Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence, Frobenius number

Marcel Morales

- To cite this version:

Marcel Morales. Symmetric and Almost Symmetric semigroups generated by an almost generalized arithmetic sequence, Frobenius number: Symmetric and Almost Symmetric semigroups, Frobenius number. 2021. hal-04043909

HAL Id: hal-04043909

https://hal.science/hal-04043909

Preprint submitted on 24 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SYMMETRIC AND ALMOST SYMMETRIC SEMIGROUPS GENERATED BY AN ALMOST GENERALIZED ARITHMETIC SEQUENCE, FROBENIUS NUMBER

MARCEL MORALES

Abstract

Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers $a, h a+d, h a+2 d, \ldots, h a+k d, c$, that is its embedding dimension is $k+2$. In [8] was described a Gröbner basis of the ideal defining S under one technical assumption, the complete case will be published in a forthcoming paper. In this paper we give a complete description of S when is symmetric or almost symmetric and a quadratic formula for its Frobenius number. Note that our results generalizes and extends previous result of [11], [3] and [13]. Given a, d, k, h, c a simple algorithm allows us to determine if S is almost symmetric.

Contents

1. Introduction 1
2. Frobenius number and Apéry set 2
3. Frobenius number and Gröbner basis 3
4. almost generalized arithmetic progressions, Grobner basis 4
5. almost generalized arithmetic progressions, Pseudo Frobenius set 7
6. Symmetric almost generalized arithmetic progressions 13
7. Almost Symmetric almost generalized arithmetic progressions 16
8. Formula for Frobenius number of Almost Symmetric almost generalized arithmetic progressions 28
References 32

1. Introduction

Let a_{0}, \ldots, a_{n} be natural numbers and $S=\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\{k_{0} a_{0}+\ldots k_{n} a_{n} \mid k_{i} \in \mathbb{N}\right\}$ the semigroup generated by $\left\{a_{0}, \ldots, a_{n}\right\}$. Recall that if a_{0}, \ldots, a_{n} are relatively prime numbers then the Frobenius number of S, denoted by $F(S)$, is the biggest integer that does not belong to S. Let $A=K[S]=K\left[t^{k} \mid k \in S\right]=K\left[t^{a_{0}}, \ldots, t^{a_{n}}\right] \subset K[t]$ the semigroup ring of S and $R=K\left[x_{0}, \ldots, x_{n}\right]$ the polynomial ring in $n+1$ variables over K graded

[^0]by the weights deg $x_{i}=a_{i}$, for all $i=0, \ldots, n$. The defining ideal I of $K[S]$ is defined to be the kernel of the K-algebra homomorphism $\Psi: R \rightarrow K[S]$ given by $\Psi\left(x_{i}\right)=t^{a_{i}}$ for all $i=0, \ldots, n$, we will use often the fact that I is a prime ideal generated by binomials and does not contains monomials. We use the weighted degree reverse lexicographical order \prec_{w} on the monomials of the ring R with $x_{0} \prec \ldots \prec x_{n}$, and the map $\varphi:[[R]] \rightarrow \mathbb{N}$ defined by $\varphi(M)=k_{1} a_{1}+\ldots+k_{n} a_{n}$ for every monomial $M=x_{0}^{k_{0}} \ldots x_{n}^{k_{n}} \in[[R]]$. Let recall the pseudo-Frobenius set $P F(S)$ of all integer number a which satisfies $a \notin S$ and $a+s \in S$, for all $0 \neq s \in S$ and the number of elements of $P F(S)$ is called the type of S, denoted by $t(S)$. Finally, the Apéry set with respect to a_{0} plays an important role in our paper which is defined by $\operatorname{Ap}\left(S, a_{0}\right)=\left\{s \in S \mid s-a_{0} \notin S\right\}$. By defining in [8] a monomial Apéry set $\widetilde{\operatorname{Ap}\left(S, a_{0}\right)}$ of a_{0}, that is an algebraic analogous to the Apéry set $\operatorname{Ap}\left(S, a_{0}\right)$ and using the order \prec_{w} as well as the map φ, we can change from studying the Apéry set to studying the set of monomials of $\left[\left[R^{\prime}\right]\right]$ which are not in in (I), where $R^{\prime}=K\left[x_{0}, \ldots, x_{n}\right]$.
Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers $a, h a+d, h a+2 d, \ldots, h a+k d, c$, that is its embedding dimension is $k+2$. Our goal is to describe all properties of an AAGsemigroup in terms of a continuous fraction, as an extension of my previous works in [5], [6]. In [8] was described a Gröbner basis of the ideal defining S under one condition, the complete case will be published in a forthcoming paper. In this paper we continue the work of [8] and we can describe the Pseudo Frobenius set (see Theorem 5.2), and so the Frobenius number and its type is at most $2 k$. As a consequence we can give a complete description of AAG-semigroups that are symmetric or almost symmetric see Theorems 6.1, 7.2, 7.3), in particular we prove that if S is almost symmetric its type is at most the embedding dimension minus 1. Another interesting point is that if S is almost symmetric then the Frobenius number is given by a quadratic formula in terms of a, d, k, h, c and $t(S)$. Moreover a simple algorithm using the solutions of some quadratic equations allow us to decide is an AAG-semigroup is almost symmetric. This result extends and generalizes all the results of [13].

The algorithms presented here are the extensions of the previous work by the first author in [5], [6] and can be downloaded in http://www-fourier.univ-grenoblealpes.fr/ morales/.

2. Frobenius number and Apéry set

Denote by \mathbb{Z} and \mathbb{N} the set of integers and nonnegative integers respectively. Let S be a semigroup in \mathbb{N}. Given $n \geqslant 1$ and $a_{0}, \ldots, a_{n} \in \mathbb{N}$ such that $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$,

$$
S=\left\langle a_{0}, \ldots, a_{n}\right\rangle=\left\{k_{0} a_{0}+\ldots k_{n} a_{n} \mid k_{i} \in \mathbb{N}\right\}
$$

The set $\mathbb{N} \backslash S$ is finite. If S is minimally generated by $\left\{a_{0}, \ldots, a_{n}\right\} S$ is called numerical semigroup and $n+1$ is called the embedding dimension of S.

Definition 2.1. Let S be a numerical semigroup generated by a_{0}, \ldots, a_{n}.
(i) The number $F(S)=\max \{a \in \mathbb{Z} \mid a \notin S\}$ is called the Frobenius number of S.
(ii) We also define

$$
P F(S)=\{a \in \mathbb{Z} \backslash S \mid a+s \in S \text { if } s \in S \text { and } s \neq 0\}
$$

and an element of $\operatorname{PF}(S)$ is called a pseudo-Frobenius number of S. Obviously, the Frobenius number is a pseudo-Frobenius number and the number of elements of $P F(S)$ is called the type of S, denoted by $t(S)$.
(iii) The Apéry set of a_{0} in S is the set

$$
\operatorname{Ap}\left(S, a_{0}\right)=\left\{s \in S \mid s-a_{0} \notin S\right\} .
$$

3. Frobenius number and Gröbner basis

The definitions and results in this section follow from [8]. Let $R=K\left[x_{0}, \ldots, x_{n}\right]$ be the polynomial ring graded by the weights $\operatorname{deg} x_{0}=a_{0}, \ldots, \operatorname{deg} x_{n}=a_{n}, J \subset R$ a graded ideal and $B=R / J$. We say that R and B are quasi-homogeneous rings. Set $R^{\prime}=K\left[x_{1}, \ldots, x_{n}\right]$ and denote by $\left[\left[R^{\prime}\right]\right]$ the set of all monomials of R^{\prime}. Let $\varphi:\left[\left[R^{\prime}\right]\right] \rightarrow \mathbb{N}$ be the map defined by $\varphi(M)=k_{1} a_{1}+\ldots+k_{n} a_{n}$, for every monomial $M=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} \in$ [[$\left.R^{\prime}\right]$].

We consider the weighted degree reverse lexicographical order \prec_{w} with $x_{0} \prec_{w} \cdots \prec_{w}$ x_{n} and $\operatorname{deg} x_{i}=a_{i}$ for all $0 \leqslant i \leqslant n$.

With the notations in the introduction, let $\operatorname{in}(I)$ be the initial ideal of the reduced Gröbner basis $G(S)$ of I for the order \prec_{w}. Set $R^{\prime}=K\left[x_{1}, \ldots, x_{n}\right]$ and denote by [$\left.\left[R^{\prime}\right]\right]$ the set of all monomials of R^{\prime}. Now we consider two sets

$$
\widetilde{\operatorname{Ap}\left(S, a_{0}\right)}=\left\{M \in\left[\left[R^{\prime}\right]\right] \mid M \notin \operatorname{in}(I)\right\}
$$

and

$$
\left.\widetilde{P F(S)}=\left\{M \in \widetilde{\operatorname{Ap}\left(S, a_{0}\right.}\right) \mid \forall i \neq 0, \exists N_{i} \in\left[\left[R^{\prime}\right]\right], \alpha_{i}>0 \text { such that } M x_{i}-x_{0}^{\alpha_{i}} N_{i} \in I\right\} .
$$

Corollary 3.1. Assume that $\operatorname{gcd}\left(a_{0}, \ldots, a_{n}\right)=1$. Then we have
(i) The restriction of φ to $\widehat{\operatorname{Ap}\left(S, a_{0}\right)}$ is bijective and $\varphi\left(\widetilde{\left.\operatorname{Ap}\left(S, a_{0}\right)\right)}=\operatorname{Ap}\left(S, a_{0}\right)\right.$. In particular $\operatorname{card}\left(\operatorname{Ap}\left(S, a_{0}\right)\right)=a_{0}$ and $F(S)=\max \{\varphi(M) \mid M \notin \operatorname{in}(I)\}-a_{0}$.
(ii) The restriction of φ to $\widetilde{P F(S)}$ is bijective and $\varphi(\widetilde{P F(S)})=P F(S)+a_{0}$, i.e. each element $\omega \in \operatorname{PF}(S)$ corresponds to exactly one monomial $M_{\omega} \in \widehat{P F(H)}$ such that $\varphi\left(M_{\omega}\right)-a_{0}=\omega$.
(iii) Let $s \in \operatorname{Ap}\left(S, a_{0}\right), M \in \widetilde{\left.\operatorname{Ap(S,a_{0}}\right)}$ and $N \in\left[\left[R^{\prime}\right]\right]$ such that $s=\varphi(M)=\varphi(N)$. Then $M \prec_{w} N$.
We denote by $\widetilde{\operatorname{Frob}(S)}$ the unique monomial in $\widetilde{P F(S)}$ such that $\varphi(\widetilde{\operatorname{Frob}(S)})=$ $F(S)+a_{0}$.

The following Lemma is very simple but very useful in order to prove that a set is a Gröbner basis of an ideal in many cases (see [8], [2]).

Lemma 3.2. Let $R=K\left[x_{0}, \ldots, x_{n}\right], R^{\prime}=K\left[x_{s}, \ldots, x_{n}\right]$ be the rings with respect to the order \prec_{w} and $\left[\left[R^{\prime}\right]\right]$ the set of all monomials of R^{\prime}. Let $I \subset R$ be an ideal such that the generators of $\operatorname{in}(I)$ belongs to R^{\prime} and $\left.\operatorname{rad}\left(\operatorname{in}(I) \cap R^{\prime}\right)\right)=\left(x_{s}, \ldots, x_{n}\right) R^{\prime}$. Let $G \subset I$ be a finite set and J the monomial ideal generated by the leading monomials of the elements in G. If $\operatorname{card}\left(\left[\left[R^{\prime}\right]\right] \backslash J\right)=\operatorname{card}\left(\left[\left[R^{\prime}\right]\right] \backslash\left(\operatorname{in}(I) \cap R^{\prime}\right)\right)$ then G is a Gröbner basis of I.

4. almost generalized arithmetic progressions, Grobner basis

Let a, d, k, h, c be positive integers. Recall that a numerical almost generalized arithmetic sequence-semigroup (numerical AAG-semigroup for short) is a semigroup minimally generated by relatively prime integers $a, h a+d, h a+2 d, \ldots, h a+k d, c$, that is its embedding dimension is $k+2$ An interesting particular case is a semigroup minimally generated by relatively prime integers $a, a+d, a+2 d, \ldots, a+k d, c$, called numerical almost arithmetic-semigroup (numerical AA-semigroup for short). AA-semigroups are the case $h=1$ of AAG-semigroups and where considered by D. P. Patil [9], [10] from the algebraic point of view and by J. L. Ramírez Alfonsín and O. J. Rodseth in [11], [12] from combinatorial point of view.

Let $R=K\left[x_{0}, \ldots, x_{k}, x_{k+1}\right]$ be the polynomial ring in $k+2$ variables over K graded by the weights $\operatorname{deg} x_{i}=h a+i d$ for $i=0, \ldots, k, \operatorname{deg} x_{k+1}=c$ and I the kernel of the homomorphism $\Phi: R \rightarrow K[S]$ of K-algebras defined by $\Phi\left(x_{0}\right)=t^{a}, \Phi\left(x_{i}\right)=t^{h a+i d}$ for all $i=1, \ldots, k$ and $\Phi\left(x_{k+1}\right)=t^{c}$. Let $R^{\prime}=K\left[x_{1}, \ldots, x_{k}\right]$. The following result extends [10][Lemma 1.6.1].

Lemma 4.1. For $1 \leq i, j<k$, set

$$
\mathcal{A}=\left\{x_{i} x_{j}-x_{0}^{h} x_{i+j} \mid \text { if } i+j \leq k,\right\} \cup\left\{x_{i} x_{j}-x_{i+j-k} x_{k} \mid \text { if } i+j>k\right\} .
$$

Then every binomial of \mathcal{A} belongs to I and $\operatorname{card}(\mathcal{A})=\frac{(k-1) k}{2}$.
Proof. Let $1 \leq i, j<k$. The results are implied by the fact that $\varphi\left(x_{i} x_{j}\right)=h a+i d+$ $h a+j d=h a+(h a+(i+j) d)$ if $i+j \leq k$ or $\varphi\left(x_{i} x_{j}\right)=(h a+i d)+(h a+j d)=$ $(h a+(i+j-k) d)+(h a+k d)$ if $i+j>k$.

Corollary 4.2. Let consider any Gröbner basis with respect to an order \prec_{w} such that $x_{0} \prec_{w} x_{1} \prec_{w} \ldots \prec_{w} x_{k} \prec_{w} x_{k+1}$. The initial ideal $\operatorname{in}(I)$ and $\widetilde{\left.\operatorname{Ap(S,a_{0}}\right)}$ can be represented in the plane.

Proof. By hypothesis and Lemma 4.1 we have only to consider only the monomials in $\operatorname{in}(I)$ which can be written as $L_{i} x_{k}^{\alpha} x_{k+1}^{\beta}$ where $0 \leq i<k, L_{0}=1$ and $L_{i}=x_{i}$ for $i>0$. We associate to $L_{i} x_{k}^{\alpha} x_{k+1}^{\beta}$ the point $(i+\alpha k, \beta) \in \mathbb{N}^{2}$.
Lemma 4.3. Let $s \in \mathbb{N}, p, r \in \mathbb{Z}$ such that

$$
r a=s d-p c .
$$

Let $s=\sigma k+\rho$, where $0 \leq \rho<k$. For convenience we can write $s=\sigma k+l \rho$, where $l=0$ if $\rho=0$ and $l=1$ if $\rho>0$. It follows that $r a=\sigma k d+l \rho d-p c$ so that

$$
(r+h(\sigma+l)) a=\sigma(h a+k d)+l(h a+\rho d)-p c . \quad(*)
$$

We set $r^{\prime}=r+h(\sigma+l)$. We have

- $L_{l} x_{k}^{\sigma}-x_{0}^{r^{\prime}} x_{k+1}^{p} \in I$ if $p, r^{\prime} \geq 0$,
- $L_{l} x_{k}^{\sigma} x_{k+1}^{-p}-x_{0}^{r^{\prime}} \in I$ if $p<0, r^{\prime}>0$,
- $x_{k+1}^{p}-x_{0}^{-r^{\prime}} L_{l} x_{k}^{\sigma} \in I$ if $p \geq 0, r^{\prime}<0$.

