x
σ−1
k xp

′−p
k+1 − x

−r′
0 , xix

σ−1
k xp

′−p
k+1 − x

−r′−h
0 xi−2

x1x
σ
k − xh0x

p
k+1, xix

σ
k − xi−1x

p
k+1, i = 2, ..., k, xp

′

k+1 − x
r′+h
0 xk−1

The Frobenius number is (ha+ d) + (σ − 1)(ha+ kd) + c(pµ+1 − 1)− a.

Proof. (1) If sµ+1 = 0 then r′µ+1 6= 0 and we have that ˜PF (S, a) = ˜PF (S, a)1 with

σ̃ = σµ, ρ̃ = ρµ. So card ˜PF (S, a) = 1 if and only if we are in case 2d) with
ρµ = 2. We have sµ = σk + 2 for some σ ≥ 1.
That is
s p r r’
. . .
σk + 2 p r
0 p′ r′

with the condition p < p′, r′µ = r+ h(σ+ 1) > 0, r′ < 0, r′ < r. By Lemma 2.2.4
of [6] we get

a = (σk + 2)p′, d = p′r − pr′, c = (σk + 2)r′.

The Frobenius number is ϕ(x1x
σ
kx

pµ+1−1
k−1 )− a.

(2) If sµ+1 6= 0 and card ˜PF (S, a)1 = 0, card ˜PF (S, a)2 = 1. We have to consider the
cases 1a) and one of the cases 4ii),5iii),6ii) 7i),7ii); or 1c) and case 7i). More
precisely

(a) 1a) and 4ii) We have ρµ = 0, ρµ+1 = 0, ρ̃ = 0, so card ˜PF (S, a)2 = 1 if and
only if k = 2.

(b) 1a) and 5iii) we have ρµ = 1, sµ+1 = 1 = ρµ+1 a contradiction with 1a).
(c) 1a) and 7i) we have ρµ = 2, ρµ+1 = 0. So we have sµ = σµk + 2, sµ+1 =

σµ+1k. We set σ = σµ, σ
′ = σµ+1, p = pµ, p

′ = pµ+1, r = rµ, and since
r′µ+1 = 0 = rµ+1 + hσ we have rµ+1 = −hσ and the table



SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS 15

s p r r’
. . .
σk + 2 p r
σ′k p′ −hσ′

By Lemma 2.2.4 of [6] we get

a = (σk + 2)p′ − σ′kp, d = p′r + phσ′, c = σ′kr + (σk + 2)σ′h

for some σ ≥ σp′ ≥ 2, p′ > p > 0, r > −hσ′, r+h(σ+1) > 0. The Frobenius

number is ϕ(x1x
σ
kx

pµ+1−pµ−1
k−1 )− a.

(d) 1a) and 7ii) Since sµ+1 < ρµ − 1 we have sµ+1 = ρµ+1 = 0 by 1a), a
contradiction.

(e) 1c) and 6i) We have card ˜PF (S, a)2 = ρµ − 1 = 1 if and only if ρµ = 2. By
hypothesis sµ−sµ+1 = 1. So we have sµ = σµk+2, sµ+1 = σµk+1 for some
σ ≥ 1. We set p = pµ, p

′ = pµ+1, r = rµ, and since r′µ+1 = 0 = rµ+1+h(σ+1)
we have rµ+1 = −h(σ + 1) and the table:
s p r r’
. . .
σk + 2 p r
σk + 1 p′ −h(σ + 1)

By Lemma 2.2.4 of [6] we get

a = (σk + 2)p′ − (σk + 1)p, d = p′r + ph(σ + 1), c = (σk + 1)r + (σk + 2)(σ + 1)h

for some σ ≥ 1, p′ > p ≥ 1, r > −h(σ + 1). The Frobenius number is

ϕ(x1x
σ
kx

pµ+1−pµ−1
k−1 )− a.

(3) Suppose sµ+1 6= 0 and card ˜PF (S, a)1 = 1, card ˜PF (S, a)2 = 0. We are in case
6iii), we have ρµ = 1, r′µ = h, 0 < sµ+1 < k so r′µ+1 < 0 and sµ − sµ+1 =
(σµ − 1)k + (k − sµ+1 + 1). If sµ+1 = 1 we have ρ̃ = 0, we are in case 2a) and

card ˜PF (S, a)1 = 1 implies k = 2. If sµ+1 > 1 we have 0 < ρ̃ = k− sµ+1 + 1 < k

and card ˜PF (S, a)1 = 1 implies ρ̃ = 2, that is sµ+1 = k − 1. On the other hand
r′µ = h = rµ + h(σµ + 1) so rµ = −hσµ. We set σ = σµ, p = pµ, p

′ = pµ+1, r
′ =

r′µ+1. We have

s p r r’
. . .
σk + 1 p −hσ
k − 1 p′ r′

with σ ≥ 1, p < p′, r′ < −(p′/p)hσ. By

Lemma 2.2.4 of [6] we get

a = (σk + 1)p′ − (k − 1)p, d = p′r − pr′, c = (k − 1)r − (σk + 1)r′.

The Frobenius number is ϕ(x1x
σ−1
k x

pµ+1−1
k−1 )− a.

�
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7. Almost Symmetric almost generalized arithmetic progressions

Lemma 7.1. With the above notations, suppose that either r′µ ≥ h or ρµ = 0. Suppose

that S is almost symmetric of type ≥ 2 then sµ+1 > 0 and if ˜Frob(S) belongs to P̃SFi

then card(P̃SFi) = 1 except if h = 1, sµ = k+ 1, sµ+1 = k, r′µ > 1, r′µ+1 = −1. Moreover

(1) If P̃SF1 = { ˜Frob(S)} then ˜Frob(S) = Lγx
σ̃−ε
k x

pµ+1−1
k+1 where γ, ε ∈ {0, 1}.

(2) If P̃SF2 = { ˜Frob(S)} then ˜Frob(S) = Lγx
σµ−ε
k x

pµ+1−pµ−1
k+1 where γ, ε ∈ {0, 1}.

(3) If h = 1, sµ = k + 1, sµ+1 = k, r′µ > 1, r′µ+1 = 1 then a = k + 2, d = 2rµ +
2, c = k(rµ + 2) + 2 with k odd, k ≥ 3, rµ ≥ 0, gcd(a, d) = 1. We have

P̃SF = {x1, ..., xk} ∪ {xk+1}, t(S) = k + 1, ˜Frob(S) = xk, F (S) = kd.

Proof. Suppose that ˜Frob(S) ∈ P̃SF1+ε, card(P̃SF1+ε) ≥ 2 for some ε ∈ {0, 1}. By
checking all cases in Theorem 5.2 there exists 2 ≤ l ≤ k, M a monomial such that
˜Frob(S) = xlM and xl−1M ∈ P̃SF1+ε. Since S is almost symmetric there exists M1 ∈
P̃SF such that M1xl−1M − x0xlM ∈ I, which implies xl−1M1− x0xl ∈ I. We multiply
by x1 and using the Gröbner basis we get xh0xlM1 − x0xlx1 ∈ I that implies h = 1,
M1−x1 ∈ I, if M1 6= x1 then the embedding dimension of S is less than k+2 contrary to

our hypothesis, therefore M1 = x1 ∈ P̃SF . We have to examine all the possibles cases

in Theorem 5.2 such that x1 ∈ P̃SF . Since σµ ≥ 1, pµ+1 ≥ 2 the possible cases are 4), 5)

or 6). In particular we have sµ+1 > 0. Case 4) implies sµ = k so xk − x
r′µ
0 x

pµ
k+1 ∈ I, that

means that the embedding dimension of S is less than k+2 contrary to our hypothesis.

