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Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence,

Frobenius number

Let a 0 , . . . , a n be natural numbers and S = a 0 , . . . , a n = {k 0 a 0 +. . . k n a n |k i ∈ N} the semigroup generated by {a 0 , . . . , a n }. Recall that if a 0 , . . . , a n are relatively prime numbers then the Frobenius number of S, denoted by F (S), is the biggest integer that does not belong to S. Let A = K[S] = K[t k |k ∈ S] = K[t a 0 , . . . , t an ] ⊂ K[t] the semigroup ring of S and R = K[x 0 , . . . , x n ] the polynomial ring in n + 1 variables over K graded by the weights deg x i = a i , for all i = 0, . . . , n. The defining ideal I of K[S] is defined to be the kernel of the K-algebra homomorphism Ψ : R → K[S] given by Ψ(x i ) = t a i for all i = 0, . . . , n, we will use often the fact that I is a prime ideal generated by binomials and does not contains monomials. We use the weighted degree reverse lexicographical order ≺ w on the monomials of the ring R with x 0 ≺ . . . ≺ x n , and the map ϕ : [[R]] → N defined by ϕ(M ) = k 1 a 1 + . . . + k n a n for every monomial M = x k 0 0 . . . x kn n ∈ [[R]]. Let recall the pseudo-Frobenius set P F (S) of all integer number a which satisfies a / ∈ S and a + s ∈ S, for all 0 = s ∈ S and the number of elements of P F (S) is called the type of S, denoted by t(S). Finally, the Apéry set with respect to a 0 plays an important role in our paper which is defined by Ap(S, a 0 ) = {s ∈ S|s -a 0 / ∈ S}. By defining in [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF] a monomial Apéry set Ap(S, a 0 ) of a 0 , that is an algebraic analogous to the Apéry set Ap(S, a 0 ) and using the order ≺ w as well as the map ϕ, we can change from studying the Apéry set to studying the set of monomials of [[R ]] which are not in in(I), where R = K[x 0 , . . . , x n ]. Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers a, ha + d, ha + 2d, . . . , ha + kd, c, that is its embedding dimension is k + 2. Our goal is to describe all properties of an AAGsemigroup in terms of a continuous fraction, as an extension of my previous works in [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF], [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF]. In [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF] was described a Gröbner basis of the ideal defining S under one condition, the complete case will be published in a forthcoming paper. In this paper we continue the work of [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF] and we can describe the Pseudo Frobenius set (see Theorem 5.2), and so the Frobenius number and its type is at most 2k. As a consequence we can give a complete description of AAG-semigroups that are symmetric or almost symmetric see Theorems 6.1, 7.2, 7.3 ), in particular we prove that if S is almost symmetric its type is at most the embedding dimension minus 1. Another interesting point is that if S is almost symmetric then the Frobenius number is given by a quadratic formula in terms of a, d, k, h, c and t(S). Moreover a simple algorithm using the solutions of some quadratic equations allow us to decide is an AAG-semigroup is almost symmetric. This result extends and generalizes all the results of [START_REF] Rosales | Pseudo-symmetric numerical semigroups with three generators[END_REF].

The algorithms presented here are the extensions of the previous work by the first author in [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF], [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF] and can be downloaded in http://www-fourier.univ-grenoblealpes.fr/ morales/.

Frobenius number and Apéry set

Denote by Z and N the set of integers and nonnegative integers respectively. Let S be a semigroup in N. Given n 1 and a 0 , . . . , a n ∈ N such that gcd(a 0 , . . . , a n ) = 1, S = a 0 , . . . , a n = {k 0 a 0 + . . . k n a n |k i ∈ N}.

The set N \ S is finite. If S is minimally generated by {a 0 , . . . , a n } S is called numerical semigroup and n + 1 is called the embedding dimension of S. Definition 2.1. Let S be a numerical semigroup generated by a 0 , . . . , a n .

(i) The number F (S) = max{a ∈ Z | a / ∈ S} is called the Frobenius number of S. (ii) We also define P F (S) = {a ∈ Z \ S | a + s ∈ S if s ∈ S and s = 0} and an element of P F (S) is called a pseudo-Frobenius number of S. Obviously, the Frobenius number is a pseudo-Frobenius number and the number of elements of P F (S) is called the type of S, denoted by t(S).

(iii) The Apéry set of a 0 in S is the set Ap(S, a 0 ) = {s ∈ S|s -a 0 / ∈ S}.

Frobenius number and Gröbner basis

The definitions and results in this section follow from [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF]. Let R = K[x 0 , . . . , x n ] be the polynomial ring graded by the weights deg x 0 = a 0 , . . . , deg x n = a n , J ⊂ R a graded ideal and B = R/J. We say that R and B are quasi-homogeneous rings. Set R = K[x 1 , . . . , x n ] and denote by [[R ]] the set of all monomials of R . Let ϕ : [[R ]] → N be the map defined by ϕ(M ) = k 1 a 1 + . . . + k n a n , for every monomial

M = x k 1 1 . . . x kn n ∈ [[R ]].
We consider the weighted degree reverse lexicographical order ≺ w with x 0 ≺ w • • • ≺ w x n and deg x i = a i for all 0 i n.

With the notations in the introduction, let in(I) be the initial ideal of the reduced Gröbner basis G(S) of I for the order ≺ w . Set R = K[x 1 , . . . , x n ] and denote by [[R ]] the set of all monomials of R . Now we consider two sets

Ap(S, a 0 ) = {M ∈ [[R ]] | M / ∈ in(I)} and P F (S) = {M ∈ Ap(S, a 0 ) | ∀i = 0, ∃N i ∈ [[R ]], α i > 0 such that M x i -x α i 0 N i ∈ I}. Corollary 3.1.
Assume that gcd(a 0 , . . . , a n ) = 1. Then we have (i) The restriction of ϕ to Ap(S, a 0 ) is bijective and ϕ( Ap(S, a 0 )) = Ap(S, a 0 ). In particular card (Ap(S, a 0 )) = a 0 and

F (S) = max{ϕ(M )|M / ∈ in(I)} -a 0 .
(ii) The restriction of ϕ to P F (S) is bijective and ϕ( P F (S)) = P F (S) + a 0 , i.e.

each element ω ∈ P F (S) corresponds to exactly one monomial

M ω ∈ P F (H) such that ϕ(M ω ) -a 0 = ω. (iii) Let s ∈ Ap(S, a 0 ), M ∈ Ap(S, a 0 ) and N ∈ [[R ]] such that s = ϕ(M ) = ϕ(N ). Then M ≺ w N .
We denote by F rob(S) the unique monomial in P F (S) such that ϕ( F rob(S)) = F (S) + a 0 .

The following Lemma is very simple but very useful in order to prove that a set is a Gröbner basis of an ideal in many cases (see [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF], [START_REF] Dung | On the type and generators of monomial curves[END_REF]). Lemma 3.2. Let R = K[x 0 , . . . , x n ], R = K[x s , . . . , x n ] be the rings with respect to the order ≺ w and [[R ]] the set of all monomials of R . Let I ⊂ R be an ideal such that the generators of in(I) belongs to R and rad(in(I) ∩ R )) = (x s , . . . , x n )R . Let G ⊂ I be a finite set and J the monomial ideal generated by the leading monomials of the elements in G.

If card([[R ]] \ J) = card([[R ]] \ (in(I) ∩ R )) then G is a Gröbner basis of I.

almost generalized arithmetic progressions, Grobner basis

Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers a, ha + d, ha + 2d, . . . , ha + kd, c, that is its embedding dimension is k + 2 An interesting particular case is a semigroup minimally generated by relatively prime integers a, a + d, a + 2d, . . . , a + kd, c, called numerical almost arithmetic-semigroup (numerical AA-semigroup for short). AA-semigroups are the case h = 1 of AAG-semigroups and where considered by D. P. Patil [START_REF] Dilip | Generators for the derivation modules and the defining ideals of certain affine curves[END_REF], [START_REF] Dilip | Minimal sets of generators for the relation ideals of certain monomial curves[END_REF] from the algebraic point of view and by J. L. Ramírez Alfonsín and O. J. Rodseth in [START_REF] Ramírez Alfonsín | Numerical Semigroups, Apéry set and Hilbert series[END_REF], [START_REF] Rodseth | On a linear diophantine problem of Frobenius II[END_REF] from combinatorial point of view.

Let R = K[x 0 , . . . , x k , x k+1 ] be the polynomial ring in k + 2 variables over K graded by the weights deg

x i = ha + id for i = 0, . . . , k, deg x k+1 = c and I the kernel of the homomorphism Φ : R → K[S] of K-algebras defined by Φ(x 0 ) = t a , Φ(x i ) = t ha+id for all i = 1, . . . , k and Φ(x k+1 ) = t c . Let R = K[x 1 , . . . , x k ]. The following result extends [10][Lemma 1.6.1]. Lemma 4.1. For 1 ≤ i, j < k, set A = {x i x j -x h 0 x i+j | if i + j ≤ k, } ∪ {x i x j -x i+j-k x k | if i + j > k}.
Then every binomial of A belongs to I and card(A) = (k-1)k 2 . Proof. Let 1 ≤ i, j < k. The results are implied by the fact that ϕ(x i x j ) = ha + id + ha

+ jd = ha + (ha + (i + j)d) if i + j ≤ k or ϕ(x i x j ) = (ha + id) + (ha + jd) = (ha + (i + j -k)d) + (ha + kd) if i + j > k.
Corollary 4.2. Let consider any Gröbner basis with respect to an order ≺ w such that x 0 ≺ w x 1 ≺ w . . . ≺ w x k ≺ w x k+1 . The initial ideal in(I) and Ap(S, a 0 ) can be represented in the plane.

Proof. By hypothesis and Lemma 4.1 we have only to consider only the monomials in in(I) which can be written as L i x α k x β k+1 where 0 ≤ i < k, L 0 = 1 and

L i = x i for i > 0. We associate to L i x α k x β k+1 the point (i + αk, β) ∈ N 2 . Lemma 4.3. Let s ∈ N, p, r ∈ Z such that ra = sd -pc.
Let s = σk + ρ, where 0 ≤ ρ < k. For convenience we can write s = σk + lρ, where l = 0 if ρ = 0 and l = 1 if ρ > 0. It follows that ra = σkd + lρd -pc so that

(r + h(σ + l))a = σ(ha + kd) + l(ha + ρd) -pc. ( * )
We set r = r + h(σ + l). We have

• L l x σ k -x r 0 x p k+1 ∈ I if p, r ≥ 0, • L l x σ k x -p k+1 -x r 0 ∈ I if p < 0, r > 0, • x p k+1 -x -r 0 L l x σ k ∈ I if p ≥ 0, r < 0.
Our aim is to construct a Gröbner basis and describe the set Ap(S, a 0 ). By applying our algorithm for the case n = 3 in Section 4.1 with numbers a, d, c, we get numbers s i , p i , q i , r i for 0 ≤ i ≤ m + 1 such that

ar i = s i d -p i c.
Let s 0 be the smallest natural number such that (s 0 , 0, r 0 ) is solution of the equation sd -pc = ra. Set p 0 = 0 and let p 1 be the smallest natural number such that (s 1 , p 1 , r 1 ) is solution of the equation sd -pc = ra, where 0 ≤ s 1 < s 0 . Note that

s 0 = a gcd(a, d)
and d,c) .

p 1 = gcd(a, d) gcd(a,
Now we want to define numbers s i , p i , r i , q i for i ≥ 2. We will use the extended Euclid's algorithm for the computation of gcd(a, b). Namely, let consider the Euclid's algorithm with negative rest:

           s 0 = q 2 s 1 -s 2 s 1 = q 3 s 2 -s 3 . . . = . . . s m-1 = q m+1 s m s m+1 = 0
where q i ≥ 2, s i ≥ 0 for all i = 2, . . . , m + 1. For i = 1, . . . , m, let define p i+1 , r i+1 by

p i+1 = p i q i+1 -p i-1 , r i+1 = r i q i+1 -r i-1 .
It is proved in [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF] that for i = 0, . . . , m,

s i p i+1 -s i+1 p i = s 0 p 1 = a gcd(a, d, c) ,
and the sequences s i , r i are decreasing, while the sequence p i is increasing. see [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF] and [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF].