Our aim is to construct a Gröbner basis and describe the set $\widetilde{\operatorname{Ap}\left(S, a_{0}\right)}$. By applying our algorithm for the case $n=3$ in Section 4.1 with numbers a, d, c, we get numbers $s_{i}, p_{i}, q_{i}, r_{i}$ for $0 \leq i \leq m+1$ such that

$$
a r_{i}=s_{i} d-p_{i} c
$$

Let s_{0} be the smallest natural number such that $\left(s_{0}, 0, r_{0}\right)$ is solution of the equation $s d-p c=r a$. Set $p_{0}=0$ and let p_{1} be the smallest natural number such that $\left(s_{1}, p_{1}, r_{1}\right)$ is solution of the equation $s d-p c=r a$, where $0 \leq s_{1}<s_{0}$. Note that

$$
s_{0}=\frac{a}{\operatorname{gcd}(a, d)} \text { and } p_{1}=\frac{\operatorname{gcd}(a, d)}{\operatorname{gcd}(a, d, c)} .
$$

Now we want to define numbers $s_{i}, p_{i}, r_{i}, q_{i}$ for $i \geq 2$. We will use the extended Euclid's algorithm for the computation of $\operatorname{gcd}(a, b)$. Namely, let consider the Euclid's algorithm with negative rest:

$$
\left\{\begin{aligned}
s_{0} & =q_{2} s_{1}-s_{2} \\
s_{1} & =q_{3} s_{2}-s_{3} \\
\cdots & =\cdots \\
s_{m-1} & =q_{m+1} s_{m} \\
s_{m+1} & =0
\end{aligned}\right.
$$

where $q_{i} \geq 2, s_{i} \geq 0$ for all $i=2, \ldots, m+1$. For $i=1, \ldots, m$, let define p_{i+1}, r_{i+1} by

$$
p_{i+1}=p_{i} q_{i+1}-p_{i-1}, r_{i+1}=r_{i} q_{i+1}-r_{i-1}
$$

It is proved in [6] that for $i=0, \ldots, m$,

$$
s_{i} p_{i+1}-s_{i+1} p_{i}=s_{0} p_{1}=\frac{a}{\operatorname{gcd}(a, d, c)}
$$

and the sequences s_{i}, r_{i} are decreasing, while the sequence p_{i} is increasing. see [5] and [6].

Let $s_{i}=\sigma_{i} k+\rho_{i}$, where $0 \leq \rho_{i}<k$. We set $l_{i}=0$ if $\rho_{i}=0, l_{i}=1$ if $\rho_{i}>0$ and $r_{i}^{\prime}=r_{i}+h\left(\sigma_{i}+l_{i}\right)$. Since $s_{i}>s_{i+1}$ we have $\sigma_{i} \geq \sigma_{i+1}$, if $\sigma_{i}=\sigma_{i+1}$ then $l_{i} \geq l_{i+1}$, if $\sigma_{i}>\sigma_{i+1}$ then $\left|l_{i}-l_{i+1}\right| \leq 1$. In both cases we have $\sigma_{i}+l_{i} \geq \sigma_{i+1}+l_{i+1}$, which implies $r_{i}^{\prime}>r_{i+1}^{\prime}$. Let μ be the unique integer such that $r_{\mu}^{\prime}>0 \geq r_{\mu+1}^{\prime}$. In our next results we suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. Note that by the definition of $\mu r_{\mu}^{\prime} \geq h$ is true when $h=1$. We give some results from [8] without proofs.

Definition 4.4. With the above notations. If $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$ we set:
(1) If $\rho_{\mu}=0$ we set

$$
\mathcal{B}=\left\{x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}\right\}
$$

If $\rho_{\mu} \neq 0$ we set

$$
\mathcal{B}=\left\{x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}, x_{\rho_{\mu}+j} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}-h} x_{j} x_{k+1}^{p_{\mu}} \mid 1 \leq j \leq k-\rho_{\mu}\right\} .
$$

Note that since the embedding dimension of the semigroup S is $k+2$ we have $s_{\mu}>k$.
(2) Suppose $s_{\mu+1} \neq 0$. Let $s_{\mu}-s_{\mu+1}=\widetilde{\sigma} k+\widetilde{\rho}$, with $0 \leq \widetilde{\rho}<k$. Set $\widetilde{l}=0$ if $\widetilde{\rho}=0$, $\widetilde{l}=1$ if $\widetilde{\rho}>0$ and $\widetilde{r}=r_{\mu}-r_{\mu+1}+h(\widetilde{\sigma}+\widetilde{l})$. If $\widetilde{\rho}>0$ then set

$$
\mathcal{C}=\left\{x_{\widetilde{\rho}} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\widetilde{r}}, x_{j+\widetilde{\rho}} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\widetilde{r}-1} x_{j} \mid 1 \leq j \leq k-\widetilde{\rho}\right\}
$$

and if $\widetilde{\rho}=0$ then set $\mathcal{C}=\left\{x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\widetilde{r}}\right\}$. Suppose $s_{\mu+1}=0$. We set $\mathcal{C}=\emptyset$.
(3) $\mathcal{D}:=\left\{x_{k+1}^{p_{\mu+1}}-x_{0}^{-r_{\mu+1}^{\prime}} x_{\rho_{\mu+1}}^{l_{\mu+1}} x_{k}^{\sigma_{\mu+1}}\right\}$. By our assumptions the embedding dimension of the semigroup S is $k+2$ so $p_{\mu+1}>1$, that is $\mu>0$, and if $r_{\mu+1}^{\prime}=0$ we have $s_{\mu+1}>k$.

Now in order to find the set $\widetilde{\operatorname{Ap(S,a)}}$ we need to define two 2 rectangles

$$
\begin{aligned}
& A=\left\{(y, z) \in \mathbb{N}^{2} \mid 0 \leq y<s_{\mu}-s_{\mu+1}, 0 \leq z<p_{\mu+1}\right\} \\
& B=\left\{(y, z) \in \mathbb{N}^{2} \mid s_{\mu}-s_{\mu+1} \leq y<s_{\mu}, 0 \leq z<p_{\mu+1}-p_{\mu}\right\} .
\end{aligned}
$$

Note that if $s_{\mu+1}=0$ then $B=\emptyset$. For $0 \leq i<k$, set $L_{i}=1$ if $i=0$ and $L_{i}=x_{i}$ if $i>0$. To any point $(y, z) \in \mathbb{N}^{2}$ we associate the monomial $M(y, z):=L_{i} x_{k}^{\alpha} x_{k+1}^{z}$, where $\alpha=\left\lfloor\frac{y}{k}\right\rfloor$ and $i=y-k \alpha$. Conversely, any monomial $L_{i} x_{k}^{\alpha} x_{k+1}^{z} \in\left[\left[R^{\prime}\right]\right]$ can be represented by the point $(y, z) \in \mathbb{N}^{2}$, where $y=\alpha k+i$.

The next theorem allows to compute effectively a system of generators of the ideal semigroup I, it precises and extends the main theorem of [10] where the case $h=1$ is considered.

Theorem 4.5. With the above notations, suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$.
(i) We have

$$
\widetilde{\operatorname{Ap(S,a)}}=\left\{L_{i} x_{k}^{\alpha} x_{k+1}^{z} \mid(y, z) \in A \cup B, \alpha=\left\lfloor\frac{y}{k}\right\rfloor, i=y-k \alpha\right\} .
$$

(ii) If $s_{\mu+1} \neq 0$ then $\mathcal{G}:=\mathcal{A} \cup \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$ is a Gröbner basis of I.
(iii) If $s_{\mu+1}=0$ then $\mathcal{G}:=\mathcal{A} \cup \mathcal{B} \cup \mathcal{D}$ is a Gröbner basis of I.

The following result extends the main result of J. L. Ramírez Alfonsín and O. J. Rodseth in [11], [12], which is the case when $h=1$.

Corollary 4.6. With the above notations, suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. We have

$$
\operatorname{Ap}(S, a)=\left\{\left.h a\left\lceil\frac{y}{k}\right\rceil+d y+c z \right\rvert\,(y, z) \in A \cup B\right\}
$$

5. almost generalized arithmetic progressions, Pseudo Frobenius set

The case S symmetric was studied in [11] and the case S is pseudo symmetric was studied in [3] with the hypothesis that $h=1$. Both publications are corollaries of this section. In our work we will describe the Pseudo Frobenius set and characterize when S is almost symmetric in general for $h \geq 1$. In this paper we restrict to the hypothesis $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. Note that $r_{\mu}^{\prime} \geq h$ is satisfied if $h=1$.

Lemma 5.1. With the above notations, suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. Let $\widetilde{P F(S, a)_{1}}$ be the set of monomials in $\widetilde{P F(S, a)}$ such that the power of x_{k+1} is $p_{\mu+1}-1$ and let $\widehat{P F(S, a)_{2}}$ be the set of monomials in $\widehat{P F(S, a)}$ such that the power of x_{k+1} is $p_{\mu+1}-p_{\mu}-1$. We have

$$
\widetilde{P F(S, a)}=\widetilde{P F(S, a)_{1}} \cup \widetilde{P F(S, a)_{2}} .
$$

In particular $1 \leq t(S) \leq 2 k$.
Proof. We have
$\widetilde{\operatorname{Ap}(S, a)}=\left\{L_{i} x_{k}^{\alpha} x_{k+1}^{z} \mid i+\alpha k<s_{\mu}, z<p_{\mu+1}\right.$ and $\left(i+\alpha k<s_{\mu}-s_{\mu+1}\right.$ or $\left.\left.z<p_{\mu+1}-p_{\mu}\right)\right\}$,
Let M be a monomial in $\widetilde{\operatorname{Ap(S,a)}}$, recall that M belongs to $\widetilde{P(S, a)}$ if and only if for all $i=1, \ldots, k+1$ we have that $x_{i} M-x_{0}^{\alpha} N_{i} \in I$ for some monomial N_{i} and some $\alpha \in \mathbb{N}^{*}$. We order the monomials in $\widehat{\operatorname{Ap}(S, a)}$ by saying that $M \ll N$ if $N=x_{i} M$ for some $i=1, \ldots, k+1$. So $\widetilde{P F(S, a)}$ is included in the set of maximal elements of $\widetilde{\operatorname{Ap}(S, a)}$ for this order. Note that for a maximal monomial of $\widetilde{\operatorname{Ap(S,a)}}$ we have that the power of x_{k+1} is either $p_{\mu+1}-p_{\mu}-1$ or $p_{\mu+1}-1$. Let $\widetilde{P F(S, a)_{1}}$ be the set of monomials in $P \widetilde{P(S, a)}$ such that the power of x_{k+1} is $p_{\mu+1}-1$ and let $\widetilde{P F(S, a)_{2}}$ be the set of monomials in $\widetilde{P F(S, a)}$ such that the power of x_{k+1} is $p_{\mu+1}-p_{\mu}-1$. We have $\operatorname{card}\left(\widetilde{P F(S, a)_{1}}\right), \operatorname{card}\left(\widetilde{P F(S, a)_{2}}\right) \leq k$ so $t(S) \leq 2 k$.

Note that if M belongs to $\widetilde{P(S, a)}$ then for all $i=1, \ldots, k+1 x_{i} M \in \operatorname{in}(I)$, so if $x_{i} M \in \widetilde{\operatorname{Ap(S,a)}}$ for some $i=1, \ldots, k+1$ then certainly $M \notin \widetilde{P(S, a)}$. Note also that $s_{\mu}-s_{\mu+1}=\left(\sigma_{\mu}-\sigma_{\mu+1}\right) k+\rho_{\mu}-\rho_{\mu+1}$, so if $\rho_{\mu+1} \leq \rho_{\mu}$ then we have $\widetilde{\sigma}=\sigma_{\mu}-\sigma_{\mu+1}, \widetilde{\rho}=$ $\rho_{\mu}-\rho_{\mu+1}$ and if $\rho_{\mu+1}>\rho_{\mu}$ then we have $\widetilde{\sigma}=\sigma_{\mu}-\sigma_{\mu+1}-1, \widetilde{\rho}=k+\rho_{\mu}-\rho_{\mu+1}$.
Theorem 5.2. With the above notations, suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. We have
(1) If $r_{\mu+1}^{\prime}=0$
(a) If $\rho_{\mu+1}=0$ then $\widetilde{P F(S, a)_{1}}=\emptyset$.
(b) If $\rho_{\mu+1}>0, \widetilde{\rho}=0$ then

$$
\widetilde{P(S, a)_{1}}=\left\{x_{i} x_{k}^{\tilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-\rho_{\mu+1}\right\} .
$$

(c) If $\rho_{\mu+1}>0, \widetilde{\rho}=1, \widetilde{\sigma}=0$ then $\widetilde{P(S, a)_{1}}=\emptyset$.
(d) If $\rho_{\mu+1}>0, \widetilde{\rho}=1, \widetilde{\sigma}>0$ then

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\tilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-\rho_{\mu+1}\right\} .
$$

(e) If $\rho_{\mu+1}>0, \widetilde{\rho}>1$ then

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, \text { min }\left\{\widetilde{\rho}-1, k-\rho_{\mu+1}\right\}\right\} .
$$

(2) If $r_{\mu+1}^{\prime}<0$
(a) If $\widetilde{\rho}=0$ then

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-1\right\} .
$$

(b) If $\widetilde{\rho}=1, \widetilde{\sigma}=0$ then

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{k+1}^{p_{\mu+1}-1}\right\} .
$$

(c) If $\widetilde{\rho}=1, \widetilde{\sigma}>0$ then

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k\right\}
$$

(d) If $\widetilde{\rho}>1$ then

$$
\widetilde{P(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, \widetilde{\rho}-1\right\} .
$$

(3) If $s_{\mu+1}=0$ then $\widehat{P(S, a)_{2}}=\emptyset$.
(4) $\rho_{\mu}=0$
(i) If $s_{\mu+1} \geq k-1$ then

$$
\widetilde{P F(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k-1\right\} .
$$

(ii) If $s_{\mu+1}<k-1$ then

$$
\widetilde{P F(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, k-1\right\} .
$$

(5) $\rho_{\mu}=1, r_{\mu}^{\prime}>h$
(i) If $s_{\mu+1} \geq k$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\} .
$$

(ii) If $1<s_{\mu+1}<k$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, k\right\} .
$$

(iii) If $s_{\mu+1}=1$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\} .
$$

(6) $\rho_{\mu}=1, r_{\mu}^{\prime}=h$
(i) If $s_{\mu}-s_{\mu+1}=1$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\} .
$$

(ii) If $1<s_{\mu}-s_{\mu+1} \leq s_{\mu}-k$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{1} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\} .
$$

(iii) If $s_{\mu}-k<s_{\mu}-s_{\mu+1}$ then $\widetilde{P(S, a)_{2}}=\emptyset$.
(7) $\rho_{\mu}>1$
(i) If $s_{\mu+1} \geq \rho_{\mu}-1$ then

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, \rho_{\mu}-1\right\} .
$$

(ii) If $s_{\mu+1}<\rho_{\mu}-1$ then $\widetilde{\rho}=\rho_{\mu}-s_{\mu+1}$ and

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, \rho_{\mu}-1\right\} .
$$

Before going to the proof let remark:
Remark 5.3. a) Let $i, j=1, \ldots, k$ and M a monomial, if $i+j \leq k$ then we have $x_{i} x_{j}-x_{0}^{h} x_{i+j} \in I$ so $x_{j} x_{i} M-x_{0}^{h} x_{i+j} M \in I$.
b) A monomial $x_{i} M$ for some $i=1, \ldots, k$ belongs to $\widetilde{P(S, a)}$ if and only if for any $j=1, \ldots, k+1$ there is a binomial $x_{j} x_{i} M-x_{0}^{\alpha} N$ for some monomial N and $\alpha \in \mathbb{N}^{*}$. So in order to check if $x_{i} M$ belongs to $\widetilde{P(S, a)}$ we need only to consider j such that $i+j>k$.
c) Let note that the elements in $\widetilde{P(S, a)_{i}}$ are ordered by increasing order of evaluation by φ.