Cases 5) and 6) implies P̃SF2 = {x1, ..., xk} with sµ = k + 1, sµ+1 = k, ˜Frob(S) = xk

and P̃SF1 ⊂ {xβk+1} for some β ∈ N∗, but this is only possible in case 1a) or 2b). Now

we consider the case 1a) so r′µ+1 = 0, by the Gröbner basis we have that x
pµ+1

k+1 − xk ∈ I
which implies that the embedding dimension of S is less than k + 2 contrary to our

hypothesis. In case 2b) we have P̃SF1 = {xpµ+1−1
k+1 }, the property almost-symmetry show

that x
2(pµ+1−1)
k+1 −x0xk ∈ I so that x

−r′µ+1

0 xkx
pµ+1−2
k+1 −x0xk ∈ I hence pµ+1 = 2, r′µ+1 = −1

and pµ = 1, so rµ+1 = r′µ+1 − 1 = −2 we have the table

s p r r’
. . .
k + 1 1 rµ r′µ
k 2 −2 1

We note that r′µ = h = 1 if and only if rµ = −1 which implies d = 0, so case 6) is not
possible. The case 5) is possible and we have a = k + 2, d = 2rµ + 2, c = k(rµ + 2) + 2

with k odd, k ≥ 3, rµ ≥ 0, gcd(a, d) = 1. We have P̃SF = {x1, ..., xk} ∪ {xk+1},
t(S) = k + 1, F (S) = kd. �

Theorem 7.2. Suppose P̃SF2 = { ˜Frob(S)}. Then S is almost symmetric with k ≥
3, t(S) ≥ 2 if and only if either
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(1) P̃SF1 = {xix
pµ+1−1
k+1 | i = 1, ..., k − l},P̃SF2 = {x1x

σ
kx

pµ+1−2
k+1 } and

s p r r’
σk + 2 1 rµ
(σ − 1)k + l pµ+1 rµ+1 0

Since 0 = r′µ+1 = rµ+1 +σ we have rµ+1 = −σ with σ ≥ 2, l ≥ 1. t(S) = k−l+1,
t(S) = 2 if and only if l = ρµ+1 = k − 1.

a = (σk + 2)pµ+1 − ((σ − 1)k + l)

d = pµ+1rµ + σ

c = ((σ − 1)k + l)rµ + (σk + 2)σ.

where h = 1, k ≥ 3, 1 ≤ l ≤ k − 1 and t(S) = k − l + 1, or

(2) P̃SF1 = {xpµ+1−1
k+1 }, P̃SF2 = {x1x

σµ
k x

pµ+1−2
k+1 } and

s p r r’
σk + 2 1 rµ
σk + 1 pµ+1 rµ+1 -1

but −1 = r′µ+1 = rµ+1 + h(σ + 1) so rµ+1 = −h(σ + 1)− 1, t(S) = 2.

a = (σk + 2)pµ+1 − (σk + 1)

d = pµ+1rµ + h(σ + 1) + 1

c = (σk + 1)rµ + (σk + 2)(h(σ + 1) + 1).

where h ≥ 1, σ ≥ 1, pµ+1 ≥ 2, rµ > −h(σ + 1)− 1, t(S) = 2.

Proof. We have P̃SF2 = {Lγxσµ−δk x
pµ+1−pµ−1
k+1 } where γ, δ ∈ {0, 1}. We set Nσµ−δ :=

x
σµ−δ
k x

pµ+1−pµ−1
k+1 . By Theorem 5.2 we have P̃SF1 = {xΓMσ̃−ε, ..., x∆Mσ̃−ε} for some

Γ ≤ ∆, ε ∈ {0, 1} where Mσ̃−ε := xσ̃−εk x
pµ+1−1
k+1 . Since S is almost symmetric we have

that

LΓL∆M
2
σ̃−ε − x0LγNσµ−δ ∈ I. (1)

We have (x
pµ+1−1
k+1 )2 = x

2pµ+1−2
k+1 = x

pµ+1

k+1 x
pµ+1−2
k+1 since pµ+1 − 2 ≥ 0, so (x

pµ+1−1
k+1 )2 −

x
−r′µ+1

0 Lρµ+1x
σµ+1

k x
pµ+1−2
k+1 ∈ I so M2

σ̃−ε − x
−r′µ+1

0 Lρµ+1x
σµ+1+2σ̃−2ε
k x

pµ+1−2
k+1 ∈ I. Note that

pµ+1 − 2− (pµ+1 − pµ − 1) = pµ − 1 ≥ 0 so that (1) becomes

LΓL∆x
−r′µ+1−1

0 Lρµ+1x
σµ+1+2σ̃−2ε
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I. (2)

(1) If Γ + ∆ = 0 we are in case 2b) so sµ − sµ+1 = 1. Since card(P̃SF2) = 1 we are
in case 7i) hence γ = 1, δ = 0, sµ = σµk + 2, sµ+1 = σµk + 1. We have

x
−r′µ+1−1

0 x1x
σµ
k x

pµ−1
k+1 − x1x

σµ
k ∈ I (3)

this is possible only if r′µ+1 = −1, pµ = 1. We set σ = σµ so we have

P̃SF1 = {xpµ+1−1
k+1 }, P̃SF2 = {x1x

σµ
k x

pµ+1−2
k+1 } and
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s p r r’
σk + 2 1 rµ
σk + 1 pµ+1 rµ+1 -1

but −1 = r′µ+1 = rµ+1 + h(σ + 1) so rµ+1 = −h(σ + 1)− 1, t(S) = 2.

a = (σk + 2)pµ+1 − (σk + 1)

d = pµ+1rµ + h(σ + 1) + 1

c = (σk + 1)rµ + (σk + 2)(h(σ + 1) + 1).

(2) If 0 < Γ + ∆ ≤ k we have

xΓ+∆x
h−r′µ+1−1

0 Lρµ+1x
σµ+1+2σ̃−2ε
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I (4)

which implies h = 1, r′µ+1 = 0 and after Theorem 5.2 ρµ+1 > 0.
(a) If Γ + ∆ + ρµ+1 ≤ k we have

x0xΓ+∆+ρµ+1x
σµ+1+2σ̃−2ε
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I (5)

which is impossible since Lγx
σµ−δ
k ∈ Ãp(S). So

(b) Γ + ∆ + ρµ+1 > k we have

xΓ+∆+ρµ+1−kx
σµ+1+2σ̃+1−2ε
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I (6)

By Theorem 5.2 in all cases with r′µ+1 = 0, ρµ+1 > 0 and Γ + ∆ + ρµ+1 > k
we have Γ + ∆ + ρµ+1 = k + 1 so

x1x
σµ+1+2σ̃+1−2ε
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I (7)

