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Fluid models for kinetic equations in swarming preserving
momentum
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Abstract

We study kinetic models for swarming. The interaction between individuals is given by
self-propelling and friction forces, alignment and noise. We consider that each individual
relaxes its velocity toward some average velocity, such that the total momentum does not
change. We concentrate on fluid models obtained when the time and space scales become
very large. We derive first and second order approximations.

Keywords: Swarming, Alignment, Asymptotic analysis.

AMS classification: 92D50, 82C40, 92C10

1 Introduction

The subject matter of this paper concerns the models for individuals driven by self-propelled
forces, with alignment and noise. These models give a mathematical description for self-
organizing systems like schools of fish, flocks of birds, swarms of insects, etc. Discrete models
where averaging is performed in direction or velocity exist [27, 28]. When the number of
agents grows, models based on particle density functions are preferable, in order to avoid
prohibitive calculations [20], 25 26]. The kinetic theory for the description of the collective
behavior of large groups of individuals is well developed [41), 17, 32]. The well-posedness
theory was established for models including short-range repulsion and long-range attraction,
self-propulsion, velocity averaging, that is, each individual adapts its own velocity with respect
to that of the neighbors. We refer to [I§] for results based on mass transportation distance,
[6] for the mean-field limit with locally Lipschitz interactions, [7] for the mean-field limit of
Vicsek models. A summary on the mean-field limit for applications in swarming models was
presented in [23], see also [24] for a rigorous derivation of the mean-field limit for systems of
particles interacting through local sensitivity regions.

In most of the models, the alignment between particles comes by relaxing the individual
velocities toward the mean velocity through a pairwise particle interaction kernel depending
on the distance between particles [21], 22, 28] [36], 40]. For slowly decaying interaction poten-
tials, it is shown that flocking emerges, that is, the distance between agents remains uniformly
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bounded in time and the agent velocities are asymptotically close to the mean velocity. A
simple proof of the Cucker-Smale flocking dynamics was obtained in [34] using the Lyapunov
functional approach.

The Cucker-Smale model is symmetric: any two agents have mutually the same influence
on the alignment. This symmetry is one of the key points for studying the long time behavior,
because symmetry implies the conservation of the total momentum and also that the Cucker-
Smale model is dissipative. A new framework for analyzing the phenomenon of flocking is
presented in [31], which allows for non-symmetric pairwise influence between agents and also
the treatment of models with leaders. One way to take into account the interaction between
the agents and the environment is to add noise terms [35].

We denote by f = f(t,z,v) > 0 the particle density in the phase space (z,v) € R% x
R?, with d > 2. The self-propulsion and friction mechanism are encoded by the term
div,{fV,V (] - |)}, for a given confining potential v — V(|v|). We refer to [14] for the
potentials V,, g(|v]) = 6% - a%, with o, 8 > 0. When the coeficients «, 8 are scaled in
such a way that a/f is constant and « and f are large, we obtain measure solutions whose
support lies on the sphere of radius r = y/a/f. Macroscopic models resulting from the bal-
ance between the reorientation, which tends to align the particle velocities with respect to
the mean velocity, and diffusion, which tends to spread the particle velocities isotropically on
the sphere 7S%! were discussed in [15].

The relaxation toward the velocity u[f] is described by the term div,{f(v—u[f])}. Adding
the term div,{oV,f}, which represents the noise with respect to the velocity variable, we
obtain the Fokker-Planck type equation

Of+v-Vof = Q(f) == dive{oVof+ flo—u[f])+ FVV(-]}, (t,z,v) € Ry xRIxRY, (1) 7Equi-sSwarm?

Many fluid limits, corresponding to various asymptotic regimes are obtained by formal ar-
guments. There are also rigorous derivations, based on the relative entropy method, which
provides also a rate of convergence, see [19] for the large friction and high force field limit,

[37] for the Cucker-Smale equation with strong noise and strong local alignment. In many
Jpaf(@)v dv In
fRd f(v) dv *

that case, the equilibria of the interaction mechanism () are von Mises-Fisher distributions,
parametrized by the concentration p[f] = [paf dv and the orientation of the mean velocity

models [3I], we assume that the velocity u[f] is the standard mean velocity

Q[f] = ﬁ% ,u[f] # 0. More exactly, for any u € RY we introduce the notations

exp (_‘PuT(v)

— 2 )
_ v —u Zom) (2) 7Equ2-4-Swarmi:
o, U -

Dy (v) 9

V(D) 2z = [ o (-2 du. wa00) -

The function Z depends only on ¢ and |u|, see Proposition and thus we will write
7 = Z(0,1 = |u|). For any smooth particle density f and any u € R? we have

Uvuf + f(U — u[f]) + fva(| . |) = O'Mu(’u)vv <J\§) (3) 7Equb-Swarming’

and therefore the interaction mechanism writes

Q(f) = odiv, (Mu[ﬂvv <M]uc[f})> :

As usual, multiplying by f /Mu[ 7] and integrating by parts with respect to the velocity imply
that any equilibrium satisfies

F= oMy, ol = [ 10 o

2



but we also need to check that u[p[f]M,s] = u[f]. When u[f] is W, we have to

impose
f(ta,0)(v —ulf(t.a,)])) dv =0, (t,2) € Ry x R?
Rd
and after some computations, see Proposition we deduce that the distribution pM,, is an
equilibrium iff I = |u/ is a critical point of Z(o,-), that is 0;Z (o, |u|) = 0. Notice that for any
o > 0, the distribution

o )\ p I+ V(o))
o) = gy (-252) = zbgy o (‘20>

is an equilibrium of @), with vanishing mean velocity. But for small enough values 0 < ¢ < oy,
equilibria with non vanishing mean velocity occur cf. [16 29, B0, B3], leading to a phase
transition at some critical value op > 0; several values for |u|, or only the trivial one, are
admissible, depending on the diffusion coefficient ¢ being smaller or bigger than the critical
value o . The fluid models corresponding to these values o €]0, o¢[ are derived in [16]. The
modulus | = |u] is determined by 9;Z(o,1) = 0, the concentration p € R4 and the orientation
0esi-l = {5 eR?: €| = 1} verify a system of d conservation laws (the kernel @) satisfies
the mass balance but not the momentum balance).

The fluid models come from the kinetic equations by appealing to the conservations of
the mass, momentum etc. We are looking for collision invariants [16] [4] 5] [38], 9], since any
collision invariant leads to a conservation law for the macroscopic quantities parametrizing
the equilibria of Q). We refer also to [31] for the notion of generalized collision invariants
and to [1I] Theorem 1.1 for the relation between collision invariants and generalized collision
invariants.

When considering the Cucker-Smale model, we combine noise, alignment and self-propulsion
force. In [2] the authors investigate first the hydrodynamic limit, when considering strong
diffusion and alignment, whereas the self-propulsion force is weaker. Secondly, they study the
effect of a large self-propulsion force in the hydrodynamic model : a phase transition appears
around some critical temperature. Diffusion corrections were computed as well. Performing
the hydrodynamic and large self-propulsion force limit simultaneously, at the level of the
kinetic equation is another interesting issue [3].

For the model with mean velocity, 0 < o < g9, we obtain a system of d conservation laws
(the kernel @ satisfies the mass balance but not the momentum balance) for the concentration
p € Ry and the orientation Q € S9~! = {¢ € R? : |¢| = 1}, whereas the modulus of the mean
velocity | = |u| is determined by 9,Z(0,1) = 0.

In the present work we combine noise, alignment and self-propulsion force, making the
assumption that the individuals adapt their velocity by talking into account the neighbors
velocities, but also the self-propulsion force of the individuals, such that the momentum
conservation hold true [p,Q(f)(v)v dv = 0. In that case the velocity u is determined by
fRdeyéu dv = 0 leading to

 Jpaf @ VoV D) v [raf Vu®o do
fRdf dv fRdf dv '
It is a generalization of the Fokker-Planck kernel (if V' = 0 we obtain the usual velocity u"[f] =

Jgaf v dv
f]Rd f d’U

the alignment velocity is

u”'[f]

, with mass and momentum conservations, as for the Cucker-Smale model. When
Jeaf Vo®o dv
f]Rdf dU
oV f+fV,®, = 0 with respect to v € R%, we obtain fRdequu dv = 0 leading to u" [pM,] =

, any f = pM, ia an equilibrium. Indeed, integrating



Jra fVu®o dv
fRdf dv
large time and space units in , we are led to the kinetic equation

u. From now on, the notation u[f] will stand for the expression . When considering

1
O ff+v-Vift= gQ(f[':), (t,z,v) € Ry x RY x RY (4) ?Equ3-SwarmSca.

where, for simplicity, we still denote by (¢, z) the new time and space coordinates. At least
formally, the asymptotic behavior when € N\ 0 comes by the mass and momentum balances,
leading to the fluid model for the macroscopic quantities p, v which parametrize the equilib-
rium limg\ o f¢ = f = pM,. There is no phase transition around some critical value for the
diffusion.

Theorem 1.1

Assume that lim,_ 4o (bfT(‘”) = 400, with ®,—g defined in and consider the function Z
introduced in , which depends only on o and | = |u| ¢f. Proposition 2.1. Then, at any
(t,z) € Ry x R? the limit limeo f(t,z, ) = f(t,x,-) is a equilibrium of Q i.e., f(t,x,v) =
p(t, ) My o) (v), (£, z,v) € Ry x R? x R? and

07
atp + divy |:p <1 + O‘> u] =0 (5) 7EquMassBal?
[ulZ(o, ul) -

62 oz

8[Z . [ 812 2 1 ‘ul
1 T 1 ~7 1 I~ 1 T 1~ - =
Oy [p( —|—0"u| ( 7|u’)>u} + div, -p< —|—2a|u| >u®u+pa Qfu] ® Qu]

(6) ?7EquMomBal?

az
vV o (1o 2] <0
|ul Z (0, |ul)

We are looking for a simplified version of the above fluid model. This can be achieved by
writing the above equations with respect to the concentration p and the current j(¢,z) =
fRd f(t,z,v)v dv. For any o > 0 we introduce the strictly convex function with respect to [

given by £(o,1) = g—i—a InZ(o,1),l € Ry, and its convex conjugate function k — £*(0, k), k €
R..

Theorem 1.2
Assume that lim,| 4o Pov) +oo, with ®y—q defined in (2). Then

J oz >

S=1l40———=|u

p < |u|Z (o, |ul)
Op+divej =0

o . X . o
0, + div, | 222 1 o ] Id—l-a( > 197
P k=ljl/p

and , @ write

= 0.

aE* (o, |5]/p) K202,6%  kORE* P

Moreover, we have the entropy inequality

. . OpE™ :

O{ploclnp+ E*(a,ljl/p)} + dive  |olnp+ | EX (0, k) + 0o ]; jr <O.
kO €* k=|j
=lil/p
We investigate also the second order aprroximation of . For doing that we need to invert
the linearization Ly of the collision operator @ on (kerLl f)l. We need a Poincaré inequality,
see Lemma [3.1] Taking into account the first order corrections leads to the following second
order approximation.



Theorem 1.3
Assume that lim, 4 ®o(v) _ 400, with ®,—¢ defined in , that for any u € R?, the

[v]

function v = |V, @, | — $A,®, belongs to L}, .(RY), is bounded from below and is coercive
i.e.
li ! |V, @, |2 LN +
im |— - = = +00.
40_ v*u 2 v*Fu

|v|—+o0

Consider the family (f¢)s of solutions for ([{). Then a second order approzimation (5%, 7°)
for (p° = [gs f¢ dv, j° = [gs fv dv) is given by

O p° + divyj© =0
"IS “’.S 5 5 5
8,75 + diva <‘7®‘7 +oF Mae + TS + €T + 5Tj> =0
p

where .
Mo = PECNED (1 6 6 08) + R (o, i) 0 O

- - 2(I; — QF @ QF) : 9,a°
T = Pty (0, ) (L— 008 {05 410, — 21 d® : ) : O
- -

(I;— QR HI—QF 20°)

=&

TS = % {CQ(O—, ) (Ig — O @ QF) x (Ig — Q° @ Q) + e3(0, 7°) (Q° @ Q) x (QF @ QF)
tea(o, )Ty — QF @ QF) x (0 @ OF) + (F @ OF) x (I — F @ QE)]} O,

=&

15 = %%[(Id —OF @ Q%) (0,05 + 10,0°)(QF @ QF) + (QF @ Q) (9,0° + L0, 0°) (Ig — OF @ QF)].