Proof. We have to consider all possible cases:
(1) Study of $\widetilde{P(S, a)_{1}}$ when $r_{\mu+1}^{\prime}=0$,
a) Suppose $\rho_{\mu+1}=0$. Let $M_{i}=x_{i} x_{k}^{\alpha} x_{k+1}^{p_{\mu+1}-1} \in \widetilde{P(S, a)_{1}}$ for some $1 \leq$ $i \leq k$, such that $i+k \alpha<s_{\mu}-s_{\mu+1}$. Since $x_{k+1}^{p_{\mu+1}}-x_{k}^{\sigma_{\mu+1}} \in I$ we have $x_{k+1} M_{i}-x_{i} x_{k}^{\alpha} x_{k}^{\sigma_{\mu+1}} \in I$, but $i+k \alpha+k \sigma_{\mu+1}<s_{\mu}-s_{\mu+1}+s_{\mu+1}=s_{\mu}$ so $x_{i} x_{k}^{\alpha} x_{k}^{\sigma_{\mu+1}} \in \widehat{\operatorname{Ap(S,a)}}$ showing that $M_{i} \notin \widehat{P(S, a)}$ a contradiction, that is $P F(S, a)_{1}=\emptyset$.
b) Suppose $\rho_{\mu+1}>0, \widetilde{\rho}=0$. We have

$$
\widetilde{P F(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\tilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-1\right\}
$$

and $s_{\mu}=\left(\tilde{\sigma}+\sigma_{\mu+1}\right) k+\rho_{\mu+1}$. Let $i=1, \ldots, k-1, j=1, \ldots, k$ and $M=x_{k}^{\tilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}$ such that $i+j>k$. We have $x_{i} x_{j}-x_{i+j-k} x_{k} \in I$ so $x_{j} x_{i} M-x_{i+j-k} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1} \in I$, since $x_{k}^{\tilde{\sigma}} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\widetilde{r}} \in I$ we have $x_{j} x_{i} M-x_{0}^{\widetilde{r}} x_{i+j-k} x_{k+1}^{p_{\mu}-1} \in I$ where $\widetilde{r}>0$.
From $x_{k+1}^{p_{\mu+1}}-x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in I$, we get $x_{k+1} x_{i} M-x_{i} x_{\rho_{\mu+1}} x_{k}^{\widetilde{\sigma}-1} x_{k}^{\sigma_{\mu+1}} \in I$. If $i+\rho_{\mu+1} \leq k$ then $x_{i} x_{\rho_{\mu+1}}-x_{0}^{h} x_{1+\rho_{\mu+1}}$, so $x_{i} M \in \widehat{P(S, a)}$. If $i+\rho_{\mu+1}>k$ then $x_{k+1} x_{i} M-x_{i+\rho_{\mu+1}-k} x_{k}^{\widetilde{\sigma}+\sigma_{\mu+1}} \in I$ but $i+\rho_{\mu+1}-k+\left(\widetilde{\sigma}+\sigma_{\mu+1}\right) k=$
$s_{\mu}+i-k<s_{\mu}$ which implies that $x_{i+\rho_{\mu+1}-k} x_{k}^{\widetilde{\sigma}+\sigma_{\mu+1}} \in \widetilde{\operatorname{Ap(S,a)}}$ so $x_{i} M \notin \widetilde{P(S, a)}$. Hence

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-\rho_{\mu+1}\right\}
$$

c) Suppose $\rho_{\mu+1}>0, \widetilde{\rho}=1, \widetilde{\sigma}=0$. We have

$$
\widetilde{P F(S, a)_{1}} \subset\left\{x_{k+1}^{p_{\mu+1}-1}\right\} .
$$

The binomial $x_{k+1}\left(x_{k+1}^{p_{\mu+1}-1}\right)-x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in I$ but $x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in \widetilde{\operatorname{Ap(S,a})}$ so $\widetilde{P F(S, a)_{1}}=\emptyset$.
d) Suppose $\rho_{\mu+1}>0, \widetilde{\rho}=1, \widetilde{\sigma}>0$. We have

$$
\widetilde{P F(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k\right\}
$$

Let $i=1, \ldots, k, j=1, \ldots, k, M=x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}$. By the same arguments as in the above item b) we have $x_{j} x_{i} M-x_{0}^{\alpha} N_{i} \in I$ for some monomial N_{i} and $\alpha \in$ \mathbb{N}^{*}. The binomial $x_{k+1}^{p_{\mu+1}}-x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in I$ so $x_{k+1} x_{i} M-x_{i} x_{\rho_{\mu+1}} x_{k}^{\widetilde{\sigma}-1} x_{k}^{\sigma_{\mu+1}} \in I$. If $i+\rho_{\mu+1} \leq k$ we have $x_{i} x_{\rho_{\mu+1}}-x_{0}^{h} x_{1+\rho_{\mu+1}}$, so $x_{i} M \in \widehat{P F(S, a)}$. If $i+\rho_{\mu+1}>$ k we have $x_{k+1} x_{i} M-x_{i+\rho_{\mu+1}-k} x_{k}^{\widetilde{\sigma}+\sigma_{\mu+1}} \in I$. But $s_{\mu}=\left(\widetilde{\sigma}+\sigma_{\mu+1}\right) k+\rho_{\mu+1}+1$ so $i+\rho_{\mu+1}-k+\left(\widetilde{\sigma}+\sigma_{\mu+1}\right) k=s_{\mu}+i-1-k<s_{\mu}$ and $x_{i+\rho_{\mu+1}-k} x_{k}^{\tilde{\sigma}+\sigma_{\mu+1}} \in$ $\widetilde{\operatorname{Ap}(S, a)}$ so $x_{i} M \notin \widehat{P(S, a)}$. Hence

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-\rho_{\mu+1}\right\}
$$

e) Suppose $\rho_{\mu+1}>0, \tilde{\rho}>1$. We have

$$
\widetilde{P(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, \widetilde{\rho}-1\right\}
$$

Let $i=1, \ldots, \widetilde{\rho}-1, j=1, \ldots, k, M=x_{k}^{\tilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}$. By the same arguments as in the above item b) we have $x_{j} x_{i} M-x_{0}^{\alpha} N_{i} \in I$ for some monomial N_{i} and $\alpha \in \mathbb{N}^{*}$. Since $x_{k+1}^{p_{\mu+1}}-x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in I$, we have $x_{k+1} x_{i} M-x_{i} x_{\rho_{\mu+1}} x_{k}^{\widetilde{\sigma}} x_{k}^{\sigma_{\mu+1}} \in$ I. If $i+\rho_{\mu+1} \leq k$ we have $x_{k+1} x_{i} M-x_{0}^{h} x_{i+\rho_{\mu+1}} x_{k}^{\widetilde{\sigma}} x_{k}^{\sigma_{\mu+1}} \in I$, so $x_{i} M \in$ $\widetilde{P(S, a)}$. If $i+\rho_{\mu+1}>k$ we have $x_{k+1} x_{i} M-x_{i+\rho_{\mu+1}-k} x_{k}^{\widetilde{\sigma}+\sigma_{\mu+1}+1} \in I$, $s_{\mu}=\left(\widetilde{\sigma}+\sigma_{\mu+1}\right) k+\widetilde{\rho}+\rho_{\mu+1}$ so $i+\rho_{\mu+1}-k+\left(\widetilde{\sigma}+\sigma_{\mu+1}\right) k+k<s_{\mu}$, which implies that $x_{i+\rho_{\mu+1}-k} x_{k}^{\widetilde{\sigma}+\sigma_{\mu+1}+1} \in \widetilde{\operatorname{Ap}(S, a)}$ so $x_{i} M \notin P \widetilde{P(S, a)}$. Hence

$$
\widetilde{P F(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, \min \left\{\widetilde{\rho}-1, k-\rho_{\mu+1}\right\}\right\} .
$$

(2) Study of $\widetilde{P F(S, a)_{1}}$ when $r_{\mu+1}^{\prime}<0$,
a) Suppose $\widetilde{\rho}=0$ and $r_{\mu+1}^{\prime}<0$. We have

$$
\widetilde{P(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-1\right\} .
$$

Let $i=1, \ldots, k-1, j=1, \ldots, k, M=x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}$. By the same arguments as in the above item 1)b) we have $x_{j} x_{i} M-x_{0}^{\alpha} N_{i} \in I$ for some monomial N_{i} and $\alpha \in \mathbb{N}^{*}$. Since $x_{k+1}^{p_{\mu+1}}-x_{0}^{-r_{\mu+1}^{\prime}} x_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} \in I$, we have $x_{k+1} x_{i} M-$ $x_{0}^{-r_{\mu+1}^{\prime}} x_{i} x_{k}^{\widetilde{\sigma}-1} \in I$ so $x_{i} M \in \widetilde{P F(S, a)}$. Hence

$$
\widetilde{P(S, a)_{1}}=\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k-1\right\} .
$$

b) Suppose $\widetilde{\rho}=1, \widetilde{\sigma}=0$. We have

$$
\widetilde{P(S, a)_{1}} \subset\left\{x_{k+1}^{p_{\mu+1}-1}\right\} .
$$

c) Suppose $\widetilde{\rho}=1, \widetilde{\sigma}>0$. We have

$$
\widetilde{P F(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\widetilde{\sigma}-1} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, k\right\}
$$

d) Suppose $\widetilde{\rho}>1$. We have

$$
\widetilde{P(S, a)_{1}} \subset\left\{x_{i} x_{k}^{\widetilde{\sigma}} x_{k+1}^{p_{\mu+1}-1}, i=1, \ldots, \widetilde{\rho}-1\right\}
$$

By the same arguments as in the above item 2a) we have the equality in the items 2b), 2c), 2d).
(3) Study of $\widetilde{P F(S, a)_{2}}$ when $\rho_{\mu}=0$. We have $x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}$,

$$
\widetilde{P F(S, a)_{2}} \subset\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k-1\right\}
$$

Let $i=1, \ldots, k-1, j=1, \ldots, k, M=x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$. If $i+j>k$ we have $x_{i} x_{j}-x_{i+j-k} x_{k}$ then $x_{j} x_{i} M-x_{0}^{r_{\mu}^{\prime}} x_{i+j-k} x_{k+1}^{p_{\mu+1-1}} \in I$.
We have $x_{k+1} x_{i} M=x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}}$ so by using the set \mathcal{C} we get $x_{k+1} x_{i} M-$ $x_{0}^{\alpha} N \in I$ for some $\alpha \in \mathbb{N}^{*}$ if and only if $i+\left(\sigma_{\mu}-1\right) \geq s_{\mu}-s_{\mu+1}$ that is $i \geq k-s_{\mu+1}$.
(i) If $s_{\mu+1} \geq k-1$ we have $i \geq k-s_{\mu+1}$ for all $i=1, \ldots, k-1$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k-1\right\} .
$$

(ii) If $s_{\mu+1}<k-1$ We have $s_{\mu}-s_{\mu+1}=\left(\sigma_{\mu}-1\right) k+\left(k-s_{\mu+1}\right)$ so $\widetilde{\rho}=k-s_{\mu+1}$ Hence

$$
\widetilde{P F(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, k-1\right\} .
$$

(4) If $s_{\mu+1}=0$ the set $\widetilde{A p(S, a)}$ is represented by a rectangle, there is no element in $\widehat{P F(S, a)}$ with power of x_{k+1} equal to $p_{\mu+1}-p_{\mu}-1$ so $\widehat{P F(S, a)_{2}}=\emptyset$.
(5) Study of $\widetilde{P F(S, a)_{2}}$ when $\rho_{\mu}=1, r_{\mu}^{\prime}>h$. We have $x_{1} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}, x_{l} x_{k}^{\sigma_{\mu}}-$ $x_{0}^{r_{\mu}^{\prime}-h} x_{l-1} x_{k+1}^{p_{\mu}} \mid l=2, \ldots, k$,

$$
\widetilde{P(S, a)_{2}} \subset\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\}
$$

Let $i=1, \ldots, k, j=1, \ldots, k, M=x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$. If $i+j>k$ then we have $x_{i} x_{j}-x_{i+j-k} x_{k}$. If $i+j=k+1$ then $x_{j} x_{i} M-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu+1}-1} \in I$. If $i+j>k+1$ then $x_{j} x_{i} M-x_{0}^{r_{\mu}^{\prime}-h} x_{i+j-k-1} x_{k+1}^{p_{\mu+1}-1} \in I$. So $x_{j} x_{i} M-x_{0}^{\alpha_{i, j}} N \in I$ for some $\alpha_{i, j} \in \mathbb{N}^{*}$. We have $x_{k+1} x_{i} M=x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}}$ so by using the set \mathcal{C} we get $x_{k+1} x_{i} M-$ $x_{0}^{\alpha} N \in I$ for some $\alpha \in \mathbb{N}^{*}$ if and only if $i+\left(\sigma_{\mu}-1\right) k \geq s_{\mu}-s_{\mu+1}$, that is $i+s_{\mu}-1-k \geq s_{\mu}-s_{\mu+1}$ or $i \geq k+1-s_{\mu+1}$. We have to consider several cases. (i) $s_{\mu+1} \geq k$, the condition $i \geq k+1-s_{\mu+1}$ is satisfied for $i=1, \ldots, k$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\} .
$$

(ii) $1<s_{\mu+1}<k$. We have $s_{\mu}-s_{\mu+1}=\left(\sigma_{\mu}-1\right) k+\left(k+1-s_{\mu+1}\right)$ so $k+1-s_{\mu+1}=$ $\widetilde{\rho}$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, k\right\} .
$$

(iii) $s_{\mu+1}=1$. We have $i+\left(\sigma_{\mu}-1\right) k \geq s_{\mu}-s_{\mu+1}=\sigma_{\mu} k$ if and only if $i=k$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\}
$$

(6) Study of $\widetilde{P(S, a)_{2}}$ when $\rho_{\mu}=1, r_{\mu}^{\prime}=h$. We have $x_{1} x_{k}^{\sigma_{\mu}}-x_{0}^{h} x_{k+1}^{p_{\mu}}, x_{i} x_{k}^{\sigma_{\mu}}-$ $x_{i-1} x_{k+1}^{p_{\mu}}$ for $i=2, \ldots, k$ and

$$
\widetilde{P(S, a)_{2}} \subset\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\} .
$$

Let $i=1, \ldots, k, j=1, \ldots, k, M=x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$. If $i+j>k$ then we have $x_{i} x_{j}-x_{i+j-k} x_{k}$. If $i+j=k+1$ then $x_{j} x_{i} M-x_{0}^{h} x_{k+1}^{p_{\mu+1}-1} \in I$. If $i+j>k+1$ then $x_{j} x_{i} M-x_{i+j-k-1} x_{k+1}^{p_{\mu+1}-1} \in I$.
(i) If $s_{\mu}-s_{\mu+1}=1$ so by using the set \mathcal{C} we get $x_{j} x_{i} M-x_{0}^{\alpha_{i, j}} N \in I$ for some $\alpha_{i, j} \in \mathbb{N}^{*}$.
On the other side we have $x_{k+1} x_{i} M=x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}}$, so by using the set \mathcal{C} we get $x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\alpha} N \in I$ for some $\alpha \in \mathbb{N}^{*}$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, k\right\} .
$$

(ii) If $s_{\mu}-s_{\mu+1}>1$. If $i=1, j=k$ we have $x_{k} x_{1} M-x_{0}^{h} x_{k+1}^{p_{\mu}} \in I$. If $i>1$ let $j=k+2-i$ then $x_{j} x_{i} M-x_{1} x_{k+1}^{p_{\mu+1}-1} \in I$ but since $1<s_{\mu}-s_{\mu+1}$ we have that $x_{1} x_{k+1}^{p_{\mu+1}-1} \in \widetilde{A p(S, a)}$. so

$$
\widetilde{P(S, a)_{2}} \subset\left\{x_{1} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\}
$$

On the other hand we have $x_{k+1} x_{1} M=x_{1} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}}$. By using the set \mathcal{C} we get we have $x_{k+1} x_{1} M=x_{0}^{\alpha} N \in I$ for some $\alpha \in \mathbb{N}^{*}$ if and only if $s_{\mu}-s_{\mu+1} \leq s_{\mu}-k$. Hence, if $1<s_{\mu}-s_{\mu+1} \leq s_{\mu}-k$ then $\widetilde{P(S, a)_{2}}=$ $\left\{x_{1} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\}$ and if $s_{\mu}-k<s_{\mu}-s_{\mu+1}$ then $\widetilde{P(S, a)_{2}}=\emptyset$.
(7) Study of $\widetilde{P(S, a)_{2}}$ when $\rho_{\mu}>1$. We have $x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}, x_{\rho_{\mu}+l} x_{k}^{\sigma_{\mu}}-$ $x_{0}^{r_{\mu}^{\prime}-h} x_{l} x_{k+1}^{p_{\mu}}$ for $l=1, \ldots, k-\rho_{\mu}$ and

$$
\widetilde{P(S, a)_{2}} \subset\left\{x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, \rho_{\mu}-1\right\}
$$

Let $i=1, \ldots, \rho_{\mu}-1, j=1, \ldots, k, M=x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$. If $i+j>k$ then we have $x_{i} x_{j}-x_{i+j-k} x_{k}, x_{j} x_{i} M-x_{i+j-k} x_{k}^{\sigma_{\mu}+1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1} \in I$ thus $x_{j} x_{i} M-$ $x_{i+j-k} x_{0}^{r_{\mu}^{\prime}-h} x_{k-\rho_{\mu}} x_{k+1}^{p_{\mu+1}-1} \in I$ but $i+j-k+k-\rho_{\mu}=i+j-\rho_{\mu}<j$ so $x_{i+j-k} x_{k-\rho_{\mu}}-x_{0}^{h} x_{i+j-\rho_{\mu}} \in I$, hence $x_{j} x_{i} M-x_{0}^{h} N \in I$ for some monomial N.
On the other hand we have $x_{k+1} x_{i} M=x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}}$ so by using the set \mathcal{C} we get $x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}}-x_{0}^{\alpha} N \in I$ for some $\alpha \in \mathbb{N}^{*}$ if and only if $i+\sigma_{\mu} k \geq s_{\mu}-s_{\mu+1}$ that is $i \geq \rho_{\mu}-s_{\mu+1}$.
(i) If $\rho_{\mu}-s_{\mu+1} \leq 1$ we have $i \geq \rho_{\mu}-s_{\mu+1}$ for any $i \geq 1$. Hence

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=1, \ldots, \rho_{\mu}-1\right\}
$$

(ii) If $\rho_{\mu}-s_{\mu+1}>1$ we have $\widetilde{\rho}=\rho_{\mu}-s_{\mu+1}$ and

$$
\widetilde{P(S, a)_{2}}=\left\{x_{i} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}, i=\widetilde{\rho}, \ldots, \rho_{\mu}-1\right\} .
$$