If σµ+1 + σ̃ − σµ + σ̃ + δ + 1− 2ε > 0

x1x
σµ+1+σ̃−σµ+σ̃+δ+1
k x

pµ−1
k+1 − Lγ ∈ I (8)

which leads to a contradiction. So we can assume σµ+1 + σ̃ − σµ + σ̃ + δ +
1− 2ε ≤ 0. We have

x1x
pµ−1
k+1 − Lγx

−(σµ+1+σ̃−σµ+σ̃+δ+1−2ε)
k ∈ I. (9)

If x1x
pµ−1
k+1 6= Lγx

−(σµ+1+σ̃−σµ+σ̃+δ+1−2ε)
k , since Lγx

−(σµ+1+σ̃−σµ+σ̃+δ+1−2ε)
k ∈

Ãp(S) we have x1x
pµ−1
k+1 ∈ in(I) which implies sµ − sµ+1 = 1 and

by 1c) of Theorem 5.2 P̃F1 = ∅ a contradiction. So x1x
pµ−1
k+1 =

Lγx
−(σµ+1+σ̃−σµ+σ̃+δ+1−2ε)
k which implies γ = 1, pµ = 1, σµ+1 + σ̃ − σµ +

σ̃ + δ + 1− 2ε = 0

We have to discuss several cases:
ε = 1: So we are either in case 1b) or 1d) and we have σ̃ > 0. On the

other hand we have either:
1) σ̃ = σµ − σµ+1 − 1, ρ̃ > 0, ρµ+1 + ρ̃ = k + ρµ ≥ k. In case 1b) we
have ρ̃ = 0 so this case is not possible. Case 1d) implies ρ̃ = 1 ,so
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that ρµ+1 = k− 1, ρµ = 0, so we are in case 4), since card(P̃SF2) = 1
we have k = 2 a contradiction.
2) σµ = σµ+1 + σ̃, ρµ+1 + ρ̃ = ρµ, we have σ̃+δ−1 = 0 so σ̃ = 1, δ = 0.
δ = 0 implies that we have to consider cases 5iii), 7i) and 7ii). Case
5iii) implies sµ+1 = 1, case 7ii) implies ρµ > sµ+1 so σµ+1 = 0 in both
cases and x

pµ+1

k+1 − xρµ+1 ∈ I, a contradiction. So we have two possible

cases 7i)-1b or 7i)-1d. Since card(P̃SF2) = 1 we have ρµ = 2 and

P̃SF2 = {x1x
σµ
k x

pµ+1−pµ−1
k+1 }.

♦) 7i) 1b): we have ρ̃ = 0, σ̃ = 1, ρµ+1 = 2, pµ = 1, r′µ+1 = 0. We set
σ = σµ, we have

P̃SF1 = {xix
pµ+1−1
k+1 | i = 1, ..., k − 2}, P̃SF2 = {x1x

σ
kx

pµ+1−2
k+1 } and

s p r r’
σk + 2 1 rµ
(σ − 1)k + 2 pµ+1 rµ+1 0

but 0 = r′µ+1 = rµ+1 + σ so rµ+1 = −σ, t(S) = k − 1 and

a = (σk + 2)pµ+1 − ((σ − 1)k + 2)

d = pµ+1rµ + σ

c = ((σ − 1)k + 2)rµ + (σk + 2)σ.

By using my software we have the following example k = 4, a =
214, d = 15, c = 236, σ = 7, pµ+1 = 8, rµ = 9.
♦♦) 7i) 1d): we have ρ̃ = 1, σ̃ = 1, ρµ+1 = 1, pµ = 1, r′µ+1 = 0. We
set σ = σµ, we have

P̃SF1 = {xix
pµ+1−1
k+1 | i = 1, ..., k − 1}, P̃SF2 = {x1x

σ
kx

pµ+1−2
k+1 }. and

s p r r’
σk + 2 1 rµ
(σ − 1)k + 1 pµ+1 rµ+1 0

but 0 = r′µ+1 = rµ+1 + σ so rµ+1 = −σ, t(S) = k and

a = (σk + 2)pµ+1 − ((σ − 1)k + 1)

d = pµ+1rµ + σ

c = ((σ − 1)k + 1)rµ + (σk + 2)σ.

By using my software we have the following example k = 5, a =
487, d = 7, c = 259, σ = 7, pµ+1 = 14, rµ = 8.

ε = 0: We are in case 1e). We have σµ+1 + σ̃ − σµ + σ̃ + δ + 1 = 0. If
σ̃ = σµ − σµ+1 we have σ̃ + δ + 1 = 0 which is impossible, hence
σµ = σµ+1 + σ̃ + 1, ρ̃ > 0, ρ̃ + ρµ+1 = k + ρµ and σ̃ = δ = 0, so
sµ − sµ+1 < k ≤ sµ − ρµ which implies sµ+1 > ρµ. Hence we have
to consider only case 7i)-1e). We have ρµ = 2, ρ̃ + ρµ+1 = k + 2
which implies ρ̃ − 1 = k − ρµ+1 + 1, and we have seen before that
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σ̃ = 0, pµ = 1, r′µ+1 = 0. We set σ = σµ, l = ρµ+1 > 2, so we have

P̃SF1 = {xix
pµ+1−1
k+1 | i = 1, ..., k − l},P̃SF2 = {x1x

σ
kx

pµ+1−2
k+1 } and

s p r r’
σk + 2 1 rµ
(σ − 1)k + l pµ+1 rµ+1 0

Since 0 = r′µ+1 = rµ+1 + σ we have rµ+1 = −σ with σ ≥ 2, l ≥ 3.
t(S) = k − l + 1. Note that t(S) = 2 if and only if l = ρµ+1 = k − 1.

a = (σk + 2)pµ+1 − ((σ − 1)k + l)

d = pµ+1rµ + σ

c = ((σ − 1)k + l)rµ + (σk + 2)σ,

with σ ≥ 1, l ≥ 3, pµ+1 ≥ 2, rµ > −σ. By using my software we have
the following example a = 213, d = 49, c = 209, k = 6, ρ̃ = 5, ρµ+1 =
3. t(S) = 4.

(3) If Γ + ∆ > k we are in case 2c), we have Γ = 1,∆ = k, ε = 1, r′µ+1 < 0, ρ̃ =
1, σ̃ > 0, and (2) becomes

x1x
−r′µ+1

0 Lρµ+1x
σµ+1+2σ̃−1
k x

pµ−1
k+1 − x0Lγx

σµ−δ
k ∈ I. (10)

If ρµ+1 > 0 we have

x
−r′µ+1+h−1

0 xρµ+1+1x
σµ+1+2σ̃−1
k x

pµ−1
k+1 − Lγx

σµ−δ
k ∈ I. (11)

Since h− r′µ+1 ≥ 1 we will have Lγx
σµ−δ
k x

pµ+1−pµ−1
k+1 6∈ Ãp(S) a contradiction.

If ρµ+1 = 0 then ρµ = 1, σµ = σµ+1 + σ̃, σµ+1 + 2σ̃ − 1 = σµ + σ̃ − 1 but

x1x
σµ
k − x

r′µ
0 x

pµ
k+1 ∈ I so from (10) we have

x
r′µ−r′µ+1

0 xσ̃−1
k x

2pµ−1
k+1 − x0Lγx

σµ−δ
k ∈ I. (12)

Since r′µ − r′µ+1 ≥ 2 we will have Lγx
σµ−δ
k ∈ in(I) a contradiction.