Here QF = Q[j], @¢ = ,E* (0, 75|/ 5°)QE. For any two matrices A, B € My(R), the notation
A x B stands for the linear application A x B : M4(R) — M4(R), given by (Ax B)X = (B :
X)A, X € My(R) and the functions (c;)1<i<5 are defined in (38)), (39).

Our paper is organized as follows. In Section [2] we establish some preliminaries, concerning
the properties of the function Z. It is useful to define the notion of vector and matrix fields
which are left invariant by the orthogonal transformations preserving u. We shall continue
in this section by studying the structure of such vector and matrix fields. The linearization
of the interaction mechanism is studied in Section[3l In Section ] we concentrate on the first
order approximation. The second order approximation is analyzed in Section [5| Some proofs
involving technical calculations were postponed to the Appendix A.

2 Preliminaries

For any u € R? we denote by 7y, the family of orthogonal transformations of R? preserving u.
Clearly 7y is the family of all orthogonal transformations of R?. A function f = f(v) is said
invariant by the family 7, iff f(*Ov) = f(v),v € R% O € T,. The structure of the functions
which are left invariant by the transformations of 7, is presented below.

Lemma 2.1

The functions on R% which are left invariant by the family To are those depending only on
|v]. The functions on R which are left invariant by the family Ty, u # 0, are those depending
onv-u and |v].

We recall the following easy result cf. [16].



Lemma 2.2
Let u be a vector in R? and a : R — R? be a integrable vector field on R, which is left
mwvariant by the family T, i.e.,

a(*Ov) = 'Oa(v), veRY, OeT,.
Then fRda ) dv € Ru.

We assume that the following hypothesis holds true

|v[?

=+ V(v

lim 27“ = 400. (7) 7Equli-Swarm?
o] —+o0 |v] -

In that case the function Z is finite for any o > 0,u € R?, because we can write

Z(o,u) = exp <—|;L(|}_2> /Rdexp (— @ +UV(UD + U;“) dv
o) oo 2 ()

Similarly, all the moments of M,, are finite

/ﬂmma@ym<+m,peN
]Rd

We recall the following formula
/ < o ]v|> dv = |S?72| rd= 1/ (cos@,r)sin?=2 6 dodr (8) 7Equi2-Swarm?
R

for any non negative measurable function x = x(c,7) ] — 1, 1[xR% — R, any Q € S and
d > 2. Here |S%2| is the surface of the unit sphere in R4, for d > 3, and |S°| = 2 for d = 2.
Next we concentrate on the properties of the function Z cf. [16].

Proposition 2.1
Assume that the potential v — V (|v]) satisfies (7).

1. Then the function Z(o,u) depends only on o and |u|. We will simply write

[ oo (<29 00— 260 =

2. For any u € R?, we have [ M,(v)v dv € Ryu. In particular we have [pqMo(v)v dv =
0.

a2(0, ul) = Z(o, |ul) / My ]

In particular 0, Z(0,0) = 0 for any o > 0.

R2(o,|ul) = Z(o |u]) / M

( Ol - ru|> —i] W

where the notation Qu] stands for zfu # 0 and any vector in S* 1 if u = 0.



In the sequel we will appeal to vector and matrix fields, which are left invariant by the family
Tu, v € RE. We end this section by indicating the structure of these vector and matrix fields.
This will be crucial when searching for an antecedent of the pressure tensor through the
linearization of the collision mechanism.

Proposition 2.2
Let a : RY — R? be a vector field on R, which is left invariant by the family T, v € R%.

1. If u = 0, then there is a function 3 : R* — R, 5(0) = 0, which is left invariant by the
family Ty, such that a(v) = B(v)v,v € R,

2. If u # 0, then there are two functions o : R¢ - R, B : R? = R, Blra) = 0, which are
left invariant by Ty, such that a(v) = a(v)Qu] + B(v)(v — (v- Qu])Qu]), v € R™

Proof.

1. Obviously, for any function 8 which is left invariant by 7o, the vector field a(v) = S(v)v,v €
R is left invariant by 7g. Conversely, assume that a : R¢ — R? is left invariant by 7. For
any ¢ € %71 N (Rv) we consider O =15 — 26 ® £ € Ty and therefore we obtain

a(v) = a('Ogv) ="'Oca(v) = a(v) — 2(a(v) - £)§

and thus a(v) - € = 0. We deduce that a(v) = 0 if v = 0 and (Iy — v ® v/[v]|?)a(v) = 0 if
v € RA\{0}. The desired result follows by taking the function 3(v) = a(v)-v/|v|?,v € RH\{0}
and $(0) = 0, which is left invariant by 7p.

2. Clearly, for any functions a, 3 which are left invariant by 7,, the vector field a(v) =
a(©)Qu] + B(w)(v — (v- Qu])Q[u]), v € R? is left invariant by T,. Conversely, assume that
a:R? — R? is left invariant by 7. Then a (v) := a(v) — (a(v) - Q)Q, v € R? is left invariant
by Tu. For any £ € SN (Rv + RQ)L, we consider O¢ = I; — 26 ® € € T,, and therefore we
have

a1(v) = a1 (1Ogv) = ‘Ocay (v) = a1 (v) — 2(ar (v) - )€

saying that a; (v)-&€=0. If v, :=v— (v-Q)v =0, as we also have a, (v) - Q = 0, we deduce
that a; (v) = 0. If v; # 0 we obtain (I;—v; ®v, /|vi|*)as (v) = 0. We consider the function
Bw) =ay(v)-vy /vl ]?, v eRNRQ), Blra = 0, which is left invariant by 7. In that case
ay (v) = B(v)vy,v € R? and therefore a(v) = a(v)Q+ B(v)vy, v € RY where a = a - Q is left
invariant by 7. O

A matrix field A : R? — My(R) is said invariant by the family T, iff A(‘Ov) =t OA(v)O,v €
R? O € T,. Notice that if the matrix field A, B and the vector field a, b are left invariant by
T, then trA, Aa, ‘A, A: B, a-b, a®b are left invariant by 7,,.

Proposition 2.3
Let A :R? — My(R) be a matriz field on R? which is left invariant by the family T, d > 2.

1. If u = 0, there are two functions « : RY — R, 5: RY — R which are left invariant by
To, a(0) =0, such that

1,
A(U) - O‘(U) (’U @V — ”UIQ;) + ,3<’U)Id, (S Rd- (9) ?7Equ9-Swarm?

2. If u # 0, there are the functions o, 8,7',7",8 which are left invariant by Ty, alrq =0,
YIra =0, v'|ra = 0, such that

I;—Q®0Q
A(w) = a(v) <1u_ ®uvy — |UJ“2dd—(1®> +B(v)(Ig—Q2®Q)
7 (W) @2+ Q20 +5(0)QRQ, veRY d>3 (10) ?Equ10-Swarm?



and
AW) = B) (L — 2@ Q) +9 ()L @Q+7"Q@ v, +5(0)Q®Q, veR2

Proof.
1. Clearly, every matrix field in @ is left invariant by 7y. Conversely, let us consider a
matrix field A which is left invariant by 7g. Assume for the moment that trA = 0. For any
¢ € SN (Ru)t, we have O¢ = I; — 26 ®@ € € Ty and O¢A(v) = OA('Ogv) = A(v)O¢
implying that

E®EA(v) = A(w)E®E, and A(v)§ = (A(v)S - ).
It is easily seen that there is ), depending only on v, such that A(v)¢ = A¢, for any & € (Rv)t.
If v = 0, as trA = 0, we obtain A(0) = 0. If v € R¥\{0}, we claim that v is also a proper
vector for A(v). Indeed, since the matrix field ‘A is left invariant by 7o, we have as before,
for any ¢ € S~ N (Ru)+

AWy - € =v-TA@)E = v- (FA@)E- )¢ =0

saying that A(v)v € (Rv)*t = Ruv. Let us consider {&;,...,&;_1} an orthonormal basis of
(Rv)*. The matrix A(v) writes

Aw) = MG @& + .. + &1 ® Ea1) + MU’;@';

where (d — 1)\ + p = trA(v) = 0, and therefore

VRV VRV VR A |v]?
Aw) =2 (1= 2979) @ - )22 (- a8 ) = -2 M.
(v) <d |w2> @=DTp <d m2> MQG®U 4l

By taking a(v) = ;% |v:|4 , v € RA\{0} and a(0) = 0, which is left invariant by 7o, we
2
obtain A(v) = a(v) (v ®v— |1zi|ld> ,v € R% Now, for any matrix field A which is left

invariant by 7g, the matrix field A’ = A — %Id is left invariant by 7y, and has zero trace.
There is o/ : R — R, which is left invariant by 7o, such that

2
A'(v) = o (v) (v@v—@[d), v €RY

2
and therefore A(v) = o/(v) <v v — Mld> + B(v)Ig,v € R, where = % is left invariant

d
by To.
2. Every matrix field in is left invariant by 7T,. Conversely, let us consider a matrix field
A, which is left invariant by T,. For any & € S¥~1N(Rv+RQ)* we have O = 1;-26®€ € Ty,
and we deduce as before that there is A depending only on v such that

A(v)E = X, € € (Ru+ROQ)L.
If v € RQ, since the matrix field *A is left invariant by Ty, we have for any ¢ € S¥~1 N (RQ)*
A@)Q- €= Q- TAW)E = Q- (CA@)E - )€ =0
implying that A(v)Q € (RQ)+ = RQ. In that case, A(v) has two proper subspaces and

_ trA(v) — A(v)Q2-Q
B d—1

A(v) (I;— Q2+ (A(W)2- Q)2 Q, veRQ.



If v € R4\ (RQ), let us consider {{1,...,£4_2} an orthonormal basis of (Rv 4+ RQ)+. Recall
that for any matrix B € My(R) and orthonormal basis {e1,...,eq} of R% we have B =
Zle e; @ 'Be;. Therefore we write

d—2
Dmo:%ﬁ®A(M SR AW VQ+ Y& @AW
1
=1
:”l®Am”L+Q®A@m+A<m ®—Q®Q)
v v v fod]

But the vector field v — A(v)vy, v — A(v)Q) are left invariant by 7,. We deduce by
Proposition [2.2] that

Aw)vy = ar1(v)Q+ Bi(v)ve, AW)Q = az(v)Q+ Ba(v)vy

for some functions ay, 81, as, B2 which are left invariant by T,, and therefore

Q+ ®
tA(v) = = @ 2 fro + Q@ (e + Bov) ) — A TE LN - Q2 Q)
v v v ]
e Qo0 00

A I —
rv@l®vL‘Wﬂ2d_1)‘*W“*“‘2M]d_1

4+ ——=v RN+ B2 ®v] + a) ® (.

v L!Q

Notice that the matrices v| ® v — ‘UL‘Q%, IL—-020 01,00 Q0v,, Q® N are
orthogonal with respect to the scalar product B : C = tr(!BC), B,C € My4(R). We obtain
eagsily that

A): (v v—deQ@Q
) = (2o = I PG 808

A= O
I;— Q0 Al :Q® A(v) : ® 0
—|—A(’U) . (Id—Q@Q) d . + (,U)’,U ’2 UL %

- 1

o o8

A(’U)'UL(@Q

B R UL T e P

A)=AW): (L -2 Q) (I —Q® Q) + v R0
+ (A)Q- Q) ®Q, v e RN\ (RQ), d =
The second assertion of the proposition follows by taking

Av) : (UL(X)UL— lvg |21d Q®Q

OZ(U) = (d — 1) (d — 2)”[)J_|4 le\(RQ)’ v E Rd, d > 3
B(v) = Alv) : (Cfd__IQ(XJQ), SW)=A):QQ, veRY, d>2
A(w) v @ A(w) : Q®@uvy d
') = ———"F—F—1 "(v) = ———7F—1 RY d>2
7' (v) e RA\(RQ)s 7 (V) e RA\(RQ), U ERY, d >
which are left invariant by 7. O



Corollary 2.1

Let A :R? — My(R) be a field of symmetric matrices on R? which is left invariant by the
family Ty, u # 0,d > 2. There are the functions a, 3,7,6 : RT — R which are left invariant
by Tu, alra = 0, v|rq = 0 such that

A(v) = a(v) <u Qv — wﬁ“;?fﬁz) + B() (I — Q® Q)

+ 7)) (v @A+ QR0 ) +0(V)ARQ, veRY d>3
and

A)=B)(I— 2@ Q) +7(0)(vL ®Q+Q®@v1) + ()R Q, ve R

3 Linearization of the interaction mechanism

As usual when studying the asymptotic behavior of , we introduce the Hilbert development
for f¢
fe=f+efitelfat .

where f = f(t,z,v), fi = fi(t,x,v),i = 1,2, ... are not depending on €. We have
Q(fF) = Q(f) +eLyfi + O

where Ly := d;Q is the first derivative of Q) at f.
Inserting the expansions for f¢, Q(f¢) in and identifying terms of equal powers of ¢,
we obtain

Orf+v-Vof+e (6tf1 +v- mel) + .= 6_1Q(f) + ﬁf(fl) + ... (11) ?developeps?