6. Symmetric almost generalized arithmetic progressions

Theorem 6.1. With the above notations, suppose that $k \geq 3$ and either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. We have S is symmetric if and only if either
(1) $a=(\sigma k+2) p^{\prime}, d=p^{\prime} r-p r^{\prime}, c=(\sigma k+2) r^{\prime}$ for any $\sigma \geq 1,1 \leq p<p^{\prime}, h \geq 1$ with $\operatorname{gcd}\left(p^{\prime}, r^{\prime}\right)=1, r+h \sigma>0, r^{\prime}<-1$. Moreover I is minimally generated by the Gröbner basis consisting of the set \mathcal{A} and:
$x_{2} x_{k}^{\sigma}-x_{0}^{r+h(\sigma+1)} x_{k+1}^{p}, \quad x_{i} x_{k}^{\sigma}-x_{0}^{r+h \sigma} x_{i-2} x_{k+1}^{p}, i=3, \ldots, k, \quad x_{k+1}^{p^{\prime}}-x_{0}^{-r^{\prime}}$
The Frobenius number is $(h a+d)+\sigma(h a+k d)+c\left(p^{\prime}-1\right)-a$.
(2) $s_{\mu+1} \neq 0, a=(\sigma k+2) p^{\prime}-\sigma^{\prime} k p, d=p^{\prime} r+p h \sigma^{\prime}, c=\sigma^{\prime} k r+(\sigma k+2) \sigma^{\prime} h$ where $\sigma, \sigma^{\prime}, p^{\prime}, p, r, h$ are integers such that $\sigma>\sigma^{\prime} \geq 2, p^{\prime}>p>0, r+h(\sigma+1)>0$ and $(a, d)=1$. Moreover I is minimally generated by the Gröbner basis consisting of the set \mathcal{A} and:

$$
\begin{gathered}
x_{2} x_{k}^{\sigma-\sigma^{\prime}} x_{k+1}^{p^{\prime}-p}-x_{0}^{r+h(\sigma+1)}, \quad x_{i} x_{k}^{\sigma-\sigma^{\prime}} x_{k+1}^{p^{\prime}-p}-x_{0}^{r+h \sigma} x_{i-2}, i=3, \ldots, k \\
x_{2} x_{k}^{\sigma}-x_{0}^{r+h(\sigma+1)} x_{k+1}^{p}, \quad x_{i} x_{k}^{\sigma}-x_{0}^{r+h \sigma} x_{i-2} x_{k+1}^{p}, i=3, \ldots, k, \quad x_{k+1}^{p^{\prime}}-x_{k}^{\sigma^{\prime}}
\end{gathered}
$$

The Frobenius number is $(h a+d)+\sigma(h a+k d)+c\left(p_{\mu+1}-p_{\mu}-1\right)-a$.
(3) $k>2, s_{\mu+1} \neq 0 a=(\sigma k+2) p^{\prime}-(\sigma k+1) p, d=p^{\prime} r+p h(\sigma+1), c=(\sigma k+1) r+$ $(\sigma k+2)(\sigma+1) h$ where $\sigma, \sigma^{\prime}, p^{\prime}, p, r, h$ are integers such that $\sigma \geq 1, p^{\prime}>p>$
$0, r+h(\sigma+1)>0$ and $(a, d)=1$. Moreover I is minimally generated by the Gröbner basis consisting of the set \mathcal{A} and:

$$
\begin{gathered}
x_{1} x_{k+1}^{p^{\prime}-p}-x_{0}^{r+h(\sigma+2)}, \quad x_{i} x_{k+1}^{p^{\prime}-p}-x_{0}^{r+h(\sigma+1)} x_{i-1}, i=2, \ldots, k, \\
x_{2} x_{k}^{\sigma}-x_{0}^{r+h(\sigma+1)} x_{k+1}^{p}, \quad x_{i} x_{k}^{\sigma}-x_{0}^{r+h \sigma} x_{i-2} x_{k+1}^{p}, i=3, \ldots, k, \quad x_{k+1}^{p^{\prime}}-x_{1} x_{k}^{\sigma}
\end{gathered}
$$

The Frobenius number is $(h a+d)+\sigma(h a+k d)+c\left(p_{\mu+1}-p_{\mu}-1\right)-a$.
(4) $s_{\mu+1} \neq 0, a=(\sigma k+1) p^{\prime}-(k-1) p, d=p^{\prime} r-p r^{\prime}, c=(k-1) r-(\sigma k+1) r^{\prime}$. $d>0$ if and only if $r^{\prime}<-\left(p^{\prime} / p\right) h \sigma$ with $p<p^{\prime}, r+h(\sigma+1)=h$, that is $r=-\sigma h, r^{\prime}<-\sigma h$.

Moreover I is minimally generated by the Gröbner basis consisting of the set \mathcal{A} and:

$$
\begin{gathered}
x_{2} x_{k}^{\sigma-1} x_{k+1}^{p^{\prime}-p}-x_{0}^{-r^{\prime}}, \quad x_{i} x_{k}^{\sigma-1} x_{k+1}^{p^{\prime}-p}-x_{0}^{-r^{\prime}-h} x_{i-2} \\
x_{1} x_{k}^{\sigma}-x_{0}^{h} x_{k+1}^{p}, \quad x_{i} x_{k}^{\sigma}-x_{i-1} x_{k+1}^{p}, \quad i=2, \ldots, k, \quad x_{k+1}^{p^{\prime}}-x_{0}^{r^{\prime}+h} x_{k-1}
\end{gathered}
$$

The Frobenius number is $(h a+d)+(\sigma-1)(h a+k d)+c\left(p_{\mu+1}-1\right)-a$.
Proof. (1) If $s_{\mu+1}=0$ then $r_{\mu+1}^{\prime} \neq 0$ and we have that $\widetilde{P(S, a)}=\widetilde{P(S, a)_{1}}$ with $\widetilde{\sigma}=\sigma_{\mu}, \widetilde{\rho}=\rho_{\mu}$. So $\operatorname{card} \widetilde{P F(S, a)}=1$ if and only if we are in case 2 d$)$ with $\rho_{\mu}=2$. We have $s_{\mu}=\sigma k+2$ for some $\sigma \geq 1$.
That is

s	p	r	r^{\prime}

$\left.\begin{array}{lll}\sigma k+2 & p & r \\ 0 & p^{\prime} & r^{\prime}\end{array} \right\rvert\,$
with the condition $p<p^{\prime}, r_{\mu}^{\prime}=r+h(\sigma+1)>0, r^{\prime}<0, r^{\prime}<r$. By Lemma 2.2.4 of [6] we get

$$
a=(\sigma k+2) p^{\prime}, d=p^{\prime} r-p r^{\prime}, c=(\sigma k+2) r^{\prime}
$$

The Frobenius number is $\varphi\left(x_{1} x_{k}^{\sigma} x_{k-1}^{p_{\mu+1}-1}\right)-a$.
(2) If $s_{\mu+1} \neq 0$ and $\operatorname{card} \widetilde{P F(S, a)_{1}}=0, \operatorname{card} \widetilde{P F(S, a)_{2}}=1$. We have to consider the cases 1a) and one of the cases 4ii),5iii),6ii) 7i),7ii); or 1c) and case 7i). More precisely
(a) 1a) and 4ii) We have $\rho_{\mu}=0, \rho_{\mu+1}=0, \widetilde{\rho}=0$, so $\operatorname{card} \widetilde{P(S, a)_{2}}=1$ if and only if $k=2$.
(b) 1a) and 5iii) we have $\rho_{\mu}=1, s_{\mu+1}=1=\rho_{\mu+1}$ a contradiction with 1a).
(c) 1a) and 7i) we have $\rho_{\mu}=2, \rho_{\mu+1}=0$. So we have $s_{\mu}=\sigma_{\mu} k+2, s_{\mu+1}=$ $\sigma_{\mu+1} k$. We set $\sigma=\sigma_{\mu}, \sigma^{\prime}=\sigma_{\mu+1}, p=p_{\mu}, p^{\prime}=p_{\mu+1}, r=r_{\mu}$, and since $r_{\mu+1}^{\prime}=0=r_{\mu+1}+h \sigma$ we have $r_{\mu+1}=-h \sigma$ and the table

$$
\begin{array}{lll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r}^{\prime} \\
\ldots & & & \\
\sigma k+2 & p & r & \\
\sigma^{\prime} k & p^{\prime} & -h \sigma^{\prime} &
\end{array}
$$

By Lemma 2.2.4 of [6] we get
$a=(\sigma k+2) p^{\prime}-\sigma^{\prime} k p, d=p^{\prime} r+p h \sigma^{\prime}, c=\sigma^{\prime} k r+(\sigma k+2) \sigma^{\prime} h$
for some $\sigma \geq \sigma p^{\prime} \geq 2, p^{\prime}>p>0, r>-h \sigma^{\prime}, r+h(\sigma+1)>0$. The Frobenius number is $\varphi\left(x_{1} x_{k}^{\sigma} x_{k-1}^{p_{\mu+1}-p_{\mu}-1}\right)-a$.
(d) 1a) and 7ii) Since $s_{\mu+1}<\rho_{\mu}-1$ we have $s_{\mu+1}=\rho_{\mu+1}=0$ by 1a), a contradiction.
(e) 1c) and 6 i) We have $\operatorname{card} \widetilde{P(S, a)_{2}}=\rho_{\mu}-1=1$ if and only if $\rho_{\mu}=2$. By hypothesis $s_{\mu}-s_{\mu+1}=1$. So we have $s_{\mu}=\sigma_{\mu} k+2, s_{\mu+1}=\sigma_{\mu} k+1$ for some $\sigma \geq 1$. We set $p=p_{\mu}, p^{\prime}=p_{\mu+1}, r=r_{\mu}$, and since $r_{\mu+1}^{\prime}=0=r_{\mu+1}+h(\sigma+1)$ we have $r_{\mu+1}=-h(\sigma+1)$ and the table:

$$
\begin{array}{lll|}
\mathrm{s} & \mathrm{p} & \mathrm{r} \\
\ldots & & \mathrm{r}^{\prime} \\
\sigma k+2 & p & r \\
\sigma k+1 & p^{\prime} & -h(\sigma+1)
\end{array}
$$

By Lemma 2.2.4 of [6] we get
$a=(\sigma k+2) p^{\prime}-(\sigma k+1) p, d=p^{\prime} r+p h(\sigma+1), c=(\sigma k+1) r+(\sigma k+2)(\sigma+1) h$
for some $\sigma \geq 1, p^{\prime}>p \geq 1, r>-h(\sigma+1)$. The Frobenius number is $\varphi\left(x_{1} x_{k}^{\sigma} x_{k-1}^{p_{\mu+1}-p_{\mu}-1}\right)-a$.
(3) Suppose $s_{\mu+1} \neq 0$ and $\operatorname{card} \widetilde{P F(S, a)_{1}}=1, \operatorname{card} \widetilde{P F(S, a)_{2}}=0$. We are in case 6iii), we have $\rho_{\mu}=1, r_{\mu}^{\prime}=h, 0<s_{\mu+1}<k$ so $r_{\mu+1}^{\prime}<0$ and $s_{\mu}-s_{\mu+1}=$ $\left(\sigma_{\mu}-1\right) k+\left(k-s_{\mu+1}+1\right)$. If $s_{\mu+1}=1$ we have $\widetilde{\rho}=0$, we are in case 2 a) and $\operatorname{card} \widehat{P F(S, a)_{1}}=1$ implies $k=2$. If $s_{\mu+1}>1$ we have $0<\widetilde{\rho}=k-s_{\mu+1}+1<k$ and $\operatorname{card} \widehat{P F(S, a)_{1}}=1$ implies $\widetilde{\rho}=2$, that is $s_{\mu+1}=k-1$. On the other hand $r_{\mu}^{\prime}=h=r_{\mu}+h\left(\sigma_{\mu}+1\right)$ so $r_{\mu}=-h \sigma_{\mu}$. We set $\sigma=\sigma_{\mu}, p=p_{\mu}, p^{\prime}=p_{\mu+1}, r^{\prime}=$

$$
\begin{array}{llll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r}
\end{array}
$$

$r_{\mu+1}^{\prime}$. We have $\begin{array}{lll}\cdots \\ \sigma k+1 & p & -h \sigma\end{array} \quad$ with $\sigma \geq 1, p<p^{\prime}, r^{\prime}<-\left(p^{\prime} / p\right) h \sigma$. By $\begin{array}{lll}k-1 & p^{\prime} & r^{\prime}\end{array}$
Lemma 2.2.4 of [6] we get

$$
a=(\sigma k+1) p^{\prime}-(k-1) p, d=p^{\prime} r-p r^{\prime}, c=(k-1) r-(\sigma k+1) r^{\prime} .
$$

The Frobenius number is $\varphi\left(x_{1} x_{k}^{\sigma-1} x_{k-1}^{p_{\mu+1}-1}\right)-a$.

7. Almost Symmetric almost generalized arithmetic progressions

Lemma 7.1. With the above notations, suppose that either $r_{\mu}^{\prime} \geq h$ or $\rho_{\mu}=0$. Suppose that S is almost symmetric of type ≥ 2 then $s_{\mu+1}>0$ and if $\widetilde{\operatorname{Frob}(S)}$ belongs to $\widetilde{P S F_{i}}$ then $\operatorname{card}\left(\widetilde{P S F_{i}}\right)=1$ except if $h=1, s_{\mu}=k+1, s_{\mu+1}=k, r_{\mu}^{\prime}>1, r_{\mu+1}^{\prime}=-1$. Moreover
(1) If $\widetilde{P S F_{1}}=\{\widetilde{\operatorname{Frob}(S)}\}$ then $\widetilde{\operatorname{Frob}(S)}=L_{\gamma} x_{k}^{\tilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1}$ where $\gamma, \varepsilon \in\{0,1\}$.
(2) If $\widetilde{P S F_{2}}=\{\widetilde{\operatorname{Frob}(S)}\}$ then $\widehat{\operatorname{Frob}(S)}=L_{\gamma} x_{k}^{\sigma_{\mu}-\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$ where $\gamma, \varepsilon \in\{0,1\}$.
(3) If $h=1, s_{\mu}=k+1, s_{\mu+1}=k, r_{\mu}^{\prime}>1, r_{\mu+1}^{\prime}=1$ then $a=k+2, d=2 r_{\mu}+$ $2, c=k\left(r_{\mu}+2\right)+2$ with k odd, $k \geq 3, r_{\mu} \geq 0, \operatorname{gcd}(a, d)=1$. We have $\widetilde{P S F}=\left\{x_{1}, \ldots, x_{k}\right\} \cup\left\{x_{k+1}\right\}, t(S)=k+1, \widetilde{\operatorname{Frob}(S)}=x_{k}, F(S)=k d$.

Proof. Suppose that $\widetilde{\operatorname{Frob}(S}) \in \widetilde{P S F_{1+\varepsilon}}, \operatorname{card}\left(\widetilde{P S F_{1+\varepsilon}}\right) \geq 2$ for some $\varepsilon \in\{0,1\}$. By checking all cases in Theorem 5.2 there exists $2 \leq l \leq k, M$ a monomial such that $\widetilde{\operatorname{Frob}(S)}=x_{l} M$ and $x_{l-1} M \in \widetilde{P S F_{1+\varepsilon}}$. Since S is almost symmetric there exists $M_{1} \in$ $\widetilde{P S F}$ such that $M_{1} x_{l-1} M-x_{0} x_{l} M \in I$, which implies $x_{l-1} M_{1}-x_{0} x_{l} \in I$. We multiply by x_{1} and using the Gröbner basis we get $x_{0}^{h} x_{l} M_{1}-x_{0} x_{l} x_{1} \in I$ that implies $h=1$, $M_{1}-x_{1} \in I$, if $M_{1} \neq x_{1}$ then the embedding dimension of S is less than $k+2$ contrary to our hypothesis, therefore $M_{1}=x_{1} \in \widetilde{P S F}$. We have to examine all the possibles cases in Theorem 5.2 such that $x_{1} \in \widetilde{P S F}$. Since $\sigma_{\mu} \geq 1, p_{\mu+1} \geq 2$ the possible cases are 4),5) or 6). In particular we have $s_{\mu+1}>0$. Case 4) implies $s_{\mu}=k$ so $x_{k}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}} \in I$, that means that the embedding dimension of S is less than $k+2$ contrary to our hypothesis. Cases 5) and 6) implies $\widetilde{P S F_{2}}=\left\{x_{1}, \ldots, x_{k}\right\}$ with $s_{\mu}=k+1, s_{\mu+1}=k, \widetilde{\operatorname{Frob}(S)}=x_{k}$ and $\widetilde{P S F_{1}} \subset\left\{x_{k+1}^{\beta}\right\}$ for some $\beta \in \mathbb{N}^{*}$, but this is only possible in case 1a) or 2 b). Now we consider the case 1a) so $r_{\mu+1}^{\prime}=0$, by the Gröbner basis we have that $x_{k+1}^{p_{\mu+1}}-x_{k} \in I$ which implies that the embedding dimension of S is less than $k+2$ contrary to our hypothesis. In case 2 b) we have $\widetilde{P S F_{1}}=\left\{x_{k+1}^{p_{\mu+1}-1}\right\}$, the property almost-symmetry show that $x_{k+1}^{2\left(p_{\mu+1}-1\right)}-x_{0} x_{k} \in I$ so that $x_{0}^{-r_{\mu+1}^{\prime}} x_{k} x_{k+1}^{p_{\mu+1}-2}-x_{0} x_{k} \in I$ hence $p_{\mu+1}=2, r_{\mu+1}^{\prime}=-1$

$$
\mathrm{s} \quad \mathrm{p} \quad \mathrm{r} \quad \left\lvert\, \begin{array}{ll}
\prime
\end{array}\right.
$$

and $p_{\mu}=1$, so $r_{\mu+1}=r_{\mu+1}^{\prime}-1=-2$ we have the table

$$
\begin{array}{lll|l}
\hdashline k+1 & 1 & r_{\mu} & r_{\mu}^{\prime} \\
k & 2 & -2 & 1
\end{array}
$$

We note that $r_{\mu}^{\prime}=h=1$ if and only if $r_{\mu}=-1$ which implies $d=0$, so case 6) is not possible. The case 5) is possible and we have $a=k+2, d=2 r_{\mu}+2, c=k\left(r_{\mu}+2\right)+2$ with k odd, $k \geq 3, r_{\mu} \geq 0, \operatorname{gcd}(a, d)=1$. We have $\widetilde{P S F}=\left\{x_{1}, \ldots, x_{k}\right\} \cup\left\{x_{k+1}\right\}$, $t(S)=k+1, F(S)=k d$.