�

Theorem 7.3. Suppose P̃SF1 = { ˜Frob(S)}. Then S is almost symmetric with k ≥
3, t(S) ≥ 2 if and only if either

(1) P̃SF1 = {x1x
σ
kx

p
k+1}, P̃SF2 = {x2x

σ
k , ..., xρµ−1x

σ
k}, we have the table

s p r r’
σk + l + 2 p −σ 1
l p+ 1 rµ+1 < 0

a = (σk + l + 2)(p+ 1)− lp
d = −(p+ 1)σ − prµ+1

c = −lσ − (σk + l + 2)rµ+1,

where h = 1, k ≥ 3, σ ≥ 1, 1 ≤ l ≤ k − 3, rµ+1 < −σ and t(S) = l + 1, or
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(2) P̃SF1 = {x1x
σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xk−1x

σ−1
k }.

s p r r’
σk p 1− σ 1
k − 2 p+ 1 rµ+1 < 0

a = (σk)(p+ 1)− (k − 2)p

d = (1− hσ)(p+ 1)− prµ+1

c = (k − 2)(1− σ)− σkrµ+1.

where h = 1, k ≥ 3, p, σ ≥ 2, rµ+1 < −1 and t(S) = k − 1, or

(3) P̃SF1 = {x1x
σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xσk}, t(S) = k.

s p r r’
σk + 1 p 1− hσ h+ 1
k − 1 p+ 1 rµ+1 < 0

a = (σk + 1)(p+ 1)− (k − 1)p

d = (p+ 1)(1− hσ)− prµ+1

c = (k − 1)(1− hσ)− (σk + 1)rµ+1.

h ≥ 1, k ≥ 3, p, σ ≥ 1, rµ+1 < min {−h, 1− hσ} and t(S) = k, or

(4) P̃SF1 = {xpk+1}, P̃SF2 = {x1, ..., xk}.
s p r r’
k + 1 p −1 1
k p+ 1 rµ+1 < 0

a = (k + 1)(p+ 1)− kp = k + p+ 1

d = −(p+ 1)− prµ+1

c = −k − (k + 1)rµ+1.

with h = 1, k ≥ 3, p ≥ 1, rµ+1 < −1. We have t(S) = k + 1, or

(5) P̃SF1 = {x1x
σ−2
k xpk+1}, P̃SF2 = {x1x

σ−1
k } and

s p r r’
σk + 1 p −σ 1
2k − 1 p+ 1 rµ+1 < 0

a = (σk + 1)(p+ 1)− (2k − 1)p

d = −(p+ 1)σ − prµ+1

c = −σ(2k − 1)− (σk + 1)rµ+1.

with h = 1, k ≥ 3, σ ≥ 2, p ≥ 1, rµ+1 < −σ. We have t(S) = 2.

Proof. We have P̃SF1 = {Lγxσ̃−εk x
pµ+1−1
k+1 } where γ, ε ∈ {0, 1}. We set Mσ̃−ε :=

xσ̃−εk x
pµ+1−1
k+1 . By Theorem 5.2 we have P̃SF2 = {xΓNσµ−δ, ..., x∆Nσµ−δ} for some

Γ ≤ ∆, δ ∈ {0, 1}, where Nσµ−δ := x
σµ−δ
k x

pµ+1−pµ−1
k+1 .
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Since S is almost symmetric we have that

LΓL∆N
2
σµ−δ − x0LγMσ̃−ε ∈ I, (13)

Note that γ = 0 is possible only in case 2b),where we have σ̃ = 0, ρ̃ = 1, ε = 0. In all
other cases we have γ = 1.

(1) If Γ + ∆ = 0 then we are in case 5iii), which implies ρµ = 1, sµ+1 = 1 so ρ̃ = 0,

but in all cases of Theorem 5.2 with card(P̃SF1) = 1 satisfying these conditions
we have k = 2.

(2) If 0 < Γ + ∆ ≤ k we have

xΓ+∆x
h−1
0 x

2σµ−2δ
k x

2(pµ+1−pµ−1)
k+1 − Lγxσ̃−εk x

pµ+1−1
k+1 ∈ I (14)

If γ = 0 or h > 1 then x
pµ+1−1
k+1 ∈ in(I), which is not possible. So we have

γ = 1, h = 1 and

xΓ+∆x
2σµ−2δ
k x

2(pµ+1−pµ−1)
k+1 − x1x

σ̃−ε
k x

pµ+1−1
k+1 ∈ I (15)

We consider two cases:
(a) If σµ = σµ+1+σ̃ (so ρµ = ρµ+1+ρ̃) then 2σµ−2δ−(σ̃−ε) = σµ+σµ+1−2δ+ε.

Note that σµ+1− 2δ+ ε < 0 if and only if δ = 1 and either σµ+1 = 0, ε = 0,
either σµ+1 = 0, ε = 1 or σµ+1 = 1, ε = 0. If σµ+1 = 0 we have σµ = σ̃, but
we can check that no case in Theorem 5.2 with δ = 1 satisfy the condition
σµ = σ̃. If ε = 0 then the possible cases are 1e) or 2d), both cases imply
that ρ̃ > 1 hence ρµ > 1. We can check that there is no case in Theorem
5.2 with δ = 1, ρµ > 1.
So we have σµ+1 − 2δ + ε ≥ 0. We have

xΓ+∆x
σµ
k x

σµ+1−2δ+ε
k x

2(pµ+1−pµ−1)
k+1 − x1x

pµ+1−1
k+1 ∈ I. (16)

Since σµ ≥ 1, if 2(pµ+1 − pµ − 1) ≥ pµ+1 − 1 then ϕ(x1) ≥ ϕ(xk) a contra-
diction, so we have

xΓ+∆x
σµ
k x

σµ+1−2δ+ε
k − x1x

2pµ+1−pµ+1

k+1 ∈ I (17)

If ρµ = 0 or Γ + ∆ = ρµ then Lρµx
σµ
k − x

r′µ
0 x

pµ
k+1 ∈ I which leads to a

contradiction since x1x
2pµ+1−pµ+1)
k+1 ∈ Ãp(S). Hence we have either Γ + ∆ >

ρµ > 0 or Γ + ∆ < ρµ, ρµ > 0.
? If Γ + ∆ > ρµ > 0 then

x
r′µ−1

0 xΓ+∆−ρµx
σµ+1−2δ+ε
k x

pµ
k+1 − x1x

2pµ+1−pµ+1

k+1 ∈ I. (18)

Since 2pµ + 1− pµ+1 ≤ pµ we get

x
r′µ−1

0 xΓ+∆−ρµx
σµ+1−2δ+ε
k x

pµ+1−pµ−1
k+1 − x1 ∈ I (19)