Let s i = σ i k + ρ i , where 0 ≤ ρ i < k. We set l i = 0 if ρ i = 0, l i = 1 if ρ i > 0 and r i = r i + h(σ i + l i ). Since s i > s i+1 we have σ i ≥ σ i+1 , if σ i = σ i+1 then l i ≥ l i+1 , if σ i > σ i+1 then | l i -l i+1 |≤ 1.
In both cases we have σ i + l i ≥ σ i+1 + l i+1 , which implies r i > r i+1 . Let µ be the unique integer such that r µ > 0 ≥ r µ+1 . In our next results we suppose that either r µ ≥ h or ρ µ = 0. Note that by the definition of µ r µ ≥ h is true when h = 1. We give some results from [START_REF] Morales | A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis[END_REF] without proofs. Definition 4.4. With the above notations. If r µ ≥ h or ρ µ = 0 we set:

(1) If ρ µ = 0 we set

B = {x σµ k -x r µ 0 x pµ k+1 }.
If ρ µ = 0 we set

B = {x ρµ x σµ k -x r µ 0 x pµ k+1 , x ρµ+j x σµ k -x r µ -h 0 x j x pµ k+1 | 1 ≤ j ≤ k -ρ µ }.
Note that since the embedding dimension of the semigroup S is k + 2 we have

s µ > k. (2) Suppose s µ+1 = 0. Let s µ -s µ+1 = σk + ρ, with 0 ≤ ρ < k. Set l = 0 if ρ = 0, l = 1 if ρ > 0 and r = r µ -r µ+1 + h( σ + l). If ρ > 0 then set C = {x ρ x σ k x p µ+1 -pµ k+1 -x r 0 , x j+ ρ x σ k x p µ+1 -pµ k+1 -x r-1 0 x j | 1 ≤ j ≤ k -ρ} and if ρ = 0 then set C = {x σ k x p µ+1 -pµ k+1 -x r 0 }. Suppose s µ+1 = 0. We set C = ∅. (3) D := {x p µ+1 k+1 -x -r µ+1 0 x l µ+1 ρ µ+1 x σ µ+1 k }.
By our assumptions the embedding dimension of the semigroup S is k + 2 so p µ+1 > 1, that is µ > 0, and if r µ+1 = 0 we have s µ+1 > k. Now in order to find the set Ap(S, a) we need to define two 2 rectangles

A = {(y, z) ∈ N 2 |0 ≤ y < s µ -s µ+1 , 0 ≤ z < p µ+1 } B = {(y, z) ∈ N 2 |s µ -s µ+1 ≤ y < s µ , 0 ≤ z < p µ+1 -p µ }. Note that if s µ+1 = 0 then B = ∅. For 0 ≤ i < k , set L i = 1 if i = 0 and L i = x i if i > 0.
To any point (y, z) ∈ N 2 we associate the monomial M (y, z) := L i x α k x z k+1 , where α = y k and i = y -kα. Conversely, any monomial

L i x α k x z k+1 ∈ [[R ]
] can be represented by the point (y, z) ∈ N 2 , where y = αk + i.

The next theorem allows to compute effectively a system of generators of the ideal semigroup I, it precises and extends the main theorem of [START_REF] Dilip | Minimal sets of generators for the relation ideals of certain monomial curves[END_REF] where the case h = 1 is considered.

Theorem 4.5. With the above notations, suppose that either r µ ≥ h or ρ µ = 0.

(i) We have

Ap(S, a) = L i x α k x z k+1 | (y, z) ∈ A ∪ B, α = y k , i = y -kα . (ii) If s µ+1 = 0 then G := A ∪ B ∪ C ∪ D is a Gröbner basis of I. (iii) If s µ+1 = 0 then G := A ∪ B ∪ D is a Gröbner basis of I.
The following result extends the main result of J. L. Ramírez Alfonsín and O. J. Rodseth in [START_REF] Ramírez Alfonsín | Numerical Semigroups, Apéry set and Hilbert series[END_REF], [START_REF] Rodseth | On a linear diophantine problem of Frobenius II[END_REF], which is the case when h = 1.

Corollary 4.6. With the above notations, suppose that either r µ ≥ h or ρ µ = 0. We have

Ap(S, a) = {ha y k + dy + cz | (y, z) ∈ A ∪ B}.

almost generalized arithmetic progressions, Pseudo Frobenius set

The case S symmetric was studied in [START_REF] Ramírez Alfonsín | Numerical Semigroups, Apéry set and Hilbert series[END_REF] and the case S is pseudo symmetric was studied in [START_REF] García-Marco | Numerical semigroups II: Pseudo-symmetric AA-semigroups[END_REF] with the hypothesis that h = 1. Both publications are corollaries of this section. In our work we will describe the Pseudo Frobenius set and characterize when S is almost symmetric in general for h ≥ 1. In this paper we restrict to the hypothesis r µ ≥ h or ρ µ = 0. Note that r µ ≥ h is satisfied if h = 1.

Lemma 5.1. With the above notations, suppose that either r µ ≥ h or ρ µ = 0. Let P F (S, a) 1 be the set of monomials in P F (S, a) such that the power of x k+1 is p µ+1 -1 and let P F (S, a) 2 be the set of monomials in P F (S, a) such that the power of x k+1 is p µ+1 -p µ -1. We have

P F (S, a) = P F (S, a) 1 ∪ P F (S, a) 2 .
In particular 1 ≤ t(S) ≤ 2k.

Proof. We have Ap(S, a) = L i x α k x z k+1 | i + αk < s µ , z < p µ+1 and (i + αk < s µ -s µ+1 or z < p µ+1 -p µ ) ,
Let M be a monomial in Ap(S, a), recall that M belongs to P F (S, a) if and only if for all i = 1, ..., k + 1 we have that x i M -x α 0 N i ∈ I for some monomial N i and some α ∈ N * . We order the monomials in Ap(S, a) by saying that M N if N = x i M for some i = 1, ..., k + 1. So P F (S, a) is included in the set of maximal elements of Ap(S, a) for this order. Note that for a maximal monomial of Ap(S, a) we have that the power of x k+1 is either p µ+1 -p µ -1 or p µ+1 -1. Let P F (S, a) 1 be the set of monomials in P F (S, a) such that the power of x k+1 is p µ+1 -1 and let P F (S, a) 2 be the set of monomials in P F (S, a) such that the power of x k+1 is p µ+1 -p µ -1. We have card( P F (S, a) 1 ), card( P F (S, a) 2 ) ≤ k so t(S) ≤ 2k.

Note that if M belongs to P F (S, a) then for all i = 1, ..., k + 1 x i M ∈ in(I), so if

x i M ∈ Ap(S, a) for some i = 1, ..., k + 1 then certainly M ∈ P F (S, a). Note also that s µ -s µ+1 = (σ µ -σ µ+1 )k + ρ µ -ρ µ+1 , so if ρ µ+1 ≤ ρ µ then we have σ = σ µ -σ µ+1 , ρ = ρ µ -ρ µ+1 and if ρ µ+1 > ρ µ then we have σ = σ µ -σ µ+1 -1, ρ = k + ρ µ -ρ µ+1 .
Theorem 5.2. With the above notations, suppose that either r µ ≥ h or ρ µ = 0. We have (1) If r µ+1 = 0

(a) If ρ µ+1 = 0 then P F (S, a) 1 = ∅. (b) If ρ µ+1 > 0, ρ = 0 then P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -ρ µ+1 }. (c) If ρ µ+1 > 0, ρ = 1, σ = 0 then P F (S, a) 1 = ∅. (d) If ρ µ+1 > 0, ρ = 1, σ > 0 then P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -ρ µ+1 }. (e) If ρ µ+1 > 0, ρ > 1 then P F (S, a) 1 = {x i x σ k x p µ+1 -1 k+1 , i = 1, ..., min { ρ -1, k -ρ µ+1 }}.
(

) If r µ+1 < 0 (a) If ρ = 0 then P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -1}. (b) If ρ = 1, σ = 0 then P F (S, a) 1 = {x p µ+1 -1 k+1 }. (c) If ρ = 1, σ > 0 then P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k}. (d) If ρ > 1 then P F (S, a) 1 = {x i x σ k x p µ+1 -1 k+1 , i = 1, ..., ρ -1}. 2 
(

) If s µ+1 = 0 then P F (S, a) 2 = ∅. ( 3 
) ρ µ = 0 (i) If s µ+1 ≥ k -1 then P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k -1}. (ii) If s µ+1 < k -1 then P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = ρ, ..., k -1}. 4 
(

) ρ µ = 1, r µ > h (i) If s µ+1 ≥ k then P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k}. (ii) If 1 < s µ+1 < k then P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = ρ, ..., k}. (iii) If s µ+1 = 1 then P F (S, a) 2 = {x σµ k x p µ+1 -pµ-1 k+1 }. (6) ρ µ = 1, r µ = h (i) If s µ -s µ+1 = 1 then P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k}. (ii) If 1 < s µ -s µ+1 ≤ s µ -k then P F (S, a) 2 = {x 1 x σµ-1 k x p µ+1 -pµ-1 k+1 }. (iii) If s µ -k < s µ -s µ+1 then P F (S, a) 2 = ∅. (7) ρ µ > 1 (i) If s µ+1 ≥ ρ µ -1 then P F (S, a) 2 = {x i x σµ k x p µ+1 -pµ-1 k+1 , i = 1, ..., ρ µ -1}. (ii) If s µ+1 < ρ µ -1 then ρ = ρ µ -s µ+1 and P F (S, a) 2 = {x i x σµ k x p µ+1 -pµ-1 k+1 , i = ρ, ..., ρ µ -1}. 5 
Before going to the proof let remark:

Remark 5.3. a) Let i, j = 1, ..., k and M a monomial, if i + j ≤ k then we have x i x j -x h 0 x i+j ∈ I so x j x i M -x h 0 x i+j M ∈ I. b) A monomial x i M for some i = 1, ..., k belongs to P F (S, a) if and only if for any j = 1, ..., k + 1 there is a binomial x j x i M -x α
0 N for some monomial N and α ∈ N * . So in order to check if x i M belongs to P F (S, a) we need only to consider j such that i + j > k. c) Let note that the elements in P F (S, a) i are ordered by increasing order of evaluation by ϕ.