Theorem 7.2. Suppose $\widetilde{P S F_{2}}=\{\widetilde{\operatorname{Frob}(S)}\}$. Then S is almost symmetric with $k \geq$ $3, t(S) \geq 2$ if and only if either
(1) $\widetilde{P S F_{1}}=\left\{x_{i} x_{k+1}^{p_{\mu+1}-1} \mid i=1, \ldots, k-l\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p_{\mu+1}-2}\right\}$ and

s	p	r	r^{\prime}
$\sigma k+2$	1	r_{μ}	
$(\sigma-1) k+l$	$p_{\mu+1}$	$r_{\mu+1}$	0

Since $0=r_{\mu+1}^{\prime}=r_{\mu+1}+\sigma$ we have $r_{\mu+1}=-\sigma$ with $\sigma \geq 2, l \geq 1 . t(S)=k-l+1$, $t(S)=2$ if and only if $l=\rho_{\mu+1}=k-1$.

$$
\begin{aligned}
a & =(\sigma k+2) p_{\mu+1}-((\sigma-1) k+l) \\
d & =p_{\mu+1} r_{\mu}+\sigma \\
c & =((\sigma-1) k+l) r_{\mu}+(\sigma k+2) \sigma .
\end{aligned}
$$

where $h=1, k \geq 3,1 \leq l \leq k-1$ and $t(S)=k-l+1$, or
(2) $\widetilde{P S F_{1}}=\left\{x_{k+1}^{p_{\mu+1}-1}\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-2}\right\}$ and

$$
\begin{array}{lll|l}
s & p & r & r \\
\sigma k+2 & 1 & r_{\mu} & \\
\sigma k+1 & p_{\mu+1} & r_{\mu+1} & -1
\end{array}
$$

$$
\text { but }-1=r_{\mu+1}^{\prime}=r_{\mu+1}+h(\sigma+1) \text { so } r_{\mu+1}=-h(\sigma+1)-1, t(S)=2
$$

$$
a=(\sigma k+2) p_{\mu+1}-(\sigma k+1)
$$

$$
d=p_{\mu+1} r_{\mu}+h(\sigma+1)+1
$$

$$
c=(\sigma k+1) r_{\mu}+(\sigma k+2)(h(\sigma+1)+1) .
$$

where $h \geq 1, \sigma \geq 1, p_{\mu+1} \geq 2, r_{\mu}>-h(\sigma+1)-1, t(S)=2$.
Proof. We have $\widetilde{P S F_{2}}=\left\{L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\}$ where $\gamma, \delta \in\{0,1\}$. We set $N_{\sigma_{\mu}-\delta}:=$ $x_{k}^{\sigma_{\mu}-\delta} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$. By Theorem 5.2 we have $\widetilde{P S F_{1}}=\left\{x_{\Gamma} M_{\tilde{\sigma}-\varepsilon}, \ldots, x_{\Delta} M_{\tilde{\sigma}-\varepsilon}\right\}$ for some $\Gamma \leq \Delta, \varepsilon \in\{0,1\}$ where $M_{\widetilde{\sigma}-\varepsilon}:=x_{k}^{\widetilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1}$. Since S is almost symmetric we have that

$$
\begin{equation*}
L_{\Gamma} L_{\Delta} M_{\tilde{\sigma}-\varepsilon}^{2}-x_{0} L_{\gamma} N_{\sigma_{\mu}-\delta} \in I \tag{1}
\end{equation*}
$$

We have $\left(x_{k+1}^{p_{\mu+1}-1}\right)^{2}=x_{k+1}^{2 p_{\mu+1}-2}=x_{k+1}^{p_{\mu+1}} x_{k+1}^{p_{\mu+1}-2}$ since $p_{\mu+1}-2 \geq 0$, so $\left(x_{k+1}^{p_{\mu+1}-1}\right)^{2}-$ $x_{0}^{-r_{\mu+1}^{\prime}} L_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}} x_{k+1}^{p_{\mu+1}-2} \in I$ so $M_{\widetilde{\sigma}-\varepsilon}^{2}-x_{0}^{-r_{\mu+1}^{\prime}} L_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}-2 \varepsilon} x_{k+1}^{p_{\mu+1}-2} \in I$. Note that $p_{\mu+1}-2-\left(p_{\mu+1}-p_{\mu}-1\right)=p_{\mu}-1 \geq 0$ so that (1) becomes

$$
\begin{equation*}
L_{\Gamma} L_{\Delta} x_{0}^{-r_{\mu+1}^{\prime}-1} L_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}-2 \varepsilon} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{2}
\end{equation*}
$$

(1) If $\Gamma+\Delta=0$ we are in case 2 b) so $s_{\mu}-s_{\mu+1}=1$. Since $\operatorname{card}\left(\widetilde{P S F_{2}}\right)=1$ we are in case 7 i) hence $\gamma=1, \delta=0, s_{\mu}=\sigma_{\mu} k+2, s_{\mu+1}=\sigma_{\mu} k+1$. We have

$$
\begin{equation*}
x_{0}^{-r_{\mu+1}^{\prime}-1} x_{1} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu}-1}-x_{1} x_{k}^{\sigma_{\mu}} \in I \tag{3}
\end{equation*}
$$

this is possible only if $r_{\mu+1}^{\prime}=-1, p_{\mu}=1$. We set $\sigma=\sigma_{\mu}$ so we have $\widetilde{P S F_{1}}=\left\{x_{k+1}^{p_{\mu+1}-1}\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-2}\right\}$ and

$$
\begin{array}{rll}
\mathrm{s} & \mathrm{p} & \mathrm{r} \\
\sigma k+2 & 1 & r_{\mu} \\
\sigma k+1 & p_{\mu+1} & r_{\mu+1} \\
\text { but }-1=r_{\mu+1}^{\prime} & =r_{\mu+1}+h(\sigma+1) \text { so } r_{\mu+1}=-h(\sigma+1)-1, t(S)=2 . \\
& & a=(\sigma k+2) p_{\mu+1}-(\sigma k+1) \\
& d & =p_{\mu+1} r_{\mu}+h(\sigma+1)+1 \\
& c & =(\sigma k+1) r_{\mu}+(\sigma k+2)(h(\sigma+1)+1)
\end{array}
$$

(2) If $0<\Gamma+\Delta \leq k$ we have

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{0}^{h-r_{\mu+1}^{\prime}-1} L_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}+2 \tilde{\sigma}-2 \varepsilon} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{4}
\end{equation*}
$$

which implies $h=1, r_{\mu+1}^{\prime}=0$ and after Theorem $5.2 \rho_{\mu+1}>0$.
(a) If $\Gamma+\Delta+\rho_{\mu+1} \leq k$ we have

$$
\begin{equation*}
x_{0} x_{\Gamma+\Delta+\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}-2 \varepsilon} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{5}
\end{equation*}
$$

which is impossible since $L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in \widetilde{A p(S)}$. So
(b) $\Gamma+\Delta+\rho_{\mu+1}>k$ we have

$$
\begin{equation*}
x_{\Gamma+\Delta+\rho_{\mu+1}-k} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}+1-2 \varepsilon} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{6}
\end{equation*}
$$

By Theorem 5.2 in all cases with $r_{\mu+1}^{\prime}=0, \rho_{\mu+1}>0$ and $\Gamma+\Delta+\rho_{\mu+1}>k$ we have $\Gamma+\Delta+\rho_{\mu+1}=k+1$ so

$$
\begin{equation*}
x_{1} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}+1-2 \varepsilon} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{7}
\end{equation*}
$$

If $\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1-2 \varepsilon>0$

$$
\begin{equation*}
x_{1} x_{k}^{\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1} x_{k+1}^{p_{\mu}-1}-L_{\gamma} \in I \tag{8}
\end{equation*}
$$

which leads to a contradiction. So we can assume $\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+$ $1-2 \varepsilon \leq 0$. We have

$$
\begin{equation*}
x_{1} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{-\left(\sigma_{\mu+1}+\tilde{\sigma}-\sigma_{\mu}+\tilde{\sigma}+\delta+1-2 \varepsilon\right)} \in I . \tag{9}
\end{equation*}
$$

If $x_{1} x_{k+1}^{p_{\mu}-1} \neq L_{\gamma} x_{k}^{-\left(\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1-2 \varepsilon\right)}$, since $L_{\gamma} x_{k}^{-\left(\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1-2 \varepsilon\right)} \in$ $\widetilde{\operatorname{Ap}(S)}$ we have $x_{1} x_{k+1}^{p_{\mu}-1} \in \operatorname{in}(I)$ which implies $s_{\mu}-s_{\mu+1}=1$ and by 1c) of Theorem 5.2 $\widetilde{P F_{1}}=\emptyset$ a contradiction. So $x_{1} x_{k+1}^{p_{\mu}-1}=$ $L_{\gamma} x_{k}^{-\left(\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1-2 \varepsilon\right)}$ which implies $\gamma=1, p_{\mu}=1, \sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+$ $\widetilde{\sigma}+\delta+1-2 \varepsilon=0$

We have to discuss several cases:
$\varepsilon=1$: So we are either in case 1 b) or 1 d) and we have $\widetilde{\sigma}>0$. On the other hand we have either:

1) $\widetilde{\sigma}=\sigma_{\mu}-\sigma_{\mu+1}-1, \widetilde{\rho}>0, \rho_{\mu+1}+\widetilde{\rho}=k+\rho_{\mu} \geq k$. In case 1 b$)$ we have $\widetilde{\rho}=0$ so this case is not possible. Case 1d) implies $\widetilde{\rho}=1$,so
that $\rho_{\mu+1}=k-1, \rho_{\mu}=0$, so we are in case 4), since $\operatorname{card}\left(\widetilde{P S F_{2}}\right)=1$ we have $k=2$ a contradiction.
2) $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}, \rho_{\mu+1}+\widetilde{\rho}=\rho_{\mu}$, we have $\widetilde{\sigma}+\delta-1=0$ so $\widetilde{\sigma}=1, \delta=0$. $\delta=0$ implies that we have to consider cases 5iii), 7i) and 7ii). Case 5iii) implies $s_{\mu+1}=1$, case 7ii) implies $\rho_{\mu}>s_{\mu+1}$ so $\sigma_{\mu+1}=0$ in both cases and $x_{k+1}^{p_{\mu+1}}-x_{\rho_{\mu+1}} \in I$, a contradiction. So we have two possible cases 7i)-1b or 7i)-1d. Since $\operatorname{card}\left(\widetilde{P S F_{2}}\right)=1$ we have $\rho_{\mu}=2$ and $\widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}\right\}$.
\diamond) 7 i) 1 b): we have $\widetilde{\rho}=0, \widetilde{\sigma}=1, \rho_{\mu+1}=2, p_{\mu}=1, r_{\mu+1}^{\prime}=0$. We set $\sigma=\sigma_{\mu}$, we have
$\widetilde{P S F_{1}}=\left\{x_{i} x_{k+1}^{p_{\mu+1}-1} \mid i=1, \ldots, k-2\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p_{\mu+1}-2}\right\}$ and

s	p	r	r
$\sigma k+2$	1	r_{μ}	
$(\sigma-1) k+2$	$p_{\mu+1}$	$r_{\mu+1}$	0

but $0=r_{\mu+1}^{\prime}=r_{\mu+1}+\sigma$ so $r_{\mu+1}=-\sigma, t(S)=k-1$ and

$$
\begin{aligned}
a & =(\sigma k+2) p_{\mu+1}-((\sigma-1) k+2) \\
d & =p_{\mu+1} r_{\mu}+\sigma \\
c & =((\sigma-1) k+2) r_{\mu}+(\sigma k+2) \sigma
\end{aligned}
$$

By using my software we have the following example $k=4, a=$ $214, d=15, c=236, \sigma=7, p_{\mu+1}=8, r_{\mu}=9$.
$\diamond \diamond) 7 \mathrm{i}) 1 \mathrm{~d})$: we have $\widetilde{\rho}=1, \widetilde{\sigma}=1, \rho_{\mu+1}=1, p_{\mu}=1, r_{\mu+1}^{\prime}=0$. We set $\sigma=\sigma_{\mu}$, we have
$\widetilde{P S F_{1}}=\left\{x_{i} x_{k+1}^{p_{\mu+1}-1} \mid i=1, \ldots, k-1\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p_{\mu+1}-2}\right\}$. and

$$
\begin{array}{lll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r} \\
\sigma k+2 & 1 & r_{\mu} & \\
(\sigma-1) k+1 & p_{\mu+1} & r_{\mu+1} & 0 \\
\text { but } 0=r_{\mu+1}^{\prime}= & r_{\mu+1}+\sigma \text { so } r_{\mu+1}=-\sigma, t(S)=k \text { and } \\
\quad a=(\sigma k+2) p_{\mu+1}-((\sigma-1) k+1) \\
\quad d=p_{\mu+1} r_{\mu}+\sigma \\
\quad c=((\sigma-1) k+1) r_{\mu}+(\sigma k+2) \sigma .
\end{array}
$$

By using my software we have the following example $k=5, a=$ $487, d=7, c=259, \sigma=7, p_{\mu+1}=14, r_{\mu}=8$.
$\varepsilon=0$: We are in case 1e). We have $\sigma_{\mu+1}+\widetilde{\sigma}-\sigma_{\mu}+\widetilde{\sigma}+\delta+1=0$. If $\widetilde{\sigma}=\sigma_{\mu}-\sigma_{\mu+1}$ we have $\widetilde{\sigma}+\delta+1=0$ which is impossible, hence $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}+1, \widetilde{\rho}>0, \widetilde{\rho}+\rho_{\mu+1}=k+\rho_{\mu}$ and $\widetilde{\sigma}=\delta=0$, so $s_{\mu}-s_{\mu+1}<k \leq s_{\mu}-\rho_{\mu}$ which implies $s_{\mu+1}>\rho_{\mu}$. Hence we have to consider only case 7i)-1e). We have $\rho_{\mu}=2, \widetilde{\rho}+\rho_{\mu+1}=k+2$ which implies $\widetilde{\rho}-1=k-\rho_{\mu+1}+1$, and we have seen before that

$\widetilde{\sigma}=0, p_{\mu}=1, r_{\mu+1}^{\prime}=0$. We set $\sigma=\sigma_{\mu}, l=\rho_{\mu+1}>2$, so we have $\widetilde{P S F_{1}}=\left\{x_{i} x_{k+1}^{p_{\mu+1}-1} \mid i=1, \ldots, k-l\right\} \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p_{\mu+1}-2}\right\}$ and | s | p | r | r |
| :--- | :--- | :--- | :--- |
| $\sigma k+2$ | 1 | r_{μ} | |
| $(\sigma-1) k+l$ | $p_{\mu+1}$ | $r_{\mu+1}$ | 0 |

Since $0=r_{\mu+1}^{\prime}=r_{\mu+1}+\sigma$ we have $r_{\mu+1}=-\sigma$ with $\sigma \geq 2, l \geq 3$. $t(S)=k-l+1$. Note that $t(S)=2$ if and only if $l=\rho_{\mu+1}=k-1$.

$$
\begin{aligned}
a & =(\sigma k+2) p_{\mu+1}-((\sigma-1) k+l) \\
d & =p_{\mu+1} r_{\mu}+\sigma \\
c & =((\sigma-1) k+l) r_{\mu}+(\sigma k+2) \sigma
\end{aligned}
$$

with $\sigma \geq 1, l \geq 3, p_{\mu+1} \geq 2, r_{\mu}>-\sigma$. By using my software we have the following example $a=213, d=49, c=209, k=6, \widetilde{\rho}=5, \rho_{\mu+1}=$ 3. $t(S)=4$.
(3) If $\Gamma+\Delta>k$ we are in case 2c), we have $\Gamma=1, \Delta=k, \varepsilon=1, r_{\mu+1}^{\prime}<0, \widetilde{\rho}=$ $1, \widetilde{\sigma}>0$, and (2) becomes

$$
\begin{equation*}
x_{1} x_{0}^{-r_{\mu+1}^{\prime}} L_{\rho_{\mu+1}} x_{k}^{\sigma_{\mu+1}+2 \widetilde{\sigma}-1} x_{k+1}^{p_{\mu}-1}-x_{0} L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I . \tag{10}
\end{equation*}
$$