This is possible if and only if r′µ = 1,Γ + ∆− ρµ = 1, σµ+1− 2δ+ ε = 0 and
pµ+1 = pµ + 1. We have several cases.
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• δ = 1, by Theorem 5.2 we are in case 6) which implies ρµ = 1 so
Γ + ∆ = 2 and Γ = ∆ = 1, the only possible case is 6ii), so sµ −
sµ+1 > 1. Since 1 = ρµ = ρµ+1 + ρ̃ we have either ρ̃ = 0, ρµ+1 = 1
or ρ̃ = 1, ρµ+1 = 0. If ρ̃ = 0, ρµ+1 = 1 by Theorem 5.2 the only
possible cases with card(PF1(S)) = 1, are 1b) and 2a) with k = 2 a
contradiction. If ρ̃ = 1, ρµ+1 = 0 the only possible case is 2b) with
sµ − sµ+1 = 1, a contradiction, so the case δ = 1 is not possible.
• δ = 0 implies σµ+1 = ε = 0. We have to consider in Theorem 5.2

the cases 1e) or 2d) because ε = 0 and 7i), 7ii) because δ = 0.
On the other hand Γ + ∆ = ρµ + 1 implies that we are in case 7ii)
withρ̃ = 2. We set σ = σµ, p = pµ, l = sµ+1 = ρµ+1 so we have

P̃SF1 = {x1x
σ
kx

p
k+1}, P̃SF2 = {x2x

σ
k , ..., xρµ−1x

σ
k}, we have the table

s p r r’
σk + l + 2 p −σ 1
l p+ 1 rµ+1 < 0

with σ ≥ 1, 1 ≤ l < k−2. Also 1 = r′µ = rµ+σ+1 so rµ = −σ, rµ+1 <
−σ ≤ −1, and r′µ+1 = rµ+1 + 1 < −σ + 1 ≤ 0. So in fact we are in
case 2d) 7ii). We have t(S) = l + 1. Note that t(S) = 2 if and only
if l = 1, ρµ = 3.

a = (σk + l + 2)(p+ 1)− lp
d = −(p+ 1)σ − prµ+1

c = −lσ − (σk + l + 2)rµ+1.

? If ρµ > 0,Γ+∆ < ρµ. From (17) we have necessarily xΓ+∆x
σµ
k x

σµ+1−2δ+ε
k ∈

in(I) so σµ+1 − 2δ + ε > 0. Since xΓ+∆x
σµ+1
k − xr

′
µ

0 xk+Γ+∆−ρµx
pµ
k+1 ∈ I we

have

x
r′µ
0 xk+Γ+∆−ρµx

pµ
k+1x

σµ+1−1−2δ+ε
k x

pµ
k+1 − x1x

2pµ+1−pµ+1

k+1 ∈ I, (20)

this is impossible since x1x
2pµ+1−pµ+1

k+1 ∈ Ãp(S).
(b) σµ = σµ+1 + σ̃+1 (so ρ̃ > 0, ρµ = ρµ+1 + ρ̃−k > 0) then 2σµ−2δ−(σ̃−ε) =

σµ + σµ+1 + 1− 2δ + ε.
Note that σµ+1 + 1− 2δ + ε < 0 if and only if δ = 1, σµ+1 = 0, ε = 0. The
possible cases in Theorem 5.2 are 7i), 7ii). In 7ii) we have ρµ+1 < ρµ so
σµ = σµ+1+σ̃ a contradiction. In 7i) we have 2σµ−2δ−(σ̃−ε) = σµ−1 ≥ 0,
Γ + ∆ = ρµ ≥ 2 so (15) becomes

xρµx
σµ−1
k x

2(pµ+1−pµ−1)
k+1 − x1x

pµ+1−1
k+1 ∈ I, (21)

if 2(pµ+1 − pµ − 1) ≥ pµ+1 − 1 we get

xρµx
σµ−1
k x

(2(pµ+1−pµ−1))−(pµ+1−1)
k+1 − x1 ∈ I, (22)
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which leads to a contradiction; so 2(pµ+1 − pµ − 1) < pµ+1 − 1, we get

xρµx
σµ−1
k − x1x

(pµ+1−1)−(2(pµ+1−pµ−1))
k+1 ∈ I, (23)

but x1x
(pµ+1−1)−(2(pµ+1−pµ−1))
k+1 ∈ Ãp(S, a) so xρµx

σµ−1
k ∈ in(I) which is not

possible.
Hence σµ+1 + 1− 2δ + ε ≥ 0, and (15) becomes

xΓ+∆x
σµ+σµ+1+1−2δ+ε
k x

2(pµ+1−pµ−1)
k+1 − x1x

pµ+1−1
k+1 ∈ I, (24)

if 2(pµ+1 − pµ − 1) ≥ pµ+1 − 1 we get a contradiction since σµ ≥ 1, ϕ(xk) >
ϕ(x1). So

xΓ+∆x
σµ+σµ+1+1−2δ+ε
k − x1x

2pµ+1−pµ+1

k+1 ∈ I. (25)

Since x1x
2pµ+1−pµ+1

k+1 ∈ Ãp(S, a), we have xΓ+∆x
σµ+σµ+1+1−2δ+ε
k ∈ in(I).

Hence we have either ρµ = 0, either Γ + ∆ = ρµ > 0, either Γ + ∆ > ρµ > 0
or 0 < Γ + ∆ < ρµ, σµ+1 + 1− 2δ + ε > 0.

• If ρµ = 0 or Γ + ∆ = ρµ > 0 we have Lρµx
σµ
k − x

r′µ
0 x

pµ
k+1 so from (25)

we have

x
r′µ
0 x

σµ+1+1−2δ+ε
k x

pµ
k+1 − x1x

2pµ+1−pµ+1

k+1 ∈ I. (26)

Since r′µ > 0 and x1x
2pµ+1−pµ+1

k+1 ∈ Ãp(S, a) we get a contradiction.

• If k ≥ Γ + ∆ > ρµ > 0 then we have xΓ+∆x
σµ
k − x

r′µ−h
0 xΓ+∆−ρµx

pµ
k+1,

so from (25) we have

x
r′µ−h
0 xΓ+∆−ρµx

σµ+1+1−2δ+ε
k x

pµ
k+1 − x1x

2pµ+1−pµ+1

k+1 ∈ I. (27)

which implies r′µ = h = 1. We have pµ − (2pµ + 1 − pµ+1) = pµ+1 −
pµ − 1 ≥ 0 so

xΓ+∆−ρµx
σµ+1+1−2δ+ε
k x

pµ+1−pµ−1
k+1 − x1 ∈ I. (28)

which is possible only if Γ + ∆ − ρµ = 1, pµ+1 = pµ + 1, σµ+1 + 1 −
2δ + ε = 0, which implies δ = 1, σµ+1 + ε = 1. But we also have
r′µ = h = 1, ρµ > 0 so the only possible case is 6ii) which implies
ρµ = 1, sµ+1 ≥ k so σµ+1 = 1, ε = 0. We also have ρµ+1 + ρ̃ = k + 1
so ρ̃ > 1 which implies either case 1e) or case 2d) with ρ̃ = 2 since

card(P̃SF1) = 1. Hence sµ = σµk + 1, σµ ≥ 2, sµ+1 = 2k − 1, since
r′µ = 1 = rµ + σµ + 1 we have rµ = −σµ and rµ+1 < −σµ implies
r′µ+1 = rµ+1 + 2 < −σµ + 2 ≤ 0, so in fact we are in case 6ii)) and
2d). We set σ = σµ, p = pµ so we have