Proof. We have to consider all possible cases:

(1) Study of P F (S, a)

1 when r µ+1 = 0, a) Suppose ρ µ+1 = 0. Let M i = x i x α k x p µ+1 -1 k+1 ∈ P F (S, a) 1 for some 1 ≤ i ≤ k, such that i + kα < s µ -s µ+1 . Since x p µ+1 k+1 -x σ µ+1 k ∈ I we have x k+1 M i -x i x α k x σ µ+1 k ∈ I, but i + kα + kσ µ+1 < s µ -s µ+1 + s µ+1 = s µ so x i x α k x σ µ+1 k ∈ Ap(S, a) showing that M i ∈ P F (S, a) a contradiction, that is P F (S, a) 1 = ∅. b) Suppose ρ µ+1 > 0, ρ = 0. We have P F (S, a) 1 ⊂ {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -1} and s µ = ( σ + σ µ+1 )k + ρ µ+1 . Let i = 1, ..., k -1, j = 1, ..., k and M = x σ-1 k x p µ+1 -1 k+1 such that i + j > k. We have x i x j -x i+j-k x k ∈ I so x j x i M -x i+j-k x σ k x p µ+1 -1 k+1 ∈ I, since x σ k x p µ+1 -pµ k+1 -x r 0 ∈ I we have x j x i M -x r 0 x i+j-k x pµ-1 k+1 ∈ I where r > 0. From x p µ+1 k+1 -x ρ µ+1 x σ µ+1 k ∈ I, we get x k+1 x i M -x i x ρ µ+1 x σ-1 k x σ µ+1 k ∈ I. If i + ρ µ+1 ≤ k then x i x ρ µ+1 -x h 0 x 1+ρ µ+1 , so x i M ∈ P F (S, a). If i + ρ µ+1 > k then x k+1 x i M -x i+ρ µ+1 -k x σ+σ µ+1 k ∈ I but i + ρ µ+1 -k + ( σ + σ µ+1 )k = s µ + i -k < s µ which implies that x i+ρ µ+1 -k x σ+σ µ+1 k ∈ Ap(S, a) so x i M ∈ P F (S, a). Hence P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -ρ µ+1 }. c) Suppose ρ µ+1 > 0, ρ = 1, σ = 0. We have P F (S, a) 1 ⊂ {x p µ+1 -1 k+1 }.
The binomial x k+1 (x

p µ+1 -1 k+1 ) -x ρ µ+1 x σ µ+1 k ∈ I but x ρ µ+1 x σ µ+1 k ∈ Ap(S, a) so P F (S, a) 1 = ∅. d) Suppose ρ µ+1 > 0, ρ = 1, σ > 0. We have P F (S, a) 1 ⊂ {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k}. Let i = 1, ..., k, j = 1, ..., k, M = x σ-1 k x p µ+1 -1 k+1
. By the same arguments as in the above item b) we have

x j x i M -x α 0 N i ∈ I for some monomial N i and α ∈ N * . The binomial x p µ+1 k+1 -x ρ µ+1 x σ µ+1 k ∈ I so x k+1 x i M -x i x ρ µ+1 x σ-1 k x σ µ+1 k ∈ I. If i+ρ µ+1 ≤ k we have x i x ρ µ+1 -x h 0 x 1+ρ µ+1 , so x i M ∈ P F (S, a). If i+ρ µ+1 > k we have x k+1 x i M -x i+ρ µ+1 -k x σ+σ µ+1 k ∈ I. But s µ = ( σ + σ µ+1 )k + ρ µ+1 + 1 so i + ρ µ+1 -k + ( σ + σ µ+1 )k = s µ + i -1 -k < s µ and x i+ρ µ+1 -k x σ+σ µ+1 k ∈ Ap(S, a) so x i M ∈ P F (S, a). Hence P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -ρ µ+1 }. e) Suppose ρ µ+1 > 0, ρ > 1. We have P F (S, a) 1 ⊂ {x i x σ k x p µ+1 -1 k+1 , i = 1, ..., ρ -1}. Let i = 1, ..., ρ -1, j = 1, ..., k, M = x σ k x p µ+1 -1 k+1
. By the same arguments as in the above item b) we have

x j x i M -x α 0 N i ∈ I for some monomial N i and α ∈ N * . Since x p µ+1 k+1 -x ρ µ+1 x σ µ+1 k ∈ I, we have x k+1 x i M -x i x ρ µ+1 x σ k x σ µ+1 k ∈ I. If i + ρ µ+1 ≤ k we have x k+1 x i M -x h 0 x i+ρ µ+1 x σ k x σ µ+1 k ∈ I, so x i M ∈ P F (S, a). If i + ρ µ+1 > k we have x k+1 x i M -x i+ρ µ+1 -k x σ+σ µ+1 +1 k ∈ I, s µ = ( σ + σ µ+1 )k + ρ + ρ µ+1 so i + ρ µ+1 -k + ( σ + σ µ+1 )k + k < s µ , which implies that x i+ρ µ+1 -k x σ+σ µ+1 +1 k ∈ Ap(S, a) so x i M ∈ P F (S, a). Hence P F (S, a) 1 = {x i x σ k x p µ+1 -1 k+1 , i = 1, ..., min { ρ -1, k -ρ µ+1 }}.
(2) Study of P F (S, a) 1 when r µ+1 < 0, a) Suppose ρ = 0 and r µ+1 < 0. We have

P F (S, a) 1 ⊂ {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -1}. Let i = 1, ..., k -1, j = 1, ..., k, M = x σ-1 k x p µ+1 -1 k+1
. By the same arguments as in the above item 1)b) we have x j x i M -x α 0 N i ∈ I for some monomial N i and α ∈ N * . Since x

p µ+1 k+1 -x -r µ+1 0 x ρ µ+1 x σ µ+1 k ∈ I, we have x k+1 x i M - x -r µ+1 0 x i x σ-1 k ∈ I so x i M ∈ P F (S, a). Hence P F (S, a) 1 = {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k -1}. b) Suppose ρ = 1, σ = 0. We have P F (S, a) 1 ⊂ {x p µ+1 -1 k+1 }. c) Suppose ρ = 1, σ > 0. We have P F (S, a) 1 ⊂ {x i x σ-1 k x p µ+1 -1 k+1 , i = 1, ..., k}. d) Suppose ρ > 1. We have P F (S, a) 1 ⊂ {x i x σ k x p µ+1 -1 k+1 , i = 1, ..., ρ -1}.
By the same arguments as in the above item 2a) we have the equality in the items 2b), 2c), 2d).

(3) Study of P F (S, a) 2 when ρ µ = 0. We have

x σµ k -x r µ 0 x pµ k+1 , P F (S, a) 2 ⊂ {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k -1}. Let i = 1, ..., k -1, j = 1, ..., k, M = x σµ-1 k x p µ+1 -pµ-1 k+1
. If i + j > k we have

x i x j -x i+j-k x k then x j x i M -x r µ 0 x i+j-k x p µ+1 -1 k+1 ∈ I. We have x k+1 x i M = x i x σµ-1 k x p µ+1 -pµ k+1 so by using the set C we get x k+1 x i M - x α 0 N ∈ I for some α ∈ N * if and only if i + (σ µ -1) ≥ s µ -s µ+1 that is i ≥ k -s µ+1 . (i) If s µ+1 ≥ k -1 we have i ≥ k -s µ+1 for all i = 1, ..., k -1. Hence P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k -1}. (ii) If s µ+1 < k -1 We have s µ -s µ+1 = (σ µ -1)k + (k -s µ+1 ) so ρ = k -s µ+1 Hence P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = ρ, ..., k -1}.
(4) If s µ+1 = 0 the set Ap(S, a) is represented by a rectangle, there is no element in P F (S, a) with power of x k+1 equal to p µ+1 -p µ -1 so P F (S, a) 2 = ∅.

(5) Study of P F (S, a) 2 when ρ µ = 1, r µ > h. We have

x 1 x σµ k -x r µ 0 x pµ k+1 , x l x σµ k - x r µ -h 0 x l-1 x pµ k+1 | l = 2, ..., k, P F (S, a) 2 ⊂ {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k}. Let i = 1, ..., k, j = 1, ..., k, M = x σµ-1 k x p µ+1 -pµ-1 k+1 . If i + j > k then we have x i x j -x i+j-k x k . If i+j = k +1 then x j x i M -x r µ 0 x p µ+1 -1 k+1 ∈ I. If i+j > k +1 then x j x i M -x r µ -h 0 x i+j-k-1 x p µ+1 -1 k+1 ∈ I. So x j x i M -x α i,j 0 N ∈ I for some α i,j ∈ N * . We have x k+1 x i M = x i x σµ-1 k x p µ+1 -pµ k+1 so by using the set C we get x k+1 x i M - x α 0 N ∈ I for some α ∈ N * if and only if i + (σ µ -1)k ≥ s µ -s µ+1 , that is i + s µ -1 -k ≥ s µ -s µ+1 or i ≥ k + 1 -s µ+1 . We have to consider several cases. (i) s µ+1 ≥ k, the condition i ≥ k + 1 -s µ+1 is satisfied for i = 1, ..., k. Hence P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1
, i = 1, ..., k}.

(ii) 1 < s µ+1 < k. We have s µ -s µ+1 = (σ µ -1)k+(k+1-s µ+1 ) so k+1-s µ+1 = ρ. Hence

P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = ρ, ..., k}. (iii) s µ+1 = 1. We have i + (σ µ -1)k ≥ s µ -s µ+1 = σ µ k if and only if i = k. Hence P F (S, a) 2 = {x σµ k x p µ+1 -pµ-1 k+1 }. (6) Study of P F (S, a) 2 when ρ µ = 1, r µ = h. We have x 1 x σµ k -x h 0 x pµ k+1 , x i x σµ k - x i-1 x pµ k+1 for i = 2, ..., k and P F (S, a) 2 ⊂ {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k}. Let i = 1, ..., k, j = 1, ..., k, M = x σµ-1 k x p µ+1 -pµ-1 k+1 . If i + j > k then we have x i x j -x i+j-k x k . If i + j = k + 1 then x j x i M -x h 0 x p µ+1 -1 k+1 ∈ I. If i + j > k + 1 then x j x i M -x i+j-k-1 x p µ+1 -1 k+1 ∈ I. (i) If s µ -s µ+1 = 1 so by using the set C we get x j x i M -x α i,j 0 N ∈ I for some α i,j ∈ N * .
On the other side we have

x k+1 x i M = x i x σµ-1 k x p µ+1 -pµ k+1
, so by using the set

C we get x i x σµ-1 k x p µ+1 -pµ k+1 -x α 0 N ∈ I for some α ∈ N * . Hence P F (S, a) 2 = {x i x σµ-1 k x p µ+1 -pµ-1 k+1 , i = 1, ..., k}. (ii) If s µ -s µ+1 > 1 . If i = 1, j = k we have x k x 1 M -x h 0 x pµ k+1 ∈ I. If i > 1 let j = k + 2 -i then x j x i M -x 1 x p µ+1 -1 k+1 ∈ I but since 1 < s µ -s µ+1 we have that x 1 x p µ+1 -1 k+1 ∈ Ap(S, a). so P F (S, a) 2 ⊂ {x 1 x σµ-1 k x p µ+1 -pµ-1 k+1 }.
On the other hand we have

x k+1 x 1 M = x 1 x σµ-1 k x p µ+1 -pµ k+1
. By using the set C we get we have

x k+1 x 1 M = x α 0 N ∈ I for some α ∈ N * if and only if s µ -s µ+1 ≤ s µ -k. Hence, if 1 < s µ -s µ+1 ≤ s µ -k then P F (S, a) 2 = {x 1 x σµ-1 k x p µ+1 -pµ-1 k+1 } and if s µ -k < s µ -s µ+1 then P F (S, a) 2 = ∅. (7) Study of P F (S, a) 2 when ρ µ > 1. We have x ρµ x σµ k -x r µ 0 x pµ k+1 , x ρµ+l x σµ k - x r µ -h 0 x l x pµ k+1 for l = 1, ..., k -ρ µ and P F (S, a) 2 ⊂ {x i x σµ k x p µ+1 -pµ-1 k+1 , i = 1, ..., ρ µ -1}. Let i = 1, ..., ρ µ -1, j = 1, ..., k, M = x σµ k x p µ+1 -pµ-1 k+1 . If i + j > k then we have x i x j -x i+j-k x k , x j x i M -x i+j-k x σµ+1 k x p µ+1 -pµ-1 k+1 ∈ I thus x j x i M - x i+j-k x r µ -h 0 x k-ρµ x p µ+1 -1 k+1 ∈ I but i + j -k + k -ρ µ = i + j -ρ µ < j so x i+j-k x k-ρµ -x h 0 x i+j-ρµ ∈ I, hence x j x i M -x h 0 N ∈ I for some monomial N . On the other hand we have x k+1 x i M = x i x σµ k x p µ+1 -pµ k+1 so by using the set C we get x i x σµ k x p µ+1 -pµ k+1 -x α 0 N ∈ I for some α ∈ N * if and only if i + σ µ k ≥ s µ -s µ+1 that is i ≥ ρ µ -s µ+1 . (i) If ρ µ -s µ+1 ≤ 1 we have i ≥ ρ µ -s µ+1 for any i ≥ 1. Hence P F (S, a) 2 = {x i x σµ k x p µ+1 -pµ-1 k+1 , i = 1, ..., ρ µ -1}. (ii) If ρ µ -s µ+1 > 1 we have ρ = ρ µ -s µ+1 and P F (S, a) 2 = {x i x σµ k x p µ+1 -pµ-1 k+1
, i = ρ, ..., ρ µ -1}.