If $\rho_{\mu+1}>0$ we have

$$
\begin{equation*}
x_{0}^{-r_{\mu+1}^{\prime}+h-1} x_{\rho_{\mu+1}+1} x_{k}^{\sigma_{\mu+1}+2 \tilde{\sigma}-1} x_{k+1}^{p_{\mu}-1}-L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I . \tag{11}
\end{equation*}
$$

Since $h-r_{\mu+1}^{\prime} \geq 1$ we will have $L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} x_{k+1}^{p_{\mu+1}-p_{\mu}-1} \notin \widetilde{A p(S)}$ a contradiction.
If $\rho_{\mu+1}=0$ then $\rho_{\mu}=1, \sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}, \sigma_{\mu+1}+2 \widetilde{\sigma}-1=\sigma_{\mu}+\widetilde{\sigma}-1$ but $x_{1} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}} \in I$ so from (10) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-r_{\mu+1}^{\prime}} x_{k}^{\tilde{\sigma}-1} x_{k+1}^{2 p_{\mu}-1}-x_{0} L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in I \tag{12}
\end{equation*}
$$

Since $r_{\mu}^{\prime}-r_{\mu+1}^{\prime} \geq 2$ we will have $L_{\gamma} x_{k}^{\sigma_{\mu}-\delta} \in \operatorname{in}(I)$ a contradiction.
Theorem 7.3. Suppose $\widetilde{P S F_{1}}=\{\widetilde{\operatorname{Frob}(S)}\}$. Then S is almost symmetric with $k \geq$ $3, t(S) \geq 2$ if and only if either
(1) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma}, \ldots, x_{\rho_{\mu}-1} x_{k}^{\sigma}\right\}$, we have the table

$$
\begin{array}{lll|l}
s & p & r & r \\
\sigma k+l+2 & p & -\sigma & 1 \\
l & p+1 & r_{\mu+1} & <0 \\
& & a=(\sigma k+l+2)(p+1)-l p \\
& & d=-(p+1) \sigma-p r_{\mu+1} \\
& & c=-l \sigma-(\sigma k+l+2) r_{\mu+1}
\end{array}
$$

where $h=1, k \geq 3, \sigma \geq 1,1 \leq l \leq k-3, r_{\mu+1}<-\sigma$ and $t(S)=l+1$, or
(2) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k-1} x_{k}^{\sigma-1}\right\}$.

$$
\begin{array}{lll|l}
s & p & r & r \\
\sigma k & p & 1-\sigma & 1 \\
k-2 & p+1 & r_{\mu+1} & \mid<0 \\
& & a & =(\sigma k)(p+1)-(k-2) p \\
& & d & =(1-h \sigma)(p+1)-p r_{\mu+1} \\
& & =(k-2)(1-\sigma)-\sigma k r_{\mu+1}
\end{array}
$$

where $h=1, k \geq 3, p, \sigma \geq 2, r_{\mu+1}<-1$ and $t(S)=k-1$, or
(3) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k}^{\sigma}\right\}, t(S)=k$.

s	p	r	r
$\sigma k+1$	p	$1-h \sigma$	$h+1$
$k-1$	$p+1$	$r_{\mu+1}$	<0

$$
\begin{aligned}
a & =(\sigma k+1)(p+1)-(k-1) p \\
d & =(p+1)(1-h \sigma)-p r_{\mu+1} \\
c & =(k-1)(1-h \sigma)-(\sigma k+1) r_{\mu+1} .
\end{aligned}
$$

$h \geq 1, k \geq 3, p, \sigma \geq 1, r_{\mu+1}<\min \{-h, 1-h \sigma\}$ and $t(S)=k$, or
(4) $\widetilde{P S F_{1}}=\left\{x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{1}, \ldots, x_{k}\right\}$.

$$
\begin{array}{lll|l}
s & p & r & r \\
k+1 & p & -1 & 1 \\
k & p+1 & r_{\mu+1} & <0 \\
& & a=(k+1)(p+1)-k p=k+p+1 \\
& & d=-(p+1)-p r_{\mu+1} \\
& & c=-k-(k+1) r_{\mu+1} .
\end{array}
$$

(5) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-2} x_{k+1}^{p}\right\}, \widehat{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma-1}\right\}$ and

s	p	r	r
$\sigma k+1$	p	$-\sigma$	1
$2 k-1$	$p+1$	$r_{\mu+1}$	<0

$$
\begin{aligned}
& a=(\sigma k+1)(p+1)-(2 k-1) p \\
& d=-(p+1) \sigma-p r_{\mu+1} \\
& c=-\sigma(2 k-1)-(\sigma k+1) r_{\mu+1}
\end{aligned}
$$

with $h=1, k \geq 3, \sigma \geq 2, p \geq 1, r_{\mu+1}<-\sigma$. We have $t(S)=2$.
Proof. We have $\widetilde{P S F_{1}}=\left\{L_{\gamma} x_{k}^{\tilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1}\right\}$ where $\gamma, \varepsilon \in\{0,1\}$. We set $M_{\widetilde{\sigma}-\varepsilon}:=$ $x_{k}^{\widetilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1}$. By Theorem 5.2 we have $\widetilde{P S F_{2}}=\left\{x_{\Gamma} N_{\sigma_{\mu}-\delta}, \ldots, x_{\Delta} N_{\sigma_{\mu}-\delta}\right\}$ for some $\Gamma \leq \Delta, \delta \in\{0,1\}$, where $N_{\sigma_{\mu}-\delta}:=x_{k}^{\sigma_{\mu}-\delta} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}$.

Since S is almost symmetric we have that

$$
\begin{equation*}
L_{\Gamma} L_{\Delta} N_{\sigma_{\mu}-\delta}^{2}-x_{0} L_{\gamma} M_{\widetilde{\sigma}-\varepsilon} \in I \tag{13}
\end{equation*}
$$

Note that $\gamma=0$ is possible only in case 2 b), where we have $\widetilde{\sigma}=0, \widetilde{\rho}=1, \varepsilon=0$. In all other cases we have $\gamma=1$.
(1) If $\Gamma+\Delta=0$ then we are in case 5iii), which implies $\rho_{\mu}=1, s_{\mu+1}=1$ so $\widetilde{\rho}=0$, but in all cases of Theorem 5.2 with $\operatorname{card}\left(\widetilde{P S F_{1}}\right)=1$ satisfying these conditions we have $k=2$.
(2) If $0<\Gamma+\Delta \leq k$ we have

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{0}^{h-1} x_{k}^{2 \sigma_{\mu}-2 \delta} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-L_{\gamma} x_{k}^{\tilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1} \in I \tag{14}
\end{equation*}
$$

If $\gamma=0$ or $h>1$ then $x_{k+1}^{p_{\mu+1}-1} \in \operatorname{in}(I)$, which is not possible. So we have $\gamma=1, h=1$ and

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{k}^{2 \sigma_{\mu}-2 \delta} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{1} x_{k}^{\tilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1} \in I \tag{15}
\end{equation*}
$$

We consider two cases:
(a) If $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}\left(\right.$ so $\left.\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}\right)$ then $2 \sigma_{\mu}-2 \delta-(\widetilde{\sigma}-\varepsilon)=\sigma_{\mu}+\sigma_{\mu+1}-2 \delta+\varepsilon$. Note that $\sigma_{\mu+1}-2 \delta+\varepsilon<0$ if and only if $\delta=1$ and either $\sigma_{\mu+1}=0, \varepsilon=0$, either $\sigma_{\mu+1}=0, \varepsilon=1$ or $\sigma_{\mu+1}=1, \varepsilon=0$. If $\sigma_{\mu+1}=0$ we have $\sigma_{\mu}=\widetilde{\sigma}$, but we can check that no case in Theorem 5.2 with $\delta=1$ satisfy the condition $\sigma_{\mu}=\widetilde{\sigma}$. If $\varepsilon=0$ then the possible cases are 1e) or 2 d), both cases imply that $\widetilde{\rho}>1$ hence $\rho_{\mu}>1$. We can check that there is no case in Theorem 5.2 with $\delta=1, \rho_{\mu}>1$.

So we have $\sigma_{\mu+1}-2 \delta+\varepsilon \geq 0$. We have

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{1} x_{k+1}^{p_{\mu+1}-1} \in I . \tag{16}
\end{equation*}
$$

Since $\sigma_{\mu} \geq 1$, if $2\left(p_{\mu+1}-p_{\mu}-1\right) \geq p_{\mu+1}-1$ then $\varphi\left(x_{1}\right) \geq \varphi\left(x_{k}\right)$ a contradiction, so we have

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I \tag{17}
\end{equation*}
$$

If $\rho_{\mu}=0$ or $\Gamma+\Delta=\rho_{\mu}$ then $L_{\rho_{\mu}} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}} \in I$ which leads to a contradiction since $x_{1} x_{k+1}^{\left.2 p_{\mu}+1-p_{\mu+1}\right)} \in \widetilde{A p(S)}$. Hence we have either $\Gamma+\Delta>$ $\rho_{\mu}>0$ or $\Gamma+\Delta<\rho_{\mu}, \rho_{\mu}>0$.
\star If $\Gamma+\Delta>\rho_{\mu}>0$ then

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-1} x_{\Gamma+\Delta-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{p_{\mu}}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I . \tag{18}
\end{equation*}
$$

Since $2 p_{\mu}+1-p_{\mu+1} \leq p_{\mu}$ we get

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-1} x_{\Gamma+\Delta-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{1} \in I \tag{19}
\end{equation*}
$$

This is possible if and only if $r_{\mu}^{\prime}=1, \Gamma+\Delta-\rho_{\mu}=1, \sigma_{\mu+1}-2 \delta+\varepsilon=0$ and $p_{\mu+1}=p_{\mu}+1$. We have several cases.

- $\delta=1$, by Theorem 5.2 we are in case 6) which implies $\rho_{\mu}=1$ so $\Gamma+\Delta=2$ and $\Gamma=\Delta=1$, the only possible case is 6 ii), so $s_{\mu}-$ $s_{\mu+1}>1$. Since $1=\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}$ we have either $\widetilde{\rho}=0, \rho_{\mu+1}=1$ or $\widetilde{\rho}=1, \rho_{\mu+1}=0$. If $\widetilde{\rho}=0, \rho_{\mu+1}=1$ by Theorem 5.2 the only possible cases with $\operatorname{card}\left(P F_{1}(S)\right)=1$, are 1b) and 2a) with $k=2$ a contradiction. If $\widetilde{\rho}=1, \rho_{\mu+1}=0$ the only possible case is 2 b) with $s_{\mu}-s_{\mu+1}=1$, a contradiction, so the case $\delta=1$ is not possible.
- $\delta=0$ implies $\sigma_{\mu+1}=\varepsilon=0$. We have to consider in Theorem 5.2 the cases 1e) or 2d) because $\varepsilon=0$ and 7i), 7ii) because $\delta=0$. On the other hand $\Gamma+\Delta=\rho_{\mu}+1$ implies that we are in case 7ii) with $\widetilde{\rho}=2$. We set $\sigma=\sigma_{\mu}, p=p_{\mu}, l=s_{\mu+1}=\rho_{\mu+1}$ so we have $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma}, \ldots, x_{\rho_{\mu}-1} x_{k}^{\sigma}\right\}$, we have the table | s | p | r | r |
| :--- | :--- | :--- | :--- |
| $\sigma k+l+2$ | p | $-\sigma$ | 1 |
| l | $p+1$ | $r_{\mu+1}$ | <0 |

with $\sigma \geq 1,1 \leq l<k-2$. Also $1=r_{\mu}^{\prime}=r_{\mu}+\sigma+1$ so $r_{\mu}=-\sigma, r_{\mu+1}<$ $-\sigma \leq-1$, and $r_{\mu+1}^{\prime}=r_{\mu+1}+1<-\sigma+1 \leq 0$. So in fact we are in case 2d) 7 ii . We have $t(S)=l+1$. Note that $t(S)=2$ if and only if $l=1, \rho_{\mu}=3$.

$$
\begin{aligned}
a & =(\sigma k+l+2)(p+1)-l p \\
d & =-(p+1) \sigma-p r_{\mu+1} \\
c & =-l \sigma-(\sigma k+l+2) r_{\mu+1} .
\end{aligned}
$$

\star If $\rho_{\mu}>0, \Gamma+\Delta<\rho_{\mu}$. From (17) we have necessarily $x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} \in$ $\operatorname{in}(I)$ so $\sigma_{\mu+1}-2 \delta+\varepsilon>0$. Since $x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}+1}-x_{0}^{r_{\mu}^{\prime}} x_{k+\Gamma+\Delta-\rho_{\mu}} x_{k+1}^{p_{\mu}} \in I$ we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}} x_{k+\Gamma+\Delta-\rho_{\mu}} x_{k+1}^{p_{\mu}} x_{k}^{\sigma_{\mu+1}-1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu}}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I, \tag{20}
\end{equation*}
$$

this is impossible since $x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in \widetilde{A p(S)}$.
(b) $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}+1$ (so $\left.\widetilde{\rho}>0, \rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}-k>0\right)$ then $2 \sigma_{\mu}-2 \delta-(\widetilde{\sigma}-\varepsilon)=$ $\sigma_{\mu}+\sigma_{\mu+1}+1-2 \delta+\varepsilon$.
Note that $\sigma_{\mu+1}+1-2 \delta+\varepsilon<0$ if and only if $\delta=1, \sigma_{\mu+1}=0, \varepsilon=0$. The possible cases in Theorem 5.2 are 7i), 7ii). In 7ii) we have $\rho_{\mu+1}<\rho_{\mu}$ so $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}$ a contradiction. In 7i) we have $2 \sigma_{\mu}-2 \delta-(\widetilde{\sigma}-\varepsilon)=\sigma_{\mu}-1 \geq 0$, $\Gamma+\Delta=\rho_{\mu} \geq 2$ so (15) becomes

$$
\begin{equation*}
x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{1} x_{k+1}^{p_{\mu+1}-1} \in I, \tag{21}
\end{equation*}
$$

if $2\left(p_{\mu+1}-p_{\mu}-1\right) \geq p_{\mu+1}-1$ we get

$$
\begin{equation*}
x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}-1} x_{k+1}^{\left(2\left(p_{\mu+1}-p_{\mu}-1\right)\right)-\left(p_{\mu+1}-1\right)}-x_{1} \in I, \tag{22}
\end{equation*}
$$

which leads to a contradiction; so $2\left(p_{\mu+1}-p_{\mu}-1\right)<p_{\mu+1}-1$, we get

$$
\begin{equation*}
x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}-1}-x_{1} x_{k+1}^{\left(p_{\mu+1}-1\right)-\left(2\left(p_{\mu+1}-p_{\mu}-1\right)\right)} \in I, \tag{23}
\end{equation*}
$$

but $x_{1} x_{k+1}^{\left(p_{\mu+1}-1\right)-\left(2\left(p_{\mu+1}-p_{\mu}-1\right)\right)} \in \widetilde{A p(S, a)}$ so $x_{\rho_{\mu}} x_{k}^{\sigma_{\mu}-1} \in \operatorname{in}(I)$ which is not possible.
Hence $\sigma_{\mu+1}+1-2 \delta+\varepsilon \geq 0$, and (15) becomes

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}+\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{1} x_{k+1}^{p_{\mu+1}-1} \in I, \tag{24}
\end{equation*}
$$

if $2\left(p_{\mu+1}-p_{\mu}-1\right) \geq p_{\mu+1}-1$ we get a contradiction since $\sigma_{\mu} \geq 1, \varphi\left(x_{k}\right)>$ $\varphi\left(x_{1}\right)$. So

$$
\begin{equation*}
x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}+\sigma_{\mu+1}+1-2 \delta+\varepsilon}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I \tag{25}
\end{equation*}
$$

Since $x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in \widetilde{A p(S, a)}$, we have $x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}+\sigma_{\mu+1}+1-2 \delta+\varepsilon} \in \operatorname{in}(I)$. Hence we have either $\rho_{\mu}=0$, either $\Gamma+\Delta=\rho_{\mu}>0$, either $\Gamma+\Delta>\rho_{\mu}>0$ or $0<\Gamma+\Delta<\rho_{\mu}, \sigma_{\mu+1}+1-2 \delta+\varepsilon>0$.

- If $\rho_{\mu}=0$ or $\Gamma+\Delta=\rho_{\mu}>0$ we have $L_{\rho_{\mu}} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}$ so from (25) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}} x_{k}^{\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu}}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I . \tag{26}
\end{equation*}
$$

Since $r_{\mu}^{\prime}>0$ and $x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in \widetilde{A p(S, a)}$ we get a contradiction.