From the above equation, we infer that Q(f) = 0 and as seen before, for any (¢,z) € Ry x RY,
the individual density f(¢,x,) is a von Mises-Fisher distribution

f(ta l‘,U) = ,O(t, :E)Mu(t,x) (U)7 v E RY.
Notice that the equilibria of Q are parametrized by p > 0 and v € R%. Indeed, we have
oVyM, + M,V,®, = 0 and therefore [,M,(v)V,®, dv = 0, saying that u[M,] = u. For

any equilibrium f = pM,, we investigate the properties of the linear operator L. Let us
define the Hilbert spaces

(AZ)Q M, (v) dv < 400}

™ (ir.)

v)h(v
(g, 1)t = /Rdg()() dv, g,h€ L3,

L3, ={g: R? — R measurable : /
R4

2 2
Hy ={g: R? — R measurable : / [(1\?) + ] M, (v) dv < +oo}
R4 u

endowed with the usual scalar products

My (v)
g9(v) h(v) g h 1
M))ar, = Vo (-2 ) - v, ()| My(v) dv, g,he H
and we denote by | - |as,, || - ||az, the associated norms.

10



Proposition 3.1
Let f = pM, be an equilibrium of Q).

1. The linearization Ly = dQy is given by
Lsg = div, {avvg + gV, @y — Mu(v)/ g(v )V, (V) dv'} .
Rd

2. The operator Ly satisfies the mass and momentum conservations

/ﬁfgdvzo, /[,fgvdU:O.
Rd Rd

3. The null space of Ly is given by ker Ly = span{ My, v1 My, ...,vgM,}.

Proof.
1. By direct computation we obtain

d d|  Jedvo+ VR V(D) +s9) dv
s |0 ulf + sg] = dsSo]R Jralf +59) dv
_ S0+ VRV g dv fralo+ VLV (] ]) S dv / (v) dv
Jraf(v) dv (Jraf(v) dv)? Re
~ Jpag(v) V@, dv
B fRdf(v) dv

implying that
d
Lyg= f‘ QU + s9) = div, {vag + 9V P, — Mu(v)/ g )V, (V) dv/} :
s= Rd

2. Tt is easily seen that fRdﬁfg dv =0 and

/Rdﬁfg vdv = — /Rd{avvg + g(v) V@, — Mu(v)/ gV, (V) dv'} dv

Rd

- — /Rdg(v)vv% dv +/ g(")V@,(v") dv’ = 0.

Rd

3. We introduce the notation W(g) = o [paMyu(v)V, (Miu) dv,g € H}V[u Notice that for
any g € HJ}/IU, W (g) is well defined and we have

Wl <o [ Mo
<o (

< allgllaz,-

Vo < ) ‘ (12) 7EquEstimW?
M,

Moreover, since oV, M, + M, (v)V,®, = 0, we can write

g
W(g) =—-0 | VeMy—"— dv= V&, do.
(9) , V(o) /dg(v) v

11



Notice that, thanks to the momentum balance, we have

_ h(v)
—o(Lyg,h)m, = O—/]Rdﬁngu(v) dv

B /RJ"W +9(0)Vo®y = My(0)W (g)] - 0V (h) dv

~ [ o, (1) - MW@ 1030, (57 ) = M)W 0101 o)
In particular

—0(Lyg,9)m, = /Rd LAY (]é) - Wi(g)

and therefore the operator —L; is symmetric and positive with respect to the scalar prod-
uct of L%\/[u' Thanks to the previous computations, we identify the kernel of the operator

Ly¢. From it is clear that if g € ker Ly, than oV, (Miu> — W(g) = 0 implying that g €

span{ My, vi My, ...,vqM,}. Therefore we have the inclusion ker L C span{M,, vi My, ...,vqgM,}.
For the converse inclusion, notice that

M, (v)dv>0 (13) ?EquPositivity

W(M,) =0 | MV, () dv=0, WMy =0 | MV, <“ > dv = oe;, 1 < i < d.
Rd M, R4 M,
We obtain Iy
LM, = div,{oM,V, <M“> — MW (M)} =0
and
Ly(viMy) = divy{oM, Vo (45 = MW (0iM,))
= divy{oMye; — Myoe;} =0, 1 <i<d
implying that span{M,, vi My, ...,vgMy,} C ker L. O

We also need to determine the range of the linearization L.

Definition 3.1
We say that g € H]bu is a variational solution of —Lg = p, with p € L%\/fu iff

/Rd [UVU <J\i) - W(g)} : [avv (]\Zu> - W(h)} My(v) dv = aéd}w dv  (14) 7EquvarFor?

for any h € H}V[u

If g € H}Mu is a variational solution of —L¢g = p,p € L?Wu, then taking h = M, in
we obtain [p.p(v) dv = 0. Similarly, by taking h; = v;M,, we obtain [p.p(v)v; dv =
0,1 < i < d, saying that a necessary condition for solving —L;g = p is p € (ker L’f)J-. We
claim that this condition is also sufficient. We need a Poincaré inequality, which comes from
the equivalence between the Fokker-Planck and Schrodinger operators [§]. Under suitable
confining assumptions (cf. Theorem XII1.67 in [42]) we deduce.

Lemma 3.1
Let u be a vector in R%. Assume that the function v — $|Vv<1>u|2 — %Av<bu belongs to
LIIOC(RC[), is bounded from below and is coercive i.e.

: 1 1
lim B‘VU@UP - §A’U©u = +4o00.

|v|—+o00

12



Therefore there is Ay, > 0 such that for any g € H}V[u we have

LG 8-

Proposition 3.2

Assume that and the hypotheses of Lemma hold true. Then for any p € L3, such
that [pap(v) dv = 0, [pap(v)v dv = 0, there is a unique variational solution g € Hy,  for
—Lsg = p, satisfying [pag(v) dv =0, [pag(v)v dv = 0. Moreover we have

2 2

M, (v) dv > )\u/
R4

wp ol

pe(ker L)+ |p|Mu

Proof.
It is a direct consequence of Lax-Milgram lemma, applied to the bilinear symmetric form

a: HxH - R, a(g,h) = /Rd [avv (J\i) - W(g)} : [avv <J\Zu> - W(h,)} My(v)dv, g.he H

and the linear form I : H — R,1(h) = o [pa%%%) dv,h € H where H = {h € H}, :

Jgah(v) dv = 0, [pah(v)v dv = 0}. Since the linear applications h — [p.h(v) dv,h —
Jgah(v)v dv are bounded on L%Wu and thus on H}wu, we deduce that H is a close subspace
in H}Mu and therefore a Hilbert space with respect to the scalar product of H}wu Thanks to

, we have for any g, h € H}V[u
— o |V, <>‘ + ]W(h)\] M,
M, [ M, M,

()
9 1/2 9 1/2
M, (v) dv> </Rd Vo (]\Zu> M, (v) dv)

g

< 40° Vo | =

<t (e (55)
< 40?|\gllar, 1Bl ar,

saying that a is bounded on Hzl\/[u X H11\4u> and also on H x H. We concentrate now on the

coercivity of a. Notice that for any g,h € HJI\/IU we have

g h
RdMu(v)JVU (Mu> oV, (Mu> dv

h
la(g, )| <

= | Muv) [avv (J\Z) —W(g) + W(g)] : [avy (AZ) —W(h) + W(h)} dv
—alg )+ Wo) W + [ [odu 07, () = Mo )| av- W)

h

+ W) [ [ov. (5) - M) a

=a(g,h) + W(g) - W(h).

We claim that infye gy ny=1 a(h, h) > 0. Indeed, if it is not the case, there is a sequence
(hn)n C H, |W(hy)| = 1,n > 1 such that a(hn, h,) < L,n > 1. This sequence is bounded in

H}wu because
Ao \ |2
6

o2 [ My(v)

1
dv = a(hp, hn) + [W(ha)? < = +1, n>1
Rd n

13
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and by the Poincaré inequality
2

)\/ ﬁzM(v)dzm /v . M(v)dv<l 1+l n>1
Y Jra \ M, v _URdUMu “ e n) T

There is a sequence (hy, )r which converges weakly toward some function h is H. Since the
bilinear form a is bounded and non negative on H x H, we have

1
0 < a(h,h) <liminf a(hy,, hy,) < liminf — = 0.
k—+4o00 k—+oo Ny

We deduce that a(h,h) = 0, saying that oV
h € span{M,,viM,, ...

W) It comes easily that
., vgM,} implying that h = 0.
bounded on HJ}@, we obtain a contradiction

Smce the linear application W is
0= W (i) = lm [IW ()|

= lim 1=1.
Therefore there is a constant u, such that

k—+o00

a(h,h) > pu|W(h)?

for any h € H.
Finally we obtain for any h € H

2a(h, h) > a(h, h) + p|W (h))?

2
Zmin{l,,uu}UZ/ M, (v) |V, <h> dv
Rd Mu
ho\2
Zmin{l,,uu}a)\u/ <> M, (v) dv
Rd Mu
saying that the bilinear form «a is coercive
2
4a(h, h) Zmin{l,,uu}JQ/ M, (v) VU< ) dv
R4 u

h
M
h 2
—|—min{1,,uu})\ua/ M, (v) () dv
Rd Mu

Z Umin{l,ﬂu}min{0—7 )\U}HhH?Wu? h’ € H

h) = o [gap(v)h(v

w(V
lemma, there is a unique function g € H such that

Clearly, the linear form [( (v)/My(v) dv is bounded on H and by Lax-Milgram

a(g,h) =1(h), he H.

Actually the previous formulation holds true for any h € H}Wu, because for any h € ker Ly
we have a(g, h) = 0 = [(h). With the notation o = min{1, p,,} min{o, A, } /4 we have

oallglly, < alg,g) =1(g) < olplm.lglm, < olpla,llglla,

implying that [g]lr, < 225
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4 The first order approximation

The goal of this section is to investigate the formal limit of when € N\, 0. The terms of
order 1 in lead to

Of+v-Vuof =Lyf1, (t,z,v) € Ry x RY x RY (16) ?Equ21?

with °
exp (_ u(t;v)(v))
Z(o, u(t,z)|)
Multiplying by 1 and v, integrating with respect to v and by using the fact that the
operator Ly preserves the mass and momentum, we get

f(tv €, ’U) - p(ta x)Mu(t,:c) (U) = p(t, .%')

8t/ fdv+ diVx/ fvdv= / Ef(fl) dv=0 (17) ?7EquMass?
Rd R4 Rd o

8t/ fodv+ divx/ freuvdy = / L¢(f1)vdv =0. (18) ?EquMon?
R4 R4 R4

We determine the fluid equations satisfied by the macroscopic quantities p, u. By Proposition
2.3 we have

flt,z,v)vdo = p(t,x) [ My(v)(v-Qlu]) dv Q[u]
R4 Rd

and

8o, u)
RdMu(v)(v - Qu]) dv = Z (o, |ul)

Therefore the equation becomes

( 19) ?7Equ22-Swarm?