Symmetric almost generalized arithmetic progressions

Theorem 6.1. With the above notations, suppose that k ≥ 3 and either r µ ≥ h or ρ µ = 0. We have S is symmetric if and only if either

(1) a = (σk + 2)p , d = p r -pr , c = (σk + 2)r for any σ ≥ 1, 1 ≤ p < p , h ≥ 1 with gcd(p , r ) = 1, r + hσ > 0, r < -1. Moreover I is minimally generated by the Gröbner basis consisting of the set A and:

x 2 x σ k -x r+h(σ+1) 0 x p k+1 , x i x σ k -x r+hσ 0 x i-2 x p k+1 , i = 3, ..., k, x p k+1 -x -r 0
The Frobenius number is

(ha + d) + σ(ha + kd) + c(p -1) -a. (2) s µ+1 = 0, a = (σk + 2)p -σ kp, d = p r + phσ , c = σ kr + (σk + 2)σ h where σ, σ , p , p, r, h are integers such that σ > σ ≥ 2, p > p > 0, r + h(σ + 1) > 0 and (a, d) = 1.
Moreover I is minimally generated by the Gröbner basis consisting of the set A and:

x 2 x σ-σ k x p -p k+1 -x r+h(σ+1) 0 , x i x σ-σ k x p -p k+1 -x r+hσ 0 x i-2 , i = 3, ..., k x 2 x σ k -x r+h(σ+1) 0 x p k+1 , x i x σ k -x r+hσ 0 x i-2 x p k+1 , i = 3, ..., k, x p k+1 -x σ k
The Frobenius number is (ha + d) + σ(ha + kd) + c(p µ+1 -p µ -1) -a. (3) k > 2, s µ+1 = 0 a = (σk + 2)p -(σk + 1)p, d = p r + ph(σ + 1), c = (σk + 1)r + (σk + 2)(σ + 1)h where σ, σ , p , p, r, h are integers such that σ ≥ 1, p > p > 0, r + h(σ + 1) > 0 and (a, d) = 1. Moreover I is minimally generated by the Gröbner basis consisting of the set A and:

x 1 x p -p k+1 -x r+h(σ+2) 0 , x i x p -p k+1 -x r+h(σ+1) 0 x i-1 , i = 2, ..., k, x 2 x σ k -x r+h(σ+1) 0 x p k+1 , x i x σ k -x r+hσ 0 x i-2 x p k+1 , i = 3, ..., k, x p k+1 -x 1 x σ k
The Frobenius number is

(ha + d) + σ(ha + kd) + c(p µ+1 -p µ -1) -a. (4) s µ+1 = 0, a = (σk + 1)p -(k -1)p, d = p r -pr , c = (k -1)r -(σk + 1)r . d > 0 if and only if r < -(p /p)hσ with p < p , r + h(σ + 1) = h, that is r = -σh, r < -σh.
Moreover I is minimally generated by the Gröbner basis consisting of the set A and:

x 2 x σ-1 k x p -p k+1 -x -r 0 , x i x σ-1 k x p -p k+1 -x -r -h 0 x i-2 x 1 x σ k -x h 0 x p k+1 , x i x σ k -x i-1 x p k+1 , i = 2, ..., k, x p k+1 -x r +h 0 x k-1
The Frobenius number is

(ha + d) + (σ -1)(ha + kd) + c(p µ+1 -1) -a.
Proof.

(1) If s µ+1 = 0 then r µ+1 = 0 and we have that P F (S, a) = P F (S, a) 1 with σ = σ µ , ρ = ρ µ . So card P F (S, a) = 1 if and only if we are in case 2d) with ρ µ = 2. We have s µ = σk + 2 for some σ ≥ 1. That is s p r r' . . . σk + 2 p r 0 p r with the condition p < p , r µ = r + h(σ + 1) > 0, r < 0, r < r. By Lemma 2.2.4 of [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF] we get

a = (σk + 2)p , d = p r -pr , c = (σk + 2)r . The Frobenius number is ϕ(x 1 x σ k x p µ+1 -1 k-1
) -a.

(2) If s µ+1 = 0 and card P F (S, a) 1 = 0, card P F (S, a) 2 = 1. We have to consider the cases 1a) and one of the cases 4ii),5iii),6ii) 7i),7ii); or 1c) and case 7i). More precisely (a) 1a) and 4ii) We have ρ µ = 0, ρ µ+1 = 0, ρ = 0, so card P F (S, a) 2 = 1 if and only if k = 2. (b) 1a) and 5iii) we have ρ µ = 1, s µ+1 = 1 = ρ µ+1 a contradiction with 1a). (c) 1a) and 7i) we have ρ µ = 2, ρ µ+1 = 0. So we have s µ = σ µ k + 2, s µ+1 = σ µ+1 k. We set σ = σ µ , σ = σ µ+1 , p = p µ , p = p µ+1 , r = r µ , and since r µ+1 = 0 = r µ+1 + hσ we have r µ+1 = -hσ and the table s p r r' . . . σk + 2 p r σ k p -hσ By Lemma 2.2.4 of [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF] we get

a = (σk + 2)p -σ kp, d = p r + phσ , c = σ kr + (σk + 2)σ h for some σ ≥ σp ≥ 2, p > p > 0, r > -hσ , r +h(σ +1) > 0. The Frobenius number is ϕ(x 1 x σ k x p µ+1 -pµ-1 k-1
) -a. (d) 1a) and 7ii) Since s µ+1 < ρ µ -1 we have s µ+1 = ρ µ+1 = 0 by 1a), a contradiction. (e) 1c) and 6i) We have card P F (S, a) 2 = ρ µ -1 = 1 if and only if ρ µ = 2. By hypothesis s µ -s µ+1 = 1. So we have s µ = σ µ k + 2, s µ+1 = σ µ k + 1 for some σ ≥ 1. We set p = p µ , p = p µ+1 , r = r µ , and since r µ+1 = 0 = r µ+1 +h(σ+1) we have r µ+1 = -h(σ + 1) and the table: s p r r' . . . σk + 2 p r σk + 1 p -h(σ + 1) By Lemma 2.2.4 of [START_REF] Morales | Equations des variétés monomiales en codimension deux[END_REF] we get a = (σk + 2)p -(σk + 1)p, d = p r + ph(σ + 1), c = (σk + 1)r + (σk + 2)(σ + 1)h for some σ ≥ 1, p > p ≥ 1, r > -h(σ + 1). The Frobenius number is ϕ

(x 1 x σ k x p µ+1 -pµ-1 k-1
) -a.

(3) Suppose s µ+1 = 0 and card P F (S, a) 1 = 1, card P F (S, a) 2 = 0. We are in case 6iii), we have ρ µ = 1, r µ = h, 0 < s µ+1 < k so r µ+1 < 0 and s µ -s µ+1 = (σ µ -1)k + (k -s µ+1 + 1). If s µ+1 = 1 we have ρ = 0, we are in case 2a) and The Frobenius number is ϕ(x

card P F (S, a) 1 = 1 implies k = 2. If s µ+1 > 1 we have 0 < ρ = k -s µ+1 + 1 < k and card P F (S, a) 1 = 1 implies ρ = 2, that is s µ+1 = k -1. On the other hand r µ = h = r µ + h(σ µ + 1) so r µ = -hσ µ . We set σ = σ µ , p = p µ , p = p µ+1 , r =
1 x σ-1 k x p µ+1 -1 k-1
) -a.

Almost Symmetric almost generalized arithmetic progressions

Lemma 7.1. With the above notations, suppose that either r µ ≥ h or ρ µ = 0. Suppose that S is almost symmetric of type ≥ 2 then s µ+1 > 0 and if F rob(S) belongs to P SF i then card(

P SF i ) = 1 except if h = 1, s µ = k + 1, s µ+1 = k, r µ > 1, r µ+1 = -1. Moreover (1) If P SF 1 = { F rob(S)} then F rob(S) = L γ x σ-ε k x p µ+1 -1 k+1
where γ, ε ∈ {0, 1}.

(

) If P SF 2 = { F rob(S)} then F rob(S) = L γ x σµ-ε k x p µ+1 -pµ-1 k+1 2 
where γ, ε ∈ {0, 1}.

(3) If h = 1, s µ = k + 1, s µ+1 = k, r µ > 1, r µ+1 = 1 then a = k + 2, d = 2r µ + 2, c = k(r µ + 2) + 2 with k odd, k ≥ 3, r µ ≥ 0, gcd(a, d) = 1.
We have

P SF = {x 1 , ..., x k } ∪ {x k+1 }, t(S) = k + 1, F rob(S) = x k , F (S) = kd.
Proof. Suppose that F rob(S) ∈ P SF 1+ε , card( P SF 1+ε ) ≥ 2 for some ε ∈ {0, 1}. By checking all cases in Theorem 5.2 there exists 2 ≤ l ≤ k, M a monomial such that F rob(S) = x l M and x l-1 M ∈ P SF 1+ε . Since S is almost symmetric there exists M 1 ∈ P SF such that M 1 x l-1 M -x 0 x l M ∈ I, which implies x l-1 M 1 -x 0 x l ∈ I. We multiply by x 1 and using the Gröbner basis we get

x h 0 x l M 1 -x 0 x l x 1 ∈ I that implies h = 1, M 1 -x 1 ∈ I, if M 1 = x 1
then the embedding dimension of S is less than k+2 contrary to our hypothesis, therefore M 1 = x 1 ∈ P SF . We have to examine all the possibles cases in Theorem 5.2 such that x 1 ∈ P SF . Since σ µ ≥ 1, p µ+1 ≥ 2 the possible cases are 4), 5) or 6). In particular we have s µ+1 > 0. Case 4) implies s µ = k so x k -x r µ 0 x pµ k+1 ∈ I, that means that the embedding dimension of S is less than k + 2 contrary to our hypothesis. Cases 5) and 6) implies P SF 2 = {x 1 , ..., x k } with s µ = k + 1, s µ+1 = k, F rob(S) = x k and P SF 1 ⊂ {x β k+1 } for some β ∈ N * , but this is only possible in case 1a) or 2b). Now we consider the case 1a) so r µ+1 = 0, by the Gröbner basis we have that x p µ+1 k+1 -x k ∈ I which implies that the embedding dimension of S is less than k + 2 contrary to our hypothesis. In case 2b) we have P SF 1 = {x p µ+1 -1 k+1 }, the property almost-symmetry show that x

2(p µ+1 -1) k+1 -x 0 x k ∈ I so that x -r µ+1 0 x k x p µ+1 -2 k+1 -x 0 x k ∈ I hence p µ+1 = 2, r µ+1 = -1 and p µ = 1, so r µ+1 = r µ+1 -1 = -2 we have the table s p r r' . . . k + 1 1 r µ r µ k 2 -2 1
We note that r µ = h = 1 if and only if r µ = -1 which implies d = 0, so case 6) is not possible. The case 5) is possible and we have a

= k + 2, d = 2r µ + 2, c = k(r µ + 2) + 2 with k odd, k ≥ 3, r µ ≥ 0, gcd(a, d) = 1. We have P SF = {x 1 , ..., x k } ∪ {x k+1 }, t(S) = k + 1, F (S) = kd.
Theorem 7.2. Suppose P SF 2 = { F rob(S)}. Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if and only if either

(1) P SF 1 = {x i x p µ+1 -1 k+1 | i = 1, ..., k -l}, P SF 2 = {x 1 x σ k x p µ+1 -2 k+1 } and s p r r' σk + 2 1 r µ (σ -1)k + l p µ+1 r µ+1 0 Since 0 = r µ+1 = r µ+1 +σ we have r µ+1 = -σ with σ ≥ 2, l ≥ 1. t(S) = k -l +1, t(S) = 2 if and only if l = ρ µ+1 = k -1. a = (σk + 2)p µ+1 -((σ -1)k + l) d = p µ+1 r µ + σ c = ((σ -1)k + l)r µ + (σk + 2)σ. where h = 1, k ≥ 3, 1 ≤ l ≤ k -1 and t(S) = k -l + 1, or (2) P SF 1 = {x p µ+1 -1 k+1 }, P SF 2 = {x 1 x σµ k x p µ+1 -2 k+1 } and s p r r' σk + 2 1 r µ σk + 1 p µ+1 r µ+1 -1 but -1 = r µ+1 = r µ+1 + h(σ + 1) so r µ+1 = -h(σ + 1) -1, t(S) = 2. a = (σk + 2)p µ+1 -(σk + 1) d = p µ+1 r µ + h(σ + 1) + 1 c = (σk + 1)

r µ + (σk + 2)(h(σ + 1) + 1).

where h ≥ 1, σ ≥ 1, p µ+1 ≥ 2, r µ > -h(σ + 1) -1, t(S) = 2.