- If $k \geq \Gamma+\Delta>\rho_{\mu}>0$ then we have $x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}-h} x_{\Gamma+\Delta-\rho_{\mu}} x_{k+1}^{p_{\mu}}$, so from (25) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-h} x_{\Gamma+\Delta-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu}}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I . \tag{27}
\end{equation*}
$$

which implies $r_{\mu}^{\prime}=h=1$. We have $p_{\mu}-\left(2 p_{\mu}+1-p_{\mu+1}\right)=p_{\mu+1}-$ $p_{\mu}-1 \geq 0$ so

$$
\begin{equation*}
x_{\Gamma+\Delta-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{1} \in I . \tag{28}
\end{equation*}
$$

which is possible only if $\Gamma+\Delta-\rho_{\mu}=1, p_{\mu+1}=p_{\mu}+1, \sigma_{\mu+1}+1-$ $2 \delta+\varepsilon=0$, which implies $\delta=1, \sigma_{\mu+1}+\varepsilon=1$. But we also have $r_{\mu}^{\prime}=h=1, \rho_{\mu}>0$ so the only possible case is 6 ii) which implies $\rho_{\mu}=1, s_{\mu+1} \geq k$ so $\sigma_{\mu+1}=1, \varepsilon=0$. We also have $\rho_{\mu+1}+\widetilde{\rho}=k+1$ so $\widetilde{\rho}>1$ which implies either case 1e) or case 2 d) with $\widetilde{\rho}=2$ since $\operatorname{card}\left(\widetilde{P S F_{1}}\right)=1$. Hence $s_{\mu}=\sigma_{\mu} k+1, \sigma_{\mu} \geq 2, s_{\mu+1}=2 k-1$, since $r_{\mu}^{\prime}=1=r_{\mu}+\sigma_{\mu}+1$ we have $r_{\mu}=-\sigma_{\mu}$ and $r_{\mu+1}<-\sigma_{\mu}$ implies $r_{\mu+1}^{\prime}=r_{\mu+1}+2<-\sigma_{\mu}+2 \leq 0$, so in fact we are in case 6ii)) and $2 \mathrm{~d})$. We set $\sigma=\sigma_{\mu}, p=p_{\mu}$ so we have

$$
\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-2} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma-1}\right\} \text { and }
$$

$$
\begin{array}{lll|l}
\mathrm{S} & \mathrm{p} & \mathrm{r} & \mathrm{r} \\
\sigma_{\mu} k+1 & p & -\sigma_{\mu} & 1 \\
2 k-1 & p+1 & r_{\mu+1} & <0 \\
a & =\left(\sigma_{\mu} k+1\right)(p+1)-(2 k-1) p \\
d & =-(p+1) \sigma_{\mu}-p r_{\mu+1} \\
c & =-\sigma_{\mu}(2 k-1)-\left(\sigma_{\mu} k+1\right) r_{\mu+1} .
\end{array}
$$

with $h=1, k \geq 3, \sigma_{\mu} \geq 2, p \geq 1, r_{\mu+1}<-\sigma_{\mu}$ and $t(S)=2$.

- Suppose that $0<\Gamma+\Delta<\rho_{\mu}$ then $\sigma_{\mu+1}+1-2 \delta+\varepsilon>0$. Since $x_{\Gamma+\Delta} x_{k}^{\sigma_{\mu}+1}-x_{0}^{r_{\mu}^{\prime}} x_{k+\Gamma+\Delta-\rho_{\mu}} x_{k+1}^{p_{\mu}} \in I$ we have from (25)

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}} x_{k+\Gamma+\Delta-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{p_{\mu}}-x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in I . \tag{29}
\end{equation*}
$$

This is not possible since $r_{\mu}^{\prime}>0$ and $x_{1} x_{k+1}^{2 p_{\mu}+1-p_{\mu+1}} \in \widetilde{A p(S, a)}$.
(3) If $\Gamma+\Delta>k$, from (13) we have

$$
\begin{equation*}
x_{\Gamma+\Delta-k} x_{k}^{2 \sigma_{\mu}+1-2 \delta} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{0} L_{\gamma} x_{k}^{\widetilde{\sigma}-\varepsilon} x_{k+1}^{p_{\mu+1}-1} \in I \tag{30}
\end{equation*}
$$

(a) If $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}$ then we have $\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}, 2 \sigma_{\mu}+1-2 \delta-(\widetilde{\sigma}-\varepsilon)=$ $\sigma_{\mu}+\sigma_{\mu+1}+1-2 \delta+\varepsilon$. We have several cases.
(i) $\sigma_{\mu+1}+1-2 \delta+\varepsilon<0$ if and only $\delta=1, \sigma_{\mu+1}=0, \varepsilon=0$. If $\gamma=0$ then we are in case 2 b) so $\widetilde{\sigma}=\sigma_{\mu+1}=0$ which implies $\sigma_{\mu}=0$, this is not possible, so $\gamma=1$. By looking all cases in Theorem 5.2 with $\delta=1$ we have $\rho_{\mu} \leq 1$, on the other side $\varepsilon=0, \gamma=1$ implies $\widetilde{\rho}>1$ a contradiction since $\widetilde{\rho} \leq \rho_{\mu}$.
(ii) $\sigma_{\mu+1}+1-2 \delta+\varepsilon=0$ if and only $\delta=1$ and either $\sigma_{\mu+1}=0, \varepsilon=1$ or $\sigma_{\mu+1}=1, \varepsilon=0$. We have

$$
\begin{equation*}
x_{\Gamma+\Delta-k} x_{k}^{\sigma_{\mu}} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{0} L_{\gamma} x_{k+1}^{p_{\mu+1}-1} \in I \tag{31}
\end{equation*}
$$

ii-*) Suppose $\gamma=0$. We are in case 2 b), $s_{\mu}-s_{\mu+1}=1$, if $\sigma_{\mu+1}=0$ then $s_{\mu}=\rho_{\mu+1}+1$ which is not possible, so $\sigma_{\mu+1}=1, \widetilde{\rho}=1$ so $\rho_{\mu} \geq 1$. Since $\delta=1$ implies $\rho_{\mu}=1$, hence $\rho_{\mu+1}=0$ and since $s_{\mu}-s_{\mu+1}=1$ we have $s_{\mu}=k+1, s_{\mu+1}=k$. The possible cases are 5 i) and 6 i), in both cases we have $\Gamma+\Delta-k=1=\rho_{\mu}$. By using the Gröbner basis we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-1} x_{k+1}^{2 p_{\mu+1}-p_{\mu}-2}-x_{k+1}^{p_{\mu+1}-1} \in I \tag{32}
\end{equation*}
$$

that is

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-1 \in I \tag{33}
\end{equation*}
$$

possible only if $r_{\mu}^{\prime}=1, p_{\mu+1}=p_{\mu}+1$. Since $r_{\mu}^{\prime} \geq h \geq 1$ we have equality, so we are in case 6 i) and $1=r_{\mu}+2$ so $r_{\mu}=-1$. We set $p_{\mu}=p$, we have

$$
\widetilde{P S F_{1}}=\left\{x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{1}, \ldots, x_{k}\right\}
$$

$$
\begin{array}{lll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r} \\
k+1 & p & -1 & 1 \\
k & p+1 & r_{\mu+1} & <0 \\
& a=(k+1)(p+1)-k p=k+p+1 \\
& d=-(p+1)-p r_{\mu+1} \\
& c=-k-(k+1) r_{\mu+1} .
\end{array}
$$

with $h=1, k \geq 3, p \geq 1, r_{\mu+1}<-1, t(S)=k+1$.
ii- ${ }^{* *}$)Suppose $\gamma=1$. Recall that $\delta=1$ and either $\sigma_{\mu+1}=0, \varepsilon=1$ or $\sigma_{\mu+1}=1, \varepsilon=0$. If $\gamma=1, \varepsilon=0$ we are in cases 1e) or 2 d) so $\widetilde{\rho}>1$. $\delta=1$ implies $\rho_{\mu} \leq 1$, but $\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}$ so we get a contradiction. Therefore $\delta=1, \sigma_{\mu+1}=0, \varepsilon=1$, again from $\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}$ we get $s_{\mu+1}=1, \rho_{\mu}=1, \widetilde{\rho}=0$. The possible cases with $\widetilde{\rho}=0$ are 1 b) and 2a) with $k=2$ a contradiction since we assume $k \geq 3$.
(iii) $\sigma_{\mu+1}+1-2 \delta+\varepsilon>0$. If $\rho_{\mu}>0$ we have $x_{k}^{\sigma_{\mu}+1}-x_{0}^{r_{\mu}^{\prime}-h} x_{k-\rho_{\mu}} x_{k+1}^{p_{\mu}}$ so from (30) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-h} x_{k-\rho_{\mu}} x_{\Gamma+\Delta-k} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{2 p_{\mu+1}-p_{\mu}-2}-x_{0} L_{\gamma} x_{k+1}^{p_{\mu+1}-1} \in I, \tag{34}
\end{equation*}
$$

hence

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-h} x_{k-\rho_{\mu}} x_{\Gamma+\Delta-k} x_{k}^{\sigma_{\mu+1}-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{0} L_{\gamma} \in I, \tag{35}
\end{equation*}
$$

recall that $\gamma=0,1$, since $k-\rho_{\mu} \geq 1, \Gamma+\Delta-k \geq 1$ we have $\varphi\left(x_{k-\rho_{\mu}} x_{\Gamma+\Delta-k}\right)>\varphi\left(x_{0} L_{\gamma}\right)$ this is not possible.
If $\rho_{\mu}=0$ we have $x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}}$ so from (30) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}} x_{\Gamma+\Delta-k} x_{k}^{\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{0} L_{\gamma} \in I, \tag{36}
\end{equation*}
$$

this is not possible since $r_{\mu}^{\prime}>0, \varphi\left(x_{0}^{r_{\mu}^{\prime}} x_{k}\right)>\varphi\left(x_{0} L_{\gamma}\right)$.
(b) If $\sigma_{\mu}=\sigma_{\mu+1}+\widetilde{\sigma}+1, k+\rho_{\mu}=\rho_{\mu+1}+\widetilde{\rho}$ we have $\rho_{\mu}<\rho_{\mu+1}, \widetilde{\rho}$ and $\sigma_{\mu}+1-$ $2 \delta-(\widetilde{\sigma}-\varepsilon)=\sigma_{\mu+1}+2-2 \delta+\varepsilon \geq 0$.
Suppose $\rho_{\mu}=0$, which implies $\sigma_{\mu} \geq 2$, since $x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}} x_{k+1}^{p_{\mu}} \in I$ from (30) we have

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}} x_{\Gamma+\Delta-k} x_{k}^{\sigma_{\mu+1}+2-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{0} L_{\gamma} \in I \tag{37}
\end{equation*}
$$

This is possible if and only if $\gamma=1, \Gamma+\Delta-k=1, r_{\mu}^{\prime}=1, p_{\mu+1}=p_{\mu}+1$ and $\sigma_{\mu+1}+2-2 \delta+\varepsilon=0$. We note that $\sigma_{\mu+1}+2-2 \delta+\varepsilon=0$. if and only if $\sigma_{\mu+1}=0, \delta=1, \varepsilon=0$, also note that $\sigma_{\mu+1}=0$ implies $r_{\mu+1}^{\prime}<0$. The possible case with $r_{\mu+1}^{\prime}<0, \varepsilon=0$ is 2 d) with $\widetilde{\rho}=2$ and $\rho_{\mu}=0$ implies the case 4ii). Note that $r_{\mu}^{\prime}=1$ implies $h=1$. Moreover we have $1=r_{\mu}^{\prime}=r_{\mu}+\sigma_{\mu}$ so $r_{\mu}=1-\sigma_{\mu}$. We set $\sigma:=\sigma_{\mu}, p:=p_{\mu}$ so we have $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k-1} x_{k}^{\sigma-1}\right\}$.

Suppose $\rho_{\mu}>0$. If $\gamma=0$ then we are in case 2 b), so $\widetilde{\rho}=1, \rho_{\mu}=0$, a contradiction. So $\gamma=1$. We have two cases.
(i) If $\sigma_{\mu+1}+2-2 \delta+\varepsilon=0$ then we have $\delta=1, \sigma_{\mu+1}=0, \varepsilon=0$. $\delta=1$ implies $\rho_{\mu}=1, \varepsilon=0$ implies $\widetilde{\rho}=2$ and $\sigma_{\mu+1}=0$ implies $r_{\mu+1}^{\prime}<0, s_{\mu}-s_{\mu+1}=\left(\sigma_{\mu}-1\right) k+2$ so the possible case is 2 d$)$ and $5 i i)$ and we have $\Gamma+\Delta-k=2$. So from (30) we have

$$
\begin{equation*}
x_{2} x_{k}^{\sigma_{\mu}} x_{k+1}^{2\left(p_{\mu+1}-p_{\mu}-1\right)}-x_{0} x_{1} x_{k+1}^{p_{\mu+1}-1} \in I \tag{38}
\end{equation*}
$$

but $x_{2} x_{k}^{\sigma_{\mu}}-x_{0}^{r_{\mu}^{\prime}-h} x_{1} x_{k+1}^{p_{\mu}} \in I$ so

$$
\begin{equation*}
x_{0}^{r_{\mu}^{\prime}-h} x_{1} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{0} x_{1} \in I \tag{39}
\end{equation*}
$$

this is possible only if $r_{\mu}^{\prime}-h=1, p_{\mu+1}=p_{\mu}+1$. We have $h+1=$ $r_{\mu}^{\prime}=r_{\mu}+h(\sigma+1)$ so $r_{\mu}=1-h \sigma, r_{\mu+1} \leq-h \sigma$, so $r_{\mu+1}^{\prime}=r_{\mu+1}+h \leq$ $-h(\sigma-1)$, so $r_{\mu+1}^{\prime}<0$ if and only if $\sigma \geq 2$. We set $\sigma:=\sigma_{\mu}, p:=p_{\mu}$ so we have

$$
\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k}^{\sigma}\right\}, t(S)=k
$$

$$
\begin{array}{lll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r} \\
\sigma k+1 & p & 1-h \sigma & h+1 \\
k-1 & p+1 & r_{\mu+1} & <0
\end{array}
$$

$$
a=(\sigma k+1)(p+1)-(k-1) p
$$

$$
d=(p+1)(1-h \sigma)-p r_{\mu+1}
$$

$$
c=(k-1)(1-h \sigma)-(\sigma k+1) r_{\mu+1},
$$

with $h \geq 1, p \geq 1, \sigma \geq 2, r_{\mu+1} \leq-h \sigma$.
(ii) Suppose $\sigma_{\mu+1}+2-2 \delta+\varepsilon>0$. We have $x_{k}^{\sigma_{\mu}+1}-x_{0}^{r_{\mu}^{\prime}-h} x_{k-\rho_{\mu}} x_{k+1}^{p_{\mu}} \in I$. From (30) we get
$x_{0}^{r_{\mu}^{\prime}-h} x_{\Gamma+\Delta-k} x_{k-\rho_{\mu}} x_{k}^{\sigma_{\mu+1}+1-2 \delta+\varepsilon} x_{k+1}^{p_{\mu+1}-p_{\mu}-1}-x_{0} x_{1} \in I$,
since $\Gamma+\Delta-k \geq 1, k-\rho_{\mu} \geq 1$ we have $\varphi\left(x_{\Gamma+\Delta-k} x_{k-\rho_{\mu}}\right)>\varphi\left(x_{0} x_{1}\right)$ which is impossible.

$$
\begin{aligned}
& \begin{array}{lll|l}
\mathrm{s} & \mathrm{p} & \mathrm{r} & \mathrm{r} \\
\sigma k & p & 1-\sigma & 1 \\
k-2 & p+1 & r_{\mu+1} & <0
\end{array} \\
& a=(\sigma k)(p+1)-(k-2) p \\
& d=(1-\sigma)(p+1)-p r_{\mu+1} \\
& c=(k-2)(1-\sigma)-\sigma k r_{\mu+1} . \\
& h=1, \sigma \geq 2, p \geq 1, r_{\mu+1}<-1, t(S)=k-1 \text {. }
\end{aligned}
$$

8. Formula for Frobenius number of Almost Symmetric almost GENERALIZED ARITHMETIC PROGRESSIONS

This section extends and generalizes all the results of [13].
Theorem 8.1. Let S be an $A A G$ almost symmetric with $k \geq 3, t(S) \geq 2$. Then there is a quadratic formula for the Frobenius number in terms of a, d, c, k and the type $t(S)$.