+Ju] = Juf <1 1o 221D ) .

|ulZ(0, |ul)

Op + div, [p (1 + U&Z) u] =0.
ulZ
We analyze now . We need to express fRdMu(v)v@w dv in terms of u. It happens that the
elements of the tensor [p,My(v)v ® v dv depend only on two moments: g4 M, (v)(v-Q)? dv
and [paMy(v)|vy > dv, vi = v — (v- Q)Q. The expressions for these two moments, in terms
of the function Z are detailed in the following lemma.

Lemma 4.1
1. For any u € R%\ {0} we have

M) PE =@ QP Jerd b)) v, 02003 )
R d—1 |ul ulZ(0o, [u])

2. For any Q € S*1 we have

027 (,0)
CON2 da — 291419,
RdMg(v)(v Q)*dv=0c+0 2(0.0)

Proof.

1. Multiplying oV, M, + M,(v)V,®, = 0 by (|v|* I — v ® v)Q with Q = Q[u] = u/|u|, we
deduce after integration with respect to v € R?

/ oVoM, - (|v]*I; — v ®v)Q dv + / M, (V)Vy @, - (Jv]*Ig — v @ v)Q dv = 0. (20) ?Equ23-Swarm?
R4 R4
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But div,{(|v]*I; — v @ v)Q} = —(d — 1)(v - Q) and
V@ - (\v[QId —v@u)Q=v—u+V,V(-])]- (]v|2Id —vRv)Q = —\v]2|u] + (v- Q)z\u|
Therefore becomes
od—=1) | My(v)(v-Q) d’u—/ M, (v)[|v)? = (v- Q) dv |u| =0
]R’i

implying, thanks to that
[of? = (v- 2[u))? JraMu(v)(v - Q[u]) dv 2 O Z (0, |ul)

M, (v V=0 =0+ o ———.
)T ] [ulZ (o, [u])

2. By the last point in Proposition with u = 0, we have for any € S!

0%27(0,0) (v-Q)? 1
ue\ %) dv — —
Z(0,0) Rd o(v) o? T
which is exactly our conclusion. O
The reduction of the tensor [pqM,(v)v@v dv to the moments [pqa My (v)(v-Q)? dv, [paMy(v)|vy |* dv

comes by the invariance of M, with respect to the transformations of 7. The details of these
computations are postponed to Appendix A, see the proof of Lemma

Lemma 4.2
1. For any u € R?\ {0} we have

0.2 Rz -5 2 07
RdMu(v)v®v dv = (1 + 2U||Z> uRu+to THQ[ u] @ Qu] + [a +o |ulv(a, lul) | 1y
2. We have 522(0.0)
0
M, dv = 20 g
y o(v)v®@v dv [U—i—a Z(0.0) d
Remark 4.1
As 01Z(0,0) = 0,0 > 0, we have
oz
. 0z . 8u Tar
1lg% <1+2a’ \Z( ,|u|)>u®u—0, }LIE%JU T—O
) 0, Z (o, |u]) 1027 (0,0)
1 2 ’ _ u .
J%<“+“|mzwmm> )
Therefore the formulae in Lemma[{.2 are coherent as u — 0.
Based on the previous computations, we have
4
0.7 0Z -1 02
/ pMyv @ v dv =p< +20'> U®u+p02u9[u] ® Qu] + p (a+a l> I,
R ulZ Z |ul2

2
reducing to p (O’ + 02%(%’?)) I; when v = 0, and we obtain Theorem A more convenient

macroscopic quantity when studying fluid models is the current j(t,z) = fRd ft,z,v)v do,

(t,z) € Ry x R% The mass balance simply writes d;p + divyj = 0. In order to write the

momentum balance with respect to p,j we need to express w in terms of p,j. This can be
2

done by using the function £(,1) = & + oIn Z(0,1), (0,1) € R% x R;. The properties of the

function £ are discussed in the next proposition.
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Proposition 4.1
The function E(o,-) is strictly convex for any o > 0.

Proof.

The first derivative of £ with respect to [ is 0;€ = | + 08172 and the second one is 81215 =
2 P

1+ Ua’#Z — a(dlzizf. We are done if we prove that 92€(o,l) > 0 for any [ > 0. For any

1>0,Q e S% ! we know by Proposition that

0,1Z(0,1) (v—12)-Q

— [ M
ZoD) ~ Jo o) dv
and 927 (0. 1) (v —19) - Q)2
1l g, _ v — .
1+ UiZ(O’, Z) == RdMlQ(U)—U dv.

We deduce that

(22 <o ([ M 122 )

< % </Rd\/MlQ(U)\/Mm(U)’(U — 1) -Q d”>2

1 SVACH)
| M )02 dv =1 U=
< o Jpa lQ(U)((U ) ) v +o Z(O’, l)
saying that 92€(a,1) > 0 for any o > 0,1 > 0. O

We introduce the convex conjugate function

E*(o,k) = sup{kl — E(o,1)}, k € R,
IR,

We are looking for a relation between the current j and the velocity w. From Proposition
second and third statements, we infer that

I _ = -Qu)) dv Qlu] = | |u 07812 u
Lo [ do= [ ) of do 05 = (ju+ o207 ) ol

>0

The current 5 and the velocity u being oriented in the same direction, we get

1J] oz
= = M,(w)(v-Qu))dv=|u|+ c——< =J€(0,l = |u 21) ?EquModj?
2= [ M) (- Q0 dv = ful + 0 s = B( = fu) (21)
implying that
|u] = O&E" <J, k= ‘jp|> . (22) ?7EquModu?

Moreover taking the derivative with respect to [ in 0x,E*(0,k = 0,€(0,1)) = I, we obtain
02,8 (0, k = 0,E(0,1))02E(0,1) = 1. We introduce the notation

v-)y@ (w1
M, = M, (v) ( p) ( p) dv. (23) ?EqucalMu?
Rd o E—

The tensor [poMy(v)v ® v dv, computed in Lemma in terms of the function Z, can
be expressed as well thanks to the convex function £. These calculations are technical, the
details are presented in Appendix A, see proof of Lemma [4.3
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Lemma 4.3
1. For any u € R?\ {0} we have

Mo ® v do = o 28D T8 (61215(0, ) — 6’5(‘”‘“’)> Qlu] @ O[]
R4 ‘U’ p ”U/’
and iy
My = W(Id — Q) ® Qfu]) + B2E (o, [ul) 2] @ Qo

2. We have [paMo(v)v @ v dv = 003E(0,0)1q and Mo = 83E(,0)14.

Remark 4.2

We have 0,€(0,0) = 8ZZZ(L(T 0)) = 0 and therefore lim,,_,q o

formulae in Lemmal[{.3 are coherent as u — 0.

E(o,|ul) — 81215(07 0) saying that the

Jul

Remark 4.3
1. For any u € R%\ {0}, as in the proof of Lemma we obtain

= vv—z-u2vu [ U|UL
oMy = | Mu(o)((v =) QL))" do Qul @ Qfu] + | Mu(v) 7=

where v; = v — (v - Qu]) Qlu|, implying that

' vy |? o, |u
M) (0 = L) 0fu) do = oo ful, [ wu0) L o = o PEEED,

- d—1"7 7 |4

2. For any Q € S we have [paMo(v)(v- Q)% dv = 093E(a,0).
Based on the results obtained in Lemmas we are ready to determine the fluid model

with respect to p, j. We complete this limit model by the entropy inequality satisfied by p
and j.

Proof. (of Theorem [1.2))
The mass balance gives the continuity equation

O¢p + divyj = 0. (24) ?7Equ31-Swarm?
Thanks to the equalities

' 1
5l _ g (o ul), Jul = af*( m)’ O (7 ul) = T
P P e Ce p)

we obtain
j®j  _1Jl 1 1 J®j
pM,(vV)v@vdv="—=+0 I+a( — —.
/Rd ) PR PRE k&), b
Therefore the momentum balance becomes
i®j il < 1 1 ) i®j
Oy +divy |=—= +o0—13+0 — —| =0. 25) ?Equ32-Swarm?
t [ 0 ‘ ’ k2a}%k5* kOLE* k=lil/p ) ( ) AT oFe T
Observe that
|| ( 1 1 ) i®j _ 315( |ul)
o—1;+o0 — I; — Qu] @ Qlu

+0pdé (o, [ul)u] ® Qfu] = opM,,

18



and therefore becomes

Orj + divy, (m + o*pMu> = 0. (26) 7Equ32bis?
P Equ32bis

Using the continuity equation we observe that

0,j + diva 222 — (9,0)L + po, (‘7> +divej L 4 (5 Va) (‘7>
p p p p

SBO-Ce

and the above momentum balance also writes

) (‘Z)) + (i) : w) <2> + %Vz <p8k€*kw,k)>m/p

o .. 1 1 J o
+—div, p< — ) “®=,=0.
p { RROGE™ KORE )\ jyp P P

We concentrate now on the entropy inequality. We have

o[

/RdQ(ff) [0(1 o f) + ”7 n V(|v)} dv

A
fs

dv <0, (t,z) € Ry x R

=j/bmf+fw—wﬂ+VNﬂUkP
Rd

__ / 9Vuf* + £V

Y fe
Therefore, multiplying by o(1 + In f%) + @ + V(Jv|), one gets after integration with
respect to v € R?

+v+V, V(|- |)} dv

[vl®

8t/Rdf€ <O’1Hf€—|—’v|2—|—V(|U)> dv—l—divx/ﬂgdvfa (alnf5+ 5

5 + V(|v|)> dv <0.

When € N\, 0 we expect that

2 2
8,:/Rdf (Ulnf—i—h)z—i—V(\v)) dv—l—diva,/Rdvf (Jlnf+1)2—|—V(|v\)> dv <0.

We have

2 2
Ulnf—{—h; + V(|v]) :O'hl% — ®,(v) + Po(v) zaln% - |u2+v-u
implying that
Jul?
flolnf+®p(v))dv= | fl(clnp—olnZ —-"—+v-u)dv
Rd R 2
ul? | .
:oplnp—paan—pT +7-u

=oplnp — pE(o,|ul) + |j] |ul

—optnp-+p (Ll - o, 1u))

=oplnp+ p&* <O‘, ’ﬁ) .
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Similarly, thanks to Lemma [4.3] we compute

2
floln f + ®p(v))v dv = f(alnp—aan—ﬁ+v-u)vdv
R4 R4 2
. o u?
:alnpj—aan]—Tj—i-p M,(v)v@vdvu
Rd

. . &
=olnpj—E(o,|ul)j 47 ]u—l—0p81215u

—olnpj+ [“p'ru\ ~ £, u|>] j + opdREu

0 lil)p)
O (@ il/ )il

=oclnpj+&* <U,|]|>j—|—a
p

Therefore p and j satisfy the entropy inequality

KOz E"

Of{p(clnp+ E*(o,|7]/p))} + divg { [Ulnp—k <5*(0,k) +o Ont” > " ] j} <0.
k=ljl/p

Remark 4.4
When V = 0, the equilibria are the standard Mazwellians on RY

1 v —ul?
Wexp<—| 20_| >, ’UERd.

In that case the function | — Z(o,1) is constant

Z(o,l) = /]R eXP (—'““'2> dv = (270)%?

M, (v) =

20

(27) ?Equ3s?

[

and we obtain j = pu, that is, in that case u is the usual mean velocity. Clearly we have

2 2
E(o,l) = % +o0In(2r0)¥?, £ (0,k) = % — oln(2r0)¥?

and therefore

OE(o, ) =1, D2E(o,1) =1, OE*(0,k) =k, 04.E%(o,k) = 1.

The equations , become the compressible Euler equations for the gas dynamics

Op + divy(pu) =0, Oy(pu) + divy(pu ® u+ oply) = 0.

The entropy inequality writes

Juf? Jul?

O{p(oclnp+ UT — oIn(270)%?)} 4 div,{(cInp + UT —oln(270)¥? 4+ 6)5j} <0

which is the entropy inequality for the Euler equations
Ju? Juf?