Proof. We have

P SF 2 = {L γ x σµ-δ k x p µ+1 -pµ-1 k+1
} where γ, δ ∈ {0, 1}. We set N σµ-δ :=

x σµ-δ k x p µ+1 -pµ-1 k+1
. By Theorem 5.2 we have P SF

1 = {x Γ M σ-ε , ..., x ∆ M σ-ε } for some Γ ≤ ∆, ε ∈ {0, 1} where M σ-ε := x σ-ε k x p µ+1 -1 k+1
. Since S is almost symmetric we have that

L Γ L ∆ M 2 σ-ε -x 0 L γ N σµ-δ ∈ I. (1) 
We have (x

p µ+1 -1 k+1 ) 2 = x 2p µ+1 -2 k+1 = x p µ+1 k+1 x p µ+1 -2 k+1
since p µ+1 -2 ≥ 0, so (x

p µ+1 -1 k+1 ) 2 - x -r µ+1 0 L ρ µ+1 x σ µ+1 k x p µ+1 -2 k+1 ∈ I so M 2 σ-ε -x -r µ+1 0 L ρ µ+1 x σ µ+1 +2 σ-2ε k x p µ+1 -2 k+1 ∈ I. Note that p µ+1 -2 -(p µ+1 -p µ -1) = p µ -1 ≥ 0 so that (1) becomes L Γ L ∆ x -r µ+1 -1 0 L ρ µ+1 x σ µ+1 +2 σ-2ε k x pµ-1 k+1 -L γ x σµ-δ k ∈ I. (2) 
(1) If Γ + ∆ = 0 we are in case 2b) so s µ -s µ+1 = 1. Since card( P SF 2 ) = 1 we are in case 7i) hence γ = 1, δ = 0, s µ = σ µ k + 2, s µ+1 = σ µ k + 1. We have

x -r µ+1 -1 0 x 1 x σµ k x pµ-1 k+1 -x 1 x σµ k ∈ I (3) 
this is possible only if r µ+1 = -1, p µ = 1. We set σ = σ µ so we have

P SF 1 = {x p µ+1 -1 k+1 }, P SF 2 = {x 1 x σµ k x p µ+1 -2 k+1 } and s p r r' σk + 2 1 r µ σk + 1 p µ+1 r µ+1 -1 but -1 = r µ+1 = r µ+1 + h(σ + 1) so r µ+1 = -h(σ + 1) -1, t(S) = 2. a = (σk + 2)p µ+1 -(σk + 1) d = p µ+1 r µ + h(σ + 1) + 1 c = (σk + 1)r µ + (σk + 2)(h(σ + 1) + 1). (2) If 0 < Γ + ∆ ≤ k we have x Γ+∆ x h-r µ+1 -1 0 L ρ µ+1 x σ µ+1 +2 σ-2ε k x pµ-1 k+1 -L γ x σµ-δ k ∈ I (4) 
which implies h = 1, r µ+1 = 0 and after Theorem 5.2 ρ µ+1 > 0.

(a) If Γ + ∆ + ρ µ+1 ≤ k we have

x 0 x Γ+∆+ρ µ+1 x σ µ+1 +2 σ-2ε k x pµ-1 k+1 -L γ x σµ-δ k ∈ I (5) which is impossible since L γ x σµ-δ k ∈ Ap(S). So (b) Γ + ∆ + ρ µ+1 > k we have x Γ+∆+ρ µ+1 -k x σ µ+1 +2 σ+1-2ε k x pµ-1 k+1 -L γ x σµ-δ k ∈ I (6) 
By Theorem 5.2 in all cases with r µ+1 = 0, ρ µ+1 > 0 and Γ + ∆ + ρ µ+1 > k we have Γ + ∆ + ρ µ+1 = k + 1 so

x 1 x σ µ+1 +2 σ+1-2ε k x pµ-1 k+1 -L γ x σµ-δ k ∈ I (7) 
If

σ µ+1 + σ -σ µ + σ + δ + 1 -2ε > 0 x 1 x σ µ+1 + σ-σµ+ σ+δ+1 k x pµ-1 k+1 -L γ ∈ I (8) 
which leads to a contradiction. So we can assume σ µ+1 + σ -σ µ + σ + δ + 1 -2ε ≤ 0. We have

x 1 x pµ-1 k+1 -L γ x -(σ µ+1 + σ-σµ+ σ+δ+1-2ε) k ∈ I. (9) 
If

x 1 x pµ-1 k+1 = L γ x -(σ µ+1 + σ-σµ+ σ+δ+1-2ε) k , since L γ x -(σ µ+1 + σ-σµ+ σ+δ+1-2ε) k ∈ Ap(S) we have x 1 x pµ-1 k+1
∈ in(I) which implies s µ -s µ+1 = 1 and by 1c) of Theorem 5.2

P F 1 = ∅ a contradiction. So x 1 x pµ-1 k+1 = L γ x -(σ µ+1 + σ-σµ+ σ+δ+1-2ε) k which implies γ = 1, p µ = 1, σ µ+1 + σ -σ µ + σ + δ + 1 -2ε = 0
We have to discuss several cases: ε = 1: So we are either in case 1b) or 1d) and we have σ > 0. On the other hand we have either:

1) σ = σ µ -σ µ+1 -1, ρ > 0, ρ µ+1 + ρ = k + ρ µ ≥ k.
In case 1b) we have ρ = 0 so this case is not possible. Case 1d) implies ρ = 1 ,so that ρ µ+1 = k -1, ρ µ = 0, so we are in case 4), since card( P SF 2 ) = 1 we have k = 2 a contradiction.

2) σ µ = σ µ+1 + σ, ρ µ+1 + ρ = ρ µ , we have σ +δ -1 = 0 so σ = 1, δ = 0. δ = 0 implies that we have to consider cases 5iii), 7i) and 7ii). Case 5iii) implies s µ+1 = 1, case 7ii) implies ρ µ > s µ+1 so σ µ+1 = 0 in both cases and x p µ+1 k+1 -x ρ µ+1 ∈ I, a contradiction. So we have two possible cases 7i)-1b or 7i)-1d. Since card( P SF 2 ) = 1 we have ρ µ = 2 and

P SF 2 = {x 1 x σµ k x p µ+1 -pµ-1 k+1 }. ♦) 7i) 1b): we have ρ = 0, σ = 1, ρ µ+1 = 2, p µ = 1, r µ+1 = 0. We set σ = σ µ , we have P SF 1 = {x i x p µ+1 -1 k+1 | i = 1, ..., k -2}, P SF 2 = {x 1 x σ k x p µ+1 -2 k+1 } and s p r r' σk + 2 1 r µ (σ -1)k + 2 p µ+1 r µ+1 0 but 0 = r µ+1 = r µ+1 + σ so r µ+1 = -σ, t(S) = k -1 and a = (σk + 2)p µ+1 -((σ -1)k + 2) d = p µ+1 r µ + σ c = ((σ -1)k + 2)r µ + (σk + 2)σ.
By using my software we have the following example k = 4, a = 214, d = 15, c = 236, σ = 7, p µ+1 = 8, r µ = 9. ♦♦) 7i) 1d): we have ρ = 1, σ = 1, ρ µ+1 = 1, p µ = 1, r µ+1 = 0. We set σ = σ µ , we have

P SF 1 = {x i x p µ+1 -1 k+1 | i = 1, ..., k -1}, P SF 2 = {x 1 x σ k x p µ+1 -2 k+1 }. and s p r r' σk + 2 1 r µ (σ -1)k + 1 p µ+1 r µ+1 0 but 0 = r µ+1 = r µ+1 + σ so r µ+1 = -σ, t(S) = k and a = (σk + 2)p µ+1 -((σ -1)k + 1) d = p µ+1 r µ + σ c = ((σ -1)k + 1)r µ + (σk + 2)σ.
By using my software we have the following example k = 5, a = 487, d = 7, c = 259, σ = 7, p µ+1 = 14, r µ = 8. ε = 0: We are in case 1e). We have

σ µ+1 + σ -σ µ + σ + δ + 1 = 0. If σ = σ µ -σ µ+1 we have σ + δ + 1 = 0 which is impossible, hence σ µ = σ µ+1 + σ + 1, ρ > 0, ρ + ρ µ+1 = k + ρ µ and σ = δ = 0, so s µ -s µ+1 < k ≤ s µ -ρ µ which implies s µ+1 > ρ µ .
Hence we have to consider only case 7i)-1e). We have ρ µ = 2, ρ + ρ µ+1 = k + 2 which implies ρ -1 = k -ρ µ+1 + 1, and we have seen before that σ = 0, p µ = 1, r µ+1 = 0. We set σ = σ µ , l = ρ µ+1 > 2, so we have (3) If Γ + ∆ > k we are in case 2c), we have Γ = 1, ∆ = k, ε = 1, r µ+1 < 0, ρ = 1, σ > 0, and (2) becomes

P SF 1 = {x i x p µ+1 -1 k+1 | i = 1, ..., k -l}, P SF 2 = {x 1 x σ k x p µ+1 -2 k+1 } and s p r r' σk + 2 1 r µ (σ -1)k + l p µ+1 r µ+1 0 Since 0 = r µ+1 = r µ+1 + σ we have r µ+1 = -σ with σ ≥ 2, l ≥ 3. t(S) = k -l + 1. Note that t(S) = 2 if and only if l = ρ µ+1 = k -1. a = (σk + 2)p µ+1 -((σ -1)k + l) d = p µ+1 r µ + σ c = ((σ -1)k + l)r µ + (σk + 2)σ, with σ ≥ 1, l ≥ 3, p µ+1 ≥ 2, r µ > -σ.
x 1 x -r µ+1 0 L ρ µ+1 x σ µ+1 +2 σ-1 k x pµ-1 k+1 -x 0 L γ x σµ-δ k ∈ I. (10) 
If ρ µ+1 > 0 we have

x -r µ+1 +h-1 0 x ρ µ+1 +1 x σ µ+1 +2 σ-1 k x pµ-1 k+1 -L γ x σµ-δ k ∈ I. ( 11 
)
Since h -r µ+1 ≥ 1 we will have [START_REF] Dilip | Minimal sets of generators for the relation ideals of certain monomial curves[END_REF] we have

L γ x σµ-δ k x p µ+1 -pµ-1 k+1 ∈ Ap(S) a contradiction. If ρ µ+1 = 0 then ρ µ = 1, σ µ = σ µ+1 + σ, σ µ+1 + 2 σ -1 = σ µ + σ -1 but x 1 x σµ k -x r µ 0 x pµ k+1 ∈ I so from
x r µ -r µ+1 0 x σ-1 k x 2pµ-1 k+1 -x 0 L γ x σµ-δ k ∈ I. ( 12 
)
Since r µ -r µ+1 ≥ 2 we will have