Proof. We have to consider two cases depending on the number i such that $\widetilde{\operatorname{Frob}(S} \in$ $\left(\widetilde{P S F_{i}}\right)$.
I) Suppose $\widetilde{\operatorname{Frob}(S} \in\left(\widetilde{P S F_{2}}\right)$. Then S is almost symmetric with $k \geq 3, t(S) \geq 2$ if and only if either
(1) $\widetilde{P S F_{1}}=\left\{x_{i} x_{k+1}^{p_{\mu+1}-1} \mid i=1, \ldots, k-l\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p_{\mu+1}-2}\right\} . t(S)=k-l+1$. We have

$$
\begin{aligned}
a & =(\sigma k+2) p_{\mu+1}-((\sigma-1) k+l) \\
d & =p_{\mu+1} r_{\mu}+\sigma \\
c & =((\sigma-1) k+l) r_{\mu}+(\sigma k+2) \sigma .
\end{aligned}
$$

where $h=1, k \geq 3,1 \leq l \leq k-1, \sigma \geq 2$.
Since $x_{1} x_{k-l} x_{k+1}^{2\left(p_{\mu+1}-1\right)}-x_{0} \widetilde{\operatorname{Frob}(S)} \in I$ we have $x_{k-l+1} x_{k+1}^{2\left(p_{\mu+1}-1\right)}-\widetilde{\operatorname{Frob}(S)} \in I$ and $F(S)=2\left(p_{\mu+1}-1\right) c+a_{k-l+1}-a$ so determine a formula for $F(S)$ consist to determine $p_{\mu+1}$ in terms of a, d, c, k, l.

$$
\text { we set } X=p_{\mu+1} \text { we have } x_{k+1}^{X}-x_{l} x_{k}^{\sigma-1} \text { so }
$$

$$
\begin{equation*}
X c=a_{l}+\sigma a_{k}-a_{k} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma k(X-1)=a-2 X-k+l \tag{42}
\end{equation*}
$$

We multiply (41) by $k(X-1)$ and by using (42)we get

$$
\begin{equation*}
k(X-1) X c=k(X-1) a_{l}+a_{k}(a-2 X-k+l)-k(X-1) a_{k} \tag{43}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{gathered}
k c X^{2}-\left(k\left(c+a_{l}-a_{k}\right)-2 a_{k}\right) X-a_{k}(a+l)+k a_{l}=0 \\
\text { so } X=\frac{k\left(c+a_{l}-a_{k}\right)-2 a_{k}+\sqrt{\left(k\left(c+a_{l}-a_{k}\right)-2 a_{k}\right)^{2}-4 k c\left(-a_{k}(a+l)+k a_{l}\right)}}{2 k c}
\end{gathered}
$$

$$
\text { (2) } \widetilde{P S F_{1}}=\left\{x_{k+1}^{p_{\mu+1}-1}\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma_{\mu}} x_{k+1}^{p_{\mu+1}-2}\right\}, t(S)=2 \text {. We have }
$$

$$
\begin{aligned}
a & =(\sigma k+2) p_{\mu+1}-(\sigma k+1) \\
d & =p_{\mu+1} r_{\mu}+h(\sigma+1)+1 \\
c & =(\sigma k+1) r_{\mu}+(\sigma k+2)(h(\sigma+1)+1) .
\end{aligned}
$$

where $h \geq 1, \sigma \geq 1, p_{\mu+1} \geq 2, r_{\mu}>-h(\sigma+1)-1$. Since $x_{k+1}^{2\left(p_{\mu+1}-1\right)}-\widetilde{x_{0} \widetilde{\operatorname{Frob}(S)}} \in$ I we have and $F(S)=2\left(p_{\mu+1}-1\right) c-2 a$ so determine a formula for $F(S)$ consist to determine $p_{\mu+1}$ in terms of a, d, c, k.
We set $X=p_{\mu+1}$ we have $x_{k+1}^{X}-x_{0} x_{1} x_{k}^{\sigma}$ so

$$
\begin{equation*}
X c=a+a_{1}+\sigma a_{k} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma k(X-1)=a+1-2 X \tag{46}
\end{equation*}
$$

We multiply (45) by $k(X-1)$ and by using (46)we get

$$
\begin{equation*}
k(X-1) X c=k(X-1)\left(a+a_{l}\right)+a_{k}(a+1-2 X) \tag{47}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{gathered}
k c X^{2}-\left(k\left(c+a+a_{1}\right)-2 a_{k}\right) X-a_{k}(a+1)+k\left(a+a_{1}\right)=0 \\
\text { so } X=\frac{k\left(c+a+a_{1}\right)-2 a_{k}+\sqrt{\left(k\left(c+a+a_{1}\right)-2 a_{k}\right)^{2}-4 k c\left(-a_{k}(a+1)+k\left(a+a_{1}\right)\right)}}{2 k c}
\end{gathered}
$$

II) Suppose $\widetilde{\operatorname{Frob}(S} \in\left(\widetilde{\left(P F_{1}\right.}\right)$. Then S is almost symmetric with $k \geq 3, t(S) \geq 2$ if and only if either
(1) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma}, \ldots, x_{\rho_{\mu}-1} x_{k}^{\sigma}\right\}, t(S)=l+1$. We have

$$
\begin{aligned}
a & =(\sigma k+l+2)(p+1)-l p \\
d & =-(p+1) \sigma-p r_{\mu+1} \\
c & =-l \sigma-(\sigma k+l+2) r_{\mu+1}
\end{aligned}
$$

where $h=1, k \geq 3, \sigma \geq 1,1 \leq l \leq k-3, r_{\mu+1}<-\sigma$.
Since $x_{2} x_{l+1} x_{k}^{2 \sigma}-x_{0} \widetilde{\operatorname{Frob}(S)} \in I$ we have $x_{l+3} x_{k}^{2 \sigma}-\widetilde{\operatorname{Frob}(S)} \in I$ and $F(S)=$ $a_{l+3}+2 \sigma a_{k}-a$ but $x_{l+2} x_{k}^{\sigma}-x_{0} x_{k+1}^{p_{\mu+1}-1} \in I$. We set $X=p_{\mu+1}$ so

$$
\begin{equation*}
a_{l+2}+\sigma a_{k}=a+c(X-1) \tag{49}
\end{equation*}
$$

and $F(S)=a_{l+3}+2\left(a+c(X-1)-a_{l+2}\right)-a$. Determine a formula for $F(S)$ consist to determine X in terms of a, d, c, k, l.
By developing the formula for a we have

$$
\begin{equation*}
\sigma k X=a-2 X-l \tag{50}
\end{equation*}
$$

We multiply (49) by $k X$ and by using (50)we get

$$
\begin{equation*}
k a_{l+2} X+k \sigma a_{k} X=k a X+k c X(X-1) \tag{51}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{gather*}
k c X^{2}-\left(k\left(c-a+a_{l+2}\right)-2 a_{k}\right) X-a_{k}(a-l)=0 \tag{52}\\
\text { so } X=\frac{k\left(c-a+a_{l+2}\right)-2 a_{k}+\sqrt{\left(k\left(c-a+a_{l+2}\right)-2 a_{k}\right)^{2}+4 k c a_{k}(a-l)}}{2 k c}
\end{gather*}
$$

(2) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k-1} x_{k}^{\sigma-1}\right\}, t(S)=k-1$. We have

$$
\begin{aligned}
a & =(\sigma k)(p+1)-(k-2) p \\
d & =(1-h \sigma)(p+1)-p r_{\mu+1} \\
c & =(k-2)(1-\sigma)-\sigma k r_{\mu+1} .
\end{aligned}
$$

where $h=1, k \geq 3, p, \sigma \geq 2, r_{\mu+1}<-1$.
Since our semigroup is almost symmetric we have $x_{2} x_{k-1} x_{k}^{2 \sigma-2}-\widetilde{x_{0}} \widetilde{\operatorname{Frob}(S)} \in$ I that is $x_{1} x_{k}^{2 \sigma-1}-\widetilde{x_{0}} \widetilde{\operatorname{Frob}(S)} \in I$ so $F(S)=a_{1}+2 \sigma a_{k}-a_{k}-2 a$. But $x_{k}^{\sigma}-x_{0} x_{k+1}^{p_{\mu+1}-1} \in I$, we set $X=p_{\mu+1}$ we have

$$
\begin{equation*}
\sigma a_{k}=a+c(X-1) \tag{53}
\end{equation*}
$$

and $F(S)=a_{1}+2(a+c(X-1))-a_{k}-2 a$. Determine a formula for $F(S)$ consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

$$
\begin{equation*}
\sigma k X=a+k X-2 X-k-2 \tag{54}
\end{equation*}
$$

We multiply (53) by $k X$ and by using (54)we get

$$
\begin{equation*}
a_{k}(a+k X-2 X-k-2)=k a X+k c X(X-1) \tag{55}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{equation*}
k c X^{2}-\left(k\left(c-a+a_{k}\right)-2 a_{k}\right) X-a_{k}(a-k+2)=0 \tag{56}
\end{equation*}
$$

and $X=\frac{k\left(c-a+a_{k}\right)-2 a_{k}+\sqrt{\left(k\left(c-a+a_{k}\right)-2 a_{k}\right)^{2}+4 k c a_{k}(a-k+2)}}{2 k c}$.
(3) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-1} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{2} x_{k}^{\sigma-1}, \ldots, x_{k}^{\sigma}\right\}, t(S)=k$. We have

$$
\begin{aligned}
a & =(\sigma k+1)(p+1)-(k-1) p \\
d & =(p+1)(1-h \sigma)-p r_{\mu+1} \\
c & =(k-1)(1-h \sigma)-(\sigma k+1) r_{\mu+1}
\end{aligned}
$$

$h \geq 1, k \geq 3, p, \sigma \geq 1, r_{\mu+1}<\min \{-h, 1-h \sigma\}$.
Since $x_{2} x_{k}^{2 \sigma-1}-x_{0} \widehat{\operatorname{Frob}(S)} \in I$ we have $F(S)=a_{2}+2 \sigma a_{k}-a_{k}-2 a$ but $x_{1} x_{k}^{\sigma}-x_{0}^{h+1} x_{k+1}^{p_{\mu+1}-1} \in I$, we set $X=p_{\mu+1}$, so we have

$$
\begin{equation*}
a_{1}+\sigma a_{k}=(h+1) a+c(X-1) \tag{57}
\end{equation*}
$$

and $F(S)=a_{2}+2\left(a+c(X-1)-a_{1}\right)-a_{k}-2 a$. Determine a formula for $F(S)$ consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

$$
\begin{equation*}
\sigma k X=a+X(k-2)-k+1 \tag{58}
\end{equation*}
$$

We multiply (57) by $k X$ and by using (58)we get

$$
\begin{equation*}
k a_{1} X+a_{k}(a+X(k-2)-k+1)=k(h+1) a X+k c X(X-1) \tag{59}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{gathered}
k c X^{2}-\left(k\left(a_{1}+c-(h+1) a+a_{k}\right)-2 a_{k}\right) X-a_{k}(a-k+1)=0 \\
X=\frac{k\left(a_{1}+c-(h+1) a+a_{k}\right)-2 a_{k}+\sqrt{\left(k\left(a_{1}+c-(h+1) a+a_{k}\right)-2 a_{k}\right)^{2}+4 k c a_{k}(a-k+1)}}{2 k c} .
\end{gathered}
$$

(4) $\widetilde{P S F_{1}}=\left\{x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{1}, \ldots, x_{k}\right\}, t(S)=k+1$. We have

$$
\begin{aligned}
a & =k+p+1 \\
d & =-(p+1)-p r_{\mu+1} \\
c & =-k-(k+1) r_{\mu+1} .
\end{aligned}
$$

with $h=1, k \geq 3, p \geq 1, r_{\mu+1}<-1$. We have $F(S)=p c-a$ and $a=k+p+1$ so $F(S)=c(a-k-1)-a$.
(5) $\widetilde{P S F_{1}}=\left\{x_{1} x_{k}^{\sigma-2} x_{k+1}^{p}\right\}, \widetilde{P S F_{2}}=\left\{x_{1} x_{k}^{\sigma-1}\right\}, t(S)=2$. We have

$$
\begin{aligned}
a & =(\sigma k+1)(p+1)-(2 k-1) p \\
d & =-(p+1) \sigma-p r_{\mu+1} \\
c & =-\sigma(2 k-1)-(\sigma k+1) r_{\mu+1} .
\end{aligned}
$$

with $h=1, k \geq 3, \sigma \geq 2, p \geq 1, r_{\mu+1}<-\sigma$.
Since $x_{1}^{2} x_{k}^{2 \sigma-2}-\widetilde{x_{0}} \widetilde{\operatorname{Frob}(S)} \in I$ we have $x_{2} x_{k}^{2 \sigma-2}-\widetilde{\operatorname{Frob}(S)} \in I$ so $F(S)=$ $a_{2}+2 \sigma a_{k}-2 a_{k}-a$ but $x_{1} x_{k}^{\sigma}-x_{0} x_{k+1}^{p} \in I$, which gives

$$
\begin{equation*}
a_{1}+\sigma a_{k}=a+c(X-1) \tag{61}
\end{equation*}
$$

where we have set $X=p+1$. Hence $F(S)=a_{2}+2\left(a+c(X-1)-a_{1}\right)-2 a_{k}-a$. Determine a formula for $F(S)$ consist to determine X in terms of a, d, c, k.
By developing the formula for a we have

$$
\begin{equation*}
\sigma k X=a+X(2 k-2)-2 k+1 \tag{62}
\end{equation*}
$$

We multiply (61) by $k X$ and by using (62)we get

$$
\begin{equation*}
k a_{1} X+a_{k}(a+X(2 k-2)-2 k+1)=k a X+k c X(X-1) \tag{63}
\end{equation*}
$$

So we get a second order equation in the variable X

$$
\begin{gather*}
k c X^{2}-\left(k\left(c+d+2 a_{k}\right)-2 a_{k}\right) X-a_{k}(a-2 k+1)=0 \tag{64}\\
X=\frac{k\left(c+d+2 a_{k}\right)-2 a_{k}+\sqrt{\left(k\left(c+d+2 a_{k}\right)-2 a_{k}\right)^{2}+4 k c a_{k}(a-2 k+1)}}{2 k c}
\end{gather*}
$$

Corollary 8.2. Given a AAG-semigroup S with data a, d, c, h, k by at most $4 k$ tests solving quadratics equations we can determine if S is almost symmetric.

Proof. The first step is to check if one of the square roots is a natural number, since we dont know $t(S)$ we have to perform k times in the case were the number $1 \leq l \leq k$ appears in this square root. The second step is to check if the solution X as above is a natural number, at this step we know the probably value for $t(S)$ so also the probably case to consider. The third step is to solve a linear system to find the values of $\sigma, p_{\mu+1}, r_{\mu+1}$ from a, d, c, h, k and check if they are natural numbers and satisfy the conditions of the considered case.

Example 8.3. We have implemented the above algorithm and we have for $150 \leq a \leq$ $160,1 \leq d \leq 10,170 \leq c \leq 180,19 \leq k \leq 20,2 \leq h \leq 3$ the following values for which the $A A G$-semigroup is almost symmetric:
$a=153, d=11, c=177, k=19, h=3$, case II.1, $p_{\mu+1}=7, \sigma=1, r_{\mu+1}=-3$.
$a=156, d=11, c=174, k=20, h=3$, case II.1, $p_{\mu+1}=7, \sigma=1, r_{\mu+1}=-3$.
$a=155, d=1, c=177, k=20, h=4$, case I.2, $p_{\mu+1}=8, \sigma=1, r_{\mu}=-1$.
$a=152, d=3, c=170, k=21, h=2$, case I.1, $p_{\mu+1}=4, \sigma=2, r_{\mu}=0$.
$a=150, d=4, c=178, k=21, h=3$, case II. $1, p_{\mu+1}=6, \sigma=1, r_{\mu+1}=-2$.

References

[1] V. Barucci, R. Froberg, One-Dimensional Almost Gorenstein Rings, J.of Algebra 188 (1997), 418-442.
[2] N. T. Dung, On the type and generators of monomial curves, Turkish Journal of Mathematics, 42 (2018), 2112-2124.
[3] Ignacio García-Marco, Jorge L. Ramírez Alfonsín, Øystein J. Rødseth, Numerical semigroups II: Pseudo-symmetric AA-semigroups, Journal of Algebra, 470 (2017), 484-498.
[4] M. Morales, Fonctions de Hilbert, genre géométrique d'une singularité quasi-homogène Cohen-Macaulay. CRAS Paris, t.301,série A $n^{o} 14$ (1985).
[5] M. Morales, Syzygies of monomial curves and a linear diophantine problem of Frobenius, Preprint. Max Planck Institut fur Mathematik (Bonn-RFA) (1987).
[6] M. Morales, Equations des variétés monomiales en codimension deux, J. Algebra 175 (1995), 1082-1095.
[7] M. Morales, Software Frobenius number-Grobner basis download at https://www-fourier.ujfgrenoble.fr/ morales/.
[8] Marcel Morales, Nguyen Thi Dung, A "pseudo-polynomial" algorithm for the Frobenius number and Gröbner basis, Preprint.
[9] Dilip P. Patil, Generators for the derivation modules and the defining ideals of certain affine curves, Thesis, TIFR-Bombay University, (1989).
[10] Dilip P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves, Manuscripta Math. 80 (1993), 239- 248.
[11] J. L. Ramírez Alfonsín, and O. J. Rodseth, Numerical Semigroups, Apéry set and Hilbert series, Semigroup Forum, 79(2) (2009), 323-340.
[12] J. Rodseth, On a linear diophantine problem of Frobenius II, J. Reine Angew. Math. 307/308 (1979), 431-440.
[13] J.C. Rosales, and P.A. García-SÁnchez, Pseudo-symmetric numerical semigroups with three generators (2005). Published by Elsevier Inc.DOI:10.1016/j.jalgebra.2005.06.005.

Université Grenoble Alpes, Institut Fourier, UMR 5582, Laboratoire De Mathématiques, B.P.74, 38402 Saint-Martin D'Hères Cedex, France

Email address: marcel.morales@univ-grenoble-alpes.fr

[^0]: 2010 Mathematics Subject Classification: Primary: 13D40, Secondary 14M25, 13C14, 14M05.
 Key words and phrases: Frobenius number, numerical semigroups Pseudo-Frobenius number, Apéry set, Gröbner basis, Semigroup rings, symmetric and almost symmetric semigroups.