O(oplnp + p%) + divy{(oplnp+ puT + op)u} <0.
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5 The second order approximation

Motivated by the derivation of fluid models including diffusion terms, we have to consider
second order approximations. That is, we need to take into account the first order corrections
when approximating the particle density i.e., f ~ f + ¢f1. In that case we search for fluid
equations involving p[f+¢fi] and j[f+ef1]. We are led to a model similar to the compressible
Navier-Stokes equations. We appeal to the mass and momentum balances of

8t/ fedv+ divx/ ffodv=0 (28) ?Equ36-Swarm?
R4 R4

8t/ ffodo+ divx/ ffreudv=0. (29) ?7Equ37-Swarm?
R4 R4

We introduce the notations
F=fref, iF=plfl= | Fdv, j=jlfl=| fvdv
R? R¢
and therefore we expect from the balances , that

8p° + div,j© =0 (30) 7Equ3s-Svarn?

81558 + div, fa v®ovdv=0. (31) ?7Equ39-Swarm?
R4

We need to compute fRdeU ®uvdv = fRd(f +ef1)v ® v dv. The notation P, stands for the
orthogonal projection on the subspace ker L; C L? » for any equilibrium f = pM,. We can
write

ffo @ dv :/ (f—l—z—:Pufl)v@vdv—i—e/ (fi— Pufi)v®@vdo.

Rd Rd R

The tensor [paM,(v)v ® v dv has been computed in Lemma and therefore, we have a
formula for [pq.fv ® v dv in terms of p[f],j[f]. It happens that, up to second order terms,
the same formula holds true for [pu(f + &Py f1)v ® v dv.

Proposition 5.1
For any equilibrium f = pM,, and g € ker Ly we have, as € 0

q _ Jlf +egl @ lf + eg] JLf +ed]|
/Rd(f Teglu@uvde plf + 2] 70k (0, 311 + egll/ ol + eg))
1 1 jlf +egl @ jlf + eg] 2
_ O(=2).
i <"?2‘9§k5* kakg*)k—j[f+eg]/p[f+eg1 plf + 9] FoE

Proof.
We introduce the notations R® = p[f + eg|, J¢ = j[f + eg], U¢ = OE* (o, |J¢|/RE)Q2J?] for
any € > 0. The equilibria F* = R*Mye,e > 0 verify

/Fsdv:R‘E:/(f+€g)dv
R? R
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/ Fevdv=R* | Mys(v)vdv=R" | My-(v)(v-QU?]) dv QU]
Rd Rd R4

7
= 07| 0% o [0 0]
— R9,E(o, |U]) QU]
|
RE
—JE—/ (f +eg) v dv.
R4

= Rl U]

Therefore, we have for any ¢ € span{1,vy,...,v4}

/ (f+eg—F)Y(v)dv=0, ¢ >0.
Rd

Taking the derivative with respect to ¢ at e = 0, one gets for any ¢ € span{1,v1,...,v4}

d
/Rd (g _ d&_\aops) (v) dv =0,

It is easily seen, by direct computation, that d%\ e=0l® € ker L and thus we obtain
d
&|€=OF’E =Pug=g.
Finally we have
freg=F+f+eg—F°
d
= R*My: + f — F' +e <g - |5:0F5> +0(g?)
e— de

=0 v~

=0

= R*My- + O(e?)

and thanks to Lemma we deduce

/ (f+egv@vdv= / REMy=v @ v dv + O(£?)
Rd

R4
JFoJ | 1 1 JE® J° )
= I - (@)
Re + O-‘UE‘ d+o <k‘28]%k5* kak€*>k2|Js|/RE Re + (5 )
JE® J®

=S5t oREMy: + O(?).

[

Recall that we need to compute [pu(f + ef1)v ® v dv. By the previous proposition we are
done if we determine € [pu(f1 — Puf1)v ® v dv. The quantity f; — P, fi comes by

Of +v-Vaof =Lsf1 =Ly(f1 — Pufr)

which is solvable, cf. Proposition [3.2] because the macroscopic quantities defining the equilib-
ria f(t,x,-) were determined by imposing the mass and momentum conservations. We need
to compute the antecedent by L; of 0;f +v -V, f. It is instructive to determine first a fluid
second order approximation in a simplified case, when replacing the interaction mechanism
@ by a BGK kernel, whose equilibria coincide with that of Q.
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5.1 The BGK interaction mechanism

As we will see, the linearization of this BGK operator reduces to the opposite of the identity on
the orthogonal of its kernel, and therefore the antecedent of 0;f +v -V, f comes immediately,
without any computation.

Proposition 5.2
We consider the kernel Qpax (f) = plf|My(p) — f where p[f] = [paf(v) dv and the velocity
Ulf] is given by

U 0, if j[f]=0
V=t ) = oo, it i1 £o.

The interaction mechanisms Qpck, @ have the same equilibria. The kernel Qpgk conserves
the mass and momentum.

Proof.

Any equilibrium of @ has the form f = pM, where p = p[f] € R} and u € R?. We claim
that U[pM,] = u. Indeed, if u = 0, then j[f] = [papMo(v) dv = 0 and therefore U[pM,,] = 0.
If u € R?\ {0} we have by Proposition

AZtoul) _ [ ar oo -9pul) do = P oo o)

Z(o,Jul) — Jra plf]
saying that |U[f]| = |u| and

A€ (0, |ul) = [ul + o

UL
LA LA

Conversely, any equilibrium of Qpgk is a equilibrium of ). We investigate now the mass and
momentum balances. For any particle density f = f(v) we have

Ulf] = U1f]

/ QBGK dU = / (p[f]MU[f] (U) — f(v)) dv=20
Rd
and
/ QBGK dU = /de[f]MU[f](U)’U dv —][f]

—lf] /RdMU[ﬁ (v)(v - [j]) dv Q[j] - /]

— o) |01+ 0% 0

= 3[A115] = jlf] = 0.

NULAD | QU] =57

[

Since the kernels 0, Qpak have the same equilibria and conservations, the first order approx-
imations for

O 0 Vef = LO()

with C' = Q or C' = @pgk coincide, being given by , . The linearization of Qpgk is
given by.
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Proposition 5.3
We denote by Lpcky the linearization of Qpck around the equilibrium f = pM,. Then we
have

Lrokrg=—9+Pug, g€Li .

In particular, the kernels of the linearizations of Q,Qpck around any equilibrium, coincide.

Proof.
For any g € L?wu we have

d d
LpcKfg = dfgla:OQBGK(f +eg) = dfsle:o{P[f +eglMy(fieq — f — €9}
d
= plg]Mys) + pd78|£:0MU[f+€g} -9
d

= plg] My, + p&|€=0MU[f+eg] -9

It is easily seen that d%’e:OMU[erag] € ker £ and that for any ¢ € span{1,v,...,vq}
d
/ Lpck g Y(v) dv = d\azo/ Qpck (f +e9)(v) dv = 0.
R4 g Rd

We deduce that

d d

p[g]Mu =+ pdig“e:OMU[ersg} - Pug =Py, p[g]Mu + pd7€|€:0MU[f+gg] —g9]=0

implying that Lpak g = Pug — 9,9 € Lﬁ@. Clearly we have

ker Lpgk f = span{ My, vi My, ...,vgM,} = ker Ly.

In the sequel we concentrate on the computation of
/ (fi —Pufi)v®@vde = —/ Lpekf(fi)v@vdy = —/ (Or+v-Vgflu®dvdv. (32) ?EquBGKTensor?
Rd R R

Let us determine the formula for the orthogonal projection on ker £L; C L?\/[u, for any equi-
librium f = pM,,.

Proposition 5.4
For any function g € L?Wu, we have

(. J
Pug = plg)Mu + M, (][9] - p[g]> ~
Proof.
The orthogonal projection of g on ker £ writes

J
v—1
P,g=aM,+j- O_pMu

with o € R, 8 € R?%. The coefficients «, 3 are determined by imposing

/ (9 — Pug) dv =0, / (9 — Pug)v dv =0.
R4 R4
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We obtain a = [p4g(v) dv = p[g] and

/Rdg(v) <v—z> dv= [ My )(U_i)f(”_i) G B = M3

implying that ‘
-

J
p
M,

_ (g d :
Pug = plg]My + M, (] (9] P p[g]>

g

In particular we obtain for any 1 <i <d

J

v — v—1
Pu(0v, f) :_Mglei' pf:—f/‘/lil £ e
o o

-
and thus P,(V,f) = —fM, 1% We need the following representation formula for (9, + v -
Ve)f.

Proposition 5.5
For any f = pM,, we have

Pu(v-Vaf) = dm(fi) - MG diva(pM,) - (v — j;)Mu-

Proof.
It is easily seen that divx(f%) + My tdive (pMy,) - (v — %)Mu belongs to ker L. We also have

/ divm(fz) + M;ldivm(p./\/lu) (v — l)Mu dv = div,j = / v-Vf dv
R4 P p Rd

and thanks to Lemma [4.3]
/ (dive(F2) + M2 diva (oMa) - (0 — L) My (0)]o do
R4 P P
= divx/ fu ® dv + ( My(v)v ® (v — l) dv> M div, (pMy,)
Rd
= div, (‘] ®‘]) </ M, ( ) (v— ;) dv) M div, (pMy)
Y J®J _
= div, < > + odivy(pMy) =div, [ foeuvdy = / (v-Vif)v do.
P Rd R4
Therefore we obtain that
Pu(v : vxf) = dlvx(f%) + Mgldivx(pMu) : (2} - %)Mu

[

In order to compute the right hand side in , it is very convenient to average with respect
to characteristic flows preserving M,,, cf. [10, 9] 11, 13} 12]. For simplicity, when dealing with
the BGK kernel, we work in the three dimensional setting d = 3, but we will come back to
the interaction mechanisme ) in any dimension d > 2. For any u € R3\ {0} we consider the

characteristic flow
dy

W V() AQu], 0 eR, V(0;v) =v. (33) ?CharFlow?
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Clearly ®,, together with M, are left invariant along this flow because |v| and v - u are left
invariant

1d - v o d
239 VO =V0O) -5 =0, 4

Observe also that every trajectory is 2m-periodic

V() -u) =0, 0eR.

V(0;v) = R(—0;Qu])v, 6 € R
where the notation R(6; 2) stands for the rotation
R(H;Q) = (Q® Qv+ cosO(I3 — Q@ Qv +sinf QAv, veR

Using the characteristic flow is very useful when computing moments of M,,. For example,
if u € R\ {0}, by performing the change of coordinate v — V(6;v),0 € R, whose jacobian
determinant is 1, we can write, using the notation v; =v — (v-Q)Q

(v-DHew-1

My = [ My(v) £ £~ dw
R3 g
V(;v) — L) @ (V(0;v) — 2
[ PO DE e -
R3 g
D20 (v—2)+cosh v, +sind v AQS2
Y LI . =
R3 g

We average with respect to 6, by taking into account that
1 21 1 21 1 2
/ cos@dﬂz/ sin9d9:/ sinfcosf df =0
2T 0 2T 0 2T 0

27 2T
1/ cos29d9:1/ sin2¢9d9:1.
27T 0 27T 0 2

We obtain

1 2
oMy = — / oM, 6
2T 0

dv

_ v v_l_ 2 du ’ (vAQ)®(vAQ)
— [ -2y apwaser [ a5 avs [ a0

- M(v)((v—‘]).Q)zva®Q+/M(v)|UJ‘|2 dv (I3 — Q® Q).
R3 “ p R3 “ 2

By Remark [4.3] we know that

j 2
M) 1)) do = sdfE (e ful), [ My (o)LL gy = 2EL 1D
R3 p R3 2 ‘U|

and finally we retrive the formula

_ 9i€(o, |ul)

M,y = (Is — Qfu] ® Qu]) + Tz (0, [ul) Qfu] @ Qfu], we R\ {0}.