L γ x σµ-δ k ∈ in(I) a contradiction. Theorem 7.3. Suppose P SF 1 = { F rob(S)}. Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if and only if either (1) P SF 1 = {x 1 x σ k x p k+1 }, P SF 2 = {x 2 x σ k , ..., x ρµ-1 x σ k }, we have the table s p r r' σk + l + 2 p -σ 1 l p + 1 r µ+1 < 0 a = (σk + l + 2)(p + 1) -lp d = -(p + 1)σ -pr µ+1 c = -lσ -(σk + l + 2)r µ+1 , where h = 1, k ≥ 3, σ ≥ 1, 1 ≤ l ≤ k -3, r µ+1 < -σ and t(S) = l + 1, or (2) P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x k-1 x σ-1 k }. s p r r' σk p 1 -σ 1 k -2 p + 1 r µ+1 < 0 a = (σk)(p + 1) -(k -2)p d = (1 -hσ)(p + 1) -pr µ+1 c = (k -2)(1 -σ) -σkr µ+1 . where h = 1, k ≥ 3, p, σ ≥ 2, r µ+1 < -1 and t(S) = k -1, or (3) P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x σ k }, t(S) = k. s p r r' σk + 1 p 1 -hσ h + 1 k -1 p + 1 r µ+1 < 0 a = (σk + 1)(p + 1) -(k -1)p d = (p + 1)(1 -hσ) -pr µ+1 c = (k -1)(1 -hσ) -(σk + 1)r µ+1 . h ≥ 1, k ≥ 3, p, σ ≥ 1, r µ+1 < min {-h, 1 -hσ} and t(S) = k, or (4) P SF 1 = {x p k+1 }, P SF 2 = {x 1 , ..., x k }. s p r r' k + 1 p -1 1 k p + 1 r µ+1 < 0 a = (k + 1)(p + 1) -kp = k + p + 1 d = -(p + 1) -pr µ+1 c = -k -(k + 1)r µ+1 . with h = 1, k ≥ 3, p ≥ 1, r µ+1 < -1. We have t(S) = k + 1, or (5) P SF 1 = {x 1 x σ-2 k x p k+1 }, P SF 2 = {x 1 x σ-1 k } and s p r r' σk + 1 p -σ 1 2k -1 p + 1 r µ+1 < 0 a = (σk + 1)(p + 1) -(2k -1)p d = -(p + 1)σ -pr µ+1 c = -σ(2k -1) -(σk + 1)r µ+1 . with h = 1, k ≥ 3, σ ≥ 2, p ≥ 1, r µ+1 < -σ. We have t(S) = 2.
Proof. We have

P SF 1 = {L γ x σ-ε k x p µ+1 -1 k+1
} where γ, ε ∈ {0, 1}. We set M σ-ε :=

x σ-ε k x p µ+1 -1 k+1
. By Theorem 5.2 we have

P SF 2 = {x Γ N σµ-δ , ..., x ∆ N σµ-δ } for some Γ ≤ ∆, δ ∈ {0, 1}, where N σµ-δ := x σµ-δ k x p µ+1 -pµ-1 k+1 .
Since S is almost symmetric we have that

L Γ L ∆ N 2 σµ-δ -x 0 L γ M σ-ε ∈ I, (13) 
Note that γ = 0 is possible only in case 2b),where we have σ = 0, ρ = 1, ε = 0. In all other cases we have γ = 1.

(1) If Γ + ∆ = 0 then we are in case 5iii), which implies ρ µ = 1, s µ+1 = 1 so ρ = 0, but in all cases of Theorem 5.2 with card( P SF 1 ) = 1 satisfying these conditions

we have k = 2. (2) If 0 < Γ + ∆ ≤ k we have x Γ+∆ x h-1 0 x 2σµ-2δ k x 2(p µ+1 -pµ-1) k+1 -L γ x σ-ε k x p µ+1 -1 k+1 ∈ I (14) If γ = 0 or h > 1 then x p µ+1 -1 k+1
∈ in(I), which is not possible. So we have γ = 1, h = 1 and

x Γ+∆ x 2σµ-2δ k x 2(p µ+1 -pµ-1) k+1 -x 1 x σ-ε k x p µ+1 -1 k+1 ∈ I (15) 
We consider two cases:

(a) If σ µ = σ µ+1 + σ (so ρ µ = ρ µ+1 + ρ) then 2σ µ -2δ-( σ-ε) = σ µ +σ µ+1 -2δ+ε.
Note that σ µ+1 -2δ + ε < 0 if and only if δ = 1 and either σ µ+1 = 0, ε = 0, either σ µ+1 = 0, ε = 1 or σ µ+1 = 1, ε = 0. If σ µ+1 = 0 we have σ µ = σ, but we can check that no case in Theorem 5.2 with δ = 1 satisfy the condition σ µ = σ. If ε = 0 then the possible cases are 1e) or 2d), both cases imply that ρ > 1 hence ρ µ > 1. We can check that there is no case in Theorem 5.2 with δ = 1, ρ µ > 1.

So we have σ µ+1 -2δ + ε ≥ 0. We have

x Γ+∆ x σµ k x σ µ+1 -2δ+ε k x 2(p µ+1 -pµ-1) k+1 -x 1 x p µ+1 -1 k+1 ∈ I. (16) 
Since

σ µ ≥ 1, if 2(p µ+1 -p µ -1) ≥ p µ+1 -1 then ϕ(x 1 ) ≥ ϕ(x k ) a contra- diction, so we have x Γ+∆ x σµ k x σ µ+1 -2δ+ε k -x 1 x 2pµ+1-p µ+1 k+1 ∈ I (17) 
If

ρ µ = 0 or Γ + ∆ = ρ µ then L ρµ x σµ k -x r µ 0 x pµ k+1 ∈ I which leads to a contradiction since x 1 x 2pµ+1-p µ+1 ) k+1 ∈ Ap(S). Hence we have either Γ + ∆ > ρ µ > 0 or Γ + ∆ < ρ µ , ρ µ > 0. If Γ + ∆ > ρ µ > 0 then x r µ -1 0 x Γ+∆-ρµ x σ µ+1 -2δ+ε k x pµ k+1 -x 1 x 2pµ+1-p µ+1 k+1 ∈ I. (18) 
Since 2p µ + 1 -p µ+1 ≤ p µ we get

x r µ -1 0 x Γ+∆-ρµ x σ µ+1 -2δ+ε k x p µ+1 -pµ-1 k+1 -x 1 ∈ I (19) 
This is possible if and only if r µ = 1, Γ + ∆ -ρ µ = 1, σ µ+1 -2δ + ε = 0 and p µ+1 = p µ + 1. We have several cases.

• δ = 1, by Theorem 5.2 we are in case 6) which implies ρ µ = 1 so Γ + ∆ = 2 and Γ = ∆ = 1, the only possible case is 6ii), so s µs µ+1 > 1. Since 1 = ρ µ = ρ µ+1 + ρ we have either ρ = 0, ρ µ+1 = 1 or ρ = 1, ρ µ+1 = 0. If ρ = 0, ρ µ+1 = 1 by Theorem 5.2 the only possible cases with card(P F 1 (S)) = 1, are 1b) and 2a) with k = 2 a contradiction. If ρ = 1, ρ µ+1 = 0 the only possible case is 2b) with s µ -s µ+1 = 1, a contradiction, so the case δ = 1 is not possible. • δ = 0 implies σ µ+1 = ε = 0. We have to consider in Theorem 5.2 the cases 1e) or 2d) because ε = 0 and 7i), 7ii) because δ = 0. On the other hand Γ + ∆ = ρ µ + 1 implies that we are in case 7ii) with ρ = 2. We set σ = σ µ , p = p µ , l = s µ+1 = ρ µ+1 so we have

P SF 1 = {x 1 x σ k x p k+1 }, P SF 2 = {x 2 x σ k , ..., x ρµ-1 x σ k }, we have the table s p r r' σk + l + 2 p -σ 1 l p + 1 r µ+1 < 0 with σ ≥ 1, 1 ≤ l < k -2. Also 1 = r µ = r µ +σ +1 so r µ = -σ, r µ+1 < -σ ≤ -1, and r µ+1 = r µ+1 + 1 < -σ + 1 ≤ 0. So in fact we are in case 2d) 7ii). We have t(S) = l + 1. Note that t(S) = 2 if and only if l = 1, ρ µ = 3. a = (σk + l + 2)(p + 1) -lp d = -(p + 1)σ -pr µ+1 c = -lσ -(σk + l + 2)r µ+1 . If ρ µ > 0, Γ+∆ < ρ µ . From (17) we have necessarily x Γ+∆ x σµ k x σ µ+1 -2δ+ε k ∈ in(I) so σ µ+1 -2δ + ε > 0. Since x Γ+∆ x σµ+1 k -x r µ 0 x k+Γ+∆-ρµ x pµ k+1 ∈ I we have x r µ 0 x k+Γ+∆-ρµ x pµ k+1 x σ µ+1 -1-2δ+ε k x pµ k+1 -x 1 x 2pµ+1-p µ+1 k+1 ∈ I, (20) 
this is impossible since

x 1 x 2pµ+1-p µ+1 k+1 ∈ Ap(S). (b) σ µ = σ µ+1 + σ +1 (so ρ > 0, ρ µ = ρ µ+1 + ρ-k > 0) then 2σ µ -2δ -( σ -ε) = σ µ + σ µ+1 + 1 -2δ + ε. Note that σ µ+1 + 1 -2δ + ε < 0 if and only if δ = 1, σ µ+1 = 0, ε = 0.
The possible cases in Theorem 5.2 are 7i), 7ii). In 7ii) we have ρ µ+1 < ρ µ so σ µ = σ µ+1 + σ a contradiction. In 7i) we have 2σ µ -2δ-( σ-ε) = σ µ -1 ≥ 0, Γ + ∆ = ρ µ ≥ 2 so (15) becomes

x ρµ x σµ-1 k x 2(p µ+1 -pµ-1) k+1 -x 1 x p µ+1 -1 k+1 ∈ I, (21) 
if 2(p µ+1 -p µ -1) ≥ p µ+1 -1 we get

x ρµ x σµ-1 k x (2(p µ+1 -pµ-1))-(p µ+1 -1) k+1 -x 1 ∈ I, (22) 
which leads to a contradiction; so 2(p µ+1 -p µ -1) < p µ+1 -1, we get ∈ in(I) which is not possible. Hence σ µ+1 + 1 -2δ + ε ≥ 0, and (15) becomes

x ρµ x σµ-1 k -x 1 x (p µ+1 -1)-(2(p µ+1 -pµ-1)) k+1 ∈ I, (23) 
x Γ+∆ x σµ+σ µ+1 +1-2δ+ε k x 2(p µ+1 -pµ-1) k+1 -x 1 x p µ+1 -1 k+1 ∈ I, (24) 
if 2(p µ+1 -p µ -1) ≥ p µ+1 -1 we get a contradiction since σ µ ≥ 1, ϕ(x k ) > ϕ(x 1 ). So

x Γ+∆ x σµ+σ µ+1 +1-2δ+ε k -x 1 x 2pµ+1-p µ+1 k+1 ∈ I. (25) 
Since x 1 x 2pµ+1-p µ+1 k+1

∈ Ap(S, a), we have x Γ+∆ x σµ+σ µ+1 +1-2δ+ε k ∈ in(I). Hence we have either

ρ µ = 0, either Γ + ∆ = ρ µ > 0, either Γ + ∆ > ρ µ > 0 or 0 < Γ + ∆ < ρ µ , σ µ+1 + 1 -2δ + ε > 0. • If ρ µ = 0 or Γ + ∆ = ρ µ > 0 we have L ρµ x σµ k -x r µ 0 x pµ k+1 so from (25) we have x r µ 0 x σ µ+1 +1-2δ+ε k x pµ k+1 -x 1 x 2pµ+1-p µ+1 k+1 ∈ I. (26) 
Since r µ > 0 and x 1 x 2pµ+1-p µ+1 k+1

∈ Ap(S, a) we get a contradiction.