P̃SF1 = {x1x
σ−2
k xpk+1}, P̃SF2 = {x1x

σ−1
k } and
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s p r r’
σµk + 1 p −σµ 1
2k − 1 p+ 1 rµ+1 < 0

a = (σµk + 1)(p+ 1)− (2k − 1)p

d = −(p+ 1)σµ − prµ+1

c = −σµ(2k − 1)− (σµk + 1)rµ+1.

with h = 1, k ≥ 3, σµ ≥ 2, p ≥ 1, rµ+1 < −σµ and t(S) = 2.
• Suppose that 0 < Γ + ∆ < ρµ then σµ+1 + 1 − 2δ + ε > 0. Since

xΓ+∆x
σµ+1
k − xr

′
µ

0 xk+Γ+∆−ρµx
pµ
k+1 ∈ I we have from (25)

x
r′µ
0 xk+Γ+∆−ρµx

σµ+1−2δ+ε
k x

pµ
k+1 − x1x

2pµ+1−pµ+1

k+1 ∈ I. (29)

This is not possible since r′µ > 0 and x1x
2pµ+1−pµ+1

k+1 ∈ Ãp(S, a).
(3) If Γ + ∆ > k, from (13) we have

xΓ+∆−kx
2σµ+1−2δ
k x

2(pµ+1−pµ−1)
k+1 − x0Lγx

σ̃−ε
k x

pµ+1−1
k+1 ∈ I (30)

(a) If σµ = σµ+1 + σ̃ then we have ρµ = ρµ+1 + ρ̃, 2σµ + 1 − 2δ − (σ̃ − ε) =
σµ + σµ+1 + 1− 2δ + ε. We have several cases.

(i) σµ+1 + 1 − 2δ + ε < 0 if and only δ = 1, σµ+1 = 0, ε = 0. If γ = 0
then we are in case 2b) so σ̃ = σµ+1 = 0 which implies σµ = 0, this
is not possible, so γ = 1. By looking all cases in Theorem 5.2 with
δ = 1 we have ρµ ≤ 1, on the other side ε = 0, γ = 1 implies ρ̃ > 1 a
contradiction since ρ̃ ≤ ρµ.

(ii) σµ+1 + 1− 2δ + ε = 0 if and only δ = 1 and either σµ+1 = 0, ε = 1 or
σµ+1 = 1, ε = 0. We have

xΓ+∆−kx
σµ
k x

2(pµ+1−pµ−1)
k+1 − x0Lγx

pµ+1−1
k+1 ∈ I (31)

ii-*) Suppose γ = 0. We are in case 2b), sµ − sµ+1 = 1, if σµ+1 = 0
then sµ = ρµ+1 +1 which is not possible, so σµ+1 = 1, ρ̃ = 1 so ρµ ≥ 1.
Since δ = 1 implies ρµ = 1, hence ρµ+1 = 0 and since sµ − sµ+1 = 1
we have sµ = k + 1, sµ+1 = k. The possible cases are 5i) and 6i), in
both cases we have Γ + ∆− k = 1 = ρµ. By using the Gröbner basis
we have

x
r′µ−1

0 x
2pµ+1−pµ−2
k+1 − xpµ+1−1

k+1 ∈ I (32)

that is
x
r′µ−1

0 x
pµ+1−pµ−1
k+1 − 1 ∈ I (33)

possible only if r′µ = 1, pµ+1 = pµ + 1. Since r′µ ≥ h ≥ 1 we have
equality, so we are in case 6i) and 1 = rµ + 2 so rµ = −1. We set
pµ = p, we have

P̃SF1 = {xpk+1}, P̃SF2 = {x1, ..., xk}.
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s p r r’
k + 1 p −1 1
k p+ 1 rµ+1 < 0

a = (k + 1)(p+ 1)− kp = k + p+ 1

d = −(p+ 1)− prµ+1

c = −k − (k + 1)rµ+1.

with h = 1, k ≥ 3, p ≥ 1, rµ+1 < −1, t(S) = k + 1.
ii-**)Suppose γ = 1. Recall that δ = 1 and either σµ+1 = 0, ε = 1 or
σµ+1 = 1, ε = 0. If γ = 1, ε = 0 we are in cases 1e) or 2d) so ρ̃ > 1.
δ = 1 implies ρµ ≤ 1, but ρµ = ρµ+1 + ρ̃ so we get a contradiction.
Therefore δ = 1, σµ+1 = 0, ε = 1, again from ρµ = ρµ+1 + ρ̃ we get
sµ+1 = 1, ρµ = 1, ρ̃ = 0. The possible cases with ρ̃ = 0 are 1b) and
2a) with k = 2 a contradiction since we assume k ≥ 3.

(iii) σµ+1 + 1− 2δ + ε > 0. If ρµ > 0 we have x
σµ+1
k − xr

′
µ−h

0 xk−ρµx
pµ
k+1 so

from (30) we have

x
r′µ−h
0 xk−ρµxΓ+∆−kx

σµ+1−2δ+ε
k x

2pµ+1−pµ−2
k+1 − x0Lγx

pµ+1−1
k+1 ∈ I, (34)

hence

x
r′µ−h
0 xk−ρµxΓ+∆−kx

σµ+1−2δ+ε
k x

pµ+1−pµ−1
k+1 − x0Lγ ∈ I, (35)

recall that γ = 0, 1, since k − ρµ ≥ 1,Γ + ∆ − k ≥ 1 we have
ϕ(xk−ρµxΓ+∆−k) > ϕ(x0Lγ) this is not possible.

If ρµ = 0 we have x
σµ
k − x

r′µ
0 x

pµ
k+1 so from (30) we have

x
r′µ
0 xΓ+∆−kx

σµ+1+1−2δ+ε
k x

pµ+1−pµ−1
k+1 − x0Lγ ∈ I, (36)

this is not possible since r′µ > 0, ϕ(x
r′µ
0 xk) > ϕ(x0Lγ).

(b) If σµ = σµ+1 + σ̃ + 1, k + ρµ = ρµ+1 + ρ̃ we have ρµ < ρµ+1, ρ̃ and σµ + 1−
2δ − (σ̃ − ε) = σµ+1 + 2− 2δ + ε ≥ 0.

Suppose ρµ = 0, which implies σµ ≥ 2, since x
σµ
k − x

r′µ
0 x

pµ
k+1 ∈ I from (30)

we have

x
r′µ
0 xΓ+∆−kx

σµ+1+2−2δ+ε
k x

pµ+1−pµ−1
k+1 − x0Lγ ∈ I (37)

This is possible if and only if γ = 1, Γ + ∆ − k = 1, r′µ = 1, pµ+1 = pµ + 1
and σµ+1 + 2 − 2δ + ε = 0. We note that σµ+1 + 2 − 2δ + ε = 0. if and
only if σµ+1 = 0, δ = 1, ε = 0, also note that σµ+1 = 0 implies r′µ+1 < 0.
The possible case with r′µ+1 < 0, ε = 0 is 2d) with ρ̃ = 2 and ρµ = 0
implies the case 4ii). Note that r′µ = 1 implies h = 1. Moreover we have
1 = r′µ = rµ + σµ so rµ = 1− σµ. We set σ := σµ, p := pµ so we have

P̃SF1 = {x1x
σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xk−1x

σ−1
k }.



SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS 27

s p r r’
σk p 1− σ 1
k − 2 p+ 1 rµ+1 < 0

a = (σk)(p+ 1)− (k − 2)p

d = (1− σ)(p+ 1)− prµ+1

c = (k − 2)(1− σ)− σkrµ+1.

h = 1, σ ≥ 2, p ≥ 1, rµ+1 < −1, t(S) = k − 1.
Suppose ρµ > 0. If γ = 0 then we are in case 2b), so ρ̃ = 1, ρµ = 0, a
contradiction. So γ = 1. We have two cases.

(i) If σµ+1 + 2 − 2δ + ε = 0 then we have δ = 1, σµ+1 = 0, ε = 0.
δ = 1 implies ρµ = 1, ε = 0 implies ρ̃ = 2 and σµ+1 = 0 implies
r′µ+1 < 0, sµ − sµ+1 = (σµ − 1)k + 2 so the possible case is 2d) and
5ii) and we have Γ + ∆− k = 2. So from (30) we have

x2x
σµ
k x

2(pµ+1−pµ−1)
k+1 − x0x1x

pµ+1−1
k+1 ∈ I (38)

but x2x
σµ
k − x

r′µ−h
0 x1x

pµ
k+1 ∈ I so

x
r′µ−h
0 x1x

pµ+1−pµ−1
k+1 − x0x1 ∈ I (39)

this is possible only if r′µ − h = 1, pµ+1 = pµ + 1. We have h + 1 =
r′µ = rµ + h(σ + 1) so rµ = 1− hσ, rµ+1 ≤ −hσ, so r′µ+1 = rµ+1 + h ≤
−h(σ − 1), so r′µ+1 < 0 if and only if σ ≥ 2. We set σ := σµ, p := pµ
so we have
P̃SF1 = {x1x

σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xσk}, t(S) = k.

s p r r’
σk + 1 p 1− hσ h+ 1
k − 1 p+ 1 rµ+1 < 0

a = (σk + 1)(p+ 1)− (k − 1)p

d = (p+ 1)(1− hσ)− prµ+1

c = (k − 1)(1− hσ)− (σk + 1)rµ+1,

with h ≥ 1, p ≥ 1, σ ≥ 2, rµ+1 ≤ −hσ.

(ii) Suppose σµ+1 + 2− 2δ+ ε > 0. We have x
σµ+1
k − xr

′
µ−h

0 xk−ρµx
pµ
k+1 ∈ I.

From (30) we get

x
r′µ−h
0 xΓ+∆−kxk−ρµx

σµ+1+1−2δ+ε
k x

pµ+1−pµ−1
k+1 − x0x1 ∈ I, (40)

since Γ + ∆− k ≥ 1, k − ρµ ≥ 1 we have ϕ(xΓ+∆−kxk−ρµ) > ϕ(x0x1)
which is impossible.

�
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8. Formula for Frobenius number of Almost Symmetric almost
generalized arithmetic progressions

This section extends and generalizes all the results of [13].

Theorem 8.1. Let S be an AAG almost symmetric with k ≥ 3, t(S) ≥ 2. Then there
is a quadratic formula for the Frobenius number in terms of a, d, c, k and the type t(S).

Proof. We have to consider two cases depending on the number i such that F̃ rob(S ∈
(P̃SFi).

I) Suppose F̃ rob(S ∈ (P̃SF2). Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if and
only if either

(1) P̃SF1 = {xix
pµ+1−1
k+1 | i = 1, ..., k − l},P̃SF2 = {x1x

σ
kx

pµ+1−2
k+1 }. t(S) = k − l + 1.

We have

a = (σk + 2)pµ+1 − ((σ − 1)k + l)

d = pµ+1rµ + σ

c = ((σ − 1)k + l)rµ + (σk + 2)σ.

where h = 1, k ≥ 3, 1 ≤ l ≤ k − 1, σ ≥ 2.

Since x1xk−lx
2(pµ+1−1)
k+1 −x0

˜Frob(S) ∈ I we have xk−l+1x
2(pµ+1−1)
k+1 − ˜Frob(S) ∈ I

and F (S) = 2(pµ+1 − 1)c + ak−l+1 − a so determine a formula for F (S) consist
to determine pµ+1 in terms of a, d, c, k, l.

we set X = pµ+1 we have xXk+1 − xlxσ−1
k so

Xc = al + σak − ak (41)

and

σk(X − 1) = a− 2X − k + l (42)

We multiply (41) by k(X − 1) and by using (42)we get

k(X − 1)Xc = k(X − 1)al + ak(a− 2X − k + l)− k(X − 1)ak (43)

So we get a second order equation in the variable X

kcX2 − (k(c+ al − ak)− 2ak)X − ak(a+ l) + kal = 0 (44)

soX =
k(c+ al − ak)− 2ak +

√
(k(c+ al − ak)− 2ak)2 − 4kc(−ak(a+ l) + kal)

2kc
(2) P̃SF1 = {xpµ+1−1

k+1 }, P̃SF2 = {x1x
σµ
k x

pµ+1−2
k+1 }, t(S) = 2. We have

a = (σk + 2)pµ+1 − (σk + 1)

d = pµ+1rµ + h(σ + 1) + 1

c = (σk + 1)rµ + (σk + 2)(h(σ + 1) + 1).
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where h ≥ 1, σ ≥ 1, pµ+1 ≥ 2, rµ > −h(σ+1)−1. Since x
2(pµ+1−1)
k+1 −x0

˜Frob(S) ∈
I we have and F (S) = 2(pµ+1−1)c−2a so determine a formula for F (S) consist
to determine pµ+1 in terms of a, d, c, k.
We set X = pµ+1 we have xXk+1 − x0x1x

σ
k so

Xc = a+ a1 + σak (45)

and

σk(X − 1) = a+ 1− 2X (46)

We multiply (45) by k(X − 1) and by using (46)we get

k(X − 1)Xc = k(X − 1)(a+ al) + ak(a+ 1− 2X) (47)

So we get a second order equation in the variable X

kcX2 − (k(c+ a+ a1)− 2ak)X − ak(a+ 1) + k(a+ a1) = 0 (48)

soX =
k(c+ a+ a1)− 2ak +

√
(k(c+ a+ a1)− 2ak)2 − 4kc(−ak(a+ 1) + k(a+ a1))

2kc

II) Suppose F̃ rob(S ∈ (P̃SF1). Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if
and only if either

(1) P̃SF1 = {x1x
σ
kx

p
k+1}, P̃SF2 = {x2x

σ
k , ..., xρµ−1x

σ
k}, t(S) = l + 1. We have

a = (σk + l + 2)(p+ 1)− lp
d = −(p+ 1)σ − prµ+1

c = −lσ − (σk + l + 2)rµ+1,

where h = 1, k ≥ 3, σ ≥ 1, 1 ≤ l ≤ k − 3, rµ+1 < −σ.