Jul

Letting u — 0 while u/|u| is constant, we obtain M = 93€ (0, 0)I3. We will average with
respect to the characteristic flow in order to compute the moments of M, in . As we
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know that 0y f +v -V, f L span{M,,, vi My, va My, v3M,}, we can write thanks to Proposition
[5.5] and by observing that 9, f € kerLy

_/(atf+v'vxf)v®”dvz_/(6tf+v'vxf)(v—j)®(v—j)dv (34) 7Equ34-Swarn?
R3 R3 p p . |
:/[aff“'vzfPu<6tf+v-vzf>1<vJ)@(v%dv
R3 P P

= _ iv ’U—Z ’U_Z U_l v
_ /Rgd A=l -D et —a |

—1 3 . U—l v 'U_l v_l v
+/R3W“ diva (pMy,)] - ( p)Mu( ) p)®( p)d

=-A+B.

Notice that the evaluation of A, B relies on the computation of third order moments of M,
with respect to v — j/p. The function & allowed us to express the second order moments of
M,,. We also need to express in term of £ the following third order moments of M,,. These
computations are details in Appendix A, cf. proofs of Lemmas

Lemma 5.1
1. For any u € RI\{0} we have

. . v 2
Mul(o-2) ) av = 20 o lub, [ Mu(to-2y ot P ao =0 (2 ol

Rd d—l l

2. We have for any Q € S1

v — (- Q)0

1_1 dv =0.

Mo (v)(v- Q) dv =0, Moy(v)(v - )
R4 R4

Lemma 5.2
Let us consider £ € R3.
1. For any u € R3\ {0} we have

) (e 0-D)e-dew-2)aw

a¢
l

RS

=& - QN, + 0%, < ) (o, |u)[Q® (Is — Q2 Q)E+ (Is — N @ Q)E ® Q)

with
No= 01 (%) (a1lul) (= ] 20 + 0 o ul) 2] 2l

2. We have [z Mo(v)(§-v)v ® v dv=0.

Thanks to Lemma we are ready to compute the right hand side in (?7?). Denoting by

27



{e1,e2,e3} the canonical basis of R?, we have

A(paj) = /]1%38% [f(v - 2)@] (U - Z) &® (’U — ';) dv (35) ?7Equb1-Swarm?
5 j j j
_ ;aﬁ/ﬂ{sf@— Dio-ew-2)a

(
Yo, {pag [QN 1o (‘%) (0, D[ Q@ (I — 2 © Qei + (s — 2@ Q)e; © 0 1]}
)

=1

Similarly we obtain
B(ﬂ?j) = OQ(MgldiVx(pMu) : Q)Nu (36) ?7Equ52-Swarm?

+ 020, <8ll€> (0, [u)[Q ® (I3 — Q@ Q)M div, (pMy) + (I3 — Q @ QM div, (pM.,) ® Q).

The previous computations lead to the second order approximation of corresponding to
QBCK-

Theorem 5.1
Assume that lim,|_, 4o Po) — 4 oo with ®,—g defined in and consider the family (f¢)c

[v]
of solutions for with the collision operator Qpak. Then a second order approximation

(5, 5°) for (p° = Jgaf® dv,j€ = [pafv dv) is given by

O + divyj =0

® j°
o
where @€ = 0,E* (o, |75|/p°)QUJ°) and Mg, A, B are defined in ([23), and respectively.

Proof.
Coming back to , we can write thanks to Proposition Lemma

~e

81536 + div, <]

Foi Mae — AR J) + ezs@af)) 0

/(f+5f1)v®vdv:/(f+5Puf1)v®vdv—s/(th—l—v-sz)v@vdv
R3 R3 R3

_ Jlf +ePufi] @ jlf +ePufi]
p[f‘*'gpufl}
—eAlplf1.3lf]) +eBplf],3[f])

where ¢ = 0,E* (o, |j[f + ePufill/plf + ePufi])QUilf + ePufil]] = OkE* (o, 141f + cfill/plf +
efi))Qif + ef1]]. Finally, the momentum balance becomes

[f +efil @ jIf +efi]
plf +efi

—eA(plf +efi), IS + i)+ =Blplf +fil dlf + <)) ) = OE)

+ op[f + Py fi]Mae

Ojlf +efi] +divy <j +oplf +efi]lMas
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justifying the second order approximation

~e . ,}E®36 ~e ~c g ~£ e
d1J° + div, = top Mas —eA(p, 5°) +eB(p%,5%) | =0
where @ = 9,E* (0, |5°|/5°)Q[j°]. O
Remark 5.1

We have already seen that when V = 0, the equilibria are the standard Mazwellians on R?,
Z = (2m0)¥?, 2 =wu. In that case

OE(o, 1) =1, D2E(o,1) =1, WE*(o,k) =k, 02, (o,k) =1

and the first order approximation led to the Euler equations. Moreover, when V =0, d = 3,
we have

Mo = Is, Ny=0s, Alpsj) = op (az (;) L, (;Z))) B(p.j) = O

and we obtain the Navier-Stokes equations
se e ‘e ‘e
Op° + divyj® =0, 0ij° + divy 729, oLy —eop (0, (2 ) + 10, (L =0.
e p* p*

5.2 The Fokker-Planck interaction mechanism

We investigate now the fluid second order approximation for the kernel (). The main difficulty
is that we need to determine the antecedent of d;f 4+ v - V, f by the restriction of £y on
(kerL f)L. We appeal to the structure of matrix fields which are left invariant by 7, cf.
Proposition By Proposition [5.5| we have, as before

atf+v'vzf:8tf+v'vmf_Pu(atf+U'vzf)
:U'vzf_Pu(U'V:vf)
=v-Vif —div, <f‘;) — M Mdiv, (pMy,) - (v—j> M,

p
= (Ig — P)div,(f(v —j/p))
Ogu: (Ig — Pu)f(v —i/p)® (v = j/'o).

g

Therefore we obtain
fi—=Pufi =LY 0 f +v-Vaof) = 0pu: A

where A is the unique matrix field satisfying

g

LA = (Ig— Pu)f(v —i/p) @ —j/p)’ / A(v) dv =0, / v A(w)dv =0, 1 <i<d.
R4 R4

(37) 7EquMatrixA?
Observe, cf. Proposition that the pressure tensor is left invariant by 7, because if u = 0
we have

1, 1,
v®v:v®v—\vlzgd+]v|2§, v e R?
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and if u # 0 we can write

(v—=3/p) @ —174/p)=[ve+((v—23/p) VU [vL+ ((v—17/p) Q)
I, —Q®0Q QId—Q®Q
d—1 i
(0 —ifp) DL @+ Q@ 0,) + (10— ifp) DPUBQ, ve R

=v; ®v; — |uyL|?

For any O € T, and any function g(v), vector field b(v), matrix field B(v), we use the
notations

go(v) = g(*tOv), bo(v) = Ob(*Ov), Bo(v) = OB(*Ov)'O, v € R%

Notice that the invariance of g, b, B by the family 7, simply writes g = gp, b = bp, B = Bp
for any O € T,. The orthogonal projection P, commutes with the action of 7,. More exactly
the following assertions hold true.

Proposition 5.6
For any function g € L%\/Iu and any O € Ty, we have go € L?\/[u and P,(go) = (P,g9)O. In
particular if g is left invariant by the family T, so is P,g.
Proof.
g(‘0v)’
We have ]go\?wu = fRd(M (v)) M, (v) dv = \gﬁwu < 400 and (9o, ho)m, = (9,h)m,, for

any h € L%wu. Observe also that if h € kerLy, then hp € kerLy. In particular (P,g)o € kerLy
and for any h € kerL; we can write

(90 — (Pug)osh)m, = (9 — Pug, hio)m, =0
saying that P,(g90) = (Pug)o, O € T,. O

The previous result extends immediately to vector and matrix fields, where the action of the
orthogonal projection P, on vector fields and matrix fields is understood by

for any vector field b and matrix field B such that

blr, = (0. b)ar, = D" bi)u, ZAM

and

(v)

B B.B Bii, Bii)u / dv < +00.

Bl = (B. B), ;<]J QLR O
We have (bo, co)m, = (b,¢)r,,b,c € (L%/[“)d and similarly (Bo,Co)m, = (B,C)m,, B,C €
(L%@)‘F. Exactly as for functions, we obtain that P,(bp) = (Pyb)o, P.(Bo) = (P.B)o, for
any O € T,.
The action of 7, commutes also with the operator L; . We establish first this result for func-
tions, the analogous statements for vector fields and matrix fields come by similar arguments.
Their proofs are left to the reader.

Proposition 5.7

Let us consider a function p € (kerLs)t and let g € Hjl\/[u N(kerL )L be the unique variational
solution of —L;g = p. For any O € T,, we have po € (kerLs)t, go € H}V[u N (kerL;)* and
—Lygo = po, in the variational sense. In particular, if p is the left invariant by Ty, so is
g=—-L"p.
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Proof.
Clearly po € L%Wu and Py,(pp) = (Pup)o = 0, saying that pp € (kerﬁf)L. Similarly, go €
(kerL)+ and

2
g go
lool, = [ 40 vt [ [v(40)] a(0) av = ol

For any h € H}wu we have

oV (;‘Z) CW(ho) = O [av <AZU>O - W(h)]

and therefore

saying that —Lrgo = po in the variational sense. O

Proposition 5.8

Let us consider a vector field & = (&1, ...,€q) € ((kerLy)H)? and let b = (by, ..., bg) € (H}wu N
(kerﬁf)L)d be the unique variational solution of —Lsb = £. For any O € T,, we have
o € ((kerLy)h), bo € (Hy, N (kerLy)t)? and —Lgbo = £o, in the variational sense. In
particular, if € is the left invariant by T, so is b= —E;lﬁ.

Proposition 5.9
Let us consider a matriz field U € ((kerﬁf)L)“l2 and let B € (Hy, N (kerEf)J-)"l2 be the

unique variational solution of —LyB = U. For any O € T,, we have Up € ((kerﬁf)l)dz,
Bo € (HJ}/Iu N (kelr,Cf)L)d2 and —LyBo = Up, in the variational sense. In particular, if U is
the left invariant by Ty, so is B = —E;lU.

Based on the above properties of Pu, L, we determine the structure of the matrix field A
solving . Actually only the case with v # 0 will be used in the sequel, since the pressure
tensor is continuous with respect to u, and therefore the formulae for © = 0 can be obtained
from the formulae with uj, = hQ,Q € S, by letting h \, 0. Nevertheless, we present the
structure of these matrix field solutions, for any u € R

Proposition 5.10

1. Ifu = 0,d < 2, there is a unique function o : R* — R, which is left invariant by To,
a(0) =0, such that

I I
Ly [a <v Qv — v|2;>] = Iy — Po) M) <v Qv — ’U|2;>

and
2Id _ QId o .
a)(vev—|v|*= | dv=0, via(w) ([vev—|u|*= ) dv=0, 1 <i<d.
Rd d R4 d
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2. If u # 0, d > 3, there is a unique function o : RY — R, which is left invariant by T,
alrq = 0, such that

I;— Q0 Ij—Q®0Q
Lyla(vievl — ol P ——=) | = (g — P)M, (v @ vy — v P
d—1 d—1
and
I,— Q20 I;—Q%0
/a UJ_®UJ_—IUJ_|2¢ d’U—O,/UiOé vl®vj_—]vl]2¢ dv=0
]Rd d—l ]Rd d—l

forany 1 <i<d.
Proof. s
1. The matrix field (I; — Py) My (’U Qv — |U|2;> is left invariant by 7. By Proposition

there is a unique matrix field A, which is left invariant by 7g, such that ‘A = A
I
LA = (Iqg— Py)My (v@v - |U|2;) , / A(v) dv = 0,/ viAw)dv =0, 1 <i<d.
Rd Rd

By Proposition there are two functions «, 5 which are left invariant by 7y, a(0) = 0, such
that

A(v) = a(v) <v RV — ‘U’2I;> + B(v)lg, d> 2.