• If k ≥ Γ + ∆ > ρ µ > 0 then we have x Γ+∆ x σµ k -x r µ -h 0
x Γ+∆-ρµ x pµ k+1 , so from (25) we have

x r µ -h 0 x Γ+∆-ρµ x σ µ+1 +1-2δ+ε k x pµ k+1 -x 1 x 2pµ+1-p µ+1 k+1 ∈ I. (27) 
which implies r µ = h = 1. We have p µ -

(2p µ + 1 -p µ+1 ) = p µ+1 - p µ -1 ≥ 0 so x Γ+∆-ρµ x σ µ+1 +1-2δ+ε k x p µ+1 -pµ-1 k+1 -x 1 ∈ I. ( 28 
)
which is possible only if Γ + ∆ -ρ µ = 1, p µ+1 = p µ + 1, σ µ+1 + 1 -2δ + ε = 0, which implies δ = 1, σ µ+1 + ε = 1. But we also have r µ = h = 1, ρ µ > 0 so the only possible case is 6ii) which implies ρ µ = 1, s µ+1 ≥ k so σ µ+1 = 1, ε = 0. We also have ρ µ+1 + ρ = k + 1 so ρ > 1 which implies either case 1e) or case 2d) with ρ = 2 since card( P SF 1 ) = 1. Hence s µ = σ µ k + 1, σ µ ≥ 2, s µ+1 = 2k -1, since r µ = 1 = r µ + σ µ + 1 we have r µ = -σ µ and r µ+1 < -σ µ implies r µ+1 = r µ+1 + 2 < -σ µ + 2 ≤ 0, so in fact we are in case 6ii)) and 2d). We set σ = σ µ , p = p µ so we have

P SF 1 = {x 1 x σ-2 k x p k+1 }, P SF 2 = {x 1 x σ-1 k } and s p r r' σ µ k + 1 p -σ µ 1 2k -1 p + 1 r µ+1 < 0 a = (σ µ k + 1)(p + 1) -(2k -1)p d = -(p + 1)σ µ -pr µ+1 c = -σ µ (2k -1) -(σ µ k + 1)r µ+1 . with h = 1, k ≥ 3, σ µ ≥ 2, p ≥ 1, r µ+1 < -σ µ and t(S) = 2. • Suppose that 0 < Γ + ∆ < ρ µ then σ µ+1 + 1 -2δ + ε > 0. Since x Γ+∆ x σµ+1 k -x r µ 0 x k+Γ+∆-ρµ x pµ k+1 ∈ I we have from (25) x r µ 0 x k+Γ+∆-ρµ x σ µ+1 -2δ+ε k x pµ k+1 -x 1 x 2pµ+1-p µ+1 k+1 ∈ I. ( 29 
)
This is not possible since r µ > 0 and x 1 x 2pµ+1-p µ+1 k+1

∈ Ap(S, a). (3) If Γ + ∆ > k, from (13) we have

x Γ+∆-k x 2σµ+1-2δ k x 2(p µ+1 -pµ-1) k+1 -x 0 L γ x σ-ε k x p µ+1 -1 k+1 ∈ I (30) (a) If σ µ = σ µ+1 + σ then we have ρ µ = ρ µ+1 + ρ, 2σ µ + 1 -2δ -( σ -ε) = σ µ + σ µ+1 + 1 -2δ + ε.
We have several cases. (i) σ µ+1 + 1 -2δ + ε < 0 if and only δ = 1, σ µ+1 = 0, ε = 0. If γ = 0 then we are in case 2b) so σ = σ µ+1 = 0 which implies σ µ = 0, this is not possible, so γ = 1. By looking all cases in Theorem 5.2 with δ = 1 we have ρ µ ≤ 1, on the other side ε = 0, γ = 1 implies ρ > 1 a contradiction since ρ ≤ ρ µ . (ii) σ µ+1 + 1 -2δ + ε = 0 if and only δ = 1 and either σ µ+1 = 0, ε = 1 or σ µ+1 = 1, ε = 0. We have

x Γ+∆-k x σµ k x 2(p µ+1 -pµ-1) k+1 -x 0 L γ x p µ+1 -1 k+1 ∈ I (31) 
ii-*) Suppose γ = 0. We are in case 2b), s µ -s µ+1 = 1, if σ µ+1 = 0 then s µ = ρ µ+1 +1 which is not possible, so σ µ+1 = 1, ρ = 1 so ρ µ ≥ 1. Since δ = 1 implies ρ µ = 1, hence ρ µ+1 = 0 and since s µ -s µ+1 = 1 we have s µ = k + 1, s µ+1 = k. The possible cases are 5i) and 6i), in both cases we have Γ + ∆ -k = 1 = ρ µ . By using the Gröbner basis we have

x r µ -1 0 x 2p µ+1 -pµ-2 k+1 -x p µ+1 -1 k+1 ∈ I (32) that is x r µ -1 0 x p µ+1 -pµ-1 k+1
-1 ∈ I (33) possible only if r µ = 1, p µ+1 = p µ + 1. Since r µ ≥ h ≥ 1 we have equality, so we are in case 6i) and 1 = r µ + 2 so r µ = -1. We set p µ = p, we have P SF 1 = {x p k+1 }, P SF 2 = {x 1 , ..., x k }.

s p r r' k + 1 p -1 1 k p + 1 r µ+1 < 0 a = (k + 1)(p + 1) -kp = k + p + 1 d = -(p + 1) -pr µ+1 c = -k -(k + 1)r µ+1 . with h = 1, k ≥ 3, p ≥ 1, r µ+1 < -1, t(S) = k + 1.
ii-**)Suppose γ = 1. Recall that δ = 1 and either σ µ+1 = 0, ε = 1 or σ µ+1 = 1, ε = 0. If γ = 1, ε = 0 we are in cases 1e) or 2d) so ρ > 1. δ = 1 implies ρ µ ≤ 1, but ρ µ = ρ µ+1 + ρ so we get a contradiction. Therefore δ = 1, σ µ+1 = 0, ε = 1, again from ρ µ = ρ µ+1 + ρ we get s µ+1 = 1, ρ µ = 1, ρ = 0. The possible cases with ρ = 0 are 1b) and 2a) with k = 2 a contradiction since we assume k ≥ 3.

(iii) σ µ+1 + 1 -2δ + ε > 0. If ρ µ > 0 we have x σµ+1 k -x r µ -h 0 x k-ρµ x pµ k+1 so from (30) we have x r µ -h 0 x k-ρµ x Γ+∆-k x σ µ+1 -2δ+ε k x 2p µ+1 -pµ-2 k+1 -x 0 L γ x p µ+1 -1 k+1 ∈ I, (34) hence 
x r µ -h 0 x k-ρµ x Γ+∆-k x σ µ+1 -2δ+ε k x p µ+1 -pµ-1 k+1 -x 0 L γ ∈ I, (35) 
recall that γ = 0, 1, since k -ρ µ ≥ 1, Γ + ∆ -k ≥ 1 we have ϕ(x k-ρµ x Γ+∆-k ) > ϕ(x 0 L γ ) this is not possible.

If ρ µ = 0 we have x σµ k -x r µ 0 x pµ k+1 so from (30) we have

x r µ 0 x Γ+∆-k x σ µ+1 +1-2δ+ε k x p µ+1 -pµ-1 k+1 -x 0 L γ ∈ I, (36) 
this is not possible since r µ > 0, ϕ(x

r µ 0 x k ) > ϕ(x 0 L γ ). (b) If σ µ = σ µ+1 + σ + 1, k + ρ µ = ρ µ+1 + ρ we have ρ µ < ρ µ+1 , ρ and σ µ + 1 - 2δ -( σ -ε) = σ µ+1 + 2 -2δ + ε ≥ 0. Suppose ρ µ = 0, which implies σ µ ≥ 2, since x σµ k -x r µ 0 x pµ k+1 ∈ I from (30) we have x r µ 0 x Γ+∆-k x σ µ+1 +2-2δ+ε k x p µ+1 -pµ-1 k+1 -x 0 L γ ∈ I (37) 
This is possible if and only if γ = 1, Γ + ∆ -k = 1, r µ = 1, p µ+1 = p µ + 1 and σ µ+1 + 2 -2δ + ε = 0. We note that σ µ+1 + 2 -2δ + ε = 0. if and only if σ µ+1 = 0, δ = 1, ε = 0, also note that σ µ+1 = 0 implies r µ+1 < 0. The possible case with r µ+1 < 0, ε = 0 is 2d) with ρ = 2 and ρ µ = 0 implies the case 4ii). Note that r µ = 1 implies h = 1. Moreover we have 1 = r µ = r µ + σ µ so r µ = 1 -σ µ . We set σ := σ µ , p := p µ so we have

P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x k-1 x σ-1 k }. s p r r' σk p 1 -σ 1 k -2 p + 1 r µ+1 < 0 a = (σk)(p + 1) -(k -2)p d = (1 -σ)(p + 1) -pr µ+1 c = (k -2)(1 -σ) -σkr µ+1 . h = 1, σ ≥ 2, p ≥ 1, r µ+1 < -1, t(S) = k -1.
Suppose ρ µ > 0. If γ = 0 then we are in case 2b), so ρ = 1, ρ µ = 0, a contradiction. So γ = 1. We have two cases.

(i) If σ µ+1 + 2 -2δ + ε = 0 then we have δ = 1, σ µ+1 = 0, ε = 0. δ = 1 implies ρ µ = 1, ε = 0 implies ρ = 2 and σ µ+1 = 0 implies r µ+1 < 0, s µ -s µ+1 = (σ µ -1)k + 2 so the possible case is 2d) and 5ii) and we have Γ + ∆ -k = 2. So from (30) we have

x 2 x σµ k x 2(p µ+1 -pµ-1) k+1 -x 0 x 1 x p µ+1 -1 k+1 ∈ I (38) but x 2 x σµ k -x r µ -h 0 x 1 x pµ k+1 ∈ I so x r µ -h 0 x 1 x p µ+1 -pµ-1 k+1 -x 0 x 1 ∈ I (39) 
this is possible only if r µ -h = 1, p µ+1 = p µ + 1. We have h + 1 = r µ = r µ + h(σ + 1) so r µ = 1 -hσ, r µ+1 ≤ -hσ, so r µ+1 = r µ+1 + h ≤ -h(σ -1), so r µ+1 < 0 if and only if σ ≥ 2. We set σ := σ µ , p := p µ so we have

P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x σ k }, t(S) = k. s p r r' σk + 1 p 1 -hσ h + 1 k -1 p + 1 r µ+1 < 0 a = (σk + 1)(p + 1) -(k -1)p d = (p + 1)(1 -hσ) -pr µ+1 c = (k -1)(1 -hσ) -(σk + 1)r µ+1 , with h ≥ 1, p ≥ 1, σ ≥ 2, r µ+1 ≤ -hσ. (ii) Suppose σ µ+1 + 2 -2δ + ε > 0. We have x σµ+1 k -x r µ -h 0 x k-ρµ x pµ k+1 ∈ I. From (30) we get x r µ -h 0 x Γ+∆-k x k-ρµ x σ µ+1 +1-2δ+ε k x p µ+1 -pµ-1 k+1 -x 0 x 1 ∈ I, (40) since 
Γ + ∆ -k ≥ 1, k -ρ µ ≥ 1 we have ϕ(x Γ+∆-k x k-ρµ ) > ϕ(x 0 x 1 )
which is impossible.