Since x2xl+1x
2σ
k − x0

˜Frob(S) ∈ I we have xl+3x
2σ
k − ˜Frob(S) ∈ I and F (S) =

al+3 + 2σak − a but xl+2x
σ
k − x0x

pµ+1−1
k+1 ∈ I. We set X = pµ+1 so

al+2 + σak = a+ c(X − 1) (49)

and F (S) = al+3 + 2(a + c(X − 1) − al+2) − a. Determine a formula for F (S)
consist to determine X in terms of a, d, c, k, l.
By developing the formula for a we have

σkX = a− 2X − l (50)

We multiply (49) by kX and by using (50)we get

kal+2X + kσakX = kaX + kcX(X − 1) (51)

So we get a second order equation in the variable X

kcX2 − (k(c− a+ al+2)− 2ak)X − ak(a− l) = 0 (52)

so X =
k(c− a+ al+2)− 2ak +

√
(k(c− a+ al+2)− 2ak)2 + 4kcak(a− l)

2kc
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(2) P̃SF1 = {x1x
σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xk−1x

σ−1
k }, t(S) = k − 1. We have

a = (σk)(p+ 1)− (k − 2)p

d = (1− hσ)(p+ 1)− prµ+1

c = (k − 2)(1− σ)− σkrµ+1.

where h = 1, k ≥ 3, p, σ ≥ 2, rµ+1 < −1.

Since our semigroup is almost symmetric we have x2xk−1x
2σ−2
k −x0

˜Frob(S) ∈
I that is x1x

2σ−1
k − x0

˜Frob(S) ∈ I so F (S) = a1 + 2σak − ak − 2a. But

xσk − x0x
pµ+1−1
k+1 ∈ I, we set X = pµ+1 we have

σak = a+ c(X − 1) (53)

and F (S) = a1 + 2(a + c(X − 1)) − ak − 2a. Determine a formula for F (S)
consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

σkX = a+ kX − 2X − k − 2 (54)

We multiply (53) by kX and by using (54)we get

ak(a+ kX − 2X − k − 2) = kaX + kcX(X − 1) (55)

So we get a second order equation in the variable X

kcX2 − (k(c− a+ ak)− 2ak)X − ak(a− k + 2) = 0 (56)

and X =
k(c− a+ ak)− 2ak +

√
(k(c− a+ ak)− 2ak)2 + 4kcak(a− k + 2)

2kc
.

(3) P̃SF1 = {x1x
σ−1
k xpk+1}, P̃SF2 = {x2x

σ−1
k , ..., xσk}, t(S) = k. We have

a = (σk + 1)(p+ 1)− (k − 1)p

d = (p+ 1)(1− hσ)− prµ+1

c = (k − 1)(1− hσ)− (σk + 1)rµ+1.

h ≥ 1, k ≥ 3, p, σ ≥ 1, rµ+1 < min {−h, 1− hσ}.
Since x2x

2σ−1
k − x0

˜Frob(S) ∈ I we have F (S) = a2 + 2σak − ak − 2a but

x1x
σ
k − xh+1

0 x
pµ+1−1
k+1 ∈ I, we set X = pµ+1, so we have

a1 + σak = (h+ 1)a+ c(X − 1) (57)

and F (S) = a2 + 2(a+ c(X − 1)− a1)− ak − 2a. Determine a formula for F (S)
consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

σkX = a+X(k − 2)− k + 1 (58)

We multiply (57) by kX and by using (58)we get

ka1X + ak(a+X(k − 2)− k + 1) = k(h+ 1)aX + kcX(X − 1) (59)
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So we get a second order equation in the variable X

kcX2 − (k(a1 + c− (h+ 1)a+ ak)− 2ak)X − ak(a− k + 1) = 0 (60)

X =
k(a1 + c− (h+ 1)a+ ak)− 2ak +

√
(k(a1 + c− (h+ 1)a+ ak)− 2ak)2 + 4kcak(a− k + 1)

2kc
.

(4) P̃SF1 = {xpk+1}, P̃SF2 = {x1, ..., xk}, t(S) = k + 1. We have

a = k + p+ 1

d = −(p+ 1)− prµ+1

c = −k − (k + 1)rµ+1.

with h = 1, k ≥ 3, p ≥ 1, rµ+1 < −1. We have F (S) = pc− a and a = k + p+ 1
so F (S) = c(a− k − 1)− a.

(5) P̃SF1 = {x1x
σ−2
k xpk+1}, P̃SF2 = {x1x

σ−1
k }, t(S) = 2. We have

a = (σk + 1)(p+ 1)− (2k − 1)p

d = −(p+ 1)σ − prµ+1

c = −σ(2k − 1)− (σk + 1)rµ+1.

with h = 1, k ≥ 3, σ ≥ 2, p ≥ 1, rµ+1 < −σ.

Since x2
1x

2σ−2
k − x0

˜Frob(S) ∈ I we have x2x
2σ−2
k − ˜Frob(S) ∈ I so F (S) =

a2 + 2σak − 2ak − a but x1x
σ
k − x0x

p
k+1 ∈ I, which gives

a1 + σak = a+ c(X − 1), (61)

where we have set X = p+ 1. Hence F (S) = a2 + 2(a+ c(X−1)−a1)−2ak−a.
Determine a formula for F (S) consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

σkX = a+X(2k − 2)− 2k + 1 (62)

We multiply (61) by kX and by using (62)we get

ka1X + ak(a+X(2k − 2)− 2k + 1) = kaX + kcX(X − 1) (63)

So we get a second order equation in the variable X

kcX2 − (k(c+ d+ 2ak)− 2ak)X − ak(a− 2k + 1) = 0 (64)

X =
k(c+ d+ 2ak)− 2ak +

√
(k(c+ d+ 2ak)− 2ak)2 + 4kcak(a− 2k + 1)

2kc
�

Corollary 8.2. Given a AAG-semigroup S with data a, d, c, h, k by at most 4k tests
solving quadratics equations we can determine if S is almost symmetric.
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Proof. The first step is to check if one of the square roots is a natural number, since
we dont know t(S) we have to perform k times in the case were the number 1 ≤ l ≤ k
appears in this square root. The second step is to check if the solution X as above
is a natural number, at this step we know the probably value for t(S) so also the
probably case to consider. The third step is to solve a linear system to find the values
of σ, pµ+1, rµ+1 from a, d, c, h, k and check if they are natural numbers and satisfy the
conditions of the considered case. �

Example 8.3. We have implemented the above algorithm and we have for 150 ≤ a ≤
160, 1 ≤ d ≤ 10, 170 ≤ c ≤ 180, 19 ≤ k ≤ 20, 2 ≤ h ≤ 3 the following values for which
the AAG-semigroup is almost symmetric:
a = 153, d = 11, c = 177, k = 19, h = 3, case II.1, pµ+1 = 7, σ = 1, rµ+1 = −3.
a = 156, d = 11, c = 174, k = 20, h = 3, case II.1, pµ+1 = 7, σ = 1, rµ+1 = −3.
a = 155, d = 1, c = 177, k = 20, h = 4, case I.2, pµ+1 = 8, σ = 1, rµ = −1.
a = 152, d = 3, c = 170, k = 21, h = 2, case I.1, pµ+1 = 4, σ = 2, rµ = 0.
a = 150, d = 4, c = 178, k = 21, h = 3, case II.1, pµ+1 = 6, σ = 1, rµ+1 = −2.
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number and Gröbner basis, Preprint.

[9] Dilip P. Patil, Generators for the derivation modules and the defining ideals of certain affine
curves, Thesis, TIFR-Bombay University, (1989).

[10] Dilip P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves,
Manuscripta Math. 80 (1993), 239- 248 .
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