In particular we have LstrA = 0, trA € (kerL f)L, implying that d8 = trA = 0. Therefore
we obtain , ;
Ly [a <v ®v— ]v|2;>} = (Is — Po) My <v ®v— |v|2;>

1
where [paA(v) dv =0, [paviA(v) dv=10,1<i <d. As A(v) = a(v) (v ®v— \vf;), we

deduce that
Aw):v@v d

lv]4 d—1’
implying the uniqueness of « (recall that a(0) = 0).
2. As before, there is unique matrix field, which is left invariant by 7, such that ‘A = A

Ij— Q0
EfA — (Id - Pu)Mu <'UJ_ ®'UJ_ - |'UJ_|2dd_1>

JgaA(v) dv = 0, [paviA(v) dv =0, 1 < i < d. By Corollary there are the functions
a, 3,7, 98, which are left invariant by 7, ajrq = 0, v|rq = 0 such that

A(v) = a(v) <m Qv — m!ﬂd;?fm) + B() (I — Q® Q)

+0) (v @+ Qv ) +6V)Q®Q, veERY d> 3.

v € RN\ {0}

a(v) =

We have L;AQ-Q =0, AQ-Q € (ker[,f)L, implying that § = AQ - Q = 0. We also have
L;AQ = 0, AQ € ((kerLf)1)? and therefore AQ = yv; = 0, saying that v = 0 (because
Y|ra = 0). Observe that LrtrA = 0, trA € (kerLs)*, saying that 3(d—1) = trA = 0. Finally
I;—Q®0Q

we obtain A(v) = «a(v) (vL vy — |vg|? 1

> where « is given by
AWw) v, ®@vpd—1

RAN\RQ =0.
’UL|4 Ft v E \ ,0(|RQ 0

a(v) =
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We determine now the antecedent of the pressure tensor by Ly, for u # 0.

Proposition 5.11
If uw # 0, there are the functions «, 3,7,d, which are left invariant by T, alro = v|ra = 0,
such that

L3 (Lg=Pu)My(v—j/p)@(v—j/p) = B(v)(Ta—Q2Q2)+7(0) (01 ©Q+Q@01 ) +0(0)Q22Q, v € R?

and

Q®Q

£ 0= POMAo = 19) @ (0= /) = o) (2 @ 00 = [or PEZ2ER) 4 5(0) 1 - 20 9)

+ 7)) (v @A+ QRv,)+0(V)ARQ, veRY d>3.

Proof.
In the two dimensional case we write

(w=3i/p)@(w=7/p)=[vL+((v—13/p)- DY@ [vL + ((v—j/p) Q)
=v®@v +((v—=75/p) DL+ Q@v1)+ ((v—7/p) - Q2)?*Q2Q
=[P (2= Q0 Q)+ ((v—13/p) DL @2+ QD v))
+((v—=3/p)- 2’22 Q

and therefore we obtain
L3 (L= P)My(v—j/p) @ (v—3j/p) = Bv)(I2 — Q2@ Q)+ b(v) @ 2+ Q@ b(v) + 6(1)Q @ O

whhere 3 = L7 (I — P)MyJoi[?, b = £7'(Is — P)Mu((v — §/p) - Qui, 8 = L3\ (Ia -
P)M,((v — j/p) - ). By Proposition [5.7] ﬁ, . we knovv that the functions 5,7 and the
vector field b are left invariant by 7,. Finally we have Lyb-Q =0, b-Q € (kerL f) saying
that b-Q = 0. Thus, by Proposition there is a function 7, v|rg = 0, which is left invariant
by Tu, such that b = ~yv . If d > 3 we write

. Q0N I;—Q®0
(v=Jj/p)@(—7j/p)=vi®v — |UL|2? |UL|2ﬁ

+((w=3/p) DL @+ Q@v)+ (v —13/p) Q?22Q

and our conclusion follows by taking «, 3, v, d such that (cf. Proposition [5.10) a|rq = v|ra =

0 and I I
Ly [04 <v Qv — ]v|2;>} = (Iq— Po) My <v Qv — ]v\2;>

v |?
d—1

yor = L5 (g — Pu)Mu((v = j/p) - Qui, 8= L3 (I — Pa)Mu((v—j/p) - Q).

B=L; Y(Ig— Pu)M,

[
Thanks to the above representation formula for the antecedent by £ tensor (Ig— P,)M,(v—
Jj/p) @ (v—j/p), we compute

= / (hi=Pufoovdo= [ L7N0S +0-Vaf)w—i/p)© (0= ifp) do
L7 [(Ia = P)Mu(v = j/p) ® (v = j/p)] : dau) (v = j/p) ® (v = j/p) dv

Rd

It is useful remark that
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Lemma 5.3
Let us consider a function g which is left invariant by Ty, u # 0, and such that fRd\ng(v) dv <
+o00. Then we have

I;,— Q0
/Q(U) (M@vl—\vL!Q[icl?) dv=0, d>3
R4 —

[ a@rido=0. [ g@)o-gormodv=0, ¢e @) az2
R4 Rd
Proof.

Consider {F}, ..., E4_1} an orthonormal basis of (RQ2)1. Taking O;; = Q®@Q+ > ke j) Bk ®
Ey+EQFE; —E;Q E; €T, forany 1 <i,j <d-—1,i# j, we obtain

/)()wﬁwudv—Ej/‘ )2E; ® B; dv

2
:/gwﬂ“|dmg—9®ﬂydz&
Rd d—].

Using O; = 1; — 2B, Q E; € T,,1 <i<d—1, we deduce

/ 'UJ_d'U—Z/ )(v-E)E; dv=0, d> 2.

Thanks to the decompotion v - £ = d l(v E)(FEf - €), we are done if we justify for any
1<k<d—1,d>?2

/ g(v)(v- Ex)v; ® vy dv =0.
Rd

This comes easily because for any 1 <1i,j,k < d— 1 we have

AﬂwﬂwEw@-EﬂwEwdv:QdZQ

[

We decompose the contribution 77 as Ty + T3 + T4, where (T;)2<i<4 expresse in terms of
the Jocobian matrix d,u and some functions given by moments in v of «, 5,7,d, with the
notations of Proposition These calculations are presented in Appendix A, see proof of
Proposition [5.12

Proposition 5.12
Assume that u # 0, d > 3, then we have

Tl—/ (fi—=Pufi)v@vdv =T+ T3+ T}
Rd

2(I; — Q@ Q) : 0zu
d—1

4
T = p/ ofuy| dv(I3—Q®N) <5Iu+t8xu
R

B (-0 9)) (1i-029)

ngp[ A - 000 x 1089+ [ 50 -i/n)- 97 woen) x @a0
g - R4

5’ ouf dv(Iy — Q® Q) x (Q@Q)—G—/Rdﬁ((v—j/p)-ﬁ)Q dv(Q ® Q) x (Id—Q®Q)} Ozu
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v 2
7= L [ (0= i/0- o0ttt a0

0 Jr

(I — Q@ Q)(Fp + "0pu) (2D Q) + (2 © Q) (Dptt + '0p) (Iy — Q@ Q)]

where for any two matrices A, B € M4(R), the notation Ax B stands for the linear application
A x B: My(R) = My(R), given by (Ax B)X = (B: X)A, X € M4(R).

Remark 5.2
If u#0, d = 2 we obtain Ty = T3 + Ty, cf. Proposition|5.11)

In order to phrase out the second order approximation for in a concise fashion, we
define the function (¢;)1<i<s given by

4 2

a = [ ML ay e = [ B 4y, citon) = [ s/ 02 do

ra d?—1 re d—1 R4
(38) ?Funcc?
2
il = [ =30 0P o, eston) = [ AT (@ —/p)- 2 du (39) eamcenser
Rd Rd -
where the functions «, 3,7, d were introduced in Proposition (if d = 2, then o = 0 and

c1=0). As = E;l( I;— P,)M, ‘Zi ‘12, we have by the variational formulation cf. Definition
5.1

_ lvi* 6(v) B v |?
—a(B,5) = U/Rd(.rd ~POM, 5 g0 dv= o <(Id — P)M 5> .

v |? g |?
U<d—1’ i L

Similarly, since § = £J71(Id — P)M,((v—3/p)-Q)2, we obtain

~a(0.0) = [ (= POML(w = 3/p) 0 dv = (s~ POM((w ~ ilp) - 0P B,

— o (Mu((v— §/p) - V2B, = 0 / BW)(v - i/p) - Q)? dv.
Rd

By the symmetry of the bilinear form a(,-), we deduce that

v 2
cato) = [ B0 = /p) - do = [ al0) 2

Using the functions (¢;)1<i<s, the expression of the terms 75,73, Ty become

2(Id—Q®Q):8zu
d—1

Ty = gcl(a, u)(Ig — Q2 ®N) <8xu + 10 — (Ig—Q2® Q)) (Ig—Q®Q)

13 = 5{02(0, wWlg— Q) X (I4 — Q@ Q)+ e3(0,u) (2R N) x (22 Q)
teilo, (T - Q9 9) x (V) + (@@ 0) x (I — Q@ )} dyu

Ty = 505(0, W)[(Ig — Q® Q)(0pu + 0,u) (2@ Q) + (2 ® Q) (Fpu + "dpu) (I — 2@ Q)]

We turn to the proof of the second order approximation for (4f), with the collision operator

Q(f) = divy{oVuf + [V @y}
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Proof. (of Theorem [1.3])
The mass balance is clear. For the momentum balance, we write thanks to Proposition

0. 12

/(f+5f1)v®vdv:/(f—f—sPufl)v@vdv—l—s/(fl—Pufl)v®vdv
Rd Rd Rd
:j[f+5puf1]®j[f+gpufl]

+ op[f + P, filMae + e(To + T3 + Ty)(f) + O(e?)

plf +ePufi]
_j[f+5Puf1]®j[f+5Pufl] B
= olf + 2P ] +op[f +ePufilMas +e(To + T5 + Ta)(f + e f1) + O(e?)
where
o JIf +ePufil] - o ex [(ILf +ePLf]| ,
@ = out (o LA i 4 - aner (LRI gy 4o,

Therefore we expect that a second order approximation (5%, j¢) for (p°, j¢) verifies

Ce

®J

oF

~e

87555 + lea: <j

+ op" Mg +€(T2 +T3 +T4)> =0

where @ = 0x€ (0, |75]/5°) Q5% O

A Proofs of Lemmas 4.2, 4.3, 5.1, 5.2, Proposition 5.12

Proof. (of Theorem [{4.2))
1. Let us consider {E1,...,FE4 1} an orthonormal basis of (RQ)*, with Q = Qu] = u/|ul.
By using the decomposition

we obtain
d—1 d—1
M,(v)v@vdv= [ M,©)[(v-Q)Q+ Z(v CENE]@[(v-Q)Q+ ) (v- Ej)E;] dv
R4 R4 i=1 j=1
d—1
= Mu(U)(U . Q)2 dv Q®Q+ Z Mu(v)(v . EZ')Q dv E; ® E; (40) ?7Equé40-Swarm?
R4 —7 JRd
because
M,(v)(v-Q)(v-E;)dv=0, 1<i<d-—1 (41) ?Equa1-Swarm?
Rd -
and
[v]2 — (v- Q)2 .
Mu(’l))(’l) . EZ)(U . Ej) dv = Mu(U)T dv, 1<4,5<d—-1. (42) 7Equ42-Swarm?
R4 R4 -

Indeed, comes by performing the change of variable v = (I;—2E; ® E;)v’ and by noticing
that Iy —2F;, Q E; € Ty, 1 <i<d-1

My,(0)(v- Q- E)dv=— [ M, - Q)@ E)dv =0,1<i<d-1.
R4 R?
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Similarly, for any 1 <i,5 < d— 1,7 # j we have

My(v)(v-E)(v-Ej)dv=— [ M) - E)(® - E;)dv =0.
Rd Rd
For any 1 <4,j <d—1,i # j, by using the transformation
0=000+ Y E®E+EQE-EQEEcT,
ké{i,j}
after performing the change of variable v = O;;v’, one gets

2 _ . Q 2
M) B dv= [ M) B v = [ gttt
Rd R4 RE d—1

Finally (10), (), [@2) yield

2 o> — (v ©)°
M,(v)v@vdv= | My@)(v-Q*dvQeQ+ | M,(v)—————=—
Rd Rd R4 d— 1

dv.

dv (I — N2 Q).
By Proposition 2.1] we know that

Mo(v)(v - Q) dov = 0 2217 14)

o + |ul
Rd Z(Ua |’LL|)

and
027 (o, |ul)
My(0)[(v-Q)? =2ul(v- Q) + [uf] dv =0 + o2 L2210
| M) 22 = 2ful(w- @)+ uf® G

implying that

0 (o, |ul)

5ZZ(O7|U|) :|
Mu’U 'U'QQdU—2’LL |:O'+U —u2—|—0'—|—0'2

Z(a, |ul)

oz
= |ul* + 2|u|al7 + 0+ 0?