Formula for Frobenius number of Almost Symmetric almost generalized arithmetic progressions

This section extends and generalizes all the results of [START_REF] Rosales | Pseudo-symmetric numerical semigroups with three generators[END_REF].

Theorem 8.1. Let S be an AAG almost symmetric with k ≥ 3, t(S) ≥ 2. Then there is a quadratic formula for the Frobenius number in terms of a, d, c, k and the type t(S).

Proof. We have to consider two cases depending on the number i such that F rob(S ∈ ( P SF i ).

I) Suppose F rob(S ∈ ( P SF 2 ). Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if and only if either

(1) P SF 1 = {x i x p µ+1 -1 k+1 | i = 1, ..., k -l}, P SF 2 = {x 1 x σ k x p µ+1 -2 k+1 }. t(S) = k -l + 1. We have a = (σk + 2)p µ+1 -((σ -1)k + l) d = p µ+1 r µ + σ c = ((σ -1)k + l)r µ + (σk + 2)σ. where h = 1, k ≥ 3, 1 ≤ l ≤ k -1, σ ≥ 2. Since x 1 x k-l x 2(p µ+1 -1) k+1 -x 0 F rob(S) ∈ I we have x k-l+1 x 2(p µ+1 -1) k+1 
-F rob(S) ∈ I and F (S) = 2(p µ+1 -1)c + a k-l+1 -a so determine a formula for F (S) consist to determine p µ+1 in terms of a, d, c, k, l.

we set X = p µ+1 we have x

X k+1 -x l x σ-1 k so Xc = a l + σa k -a k (41) and σk(X -1) = a -2X -k + l (42) 
We multiply (41) by k(X -1) and by using (42)we get

k(X -1)Xc = k(X -1)a l + a k (a -2X -k + l) -k(X -1)a k (43) 
So we get a second order equation in the variable

X kcX 2 -(k(c + a l -a k ) -2a k )X -a k (a + l) + ka l = 0 (44) so X = k(c + a l -a k ) -2a k + (k(c + a l -a k ) -2a k ) 2 -4kc(-a k (a + l) + ka l ) 2kc (2) P SF 1 = {x p µ+1 -1 k+1 }, P SF 2 = {x 1 x σµ k x p µ+1 -2 k+1 }, t(S) = 2. We have a = (σk + 2)p µ+1 -(σk + 1) d = p µ+1 r µ + h(σ + 1) + 1 c = (σk + 1)r µ + (σk + 2)(h(σ + 1) + 1). where h ≥ 1, σ ≥ 1, p µ+1 ≥ 2, r µ > -h(σ +1)-1. Since x 2(p µ+1 -1) k+1
-x 0 F rob(S) ∈ I we have and F (S) = 2(p µ+1 -1)c -2a so determine a formula for F (S) consist to determine p µ+1 in terms of a, d, c, k. We set X = p µ+1 we have x

X k+1 -x 0 x 1 x σ k so Xc = a + a 1 + σa k (45) and σk(X -1) = a + 1 -2X (46) 
We multiply (45) by k(X -1) and by using (46)we get

k(X -1)Xc = k(X -1)(a + a l ) + a k (a + 1 -2X) (47) 
So we get a second order equation in the variable

X kcX 2 -(k(c + a + a 1 ) -2a k )X -a k (a + 1) + k(a + a 1 ) = 0 (48) so X = k(c + a + a 1 ) -2a k + (k(c + a + a 1 ) -2a k ) 2 -4kc(-a k (a + 1) + k(a + a 1 )) 2kc 
II) Suppose F rob(S ∈ ( P SF 1 ). Then S is almost symmetric with k ≥ 3, t(S) ≥ 2 if and only if either ∈ I, we set X = p µ+1 we have

(1) P SF 1 = {x 1 x σ k x p k+1 }, P SF 2 = {x 2 x σ k , ..., x ρµ-1 x σ k }, t ( 
σa k = a + c(X -1) (53) 
and F (S) = a 1 + 2(a + c(X -1)) -a k -2a. Determine a formula for F (S) consist to determine X in terms of a, d, c, k. By developing the formula for a we have

σkX = a + kX -2X -k -2 (54) 
We multiply (53) by kX and by using (54)we get

a k (a + kX -2X -k -2) = kaX + kcX(X -1) (55) 
So we get a second order equation in the variable X Proof. The first step is to check if one of the square roots is a natural number, since we dont know t(S) we have to perform k times in the case were the number 1 ≤ l ≤ k appears in this square root. The second step is to check if the solution X as above is a natural number, at this step we know the probably value for t(S) so also the probably case to consider. The third step is to solve a linear system to find the values of σ, p µ+1 , r µ+1 from a, d, c, h, k and check if they are natural numbers and satisfy the conditions of the considered case. 

  σk + 1 p -hσ k -1 p r with σ ≥ 1, p < p , r < -(p /p)hσ. By Lemma 2.2.4 of [6] we get a = (σk + 1)p -(k -1)p, d = p r -pr , c = (k -1)r -(σk + 1)r .

  By using my software we have the following example a = 213, d = 49, c = 209, k = 6, ρ = 5, ρ µ+1 = 3. t(S) = 4.

but x 1 x

 1 (p µ+1 -1)-(2(p µ+1 -pµ-1)) k+1 ∈ Ap(S, a) so x ρµ x σµ-1 k

2 k- 1 k-

 21 S) = l + 1. We have a = (σk + l + 2)(p + 1) -lp d = -(p + 1)σ -pr µ+1 c = -lσ -(σk + l + 2)r µ+1 ,where h = 1, k ≥ 3, σ ≥ 1, 1 ≤ l ≤ k -3, r µ+1 < -σ. Since x 2 x l+1 x 2σ k -x 0 F rob(S) ∈ I we have x l+3 x 2σ k -F rob(S) ∈ I and F (S) = a l+3 + 2σa k -a but x l+2 x σ k -x 0 x p µ+1 -1 k+1 ∈ I. We set X = p µ+1 so a l+2 + σa k = a + c(X -1)(49)andF (S) = a l+3 + 2(a + c(X -1) -a l+2 ) -a. Determine a formula for F (S) consist to determine X in terms of a, d, c, k, l.By developing the formula for a we haveσkX = a -2X -l(50)We multiply (49) by kX and by using (50)we getka l+2 X + kσa k X = kaX + kcX(X -1)(51)So we get a second order equation in the variable XkcX 2 -(k(c -a + a l+2 ) -2a k )X -a k (a -l) = 0 (52) so X = k(c -a + a l+2 ) -2a k + (k(c -a + a l+2 ) -2a k ) 2 + 4kca k (a -l) 2kc (2) P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x k-1 x σ-1 k }, t(S) = k -1. We have a = (σk)(p + 1) -(k -2)p d = (1 -hσ)(p + 1) -pr µ+1 c = (k -2)(1 -σ) -σkr µ+1 .where h = 1, k ≥ 3, p, σ ≥ 2, r µ+1 < -1.Since our semigroup is almost symmetric we have x 2 x k-1 x 2σ-x 0 F rob(S) ∈ I that is x 1 x 2σ-x 0 F rob(S) ∈ I so F (S) = a 1 + 2σa k -a k -2a. But x σ k -x 0 x p µ+1 -1 k+1

kcX 2 -( 3 )x σ k -x h+1 0 x p µ+1 - 1 k+1∈( 4 ) 2 1 x 2σ- 2 k- 2 k-Corollary 8 . 2 .

 2301422282 (k(c -a + a k ) -2a k )X -a k (a -k + 2) = 0 (56) and X = k(c -a + a k ) -2a k + (k(c -a + a k ) -2a k ) 2 + 4kca k (a -k + 2) 2kc . P SF 1 = {x 1 x σ-1 k x p k+1 }, P SF 2 = {x 2 x σ-1 k , ..., x σ k }, t(S) = k. We have a = (σk + 1)(p + 1) -(k -1)p d = (p + 1)(1 -hσ) -pr µ+1 c = (k -1)(1 -hσ) -(σk + 1)r µ+1 . h ≥ 1, k ≥ 3, p, σ ≥ 1, r µ+1 < min {-h, 1 -hσ}. Since x 2 x 2σ-1 k -x 0 F rob(S) ∈ I we have F (S) = a 2 + 2σa k -a k -2a but x 1 I, we set X = p µ+1 , so we have a 1 + σa k = (h + 1)a + c(X -1)(57)and F (S) = a 2 + 2(a + c(X -1) -a 1 ) -a k -2a. Determine a formula for F (S) consist to determine X in terms of a, d, c, k. By developing the formula for a we haveσkX = a + X(k -2) -k + 1(58)We multiply (57) by kX and by using (58)we getka 1 X + a k (a + X(k -2) -k + 1) = k(h + 1)aX + kcX(X -1)(59)So we get a second order equation in the variableX kcX 2 -(k(a 1 + c -(h + 1)a + a k ) -2a k )X -a k (a -k + 1) = 0 (60) X = k(a 1 + c -(h + 1)a + a k ) -2a k + (k(a 1 + c -(h + 1)a + a k ) -2a k ) 2 + 4kca k (a -k + 1) 2kc . P SF 1 = {x p k+1 }, P SF 2 = {x 1 , ..., x k }, t(S) = k + 1. We have a = k + p + 1 d = -(p + 1) -pr µ+1 c = -k -(k + 1)r µ+1 . with h = 1, k ≥ 3, p ≥ 1, r µ+1 < -1. We have F (S) = pc -a and a = k + p + 1 so F (S) = c(a -k -1) -a. (5) P SF 1 = {x 1 x σ-2 k x p k+1 }, P SF 2 = {x 1 x σ-1 k }, t(S) = 2. We have a = (σk + 1)(p + 1) -(2k -1)p d = -(p + 1)σ -pr µ+1 c = -σ(2k -1) -(σk + 1)r µ+1 . with h = 1, k ≥ 3, σ ≥ 2, p ≥ 1, r µ+1 < -σ.Since x x 0 F rob(S) ∈ I we have x 2 x 2σ-F rob(S) ∈ I soF (S) = a 2 + 2σa k -2a k -a but x 1 x σ k -x 0 x p k+1 ∈ I, which gives a 1 + σa k = a + c(X -1),(61)where we have setX = p + 1. Hence F (S) = a 2 + 2(a + c(X -1) -a 1 ) -2a k -a.Determine a formula for F (S) consist to determine X in terms of a, d, c, k. By developing the formula for a we haveσkX = a + X(2k -2) -2k + 1(62)We multiply (61) by kX and by using (62)we getka 1 X + a k (a + X(2k -2) -2k + 1) = kaX + kcX(X -1)(63)So we get a second order equation in the variableX kcX 2 -(k(c + d + 2a k ) -2a k )X -a k (a -2k + 1) = 0 (64) X = k(c + d + 2a k ) -2a k + (k(c + d + 2a k ) -2a k ) 2 + 4kca k (a -2k + 1)2kc Given a AAG-semigroup S with data a, d, c, h, k by at most 4k tests solving quadratics equations we can determine if S is almost symmetric.

Example 8 . 3 .

 83 We have implemented the above algorithm and we have for 150 ≤ a ≤ 160, 1 ≤ d ≤ 10, 170 ≤ c ≤ 180, 19 ≤ k ≤ 20, 2 ≤ h ≤ 3 the following values for which the AAG-semigroup is almost symmetric: a = 153, d = 11, c = 177, k = 19, h = 3, case II.1, p µ+1 = 7, σ = 1, r µ+1 = -3. a = 156, d = 11, c = 174, k = 20, h = 3, case II.1, p µ+1 = 7, σ = 1, r µ+1 = -3. a = 155, d = 1, c = 177, k = 20, h = 4, case I.2, p µ+1 = 8, σ = 1, r µ = -1. a = 152, d = 3, c = 170, k = 21, h = 2, case I.1, p µ+1 = 4, σ = 2, r µ = 0. a = 150, d = 4, c = 178, k = 21, h = 3, case II.1, p µ+1 = 6, σ = 1, r µ+1 = -2.