]Rd
2

%z
7

Thanks to the first statement in Lemma [£.1] we obtain

82 — 9z 812

”wg®g+(0+a>zd.

0z
M, =(1+20—— 2
(v)v®vdv < +20 >u®u+o Z iz

R ulZ

2. We know that My is left invariant by 7y and as before we obtain, thanks to the second

statement in Lemma (.1
]2 9 8l2l Z(0,0

: oy

MQ(U)’U@’UdU: Mg( )

dv I
o e P v [4—0

Proof. (of Theorem {4.3])
1. We have |ip| = 0,€(o, |ul|) = |ul +O’Z(U T and 002 = 0 +0%027/7Z — 0*(0,Z/Z)*. By the
first statement in Lemma 4.2) we know that for any v € R?\ {0} we have

2 az

A 057 L A
My (v)v @ v dv = (W +2ule 22 +a2”> Qlu] ® Qfu] + (a+a2al) L.

R4 A |U’Z
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Notice that

12 Z 82
%"_Ua” ’U‘2+2|u’07+ +o ll
P Z
and therefore
M,(v)v®@vdv = (’Z’ + 8”8) Qu] @ Qu] + (1 + U‘al’Z> (Ig — Qu] @ Qu])
Rd

2 .
_ <|./7)| Mallg) Ofu) @ Ofu] + oI (1, — 0] @ Ofu))

_0815(0,|u|)1.d+j§2)] <a”g(0_‘ ) 9l |u\)>9[u]®9[u].

Jul

It is easily seen that

My(v)v®@vdv = /RdMu(U)(U - Z) ® (v — Z) dv+ =3 .

Rd
implying that
W (Ig — Qu] @ Qu]) + 31215(0, lu|) Qu] @ Qu).

2. As 0,Z(0,0) = 0, we have 93€(0,0) = 1+ o-L= ik (0,0). By the second statement in Lemma
[4.2] we obtain

Mu:

027
oMy= [ Mywvevdv=0 (140" Iy = 003E(0,0) I,
R4 Z(O', 0)
]
Proof. (of Lemma
1. Thanks to formula , we have for any Q € S 11> 0
0 Z(c,1)0%E (0 Z(o,1) / Mo (v ) 0)% dv
2
= S92 rd= 1/ exp (— B + Ir COSG - V(T)> (rcos® — E(o,1))*sin?2 0 dfdr.
Ry 20 20 o o
Taking the derivative with respect to [, one gets
™ 2 2
) 5 N 2o 1ad2 d1 _r® 1F reosf  V(r)
Z(U, l)amg + o 8[Z8”€ = ‘S ’ - T /(; exp < 20_ 20_ + o o
[(rcosf — 1)(rcos @ — 9,E(0,1))* — 2(r cos 6 — 9,E(0,1))D2E (0, 1)] sin? =2 § dAdr
= Z(o, l)/ Mig(v)(v- Q= 1)((v - %) )% dv—2Z(0,1) | Mia(v)((v - %) Q) dv e
R4 Rd

=0

— Z(0,]) /RdMlQ(v)((v - i) ) du+ Z(o )0 ~1) | Malo)((0 - i) L)% du

= Z(o, l)/ Ma(v)((v — %) Q) dv 4 0?0 ZOFE
Rd
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implying that

Mo (v)((v — L) - Q)% dv = 6%03,E (0, 1).
Rd p

Similarly, by taking the derivative with respect to [ in

™ 2 2 2 2
O'Z(O‘,l)% = |s472| rd_l/ exp <—T _ + Ireost _ V(T)> rsin” 6 sin?=2 0 dodr
R, 0

l 20 20 o o d—1
we obtain
0, € 0,€ i 2 12 l 6 Vv
027 (3, 1), <l) + 029,22 = |si-2 74d—1/ exp <_7“ _ L mreest 0‘))
! l Ry 0 200 20 o o
2 2
rcosf — 1 r7sin”6 sin?2 9 dodr
d—1
. 2 2
=Z(o,l) | Mo)((v— ‘]) Q) [va] dv + aﬁlZ/ Mo (v) [vu dv
R4 P d—1 Rd d—1

ag
<

; 2
= Z(a,l)/ Mo () ((v — l) Q) [Vl dv + o%0,Z
Rd P d—1

Therefore we deduce that

gl L oy (O
Rde(v)((v p) Q=g dv=ca (= ).

2. For any Q € S9!, passing to the limit when I \, 0 in

) QP
Mio(0)(0-Q—8E)? dv = 023,€, / Mig(@)(v-Q—a,e) =D 2y (9E
y y i=1 z

yields 6203,E(0,0) = [paMo(v)(v-Q)? dv =0 and

v — (- Q)0

1_1 dv =0.

, 0€
2 —_— o .
111\{‘1(1]0 3 < i ) (o,1) RdMg(v)(v Q)

Proof. (of Lemma
1. Averaging with respect to the characteristic flow yields

‘)dv

Jj
)®(v—p

R3

o (0~ D) (02

o (-2)-¢) @-?
2 :

_ Mu(v)g-[Q®Q(v—l)—l—cos@vL%—sinﬁv/\Q]
27T 0 ].RS P

Q@ Qw—2)+cosfuv, +sinbvAQ@[Q® Qv —2L)+cosh v, +sind vAQ dvdd
p

p
:/ M, () (v —2) - Q) dv(e- Q) Q@ Q
R3 P

J v |?
+ RSMu(v)<(v—p)‘Q> 5~ & DI -2)

AQRv, +v RN
2

+ Mu(”)(ﬁ'(v/\Q))((U_j).Q)Q®(U/\Q)—£(’U/\Q)®Q
R3 P

+ [ e o) (@-2)-0) v

R3

dv.
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Notice that we have

(g.vL)Q@@UJ_—;UJ_@Q+(£.(UAQ))Q(@(U/\Q)—;(U/\Q)@Q

_08(L-000i+ Q908 |

2

implying that

A AR NP
RSMu(v)((v p) ) ( p)®( p)d
[ M,(0)(v—2)- QP dv Q@0+ Mu(v)((v—]).g)“);’dv(13_9®9) € Q)
R3 1% R3 P

+ | M,(v)((v— i) Q) [oLf? dv [Q® (I3 — Q@)+ (Is — QR Q)E Q.

R3 14 2

2. When v = 0, the map v — My(v)(v-£) v®w is odd and thus its integrals over R? vanishes.
(I

Proof. (of Proposition [5.12))
If d > 3, we have by Proposition and Lemma [5.3

o d—1
I;—Q®Q I;— 020

I;— Q0
n="[ [a (umu—m”) +ﬁ<fd—sz®n>+vm®n+ﬂ®m+<m®ﬂ}
]Rd

+((v=3/p) - DL ®2+Q®v])

:axu[(vL®vL—|vL|2 71 71

+((v—34/p)- 2)?*Q® Q] dv
:p/ a(v) UL®UL_‘UL‘2M - O M®M—\M!2w dv
g JRrd d—l d—l

+2 [ 0L~ 209 +500e 9 : oy [ll”'iud Q@)+ (v—j/p)- Q)QQ®Q} do
Rd

o

+2 [ (= 3/ ) © A+ 08 1) dru(s 9+ Q) do

0 Jr
=To 4+ T3+ Ty.

The term T3 writes
2
;=2 / BONLE 41— 00 0) x (1, — 2 2 Q)0 (43) 7ca1T3?
O JRrd d -1
+2 [ 50~ i/p) VP @6 Q) x (20 2o
R

o

2
+ 5(11)M dv(Iy — Q@ Q) x (2@ N)0u
R4 d— 1

+ g/RdB(U)((U —3/p)- Q2 dv(Q® Q) x (I; — Q® Q)u.
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In order to evaluate T, observe that
/ (v=173/p) - DYvW) (v @+ Q®v,): puv @Q dv
Rd

= /Rd(v—j/p)-Q)’y(v)vL®Q : (Opu + 0pu)v, @ Qdo

d—1 d—1
= [0= 3/ D) Y0 BB 05 O+ 0,) Y (v By 2 o
R k=1 =1
d—1
_ / (W=3/p)- Q) S0+ Ep)2Er ©Q : (Dot + 0u) By @ Q do
R k=1
. 01 S 4t
= / (v—173/p) - Q)v(v)) Z(@mu +°0,u)Q - ExEr @ Q dv
R4 d - ]. =1

_ / (0= /) - D)) - du(ly — Q2 © ) (Dru + '0,0) Q.0 ).
Rd

Therefore we obtain

2

: dv(Ig — Q@ Q) (0pu +10,u) (2 ® Q) (44) 7ca1T4?

T =" /Rd(v —i/p)- Q)v(v))gi

g

+(Q® Q) (Opu + '0pu)I; — Q@ Q).
We turn to the evaluation of 75, which reduces, by Lemma to

4
Ty = p/ a(v)(vL®v) : Ozu)v ®v dv—p/ a(v) vl dv[(Ig—Q®RQ) : Ozu|(I3—QR8).
R re (d—1)?

o o

It is easily seen that the only non vanishing terms A;ji = [pacx(v)(v - E;)(v - Ej)(v - Eg)(v -
E;) dv, 1 <i,j,k,l <d—1, are those such that 1 < card{i, j, k,1} < 2. As « is left invariant
by Tu,u # 0, there is a function & such that a(v) = &(|vy |?,v-Q). By using polar coordinates,
we obtain for any 1 <i# j<d—1

Agiii _ A1 _ Jra @(23 + .o+ 251, za)21dz
Aiijj A1122 f]Rd &(2% + ...+ 2’2_1, Zd)Z%Z%dZ
Jga—2 fR+ a(r? + 254 ...+ 23 1, za)r° fozw cos? pdpdrdzs...dzg_q

- Jga—2 fR+ a(r?+ 234 ..+ 22 |, zq)r° fo% cos? @ sin? pdpdrdzs...dzg_;

=3

where we have used
27 2T
3
/ cos pdp = Zﬂ’ / cos? @ sin? pdyp = %
0 0
Observe also that

/ a(v)|v |t dv = / a)(v-F)*+ ...+ (v- Eg_1)%)? dv
R4 Rd

= (d — 1)A1111 + (d - 1)(d — 2)A1122 = (d — 1)(d + 1)A1122

implying that
Jpaa(v)|vL|* dv Jpac(v)|vi |t dv
Aj122 = ; A =3 21 :




Finally the terms A;;z; write

Ajipg = Jraa(@)[vL|* dv
" dz—1

(5z‘j5kl + 601 + 6q0jk), 1 < 4,5,k 1 <d—1.

The previous computations lead to the following expression
/ a( )('UJ_®'UJ_ 0, u)UJ_®UJ_ dv

= ) / (v- E;)(v-Ey)(v-E) dv(E; @ E; : ,u)Ey ® E
ij.k,l<d

4
= / a(v) |;7J_‘ dv Z (51‘3'5]@[ + 5ik5jl + 5il6jk) s 0pu) (B ® Ej: O,u)E @ E;
R? e -1 igkl<d

:/ a(v)d“’LI dv > {[(Ia— Q@ Q) : dul(la — 2@ Q) + (0puE; - E;)[E; ® E; + E; @ Eil}
Rd
i,5<d

:/ (v )J;’ g (L= Q@ Q) : pu)(Iy — Q@ Q) + (Ig — Q@ Q) (Dpu + 'Dpu) (I — Q2 ® Q)}.

Consequently the term 75 is given by

4
Ty == /Rda(v)a‘lsl_’ 1 dv (45) 2ca112?

2Ig —Q® Q) : Oyu
d—1

(Is — Q® Q) <3$u+t8$u— (Id—Q®Q)> (I;—Q® Q).

The desired result follows from , , .
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